Notice for TAIYO YUDEN products

Please read this notice before using the TAIYO YUDEN products.

REMINDERS

Product information in this catalog is as of October 2015. All of the contents specified herein are subject to change without notice due to technical improvements, etc. Therefore, please check for the latest information carefully before practical application or usage of the Products.

Please note that TAIYO YUDEN CO., LTD. shall not be responsible for any defects in products or equipment incorporating such products, which are caused under the conditions other than those specified in this catalog or individual specification.

Please contact TAIYO YUDEN CO., LTD. for further details of product specifications as the individual specification is available.

Please conduct validation and verification of products in actual condition of mounting and operating environment before commercial shipment of the equipment.

All electronic components listed in this catalogue are intended for use in general electronic equipment such as AV/OA equipment, home electrical appliances, office equipment, information-communication equipment, general medical equipment, industrial equipment, and automotive applications.

Please be sure to contact TAIYO YUDEN CO., LTD. for further information before using the components for any equipment which might have a negative impact directly on human life, such as specially controlled medical equipment, transportation equipment (automotive powertrain/train/ship control systems, etc.) and traffic signal system.

Please do not incorporate the components into any equipment requiring a high degree of safety and reliability, such as aerospace equipment, avionics, nuclear control equipment, submarine system, and military equipment.

For use in high safety and reliability-required devices/circuits of general electronic equipment, thorough safety evaluation prior to use is strongly recommended, and a protective circuit should be designed and installed as necessary.

The contents of this catalog are applicable to the products which are purchased from our sales offices or distributors (so called "TAIYO YUDEN' s official sales channel").

It is only applicable to the products purchased from any of TAIYO YUDEN's official sales channel.

Please note that TAIYO YUDEN CO., LTD. shall have no responsibility for any controversies or disputes that may occur in connection with a third party's intellectual property rights and other related rights arising from your usage of products in this catalog. TAIYO YUDEN CO., LTD. grants no license for such rights.

Caution for export

Certain items in this catalog may require specific procedures for export according to "Foreign Exchange and Foreign Trade Control Law" of Japan, "U.S. Export Administration Regulations", and other applicable regulations. Should you have any question or inquiry on this matter, please contact our sales staff.

TAIYO YUDEN 2016

MULTILAYER CERAMIC CAPACITORS

PART NUMBER

①Rated voltage

Code	Rated voltage[VDC]
А	4
J	6.3
L	10
E	16
Т	25
G	35
U	50
Н	100
Q	250
S	630

Series name
Multilayer ceramic capacitor
Multilayer ceramic capacitor for high frequency
LW reverse type multilayer capacitor

3 End terminatio	n
Code	End termination
К	Plated
J	Soft Termination
S	Cu Internal Electrodes
R	High Reliability Application

 $\Delta = Blank space$

(4) Dimension (L × W)

Туре	Dimensions (L×W)[mm]	EIA (inch)
063	0.6 × 0.3	0201
105	1.0 × 0.5	0402
105	0.52 × 1.0 💥	0204
107	1.6 × 0.8	0603
107	0.8 × 1.6 💥	0306
010	2.0 × 1.25	0805
212	1.25 × 2.0 💥	0508
316	3.2 × 1.6	1206
325	3.2 × 2.5	1210
432	4.5 × 3.2	1812

Note : XLW reverse type(DWK) only

Dimension tole	rance			
Code	Туре	L[mm]	W[mm]	T[mm]
Δ	ALL	Standard	Standard	Standard
	063	0.6±0.05	0.3±0.05	0.3±0.05
	105	1.0±0.10	0.5±0.10	0.5±0.10
	107	1.6+0.15/-0.05	0.8+0.15/-0.05	0.8+0.15/-0.05
А	010			0.85±0.10
	212	2.0+0.15/-0.05	1.25+0.15/-0.05	1.25+0.15/-0.05
	316	3.2±0.20	1.6±0.20	1.6±0.20
	325	3.2±0.30	2.5±0.30	2.5±0.30
	105	1.0+0.15/-0.05	0.5+0.15/-0.05	0.5+0.15/-0.05
	107	1.6+0.20/-0	0.8+0.20/-0	0.8+0.20/-0
В	010		1.05 0.00 / 0	0.85±0.10
	212	2.0+0.20/-0	1.25+0.20/-0	1.25+0.20/-0
	316	3.2±0.30	1.6±0.30	1.6±0.30
	105	1.0+0.20/-0	0.5+0.20/-0	0.5+0.20/-0
С	107	1.6+0.25/-0	0.8+0.25/-0	0.8+0.25/-0
	212	2.0+0.25/-0	1.25+0.25/-0	1.25+0.25/-0
	212	2.0±0.15	1.25±0.15	0.85±0.15
14 010		16+020	1.15±0.20	
r.	К 316	3.2 ± 0.20	1.6 ± 0.20	1.6±0.20
	325	3.2±0.50	2.5±0.30	2.5±0.30

Note: P.22 Standard external dimensions

 Δ = Blank space

6 Temperature characteristics code

Code		cable dard	Temperature range[°C]	Ref. Temp.[°C]	Capacitance change	Capacitance tolerance	Tolerance code
				05	1 150/	±10%	K
BJ	EIA	X5R	$-55 \sim + 85$	25	±15%	±20%	М
B7	EIA	X7R	$-55 \sim +125$	25 ±15%	±10%	К	
В7		-55/~ +125	25	土13%	±20%	М	
C6	C6 EIA X6S	X6S	$-55 \sim +105$	25	±22%	±10%	к
00	EIA	X0S -55~+105 25 ±22%	±20%	М			
C7	EIA	X7S	$-55 \sim +125$	25	±22%	±10%	К
07	EIA	X/5	$-55 \sim +125$	20		±20%	М
D7	D7 EIA X7T	X7T −55~+125	25	+22%/-33%	±10%	К	
07	EIA	~/1	- 55/~ + 125	25	+22%0/-33%	±20%	М

for High Quality Equipment

Temperature compensating type

Code		cable dard	Temperature range[°C]	Ref. Temp.[°C]	Capacitance change	Capacitance tolerance	Tolerance code
	JIS CG					±0.1pF	В
			20		±0.25pF	С	
CG	$-55 \sim +125$		0±30ppm/°C	±0.5pF	D		
GG			-55/~ +125		0±30ppm/C	±1pF	F
	EIA	COG		25		±2%	G
					±5%	J	

⑦Nominal capacitance

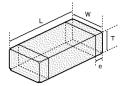
Code (example)	Nominal cpacitance
0R5	0.5pF
010	1pF
100	10pF
101	100pF
102	1,000pF
103	0.01 <i>µ</i> F
104	0.1 <i>µ</i> F
105	1.0 <i>µ</i> F
106	10 <i>µ</i> F
107	100 <i>µ</i> F

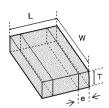
Note : R=Decimal point

(8) Capacitance tolerance

Coupacitation et	
Code	Capacitance tolerance
В	±0.1pF
С	±0.25pF
D	±0.5pF
G	±2%
J	±5%
К	±10%
М	±20%

④Thickness	
Code	Thickness[mm]
Р	0.3
Т	0.3
V	0.5
С	0.7(107type or more)
А	0.8
D	0.85(212type or more)
F	1.15
G	1.25
Н	1.5
L	1.6
Ν	1.9
М	2.5


①Special code	
Code	Special code
Н	MLCC for Industrial and Automotive


(1)Packaging

Packaging
ϕ 178mm Taping (2mm pitch)
ϕ 178mm Embossed Taping (4mm pitch)
ϕ 178mm Taping (4mm pitch)
ϕ 178mm Taping (4mm pitch, 1000 pcs/reel)
325 type(Thickness code M)

