

256K (32K x 8) Static RAM

Features

Temperature Ranges

— Commercial: 0°C to 70°C — Industrial: –40°C to 85°C — Automotive: –40°C to 125°C

High speed: 55 ns and 70 ns

Voltage range: 4.5V–5.5V operation

• Low active power (70 ns, LL version, Com'l and Ind'l)

- 275 mW (max.)

• Low standby power (70 ns, LL version, Com'l and Ind'l)

— 28 μW (max.)

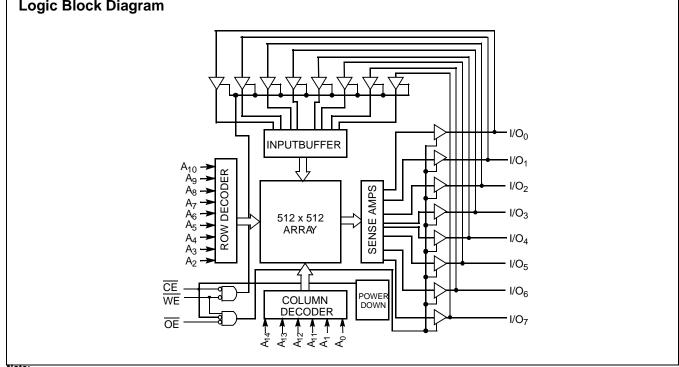
• Easy memory expansion with $\overline{\text{CE}}$ and $\overline{\text{OE}}$ features

TTL-compatible inputs and outputs

· Automatic power-down when deselected

· CMOS for optimum speed/power

• Package available in a standard 450-mil-wide (300-mil body width) 28-lead narrow SOIC, 28-lead TSOP-1, 28-lead reverse TSOP-1, and 600-mil 28-lead PDIP packages

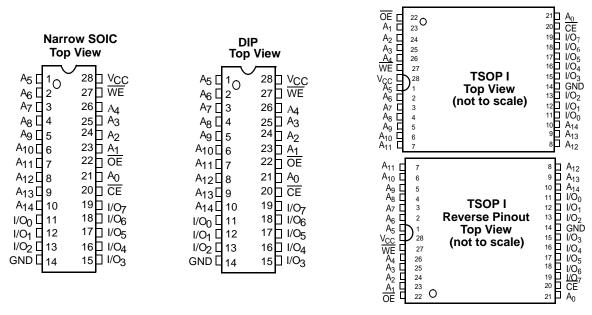

Functional Description[1]

The CY62256 is a high-performance CMOS static RAM organized as 32K words by 8 bits. Easy memory expansion is provided by an active LOW chip enable (CE) and active LOW output enable (OE) and three-state drivers. This device has an automatic power-down feature, reducing the power consumption by 99.9% when deselected.

An active LOW write enable signal (WE) controls the writing/reading operation of the memory. When CE and WE inputs are both LOW, data on the eight data input/output pins (I/O_0) through I/O_7) is written into the memory location addressed by the address present on the address pins (A₀ through A₁₄). Reading the device is accomplished by selecting the device and enabling the outputs, \overline{CE} and \overline{OE} active LOW, while WE remains inactive or HIGH. Under these conditions, the contents of the location addressed by the information on address pins are present on the eight data input/output pins.

The input/output pins remain in a high-impedance state unless the chip is selected, outputs are enabled, and write enable (WE) is HIGH.

• Also available in Lead-free packages **Logic Block Diagram**


1. For best practice recommendations, please refer to the Cypress application note "System Design Guidelines" on http://www.cypress.com.

Product Portfolio

							Power Dis	sipation	
			V _{CC} Range (V)	Speed	Operat (m	ing, I _{CC} nA)	Standb (µ./	y, I _{SB2}
Pr	oduct	Min.	Typ . ^[2]	Max.	(ns)	Typ. ^[2]	Max.	Typ. ^[2]	Max.
CY62256	Commercial	4.5	5.0	5.5	70	28	55	1	5
CY62256L	Com'l / Ind'l				55/70	25	50	2	50
CY62256LL	Commercial				70	25	50	0.1	5
CY62256LL	Industrial				55/70	25	50	0.1	10
CY62256LL	Automotive				55	25	50	0.1	15

