3.3 V 32 K/64 K/128 K × 8/9

Synchronous Dual-Port Static RAM

Features

■ True Dual-Ported memory cells which enable simultaneous access of the same memory location

■ Flow-through and Pipelined devices
■ $32 \mathrm{~K} \times 9$ organizations (CY7C09179V)
■ $64 \mathrm{~K} \times 8$ organizations (CY7C09089V)
■ $128 \mathrm{~K} \times 8 / 9$ organizations (CY7C09099V/199V)

- 3 Modes

■ Flow-through

- Pipelined

■ Burst
■ Pipelined output mode on both ports enables fast 100 MHz operation

■ 0.35-micron CMOS for optimum speed and power

■ High speed clock to data access $6.5{ }^{[1]} / 7.5^{[1]} / 9 / 12 \mathrm{~ns}$ (max.)
■ 3.3 V low operating power

- Active $=115 \mathrm{~mA}$ (typical)

■ Standby $=10 \mu \mathrm{~A}$ (typical)

- Fully synchronous interface for easier operation
- Burst counters increment addresses internally
- Shorten cycle times
- Minimize bus noise
- Supported in Flow-through and Pipelined modes

■ Dual Chip Enables for easy depth expansion

- Automatic power down
- Commercial and Industrial temperature ranges
- Available in 100-pin TQFP

■ Pb-free packages available

Note

1. See page 9 and page 10 for Load Conditions.

Logic Block Diagram

Notes

2. $\mathrm{I} / \mathrm{O}_{0}-\mathrm{I} / \mathrm{O}_{7}$ for $\times 8$ devices, $\mathrm{I} / \mathrm{O}_{0}-\mathrm{I} / \mathrm{O}_{8}$ for $\times 9$ devices.
3. $A_{0}-A_{14}$ for $32 \mathrm{~K}, \mathrm{~A}_{0}-\mathrm{A}_{15}$ for 64 K , and $\mathrm{A}_{0}-\mathrm{A}_{16}$ for 128 K devices.

Functional Description

The CY7C09089V/99V and CY7C09179V/99V are high speed synchronous CMOS $64 \mathrm{~K} / 128 \mathrm{~K} \times 8$ and $32 \mathrm{~K} / 128 \mathrm{~K} \times 9$ dual-port static RAMs. Two ports are provided, permitting independent, simultaneous access for reads and writes to any location in memory. ${ }^{[4]}$ Registers on control, address, and data lines enable minimal setup and hold times. In pipelined output mode, data is registered for decreased cycle time. Clock to data valid $\mathrm{t}_{\mathrm{CD} 2}=6.5 \mathrm{~ns}^{[5]}$ (pipelined). Flow-through mode can also be used to bypass the pipelined output register to eliminate access latency. In flow-through mode, data is available $\mathrm{t}_{\mathrm{CD} 1}=18 \mathrm{~ns}$ after the address is clocked into the device. Pipelined output or flow-through mode is selected via the FT/Pipe pin.
Each port contains a burst counter on the input address register. The internal write pulse width is independent of the LOW-to-HIGH transition of the clock signal. The internal write pulse is self-timed to enable the shortest possible cycle times.

A HIGH on $\overline{\mathrm{CE}}_{0}$ or LOW on CE_{1} for one clock cycle powers down the internal circuitry to reduce the static power consumption. The use of multiple Chip Enables enables easier banking of multiple chips for depth expansion configurations. In the pipelined mode, one cycle is required with $\overline{\mathrm{CE}}_{0} \mathrm{LOW}$ and CE_{1} HIGH to reactivate the outputs.
Counter enable inputs are provided to stall the operation of the address input and use the internal address generated by the internal counter for fast interleaved memory applications. A port's burst counter is loaded with the port's Address Strobe (ADS). When the port's Count Enable (CNTEN) is asserted, the address counter increments on each LOW-to-HIGH transition of that port's clock signal. This reads/writes one word from/into each successive address location until CNTEN is deasserted. The counter can address the entire memory array and loops back to the start. Counter Reset (CNTRST) is used to reset the burst counter.
All parts are available in 100-pin Thin Quad Plastic Flatpack (TQFP) packages.