12Internal code

Gineerina	
Code	Internal code
Δ	Standard

※ LW reverse type

Type(EIA)		Dime	nsion [mm] (inch)			
Type(LIA)	L	W	Т	*1	е	
□MK063(0201)	0.6 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	Т	0.15±0.05	
	(0.024 ± 0.001)	(0.012±0.001)	(0.012±0.001)	1	(0.006 ± 0.002)	
□MK105(0402)	1.0 ± 0.05	0.5 ± 0.05	0.5 ± 0.05	V	0.25±0.10	
	(0.039 ± 0.002)	(0.020 ± 0.002)	(0.020 ± 0.002)	v	(0.010 ± 0.004)	
□WK105(0204)※	0.52 ± 0.05	1.0 ± 0.05	0.3 ± 0.05	Р	0.18±0.08	
LIWK105(0204) %	(0.020 ± 0.002)	(0.039 ± 0.002)	(0.012±0.002)	F	(0.007 ± 0.003)	
	1.6±0.10	0.8±0.10	0.8±0.10		0.35 ± 0.25	
□MK107(0603)	(0.063 ± 0.004)	(0.031 ± 0.004)	(0.031 ± 0.004)	A	(0.014±0.010)	
	1.6±0.10	0.8±0.10	0.8±0.10		0.35±0.25	
□MJ107(0603)	(0.063 ± 0.004)	(0.031 ± 0.004)	(0.031 ± 0.004)	A	(0.014±0.010)	
	1.6±0.10	0.8±0.10	0.7±0.10	С	0.35±0.25	
□VS107(0603)	(0.063 ± 0.004)	(0.031 ± 0.004)	(0.031 ± 0.004)	U	(0.014±0.010)	
	1.6±0.10	0.8±0.10	0.8±0.10	•	0.1~0.6	
□MR107(0603)	(0.063 ± 0.004)	(0.031 ± 0.004)	(0.031 ± 0.004)	A	(0.004~0.024)	
	0.8±0.10	1.6±0.10	0.5 ± 0.05		0.25±0.15	
□WK107(0306)※	(0.031 ± 0.004)	(0.063 ± 0.004)	(0.020 ± 0.002)	V	(0.010 ± 0.006)	
			0.85±0.10	_		
	2.0±0.10	1.25 ± 0.10	(0.033 ± 0.004)	D	0.5 ± 0.25	
□MK212(0805)	(0.079 ± 0.004)	(0.049 ± 0.004)	1.25±0.10		(0.020 ± 0.010)	
			(0.049 ± 0.004)	G		
			0.85±0.10			
	2.0 ± 0.10	1.25±0.10	(0.033 ± 0.004)	D	0.5 ± 0.25	
□MJ212(0805)	(0.079 ± 0.004)	(0.049 ± 0.004)	1.25±0.10		(0.020 ± 0.010)	
			(0.049 ± 0.004)	G	(0.020 - 0.010)	
	2.0±0.10	1.25±0.10	0.85±0.10		0.5±0.25	
□VS212(0805)	(0.079 ± 0.004)	(0.049 ± 0.004)	(0.033 ± 0.004)	D	(0.020 ± 0.010)	
	2.0±0.10	1.25±0.10	1.25±0.10		0.25~0.75	
□MR212(0805)	(0.079 ± 0.004)	(0.049 ± 0.004)	(0.049 ± 0.004)	G	(0.010~0.029)	
	1.25±0.15	2.0±0.15	0.85±0.10		0.3±0.2	
□WK212(0508)※			(0.033 ± 0.004)	D	(0.012 ± 0.008)	
	(0.049±0.006)	(0.079±0.006)	1.15±0.10		(0.012±0.008)	
				F		
□MK316(1206)	3.2±0.15	1.6±0.15	(0.045±0.004)		$\begin{array}{c} 0.5 + 0.35 / -0.25 \\ (0.020 + 0.014 / -0.010) \end{array}$	
	(0.126 ± 0.006)	(0.063 ± 0.006)	1.6 ± 0.20	L		
			(0.063 ± 0.008)	L		
			1.15±0.10	-		
	3.2 ± 0.15	1.6±0.15	(0.045 ± 0.004)	F	0.5+0.35/-0.25	
□MJ316(1206)	(0.126 ± 0.006)	(0.063 ± 0.006)	1.6±0.20		(0.020 + 0.014 / -0.010)	
			(0.063 ± 0.008)	L		
	3.2±0.15	1.6±0.15	1.6±0.20		0.25~0.85	
□MR316(1206)	(0.126 ± 0.006)	(0.063 ± 0.006)	(0.063 ± 0.008)	L	(0.010~0.033)	
	(0.120 20.000)	(0.000 ± 0.000)	1.15±0.10		(0.010 0.000)	
			(0.045 ± 0.004)	F		
			1.5±0.10		-	
	3.2 ± 0.30	2.5 ± 0.20	(0.059 ± 0.004)	н	0.6 ± 0.3	
□MK325(1210)	(0.126 ± 0.012)	(0.098 ± 0.008)	1.9±0.20		(0.024 ± 0.012)	
	(0.120±0.012)	(0.030±0.000)		N	(0.024 ± 0.012)	
			(0.075±0.008) 2.5±0.20		-	
			(0.098 ± 0.008)	М		
□MJ325(1210)			1.9 ± 0.20	Ν	06100	
	3.2 ± 0.30	2.5 ± 0.20	(0.075±0.008)		0.6 ± 0.3	
	(0.126±0.012)	(0.098±0.008)	2.5±0.20	М	(0.024±0.012)	
			(0.098±0.008)			
			1.9±0.20	Ν		
□MR325(1210)	3.2±0.30	2.5±0.20	(0.075±0.008)		0.3~0.9	
	(0.126 ± 0.012)	(0.098 ± 0.008)	2.5±0.20	м	(0.012~0.035)	
			(0.098±0.008)			
□MK432(1812)	4.5±0.40	3.2 ± 0.30	2.5 ± 0.20	м	0.9 ± 0.6	
	(0.177±0.016)	(0.126 ± 0.012)	(0.098 ± 0.008)		(0.035 ± 0.024)	

Note : X. LW reverse type, *1.Thickness code

for High Quality Equipment

STANDARD QUANTITY

Tune	EIA (inch)	Dime	nsion	Standard qu	uantity[pcs]
Туре	EIA (inch)	[mm]	Code	Paper tape	Embossed tape
063	0201	0.3	Т	15000	-
105	0402	0.5	V	10000	
105	0204 💥	0.30	Р	10000	_
		0.7	С	4000	_
107		0.8	А	4000	_
	0603	0.8	А	-	4000
		0.8	A	3000 (Soft Termination)	_
	0306 💥	0.50	V	-	4000
		0.85	D	4000	-
	0805	1.25	G	-	3000
212	0005	1.25	G	-	2000 (Soft Termination
	0508 💥	0.85	D	4000	-
016	1006	1.15	F	-	3000
316	1206	1.6	L	-	2000
		1.15	F		
325	1210	1.5	Н	_	2000
320	1210	1.9	Ν		
		2.5	М	-	500(T), 1000(P)
432	1812	2.5	М	_	500

for High Quality Equipment

PART NUMBER

	[Temperature Characteristic B7 : X7R] 1.5mm thickness(H)										
	Part number 1	Part number 2 Rate	Rated voltage [V]	Temperature characteristics		Capacitance [F]	Capacitance tolerance [%]	tan δ [%]	HALT	Thickness ^{*3} [mm]	Note
									Rated voltage x %		Note
	UMK325 B7105[]HHT		50		X7R	1μ	±10, ±20	3.5	200	1.5±0.10	*1 ,*2

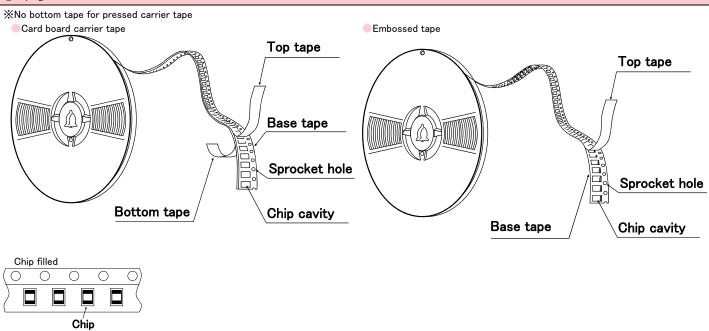
Multilayer Ceramic Capacitors (Temperature compensating type)

●063TYPE (Dimension:0.6 × 0.3mm JIS:0603 EIA:0201)
[Temperature Characteristic CG:CG/C0G] 0.3mm thickness(T)