Pin Configurations

Pin Definitions

Pin Number	Туре	Description
1–10, 21, 23–26	Input	A ₀ -A ₁₄ . Address Inputs
11–13, 15–19,	Input/Output	I/O ₀ -/O ₇ . Data lines. Used as input or output lines depending on operation
27	Input/Control	WE . When selected LOW, a WRITE is conducted. When selected HIGH, a READ is conducted
20	Input/Control	CE. When LOW, selects the chip. When HIGH, deselects the chip
22	Input/Control	OE . Output Enable. Controls the direction of the I/O pins. When LOW, the I/O pins behave as outputs. When deasserted HIGH, I/O pins are three-stated, and act as input data pins
14	Ground	GND. Ground for the device
28	Power Supply	V _{CC} . Power supply for the device

Note:

^{2.} Typical specifications are the mean values measured over a large sample size across normal production process variations and are taken at nominal conditions (T_A = 25°C, V_{CC}). Parameters are guaranteed by design and characterization, and not 100% tested.

Maximum Ratings

Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	> 2001V
Latch-up Current	> 200 mA

Operating Range

Range	Ambient Temperature (T _A) ^[4]	V _{CC}
Commercial	0°C to +70°C	5V ± 10%
Industrial	−40°C to +85°C	5V ± 10%
Automotive	−40°C to +125°C	5V ± 10%

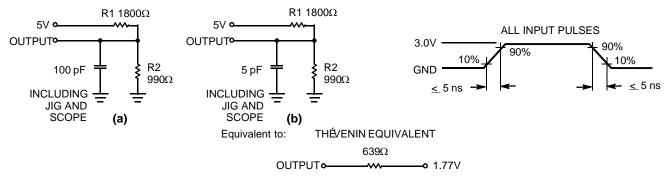
Electrical Characteristics Over the Operating Range

				С	Y62256	-55	С	Y62256-	-70	
Parameter	Description	Test Conditions	6	Min.	Typ. ^[2]	Max.	Min.	Typ. ^[2]	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -1.0 \text{ m/s}$	Ą	2.4			2.4			V
V _{OL}	Output LOW Voltage	$V_{CC} = Min., I_{OL} = 2.1 mA$				0.4			0.4	V
V _{IH}	Input HIGH Voltage			2.2		V _{CC} +0.5V	2.2		V _{CC} +0.5V	V
V _{IL}	Input LOW Voltage			-0.5		0.8	-0.5		0.8	V
I _{IX}	Input Leakage Current	$GND \le V_1 \le V_{CC}$		-0.5		+0.5	-0.5		+0.5	μА
l _{OZ}	Output Leakage Current	GND $\leq V_O \leq V_{CC}$, Output D	Disabled	-0.5		+0.5	-0.5		+0.5	μΑ
I _{CC}	V _{CC} Operating Supply	$V_{CC} = Max., I_{OUT} = 0 mA,$			28	55		28	55	mA
	Current	$f = f_{MAX} = 1/t_{RC}$	L		25	50		25	50	mA
			LL		25	50		25	50	mA
I _{SB1}	Automatic CE	Max. V_{CC} , $\overline{CE} \ge V_{IH}$,			0.5	2		0.5	2	mA
	Power-down Current— TTL Inputs	$V_{IN} \ge V_{IH}$ or $V_{IN} \le V_{IL}$, $f = f_{MAX}$	L		0.4	0.6		0.4	0.6	mA
	p a.to	- IVIAX	LL		0.3	0.5		0.3	0.5	mA
I _{SB2}	Automatic CE	Max. V _{CC} ,			1	5		1	5	mA
	Power-down Current— CMOS Inputs	$\overline{CE} \ge V_{CC} - 0.3V$ $V_{IN} \ge V_{CC} - 0.3V$, or	L		2	50		2	50	μΑ
	ooopa.a	$V_{IN} \le 0.3V$, f = 0	LL		0.1	5		0.1	5	μА
			LL - Ind'l		0.1	10		0.1	10	μΑ
			LL - Auto		0.1	15				μА

Capacitance^[5]

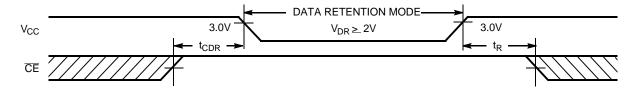
Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	6	pF
C _{OUT}	Output Capacitance	$V_{CC} = 5.0V$	8	pF

Thermal Resistance


Parameter	Description	Test Conditions	DIP	SOIC	TSOP	RTSOP	Unit
Θ_{JA}	rea	Still Air, soldered on a 4.25 x 1.125 inch, 4-layer printed circuit board	75.61	76.56	93.89	93.89	°C/W
Θ _{JC}	Thermal Resistance (Junction to Case) ^[5]		43.12	36.07	24.64	24.64	°C/W

Notes:

- 3. V_{IL} (min.) = -2.0V for pulse durations of less than 20 ns.
- 4. Ta is the "Instant-On" case temperature.
- 5. Tested initially and after any design or process changes that may affect these parameters.