[^0]
Contents

Pin Configurations 5
Selection Guide 7
Pin Definitions 7
Maximum Ratings 8
Operating Range 8
Electrical Characteristics 8
Capacitance 9
Switching Characteristics 11
Switching Waveforms 12
Read/Write and Enable Operation 23
Address Counter Control Operation 23
Ordering Information 24
$64 \mathrm{~K} \times 8$ 3.3 V Synchronous Dual-Port SRAM 24
$128 \mathrm{~K} \times 8$ 3.3 V Synchronous Dual-Port SRAM 24
$32 \mathrm{~K} \times 9$ 3.3 V Synchronous Dual-Port SRAM 24
128 K $\times 9$ 3.3 V Synchronous Dual-Port SRAM 24
Ordering Code Definitions 24
Package Diagram 25
Acronyms 26
Document Conventions 26
Units of Measure 26
Document History Page 27
Sales, Solutions, and Legal Information 28
Worldwide Sales and Design Support 28
Products 28
PSoC Solutions 28

Pin Configurations

Figure 1. 100-pin TQFP (Top View) - CY7C09089V ($64 \mathrm{~K} \times 8$), CY7C09099V ($128 \mathrm{~K} \times 8$)

Notes

6. This pin is NC for CY7C09089V.
7. For CY7C09089V, pin \#23 connected to V_{CC} is pin compatible with an IDT 5 V , $\times 8$ pipelined device; connecting pin \#23 and \#53 to GND is pin compatible with an IDT 5 V , $\times 16$ flow-through device.

Figure 2. 100-pin TQFP (Top View) - CY7C09179V ($32 \mathrm{~K} \times 9$), CY7C09199V ($128 \mathrm{~K} \times 9$)

Notes
8. This pin is NC for CY7C09179V.
9. This pin is NC for CY7C09179V and CY7C09189V

Selection Guide

Description	$\underset{-6^{[10]}}{\text { CY7C09179V }}$	$\underset{-7}{\text { CY7C090999V }}$	$\begin{gathered} \text { CY7C09199V } \\ -9 \end{gathered}$	$\begin{gathered} \text { CY7C09089V/99V } \\ \text { CY7C09179V } \\ -12 \end{gathered}$
$\mathrm{f}_{\text {MAX2 }}(\mathrm{MHz})$ (Pipelined)	100	83	67	50
Max. Access Time (ns) (Clock to Data, Pipelined)	6.5	7.5	9	12
Typical Operating Current ICC (mA)	175	155	135	115
Typical Standby Current for $\mathrm{I}_{\mathrm{SB} 1}(\mathrm{~mA})$ (Both Ports TTL Level)	25	25	20	20
Typical Standby Current for $\mathrm{I}_{\mathrm{SB} 3}(\mu \mathrm{~A})$ (Both Ports CMOS Level)	10	10	10	10

Pin Definitions

Left Port	Right Port	Description
$\mathrm{A}_{0 \mathrm{~L}}-\mathrm{A}_{16 \mathrm{~L}}$	$\mathrm{~A}_{0 R}-\mathrm{A}_{16 R}$	Address Inputs $\left(\mathrm{A}_{0}-\mathrm{A}_{14}\right.$ for $32 \mathrm{~K} ; \mathrm{A}_{0}-\mathrm{A}_{15}$ for $64 \mathrm{~K} ;$ and $\mathrm{A}_{0}-\mathrm{A}_{16}$ for 128K devices $)$.
$\mathrm{ADS}_{\mathrm{L}}$	$\mathrm{ADS}_{\mathrm{R}}$	Address Strobe Input. Used as an address qualifier. This signal should be asserted LOW to access the part using an externally supplied address. Asserting this signal LOW also loads the burst counter with the address present on the address pins.
$\overline{\mathrm{CE}}_{0 \mathrm{~L}}, \mathrm{CE}_{1 \mathrm{~L}}$	$\overline{\mathrm{CE}}_{0 \mathrm{R}}, \mathrm{CE}_{1 \mathrm{R}}$	$\left.\begin{array}{l}\text { Chip Enable Input. To select either the left or right port, both } \overline{\mathrm{CE}}_{0} \text { AND } \mathrm{CE}_{1} \text { must be asserted } \\ \text { to their active states }\left(\mathrm{CE}_{0} \leq \mathrm{V}_{\mathrm{IL}} \text { and } \mathrm{CE}\right. \\ 1\end{array} \geq \mathrm{V}_{\mathrm{IH}}\right)$.

Note
10. See page 9 and page 10 for Load Conditions.

Maximum Ratings

Exceeding maximum ratings may impair the useful life of the device. These user guidelines are not tested. ${ }^{[11]}$
Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with Power Applied \qquad $.55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential \qquad -0.5 V to +4.6 V DC Voltage Applied to
Outputs in High Z State \qquad . 0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Input Voltage \qquad -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$

Output Current into Outputs (LOW) \qquad 20 mA

Static Discharge Voltage \qquad >2001 V
Latch-Up Current \qquad .> 200 mA

Operating Range

Range	Ambient Temperature	V $_{\text {CC }}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$3.3 \mathrm{~V} \pm 300 \mathrm{mV}$
Industrial ${ }^{[12]}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$3.3 \mathrm{~V} \pm 300 \mathrm{mV}$