Part number 1	Part number 2	Rated voltage [V]	Temperature		Capacitance	Capacitance	Q [at 1MHz]	HALT	Thickness ^{*3} [mm]	Note
T art number 1		Nated Voltage [V]	charact	eristics	[F]	tolerance [%]	(Min)	Rated voltage x %	Thickness [mm]	Note
UMK063 CG0R5CTHF			CG	COG	0.5 p	± 0.25pF	410	200	0.3 ± 0.03	*1 ,*2
JMK063 CG010CTHF			CG	COG	1 p	± 0.25pF	420	200	0.3 ± 0.03	*1 ,*2
UMK063 CG1R5CTHF			CG	COG	1.5 p	± 0.25pF	430	200	0.3 ± 0.03	*1 ,*2
JMK063 CG020CTHF			CG	COG	2 p	± 0.25pF	440	200	0.3 ± 0.03	*1 ,*2
JMK063 CG030CTHF			CG	COG	3 p	± 0.25pF	460	200	0.3 ± 0.03	*1 ,*2
JMK063 CG040CTHF			CG	COG	4 p	± 0.25pF	480	200	0.3 ± 0.03	*1 ,*2
JMK063 CG050CTHF			CG	COG	5 p	± 0.25pF	500	200	0.3 ± 0.03	*1 ,*2
JMK063 CG060DTHF			CG	COG	6 p	± 0.5pF	520	200	0.3 ± 0.03	*1 ,*2
JMK063 CG070DTHF			CG	COG	7 p	± 0.5pF	540	200	0.3 ± 0.03	*1 ,*2
JMK063 CG080DTHF			CG	COG	8 p	± 0.5pF	560	200	0.3 ± 0.03	*1 ,*2
JMK063 CG090DTHF			CG	COG	9 p	± 0.5pF	580	200	0.3 ± 0.03	*1 ,*2
JMK063 CG100DTHF		50	CG	COG	10 p	± 0.5pF	600	200	0.3 ± 0.03	*1 ,*2
JMK063 CG120JTHF		50	CG	COG	12 p	± 5%	640	200	0.3 ± 0.03	*1 ,*2
JMK063 CG150JTHF			CG	COG	15 p	± 5%	700	200	0.3 ± 0.03	*1 ,*2
JMK063 CG180JTHF			CG	COG	18 p	± 5%	760	200	0.3 ± 0.03	*1 ,*2
JMK063 CG220JTHF			CG	COG	22 p	± 5%	840	200	0.3 ± 0.03	*1 ,*2
JMK063 CG270JTHF			CG	COG	27 p	± 5%	940	200	0.3 ± 0.03	*1 ,*2
JMK063 CG330JTHF			CG	COG	33 p	± 5%	1000	200	0.3 ± 0.03	*1 ,*2
JMK063 CG390JTHF			CG	COG	39 p	± 5%	1000	200	0.3 ± 0.03	*1 ,*2
JMK063 CG470JTHF			CG	COG	47 p	± 5%	1000	200	0.3 ± 0.03	*1 ,*2
JMK063 CG560JTHF			CG	COG	56 p	± 5%	1000	200	0.3 ± 0.03	*1 ,*2
JMK063 CG680JTHF] [CG	COG	68 p	± 5%	1000	200	0.3 ± 0.03	*1 ,*2
JMK063 CG820JTHF			CG	C0G	82 p	± 5%	1000	200	0.3 ± 0.03	*1 ,*2
JMK063 CG101JTHF			CG	COG	100 p	± 5%	1000	200	0.3 ± 0.03	*1 ,*2
MK063 CG121JTHF			CG	C0G	120 p	± 5%	1000	200	0.3 ± 0.03	*1 ,*2
MK063 CG151JTHF		25	CG	COG	150 p	± 5%	1000	200	0.3 ± 0.03	*1 ,*2
FMK063 CG181JTHF		20	CG	COG	180 p	± 5%	1000	200	0.3 ± 0.03	*1 ,*2
MK063 CG221JTHF			CG	COG	220 p	± 5%	1000	200	0.3 ± 0.03	*1 ,*2

● 105TYPE (Dimension:1.0×0.5mm JIS:1005 EIA:0402) [Temperature Characteristic CG:CG/C0G] 0.5mm thickness(V)

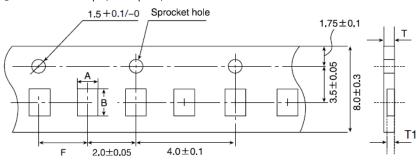
Part number 1	Part number 2	Rated voltage [V]		erature eristics	Capacitance [F]	Capacitance tolerance [%]	Q [at 1MHz] (Min)	HALT Rated voltage x %	Thickness ^{*3} [mm]	Note
UMK105 CG0R5CVHF			CG	COG	0.5 p	±0.25pF	410	200	0.5±0.05	*1 ,*2
UMK105 CG010CVHF			CG	COG	1 p	±0.25pF	420	200	0.5 ± 0.05	*1 ,*2
UMK105 CG1R5CVHF			CG	COG	1.5 p	±0.25pF	430	200	0.5 ± 0.05	*1 ,*2
UMK105 CG020CVHF			CG	COG	2 p	±0.25pF	440	200	0.5 ± 0.05	*1 .*2
UMK105 CG030CVHF			CG	COG	3 p	±0.25pF	460	200	0.5 ± 0.05	*1 ,*2
UMK105 CG040CVHF			CG	COG	4 p	±0.25pF	480	200	0.5 ± 0.05	*1 ,*2
UMK105 CG050CVHF			CG	COG	5 p	±0.25pF	500	200	0.5 ± 0.05	*1 ,*2
UMK105 CG060DVHF			CG	COG	6 p	±0.5pF	520	200	0.5 ± 0.05	*1 ,*2
UMK105 CG070DVHF			CG	COG	7 p	±0.5pF	540	200	0.5 ± 0.05	*1 ,*2
UMK105 CG080DVHF			CG	COG	8 p	±0.5pF	560	200	0.5 ± 0.05	*1 ,*2
UMK105 CG090DVHF			CG	COG	9 p	±0.5pF	580	200	0.5 ± 0.05	*1 ,*2
UMK105 CG100DVHF			CG	COG	10 p	±0.5pF	600	200	0.5 ± 0.05	*1 ,*2
UMK105 CG120JVHF			CG	COG	12 p	±5%	640	200	0.5 ± 0.05	*1 ,*2
UMK105 CG150JVHF			CG	COG	15 p	±5%	700	200	0.5 ± 0.05	*1 ,*2
UMK105 CG180JVHF			CG	COG	18 p	±5%	760	200	0.5 ± 0.05	*1 ,*2
UMK105 CG220JVHF			CG	COG	22 p	±5%	840	200	0.5 ± 0.05	*1 ,*2
UMK105 CG270JVHF			CG	COG	27 p	±5%	940	200	0.5 ± 0.05	*1 ,*2
UMK105 CG330JVHF			CG	COG	33 p	±5%	1000	200	0.5 ± 0.05	*1 ,*2
UMK105 CG390JVHF			CG	COG	39 p	±5%	1000	200	0.5 ± 0.05	*1 ,*2
UMK105 CG470JVHF			CG	COG	47 p	±5%	1000	200	0.5 ± 0.05	*1 ,*2
UMK105 CG560JVHF		50	CG	COG	56 p	±5%	1000	200	0.5 ± 0.05	*1 ,*2
UMK105 CG680JVHF			CG	COG	68 p	±5%	1000	200	0.5 ± 0.05	*1 ,*2
UMK105 CG820JVHF			CG	COG	82 p	±5%	1000	200	0.5 ± 0.05	*1 ,*2
UMK105 CG101JVHF			CG	COG	100 p	±5%	1000	200	0.5 ± 0.05	*1 ,*2
UMK105 CG121JVHF			CG	COG	120 p	±5%	1000	200	0.5 ± 0.05	*1 ,*2
UMK105 CG151JVHF			CG	COG	150 p	±5%	1000	200	0.5 ± 0.05	*1 ,*2
UMK105 CG181JVHF			CG	COG	180 p	±5%	1000	200	0.5 ± 0.05	*1 ,*2
UMK105 CG221JVHF			CG	COG	220 p	±5%	1000	200	0.5 ± 0.05	*1 ,*2
UMK105 CG271JVHF			CG	COG	270 p	±5%	1000	200	0.5 ± 0.05	*1 ,*2
UMK105 CG331JVHF			CG	COG	330 p	±5%	1000	200	0.5 ± 0.05	*1 ,*2
UMK105 CG361JVHF			CG	COG	360 p	±5%	1000	200	0.5 ± 0.05	*1 ,*2
UMK105 CG391JVHF			CG	COG	390 p	±5%	1000	200	0.5 ± 0.05	*1 ,*2
UMK105 CG431JVHF			CG	COG	430 p	±5%	1000	200	0.5 ± 0.05	*1 ,*2
UMK105 CG471JVHF			CG	COG	470 p	±5%	1000	200	0.5 ± 0.05	*1 ,*2
UMK105 CG511JVHF			CG	COG	510 p	±5%	1000	200	0.5 ± 0.05	*1 ,*2
UMK105 CG561JVHF			CG	COG	560 p	±5%	1000	200	0.5 ± 0.05	*1 ,*2
UMK105 CG621JVHF			CG	COG	620 p	±5%	1000	200	0.5 ± 0.05	*1 ,*2
UMK105 CG681JVHF			CG	COG	680 p	±5%	1000	200	0.5 ± 0.05	*1 ,*2
UMK105 CG751JVHF			CG	COG	750 p	±5%	1000	200	0.5 ± 0.05	*1 ,*2
UMK105 CG821JVHF			CG	COG	820 p	±5%	1000	200	0.5 ± 0.05	*1 ,*2
UMK105 CG102JVHF			CG	COG	1000 p	±5%	1000	200	0.5 ± 0.05	*1 ,*2