AC Test Loads and Waveforms

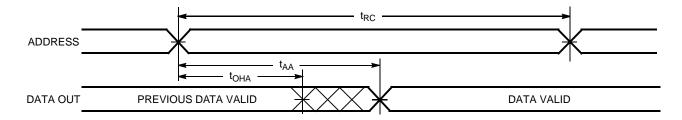
Data Retention Characteristics

Parameter	Description		Conditions ^[6]	Min.	Typ . ^[2]	Max.	Unit
V_{DR}	V _{CC} for Data Retention			2.0			V
I _{CCDR}	Data Retention Current	L	$V_{CC} = 3.0V$, $\overline{CE} \ge V_{CC} - 0.3V$,		2	50	μΑ
		LL	$V_{IN} \ge V_{CC} - 0.3V$, or $V_{IN} \le 0.3V$		0.1	5	μΑ
		LL - Ind'l			0.1	10	μΑ
		LL - Auto			0.1	10	μΑ
t _{CDR} ^[5]	Chip Deselect to Data Re	Chip Deselect to Data Retention Time		0			ns
t _R ^[5]	Operation Recovery Time)		t _{RC}			ns

Data Retention Waveform

Note:

6. No input may exceed V_{CC} + 0.5V.



Switching Characteristics Over the Operating Range^[7]

		CY62	256–55	CY62			
Parameter	Description	otion Min. Max.		Min.	Max.	Unit	
Read Cycle				•	•		
t _{RC}	Read Cycle Time	55		70		ns	
t _{AA}	Address to Data Valid		55		70	ns	
t _{OHA}	Data Hold from Address Change	5		5		ns	
t _{ACE}	CE LOW to Data Valid		55		70	ns	
t _{DOE}	OE LOW to Data Valid		25		35	ns	
t _{LZOE}	OE LOW to Low-Z ^[8]	5		5		ns	
t _{HZOE}	OE HIGH to High-Z ^[8, 9]		20		25	ns	
t _{LZCE}	CE LOW to Low-Z ^[8]	5		5		ns	
t _{HZCE}	CE HIGH to High-Z ^[8, 9]		20		25	ns	
t _{PU}	CE LOW to Power-up	0		0		ns	
t _{PD}	CE HIGH to Power-down		55		70	ns	
Write Cycle ^[10, 11]		<u>.</u>					
t _{WC}	Write Cycle Time	55		70		ns	
t _{SCE}	CE LOW to Write End	45		60		ns	
t _{AW}	Address Set-up to Write End	45		60		ns	
t _{HA}	Address Hold from Write End	0		0		ns	
t _{SA}	Address Set-up to Write Start	0		0		ns	
t _{PWE}	WE Pulse Width	40		50		ns	
t _{SD}	Data Set-up to Write End	25		30		ns	
t _{HD}	Data Hold from Write End	0		0		ns	
t _{HZWE}	WE LOW to High-Z ^[8, 9]		20		25	ns	
t _{LZWE}	WE HIGH to Low-Z ^[8]	5		5		ns	

Switching Waveforms

Read Cycle No. 1^[12, 13]

Notes:

- Notes:

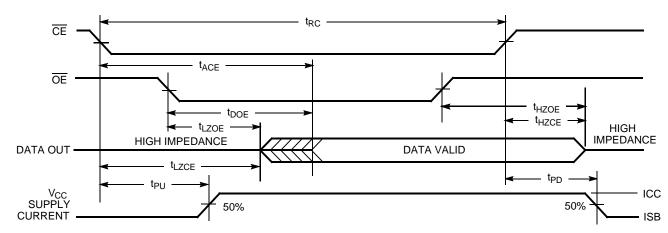
 7. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 100-pF load capacitance.

 8. At any given temperature and voltage condition, I_{HZCE} is less than I_{LZCE} , I_{HZOE} is less than I_{LZOE} , and I_{HZWE} for any given device.