PACKAGING

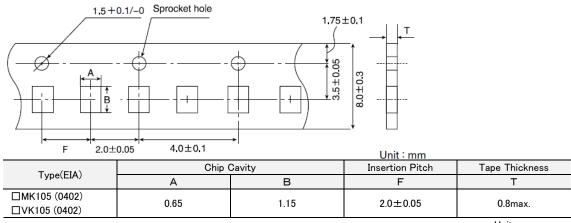
Taped package					
Type(EIA)	Thick	ness	Standard quantity [pcs]		
Type(EIA)	mm	code	Paper tape	Embossed tape	
MK021(008004)	0.125	К	—	50000	
MK042(01005)	0.2	C, D		40000	
□VS042(01005)	0.2	С		40000	
□MK063(0201)	0.3	Ρ, Τ	15000		
□WK105(0204) 🔆	0.3	Р	10000	_	
	0.13	Н	-	20000	
	0.18	E	-	15000	
□MK105(0402)	0.2	С	20000		
	0.3	Р	15000	_	
	0.5	V	10000		
□VK105(0402) ※	0.5	W	10000		
DMK107(0603)	0.45	К	4000		
□WK107(0306) 🔆	0.5	V	-	4000	
□MR107(0603)	0.8	А			
MK212(0805)	0.45	К	4000	_	
□WK212(0508) ※	0.85	D			
□MR212(0805)	125	G	-	3000	
	0.85	D	4000	-	
□MK316(1206)	1.15	F		2000	
□MR316(1206)	125	G		3000	
	1.6	L	-	2000	
	0.85	D			
	1.15	F	7	0000	
□MK325(1210)	1.9	Ν	7 -	2000	
□MR325(1210)	2.0max.	Y	7		
	2.5	М		1000	
□MK432(1812)	2.5	М	—	500	

Note : 💥 LW Reverse type.

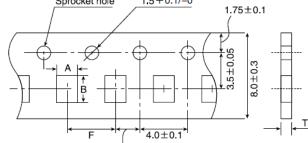
(2) Taping material


Π

③Representative taping dimensions


Paper Tape(8mm wide)

Pressed carrier tape(2mm pitch)

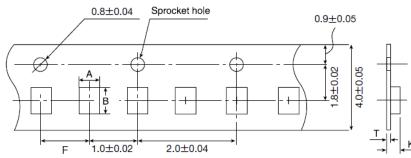


			Unit : mm				
Type(EIA)	Chip	Cavity	Insertion Pitch	Tape Thickness			
	А	В	F	Т	T1		
□MK063(0201)	0.37	0.67		0.45max.	0.42max.		
□WK105(0204) ※			2.0±0.05				
□MK105(0402) (*1 C)	0.65	1.15		0.4max.	0.3max.		
□MK105(0402) (*1 P)				0.45max.	0.42max.		
Note *1 Thickness, C:0.2mm ,P:0.3mm. ※ LW Reverse type.							

•Punched carrier tape (2mm pitch)

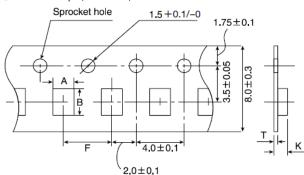
Unit:mm


	2.0±0.1	Unit	t : mm		
Type(EIA)	Chip (Cavity	Insertion Pitch	Tape Thickness	
Type(EIA)	А	В	F	Т	
□MK107(0603)					
□WK107(0306) 💥	1.0	1.8		1.1max.	
□MR107(0603)			4.0 ± 0.1		
□MK212(0805)	1.65	2.4	4.0 ± 0.1		
□WK212(0508) 💥	1.00	2.4		1.1max.	
□MK316(1206)	2.0	3.6			
Note: Taping size might	be different depending on	the size of the product.	X LW Reverse type.	Unit : mm	


> This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) .

1.5+0.1/-0 Sprocket hole

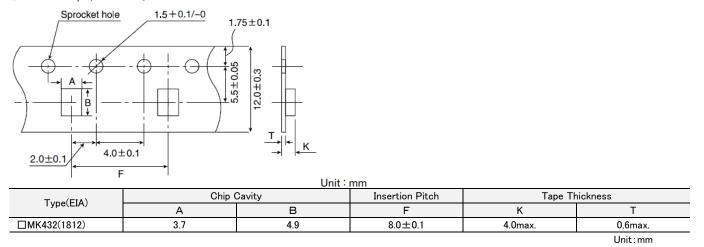
Punched carrier tape (4mm pitch)

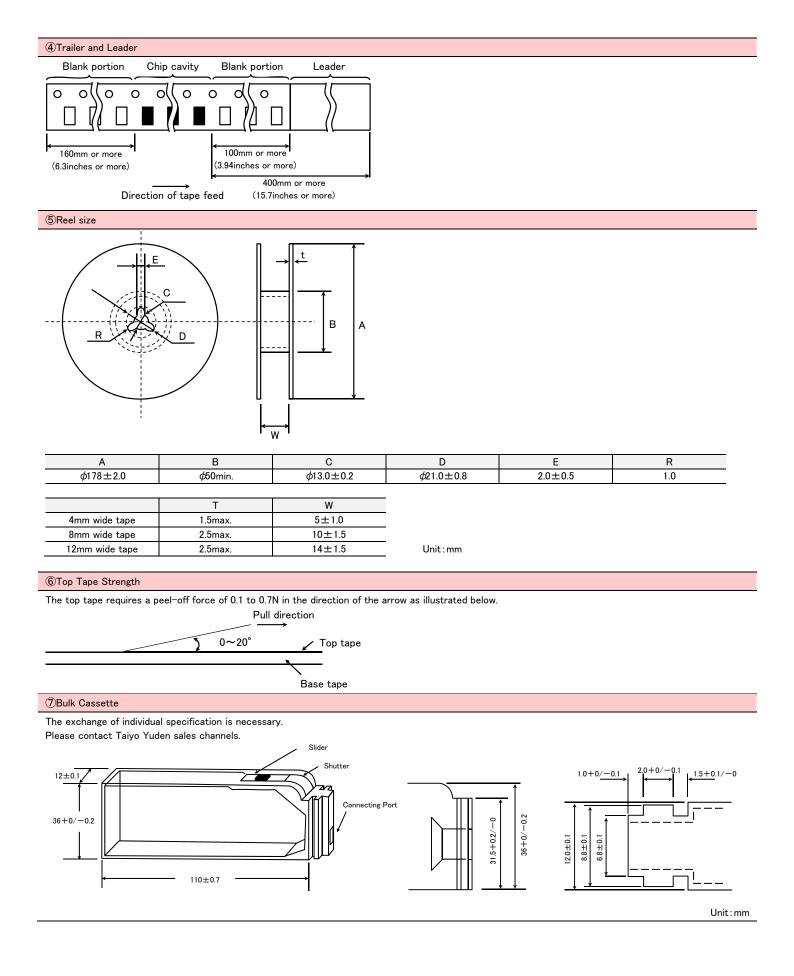


			Unit · mm			
Type(EIA)	Chip (Cavity	Insertion Pitch	Tape Thickness		
	А	В	F	К	Т	
□MK021(008004)	0.135	0.27				
□MK042(01005)	0.23	0.40	1.0 ± 0.02	0.5max.	0.25max.	
□VS042(01005)	0.23	0.43				

Unit:mm

Unit:mm


Embossed tape(8mm wide)


Unit:mm								
Type(EIA)	Chip (Cavity	Insertion Pitch	Tape T	nickness			
	A	В	F	К	Т			
□MK105(0402)	0.6	1.1	2.0±0.1	0.6max	0.2±0.1			
□WK107(0306) 💥	1.0	1.8		1.3max.	0.25±0.1			
□MK212(0805) □MR212(0805)	1.65	2.4	4.0±0.1	3.4max.				
□MK316(1206) □MR316(1206)	2.0	3.6			0.6max.			
□MK325(1210) □MR325(1210)	2.8	3.6						

Note: 💥 LW Reverse type.