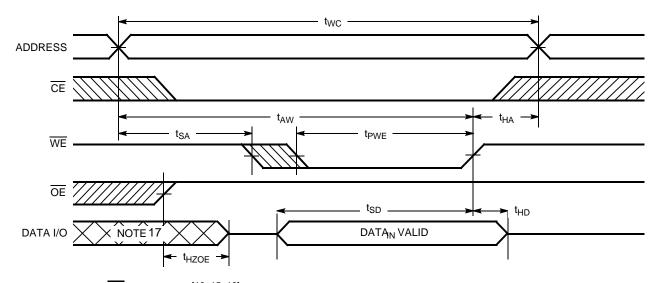
 9. I_{HZOE} , I_{HZCE} , and I_{HZWE} are specified with I_{LZE} is less than I_{LZOE} are specified with I_{LZE} is less than I_{LZOE} , and I_{HZWE} for any given device.

 10. The internal Write time of the memory is defined by the overlap of I_{LZEE} is less than I_{LZEE} , and I_{HZWE} are specified with I_{LZEE} is less than I_{LZEE} for any given device.

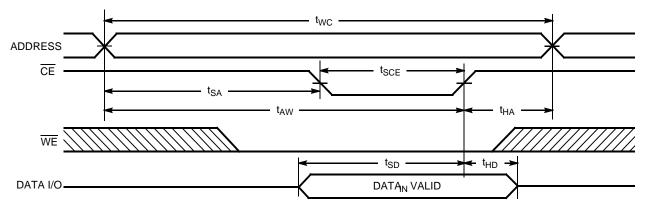
 10. The internal Write time of the memory is defined by the overlap of I_{LZEE} is less than I_{LZEE} , and I_{HZWE} and each signal must be LOW to initiate a Write and either signal can terminate a Write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the Write.


 11. The minimum Write cycle time for Write Cycle #3 (WE controlled, I_{LZEE}) is less than I_{LZEE} , and I_{LZEE} and I_{LZEE} and I_{LZEE} and I_{LZEE} .

 12. Device is continuously selected. I_{LZEE} is less than I_{LZEE} and I_{LZEE} are specified with I_{LZEE} and I_{LZEE} and I_{LZEE} and I_{LZEE} are specified with I_{LZEE} and I_{LZEE} and I_{LZEE} are specified with I_{LZEE} and I_{LZEE} and I_{LZEE} are specified with I_{LZEE} and I_{LZEE} and I_{LZEE} are specified with I_{LZEE} and I_{LZEE} a



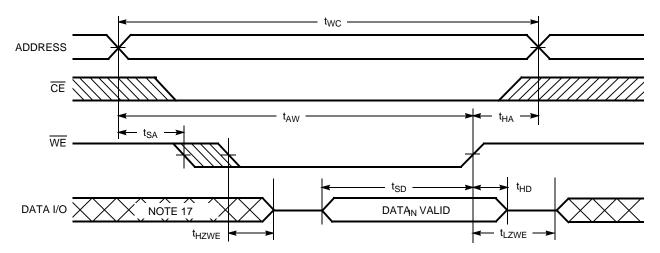
Switching Waveforms (continued)


Read Cycle No. $2^{[13, 14]}$

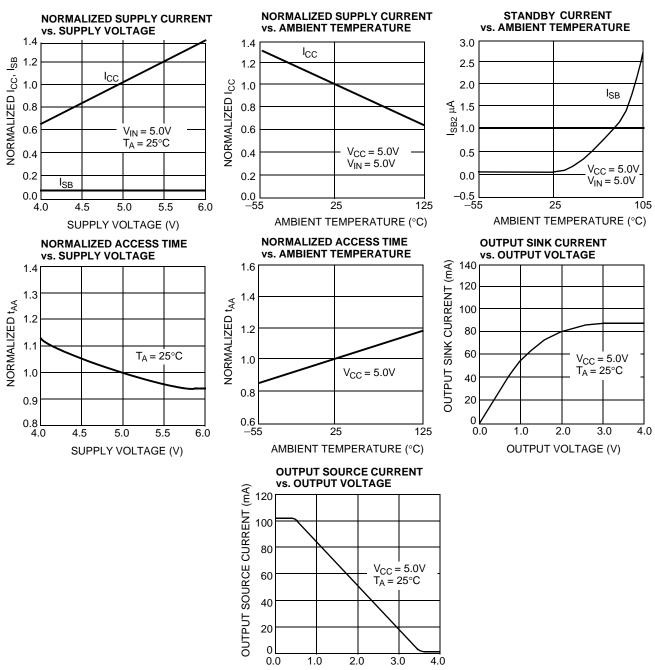
Write Cycle No. 1 (WE Controlled)[10, 15, 16]

Write Cycle No. 2 ($\overline{\text{CE}}$ Controlled)[10, 15, 16]

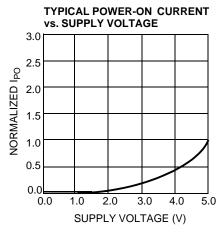
- 14. Address valid prior to or coincident with $\overline{\text{CE}}$ transition LOW.
- 15. Data I/O is high impedance if $\overline{OE} = V_{IH}$.

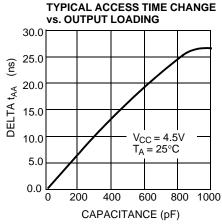

 16. If \overline{CE} goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.

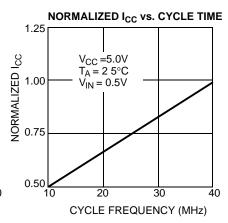
 17. During this period, the I/Os are in output state and input signals should not be applied.


Switching Waveforms (continued)

Write Cycle No. 3 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW)[11, 16]


Typical DC and AC Characteristics

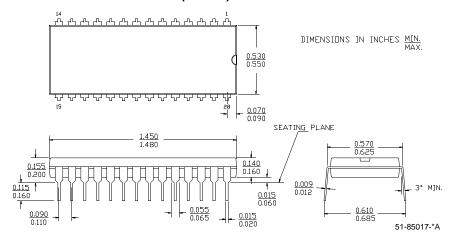



OUTPUT VOLTAGE (V)

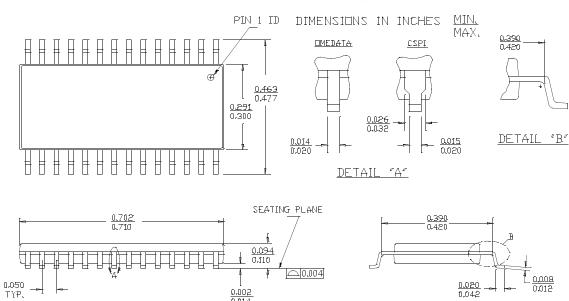
Typical DC and AC Characteristics (continued)

Truth Table

CE	WE	OE	Inputs/Outputs	Mode	Power
Н	Х	Х	High-Z	Deselect/Power-down	Standby (I _{SB})
L	Н	L	Data Out	Read	Active (I _{CC})
L	L	Х	Data In	Write	Active (I _{CC})
L	Н	Н	High-Z	Output Disabled	Active (I _{CC})


Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
55	CY62256LL-55SNI	SN28	28-lead (300-Mil Narrow Body) Narrow SOIC	Industrial
	CY62256LL-55SNXI	SN28	28-lead (300-Mil Narrow Body) Narrow SOIC (Pb-Free)	
	CY62256LL-55ZI	Z28	28-lead Thin Small Outline Package	
	CY62256LL-55ZXI	Z28	28-lead Thin Small Outline Package (Pb-Free)	
	CY62256LL-55SNE	SN28	28-lead (300-Mil Narrow Body) Narrow SOIC	Automotive
	CY62256LL-55SNXE	SN28	28-lead (300-Mil Narrow Body) Narrow SOIC (Pb-Free)	
	CY62256LL-55ZE	Z28	28-lead Thin Small Outline Package	
	CY62256LL-55ZXE	Z28	28-lead Thin Small Outline Package (Pb-Free)	
	CY62256LL-55ZRE	ZR28	28-lead Reverse Thin Small Outline Package	
	CY62256LL-55ZRXE	ZR28	28-lead Reverse Thin Small Outline Package (Pb-Free)	
70	CY62256-70SNC	SN28	28-lead (300-Mil Narrow Body) Narrow SOIC	Commercial
	CY62256L-70SNC	SN28	28-lead (300-Mil Narrow Body) Narrow SOIC	
	CY62256L-70SNXC	SN28	28-lead (300-Mil Narrow Body) Narrow SOIC (Pb-Free)	
	CY62256LL-70SNC	SN28	28-lead (300-Mil Narrow Body) Narrow SOIC	
	CY62256LL-70SNXC	SN28	28-lead (300-Mil Narrow Body) Narrow SOIC (Pb-Free)	
	CY62256L-70SNI	SN28	28-lead (300-Mil Narrow Body) Narrow SOIC	Industrial
	CY62256L-70SNXI	SN28	28-lead (300-Mil Narrow Body) Narrow SOIC (Pb-Free)	
	CY62256LL-70SNI	SN28	28-lead (300-Mil Narrow Body) Narrow SOIC	
	CY62256LL-70SNXI	SN28	28-lead (300-Mil Narrow Body) Narrow SOIC (Pb-Free)	
	CY62256LL-70ZC	Z28	28-lead Thin Small Outline Package	Commercial
	CY62256LL-70ZXC	Z28	28-lead Thin Small Outline Package (Pb-Free)	
	CY62256LL-70ZI	Z28	28-lead Thin Small Outline Package	Industrial
	CY62256LL-70ZXI	Z28	28-lead Thin Small Outline Package (Pb-Free)	
	CY62256-70PC	P15	28-lead (600-Mil) Molded DIP	Commercial
	CY62256L-70PC	P15	28-lead (600-Mil) Molded DIP	
	CY62256L-70PXC	P15	28-lead (600-Mil) Molded DIP (Pb-Free)	
	CY62256LL-70PC	P15	28-lead (600-Mil) Molded DIP	
	CY62256LL-70PXC	P15	28-lead (600-Mil) Molded DIP (Pb-Free)	
	CY62256LL-70ZRI	ZR28	28-lead Reverse Thin Small Outline Package	Industrial
	CY62256LL-70ZRXI	ZR28	28-lead Reverse Thin Small Outline Package (Pb-Free)	