Embossed tape(12mm wide)

Multilayer Ceramic Capacitors

RELIABILITY DATA

1.Operating Te	1.Operating Temperature Range								
	Temperature	Standard	-55 to +125°C						
	Compensating(Class1)	High Frequency Type	-33 to +123 C						
				Specification	Temperature Range				
					$-25 \text{ to } +85^{\circ}\text{C}$				
			BJ	В					
Specified				X5R	-55 to $+85^{\circ}$ C				
Value				X7R	−55 to +125°C				
	High Permittivity (Class2	High Permittivity(Class2)			−55 to +105°C				
			C7	X7S	−55 to +125°C				
			D7	Х7Т	−55 to +125°C				
			LD(※)	X5R	$-55 \text{ to } +85^{\circ}\text{C}$				
			Note: 🕅	LD Low distortion k	nigh value multilayer ceramic capa	citor			

2. Storage Co	nditions									
	Temperature	Standard	55 to							
	Compensating(Class1)	High Frequency Type	-55 LO -	−55 to +125°C						
				Specification	Temperature Range					
				В	-25 to +85°C					
Specified				X5R	−55 to +85°C					
Value	High Permittivity(Class2)		B7	X7R	−55 to +125°C					
			C6	X6S	$-55 \text{ to } +105^{\circ}\text{C}$					
				X7S	−55 to +125°C					
			D7	X7T	−55 to +125°C					
			LD(X)	X5R	−55 to +85°C					
				LD Low distortion I	high value multilayer ceramic capac	itor				

3. Rated Voltage							
	Temperature Compensating(Class1)	Standard	50VDC, 25VDC				
Specified Value		High Frequency Type	50VDC, 25VDC				
value	High Permittivity (Class2))	50VDC, 35VDC, 25VDC, 16VDC, 10VDC, 6.3VDC, 4VDC, 2.5VDC				

4. Withstanding	4. Withstanding Voltage(Between terminals)								
Specified Value	Temperature	Standard							
	Compensating(Class1)	High F	requency Type No breakdown or damage						
Value	High Permittivity(Class2)								
F .			Class 1		Class 2]			
Test Methods and	Applied voltage Ra		Rated	volta × 3	Rated voltage × 2.5]			
Remarks	Duration		1 to 5 sec.						
Remarks	Charge/discharge currer	nt		50mA	max.				

5. Insulation Re	5. Insulation Resistance							
Specified	Temperature	Standard	10000 MΩ min.					
	Compensating(Class1)	High Frequency Type						
Value	High Permittivity (Class2)	Note 1	C≦0.047 μ F : 10000 MΩ min. C>0.047 μ F : 500MΩ • μ F					
Test	Applied voltage	: Rated voltage						
Methods and	Duration : 60±5 sec.							
Remarks	Charge/discharge current	: 50mA max.						

6. Capacitance	(Tolerance)						
Specified Value	Temperature	Standard	C□ U□ SL	0.2pF≦C≦5pF 0.2pF≦C≦10pF C>10pF	: ±0.25pF : ±0.5pF : ±5% or ±10%		
	Compensating(Class1)	High Frequency Type	СН	0.3pF≦C≦2pF C>2pF	: ±0.1pF : ±5%		
	High Permittivity(Class2)			BJ, B7, C6, C7, D7, LD(\gg): \pm 10% or \pm 20% Note: \gg LD Low distortion high value multilayer ceramic capacitor			
			Clas	ss 1	Cla	ass 2	
- .		Standard	rd High Frequency Type		C≦10µF	C>10 µ F	
Test Matheada and	Preconditioning		None		Thermal treatment (a	t 150°C for 1hr) Note 2	
Methods and Remarks	Measuring frequency		1MHz	±10%	1kHz±10%	120±10Hz	
Remarks	Measuring voltage Note		0.5 to	5Vrms	1±0.2Vrms	0.5±0.1rms	
	Bias application				one		

7. Q or Dissipa	tion Factor							
Specified Value	Temperature Compensating(Class1)	Standard		$C \leq 30pF : Q \geq 400 + 20C$ $C \geq 30pF : Q \geq 1000$ (C:Nominal capacitance)				
	Compensating (Glass I)	High F	requency Type	Refer	to detailed specification			
	High Permittivity (Class2) Note 1			BJ, B	7, C6, C7, D7:2.5% max.			
			Class 1		ss 1	Class 2		
			Standard		High Frequency Type	C≦10µF	C>10 µ F	
	Preconditioning		No		one	Thermal treatment(at 150°C for 1hr)Note 2		
Test	Measuring frequey		1MHz±10%		1GHz	1kHz±10%	120±10Hz	
Methods and	Measuring voltage Note 1		0.5 to 5Vrms			1±0.2Vrms	0.5±0.1Vrms	
Remarks	Bias application			None				
	High Frequency Type							
	Measuring equipment	: HP	4291A					
	Measuring jig	: HP	16192A					

8. Temperature Characterist	tic (Without vo	ltage application)	-		· · · · · · · · · · · · · · · · · · ·	01		[/00]
			lem	perature Charad	cteristic [ppm/%	C	Iole	rance [ppm/°C]
			C□ :	0	CG,CH, CJ,	СК		G:±30 H:±60
- ·		Standard						J:±120
Temperatur	re ing(Class1)		U□ :	- 750	UJ, UK			K: ±250
Compensat	ling (Olassi)		SL :	+350 to -100	00	I		
		High Frequency Type	Tem	perature Charac	cteristic [ppm/%	C]	Tole	rance [ppm/°C]
		riigh Frequency Type	C□ :	0	СН			H:±60
Specified Value	High Permittivity(Class2)			Specification	Capacitance		rence	Temperature Range
				В	change ±10%	· · · ·	erature)°C	-25 to +85°C
			BJ	Б X5R	±10% ±15%		5°C	-25 to +85 C -55 to +85°C
			B7	X7R	±15%		5°C	$-55 \text{ to } +125^{\circ}\text{C}$
High Permit			C6	X6S	±13%		5°C	-55 to +125 C -55 to +105°C
			C0 C7	X03 X7S	±22%		5°C	-55 to +105 C -55 to +125°C
			D7	X7S	+22/-33%		5°C	$-55 \text{ to } +125^{\circ}\text{C}$
			LD(※)	X7S X5R	$\pm 15\%$		5°C	-55 to + 125 C -55 to +85°C
			Note : 🖻		ortion high value	multilaye	er ceram	ic capacitor

$$\frac{(C_{85} - C_{20})}{C_{20} \times \Delta T} \times 10^{6} (\text{ppm/°C})$$

Class 2

 $\Delta T = 65$

Test

Methods and Remarks

Capacitance at each step shall be measured in thermal equilibrium, and the temperature characteristic shall be calculated from the following equation.

Step	В	X5R、X7R、X6S、X7S、X7T					
1	Minimum operating temperature						
2	20°C	25°C					
3	Maximum operating temperature						

 $\begin{array}{c} (C-C_2) \\ \hline C_2 \\ C \\ : Capacitance in Step 1 or Step 3 \\ C \\ : Capacitance in Step 2 \\ \end{array}$

9. Deflection					
Specified Value	Temperature	Standard	Appearance Capacitance change	: No abnormality : Within $\pm 5\%$ or ± 0.5 pF, whichever is larger.	
	Compensating(Cla	ass1) High Frequency Type	Appearance Cpaitance change	: No abnormality : Within±0.5 pF	
	High Permittivity	(Class2)			
		Multilayer Cera	•	20	
	Board	042, 063, ^{※1} 105 Type Glass epoxy-re	The other types esin substrate	Board R-230 Warp	
Test Methods and	Thickness	0.8mm	1.6mm		
Remarks	Warp	1mm (Soft Termi	nation type:3mm)	$ \begin{array}{c} \Delta \\ 45\pm 2 \\ 45\pm 2 \\ \end{array} $	
Remarks	Duration	10 s	sec.		
		^{%1:} 105 Type thickness, C: 0	.2mm ,P: 0.3mm.	(Unit: mm)	
				Capacitance measurement shall be conducted with the board bent	

10. Body Stren	10. Body Strength					
0.15.1	Temperature	Standard	-			
Specified Value	Compensating(Class1)	High Frequency Type	No mechanical damage.			
Value	High Permittivity (Class2))	-			
Test Methods and Remarks	High Frequency Type Applied force : 5N uration : 10 sec.	← A → S	R0.5 Pressing jig Chip Chip			

11. Adhesive S	11. Adhesive Strength of Terminal Electrodes								
	Temperature	Standard							
Specified Value	Compensating(Class1) High Frequency Ty	pe No terminal separat	No terminal separation or its indication.					
	High Permittivity (Cla	iss2)							
		Multilayer Cera	amic Capacitors	Hooked jig					
Test		042, 063 Type	105 Type or more						
Methods and	Applied force	2N	5N	R=05 I I I I Board					
Remarks	Duration	30±	5 sec.] ■ Chip I I // II Chip					

12. Solderability	y				
Specified Value	Temperature	Standard			
	Compensating(Class1)	High Frequency Type	At least 95%	of terminal electrode is covered l	by new solder.
	High Permittivity (Class2))			
	Eutectic s		ctic solder Lead-free solder		
Test Mathada and	Solder type	H60A or H	63A	Sn-3.0Ag-0.5Cu	
Methods and Remarks	Solder temperature	230±5°	С	245±3°C	
	Duration		4±1 sec.		

13. Resistance	to Soldering							
	Temperature	Standard	Q Insulatio	ance ance change on resistance nding voltage	: No abnormlty : Within ±2.5% or ±0 : Initial value : Initial value (between terminals)	0.25pF, whichever is larger. : No abnormality		
Specified Value	Compensating(Class1	High Frequency Type Q Insula		ance ancecange on resistance nding voltage	: No abnormality : Within ±2.5% : Initial value : Initial value (between terminals)	: No abnormality		
	High Permittivity(Cla	Dissipat Insulatio Withstar	ace change ion factor on resistance nding voltage	: No abormality : Within ±7.5%(BJ, E : Initial value : Initial value (between terminals) tion high value multilayu	•			
			lss	; 1				
		042, 063 Type			105 Туре			
	Preconditioning		No					
	Preheating	150°C, 1 to 2 mir	ı.		00°C, 2 to 5 min. 00°C, 2 to 5 min.			
	Solder temp.		270 ±					
	Duration			3±0.5 sec.				
Test	Recovery	6 to 24 h	rs (Standa	rd condition)I	Noe 5			
Methods and Remarks	Class 2							
Remarks	-	042、063 Type		105	01ass 2 107, 212 Type	316, 325 Type		
	Preconditioning	042,003 Type	Ther		(at 150°C for 1 hr) No	•		
	Preheating	150°C, 1 to 2 mir		80 to 10	00°C, 2 to 5 min. 00°C, 2 to 5 min.	80 to 100°C, 5 to 10 min. 150 to 200°C, 5 to 10 min.		
	Solder temp.				270±5°C			
	Duration			3				
	Recovery		2	4±2 hrs(Sta	ndard condition)Note	5		
14. Temperatu	re Cycle (Thermal Shock	ς)						
Specified Value	Temperature	Standard	Q Insulatio	ance ance change on resistance nding voltage	: No abnormality : Within ±2.5% or ±0 : Initial value : Initial value (between terminals)	0.25pF, whichever is larger. : No abnormality		
	Compensating(Class1) High Frequency Type	Appearance Capacitance chang e Q Insulation resistance Withstanding voltag		: No abnormality : Within ±0.25pF : Initial value : Initial value (between terminals)	: No abnormality		
	High Permittivity (Class2) Note 1		Appeara Capacit Dissipat	0 0	: No abnormality	B7, C6, C7, D7, LD(※))		

			Withstanding voltage (be Note: %LD Low distortion h	etween terminals): nigh value multilayer			
		C	lass 1	Class 2			
	Preconditioning	١	None	Thermal treatment (at 150°C for 1 hr) Note 2			
		Step Temperat		rre (°C) Time (min.)			
Test		1	Minimum operating	temperature	30±3		
Methods and Remarks	1 cycle	2 Normal te		erature	2 to 3		
Remarks		3	Maximum operating	temperature	30±3		
		4	Normal temperature		2 to 3		
	Number of cycles		5 t	imes			
	Recovery	6 to 24 hrs(Stand	6 to 24 hrs(Standard condition)Note 5 24±2 hrs(Stan				

15. Humidity(Steady State)						
	Temperature Compensating(Class1)	Appearance Capacitance change Q Insulation resistance	: Wit : C < 10 C	abnormality hin $\pm 5\%$ or $\pm 0.5 \text{pF}$, whichever is larger. (10 \mbox{F}: Q \ge 200 + 10 \mbox{C}) O \le C < 30 \mbox{pF}: Q \ge 275 + 2.5 \mbox{C} \ge 30 \mbox{pF}: Q \ge 350 (C: Nominal capacitance) 00 M \Ombox min.		
Specified Value		High Frequency Type	Appearance Capacitance change Insulation resistance	: No abnormality : Within ±0.5pF, : 1000 MΩ min.			
	High Permittivity(Cl	Appearance Capacitance change Dissipation factor Insulation resistance Note: %LD Low distor	: 5.0% max.(BJ, B7, C6, C7, D7, LD(※))				
		Cla	lass 1		Class 2		
		Standard	High Frequency Typ	e	All items		
Test	Preconditioning	N	lone		Thermal treatment(at 150°C for 1 hr) Note 2		
Methods and	Temperature	40±2°C	60±2°C		40±2°C		
Remarks	Humidity	90 to	95%RH		90 to 95%RH		
	Duration	500+2	4/-0 hrs		500+24/-0 hrs		
	Recovery	6 to 24 hrs(Stand	ard condition)Note 5		24±2 hrs(Standard condition)Note 5		

16. Humidity Lo	pading					
Specified Value	Temperature	Standard	$\begin{array}{llllllllllllllllllllllllllllllllllll$			
	Compensating(Class1)	High Frequency Type				
	High Permittivity(Class2) Note 1	Appearance Capacitance change Dissipation factor Insulation resistance Note: XLD Low distort	: No abnormality : Within $\pm 12.5\%$ (BJ, B7, C6, C7, D7, LD($\%$)) : 5.0% max. (BJ, B7, C6, C7, D7, LD($\%$)) : 25 M $\Omega \ \mu$ F or 500 M Ω , whichever is smaller. ion high value multilayer ceramic capacitor		
		C	lass 1	Class 2		
		Standard	High Frequency Typ	e All items		
	Preconditioning		None	Voltage treatment (Rated voltage are applied for 1 hour at 40°C) Note 3		
Test	Temperature	40±2°C	60±2°C	40±2°C		
Methods and	Humidity	90 t	o 95%RH	90 to 95%RH		
Remarks	Duration	500+	24/—0 hrs	500+24/-0 hrs		
	Applied voltage	Rate	d voltage	Rated voltage		
	Charge/discharge current	50r	mA max.	50mA max.		
	Recovery	6 to 24 hrs (Stan	dard condition)Note 5	24±2 hrs(Standard condition) Note 5		