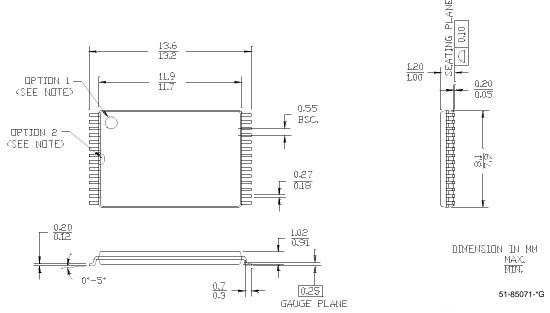


Package Diagrams

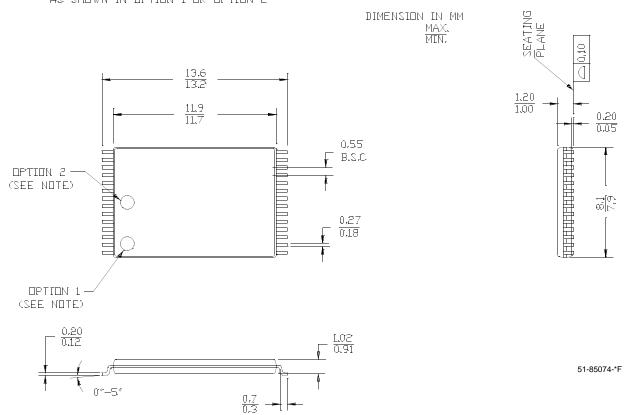
28-lead (600-mil) Molded DIP P15

28-lead (300-mil) SNC (Narrow Body) SN28

0.002 0.014


51-85092-*B

Package Diagrams (continued)


28-lead Thin Small Outline Package Type 1 (8 x 13.4 mm) Z28

NOTE: ORIENTATION I.D MAY BE LOCATED EITHER AS SHOWN IN OPTION 1 OR OPTION 2

28-Lead Reverse Type 1 Thin Small Outline Package (8x13.4 mm) ZR28

NOTE: ORIENTATION LD MAY BE LOCATED EITHER AS SHOWN IN OPTION 1 OR OPTION 2

All product and company names mentioned in this document are the trademarks of their respective holders.

Document History Page

REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	113454	03/06/02	MGN	Change from Spec number: 38-00455 to 38-05248 Remove obsolete parts from ordering info, standardize format
*A	115227	05/23/02	GBI	Changed SN Package Diagram
*B	116506	09/04/02	GBI	Added footnote 1. Corrected package description in Ordering Information table
*C	238448	See ECN	AJU	Added Automotive product information
*D	344595	See ECN	SYT	Added Pb-Free packages on page# 10
*E	395936	See ECN	SYT	Changed address of Cypress Semiconductor Corporation on Page# 1 from "3901 North First Street" to "198 Champion Court" Added CY62256L-70SNXI package in the Ordering Information on Page # "