17. High Temp	erature Loading					
Specified Value	Standard Temperature		Appearance Capacitance change Q Insulation resistance	:C<10pF: Q≧ 10≦C<30pF: C≧30pF: Q≧		-
		High Frequency Type	Appearance Capacitance change Insulation resistance			
	High Permittivity(Class2) Note 1	Appearance Capacitance change Dissipation factor Insulation resistance Note: %LD Low dist	: 5.0% max.(BJ, : 50 M Ω <i>μ</i> F or	(BJ, B7, C6, C7, D7 37, C6, C7, D7, LD(% 1000 MΩ, whichever tilayer ceramic capad	is smaller.
		Class			Class 2	
		Standard H	ligh Frequency Type	BJ, LD(🔆)	C6	B7, C7, D7
	Preconditioning	None		Voltage treatment (Twice the rated voltage shall be applied for 1 hour at 85°C, 105°C or 125°C) Note 3, 4		
Test	Temperature	Maximum operati	ng temperature	Maximum operating temperature		
Methods and	Duration	1000+48	∕−0 hrs	1000+48/-0 hrs		
Remarks	Applied voltage	Rated vol	tage × 2	Rated voltage × 2 Note 4		
nomarks	Charge/discharge current	50mA max.		50mA max.		
	Recovery	6 to 24hr(Standard		24 ± 2 hrs (Standard condition) Note 5		

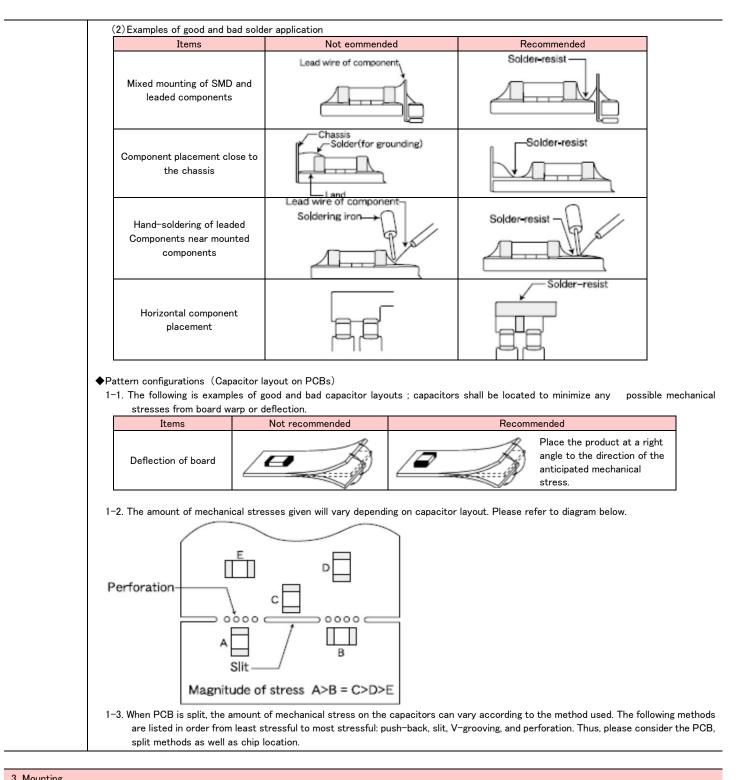
Note 1 The figures indicate typical specifications. Please refer to individual specifications in detail.

Note 2 Thermal treatment : Initial value shall be measured after test sample is heat-treated at $150+0/-10^{\circ}$ C for an hour and kept at room temperature for 24 ± 2 hours.

Note 3 Voltage treatment : Initial value shall be measured after test sample is voltage-treated for an hour at both the temperature and voltage specified in the test conditions, and kept at room temperature for 24±2hours.

Note 4 150% of rated voltage is applicable to some items. Please refer to their specifications for further information.

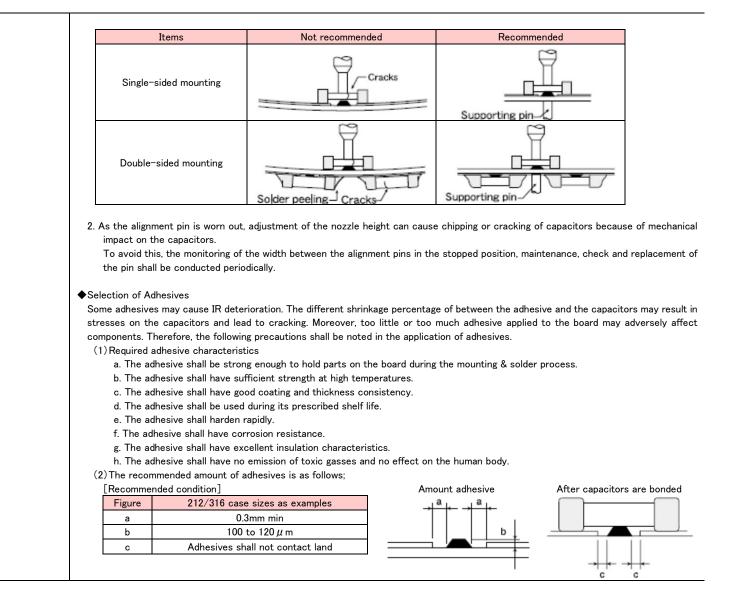
Note 5 Standard condition: Temperature: 5 to 35°C, Relative humidity: 45 to 85 % RH, Air pressure: 86 to 106kPa When there are questions concerning measurement results, in order to provide correlation data, the test shall be conducted under the following condition.


Temperature: 20±2°C, Relative humidity: 60 to 70 % RH, Air pressure: 86 to 106kPa Unless otherwise specified, all the tests are conducted under the "standard condition".

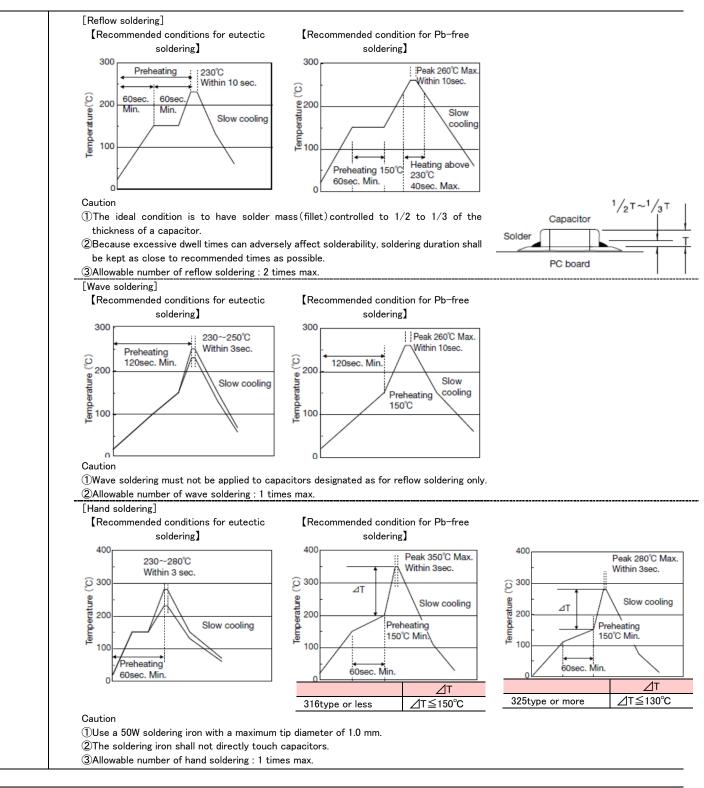
Precautions on the use of Multilayer Ceramic Capacitors

PRECAUTIONS

	♦ Verification of operating environment, electrical rating and performance
	 A malfunction of equipment in fields such as medical, aerospace, nuclear control, etc. may cause serious harm to human life or have severe social ramifications.
	Therefore, any capacitors to be used in such equipment may require higher safety and reliability, and shall be clearly differentiated from them used in general purpose applications.
Precautions	♦ Operating Voltage (Verification of Rated voltage)
	1. The operating voltage for capacitors must always be their rated voltage or less.
	If an AC voltage is loaded on a DC voltage, the sum of the two peak voltages shall be the rated voltage or less.
	For a circuit where an AC or a pulse voltage may be used, the sum of their peak voltages shall also be the rated voltage or less.
	2. Even if an applied voltage is the rated voltage or less reliability of capacitors may be deteriorated in case that either a high frequency AC
	voltage or a pulse voltage having rapid rise time is used in a circuit.


2. PCB Design									
Precautions	Therefore, (1) Excess appro (2) When n solde Pattern config After capacito cutting, board	citors are mount the following iter ive solder applie opriate land-patt nore than one co er-resist.	ed on PCBs, ms must be ca ed can cause erns for prope omponent are j itor layout on on boards, the ting of addition	the amount of refully conside mechanical stu- r amount of so ointly soldered PCBs) ey can be subju- nal parts, asser	red in the desig resses which le lder. onto the same ected to mecha nbly into the ch	n of land pattern ead to chip brea e land, each com anical stresses in assis, wave sold	ns: aking or cracki ponent's solder n subsequent n ering of the boa	ng. Therefore, j ing point shall t nanufacturing pi	please consider be separated by rocesses (PCB
	(1) Recomme	diagrams and tab Inded land dimen Ceramic Capac	les show some sions for typic	e examples of r al chip capacit	ors	nd patterns to p		ve solder amour	
	Type Size L W	107 1.6 0.8	212 2.0 1.25	316 3.2 1.6	325 3.2 2.5		<u>•</u>		
	AB	0.8 to 1.0 0.5 to 0.8	1.0 to 1.4 0.8 to 1.5	1.8 to 2.5 0.8 to 1.7	1.8 to 2.5 0.8 to 1.7			Chip capacitor	
	C	0.5 to 0.8	0.9 to 1.2	1.2 to 1.6	1.8 to 2.5				1 _w
	Reflow-s	oldering							
	Туре	042	063	105	107	212	316	325	432
Technical	c. L	0.4	0.6	1.0	1.6	2.0	3.2	3.2	4.5
considerations	Size W	0.2	0.3	0.5	0.8	1.25	1.6	2.5	3.2
	A	0.15 to 0.25	0.20 to 0.30	0.45 to 0.55	0.8 to 1.0	0.8 to 1.2	1.8 to 2.5	1.8 to 2.5	2.5 to 3.5
	В	0.15 to 0.20	0.20 to 0.30	0.40 to 0.50	0.6 to 0.8	0.8 to 1.2	1.0 to 1.5	1.0 to 1.5	1.5 to 1.8
	С	0.15 to 0.30	0.25 to 0.40	0.45 to 0.55	0.6 to 0.8	0.9 to 1.6	1.2 to 2.0	1.8 to 3.2	2.3 to 3.5
	●LWDC: F (unit: mm)	emmended land s Recommended lar	nd dimensions	for reflow-sold	ering	ance of the size	of the product		
	Туре	105	107	212					
	Size U	0.52	0.8	1.25				w	
	A	0.18 to 0.22	0.25 to 0.		0.7				
	B	0.2 to 0.25	0.3 to 0.4					<	
	С	0.9 to 1.1	1.5 to 1.7	/ 1.9 to	2.1			L	
			•						

3. Mounting	
Precautions	 Adjustment of mounting machine When capacitors are mounted on PCB, excessive impact load shall not be imposed on them. Maintenance and inspection of mounting machines shall be conducted periodically. Selection of Adhesives When chips are attached on PCBs with adhesives prior to soldering, it may cause capacitor characteristics degradation unless the following factors are appropriately checked : size of land patterns, type of adhesive, amount applied, hardening temperature and hardening period. Therefore, please contact us for further information.
Technical considerations	 Adjustment of mounting machine 1. When the bottom dead center of a pick-up nozzle is too low, excessive force is imposed on capacitors and causes damages. To avoid this, the following points shall be considerable. (1) The bottom dead center of the pick-up nozzle shall be adjusted to the surface level of PCB without the board deflection. (2) The pressure of nozzle shall be adjusted between 1 and 3 N static loads. (3) To reduce the amount of deflection of the board caused by impact of the pick-up nozzle, supporting pins or back-up pins shall be used on the other side of the PCB. The following diagrams show some typical examples of good and bad pick-up nozzle placement:


This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

TAIYO YUDEN

4. Soldering	
Precautions	 Selection of Flux Since flux may have a significant effect on the performance of capacitors, it is necessary to verify the following conditions prior to use; (1) Flux used shall be less than or equal to 0.1 wt%(in Cl equivalent) of halogenated content. Flux having a strong acidity content shal not be applied. (2) When shall capacitors are soldered on boards, the amount of flux applied shall be controlled at the optimum level. (3) When water-soluble flux is used, special care shall be taken to properly clean the boards. Soldering Temperature, time, amount of solder, etc. shall be set in accordance with their recommended conditions. Sn-Zn solder paste can adversely affect MLCC reliability. Please contact us prior to usage of Sn-Zn solder.
Technical considerations	 Selection of Flux 1-1. When too much halogenated substance (Chlorine, etc.) content is used to activate flux, or highly acidic flux is used, it may lead to corrosion of terminal electrodes or degradation of insulation resistance on the surfaces of the capacitors. 1-2. Flux is used to increase solderability in wave soldering. However if too much flux is applied, a large amount of flux gas may be emitted and may adversely affect the solderability. To minimize the amount of flux applied, it is recommended to use a flux-bubbling system 1-3. Since the residue of water-soluble flux is easily dissolved in moisture in the air, the residues on the surfaces of capacitors in high humidity conditions may cause a degradation of insulation resistance and reliability of the capacitors. Therefore, the cleaning methods and the capability of the machines used shall also be considered carefully when water-soluble flux is used. Soldering Ceramic chip capacitors are susceptible to thermal shock when exposed to rapid or concentrated heating or rapid cooling. Therefore, the soldering must be conducted with great care so as to prevent malfunction of the components due to excessive therma shock. Preheating : Capacitors shall be preheated sufficiently, and the temperature difference between the capacitors and solder shall be withir 100 to 130°C. Cooling : The temperature difference between the capacitors and cleaning process shall not be greater than 100°C.

5. Cleaning	
Precautions	 Cleaning conditions 1. When PCBs are cleaned after capacitors mounting, please select the appropriate cleaning solution in accordance with the intended use of the cleaning. (e.g. to remove soldering flux or other materials from the production process.) 2. Cleaning condition shall be determined after it is verified by using actual cleaning machine that the cleaning process does not affect capacitor's characteristics.
Technical considerations	 The use of inappropriate cleaning solutions can cause foreign substances such as flux residue to adhere to capacitors or deteriorate their outer coating, resulting in a degradation of the capacitor's electrical properties (especially insulation resistance). Inappropriate cleaning conditions (insufficient or excessive cleaning) may adversely affect the performance of the capacitors. In the case of ultrasonic cleaning, too much power output can cause excessive vibration of PCBs which may lead to the cracking of capacitors or the soldered portion, or decrease the terminal electrodes' strength. Therefore, the following conditions shall be carefully checked; Ultrasonic output : 20 W/L or less Ultrasonic frequency : 40 kHz or less

Ultrasonic washing period : 5 min. or less

	1. With some type of resins, decomposition gas or chemical reaction vapor may remain inside the resin during the hardening period while left under normal storage conditions resulting in the deterioration of the capacitor's performance.
Precautions	 When a resin's hardening temperature is higher than capacitor's operating temperature, the stresses generated by the excessive here may lead to damage or destruction of capacitors.
	The use of such resins, molding materials etc. is not recommended.
7. Handling	

	2. Board separation shall not be done manually, but by using the appropriate devices.
	z. Board separation shall not be done manually, but by using the appropriate devices.
Precautions	
	◆Mechanical considerations
	Be careful not to subject capacitors to excessive mechanical shocks.
	(1) If ceramic capacitors are dropped onto a floor or a hard surface, they shall not be used.

(2) Please	be careful that	the mounted c	omponents do not	come in contact	with or bump	against other boards or	components.

	♦Storage					
Precautions	 To maintain the solderability of terminal electrodes and to keep packaging materials in good condition, care must be taken to control temperature and humidity in the storage area. Humidity should especially be kept as low as possible. Recommended conditions Ambient temperature : Below 30°C Humidity : Below 70% RH The ambient temperature must be kept below 40°C. Even under ideal storage conditions, solderability of capacitor is deteriorated as time passes, so capacitors shall be used within 6 months from the time of delivery. Ceramic chip capacitors shall be kept where no chlorine or sulfur exists in the air. The capacitance values of high dielectric constant capacitors will gradually decrease with the passage of time, so care shall be taken to design circuits . Even if capacitance value decreases as time passes, it will get back to the initial value by a heat treatment at 150°C for 1hour. 					
Technical onsiderations	capacitors are stored in a high temperature and humidity environment, it might rapidly cause poor solderability due to terminal oxidation and ality loss of taping/packaging materials. For this reason, capacitors shall be used within 6 months from the time of delivery. If exceeding the nove period, please check solderability before using the capacitors.					