Electrical Characteristics

Over the Operating Range

Parameter	Description		CY7C09079V/89V/99VCY7C09179V/89V/99V												苍
			$-6^{[13]}$			$-7{ }^{131}$			-9			-12			
			$\underset{\Sigma}{\Sigma}$	$\stackrel{0}{\hbar}$	$\begin{aligned} & \hline \times \\ & \underset{\Sigma}{\pi} \end{aligned}$	$\stackrel{y}{\Sigma}$	$\stackrel{\circ}{\gtrless}$	$\begin{aligned} & \underset{\times}{\times} \\ & \underset{\Sigma}{\pi} \end{aligned}$	$\underset{\Sigma}{\Sigma}$	$\stackrel{0}{\gtrless}$	$\begin{aligned} & \times \times \\ & \sum_{n}^{\pi} \end{aligned}$	$\stackrel{\underline{I}}{\Sigma}$	$\stackrel{\varrho}{\imath}$	$\begin{aligned} & \times \times \\ & \underset{\Sigma}{\text { N }} \end{aligned}$	
V_{OH}	$\begin{aligned} & \text { Output HIGH Voltage }\left(\mathrm{V}_{\mathrm{CC}}=\right.\text { Min., } \\ & \left.\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}\right) \end{aligned}$		2.4	-	-	2.4	-	-	2.4	-	-	2.4	-	-	V
V_{OL}	$\begin{aligned} & \text { Output LOW Voltage }\left(\mathrm{V}_{\mathrm{CC}}=\right.\text { Min., } \\ & \left.\mathrm{I}_{\mathrm{OH}}=+4.0 \mathrm{~mA}\right) \end{aligned}$		-		0.4	-		0.4	-		0.4	-		0.4	V
V_{IH}	Input HIGH Voltage		2.0		-	2.0		-	2.0		-	2.0		-	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage		-		0.8	-		0.8	-		0.8	-		0.8	V
$\mathrm{I}_{\text {OZ }}$	Output Leakage Current		-10		10	-10		10	-10		10	-10		10	$\mu \mathrm{A}$
${ }^{\text {cc }}$	$\begin{aligned} & \text { Operating Current } \\ & \left(\mathrm{V}_{\mathrm{CC}}=\text { Max., I I UT }=0 \mathrm{~mA}\right) \\ & \text { Outputs Disabled } \end{aligned}$	Commercial	-	175320		-	155	275	-	135	225	-	115	205	mA
		Industrial ${ }^{[12]}$				275	390	185		295	-		-	mA	
$I_{\text {SB1 }}$	Standby Current (Both Ports TTL Level) ${ }^{[14]}$ $\overline{C E}_{L} \& \overline{C E}_{R} \geq V_{I H}, f=f_{M A X}$	Commercial		25	95		25	85		20	65		20	50	mA
		Industrial ${ }^{[12]}$					85	120		35	75		-	-	mA
$I_{\text {SB2 }}$	$\begin{aligned} & \text { Standby Current } \\ & \frac{\text { (One Port TTL Level) }{ }^{[14]}}{\mathrm{CE}_{\mathrm{L}} \mid \overline{\mathrm{CE}}_{\mathrm{R}} \geq \mathrm{V}_{\mathrm{IH}}, \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}} \end{aligned}$	Commercial		115	175		105	165		95	150		85	140	mA
		Industrial ${ }^{[12]}$					165	210		105	160		-	-	mA
$\mathrm{I}_{\text {SB3 }}$	Standby Current (Both Ports CMOS Level) ${ }^{[14]}$ $\begin{aligned} & \overline{C E}_{L} \& \overline{C E}_{R} \geq V_{C C}-0.2 \mathrm{~V}, \\ & \mathrm{f}=0 \end{aligned}$	Commercial		10	250		10	250		10	250		10	250	$\mu \mathrm{A}$
		Industrial ${ }^{[12]}$					10	250		10	250		-	-	$\mu \mathrm{A}$
$I_{\text {SB4 }}$	Standby Current (One Port CMOS Level) ${ }^{[14]}$ $\overline{\mathrm{CE}}_{\mathrm{L}} \mid \overline{\mathrm{CE}}_{\mathrm{R}} \geq \mathrm{V}_{\mathrm{IH}}, \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}$	Commercial		105	135		95	125		85	115		75	100	mA
		Industrial ${ }^{\text {[12] }}$					125	170		95	125		-	-	mA

Notes

11. The Voltage on any input or I/O pin cannot exceed the power pin during power-up.
12. Industrial parts are available in CY7C09099V and CY7C09199V only.
13. See page 9 and page 10 for Load Conditions.
14. $\overline{C E}_{L}$ and $\overline{C E}_{R}$ are internal signals. To select either the left or right port, both $\overline{C E}_{0}$ AND $C E_{1}$ must be asserted to their active states ($\overline{C E}_{0} \leq V_{I L}$ and $\left.C E_{1} \geq V_{I H}\right)$

Capacitance

Parameter	Description	Test Conditions	Max	Unit
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	10	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance		10	pF

Figure 3. AC Test Loads

Figure 4. AC Test Loads (Applicable to -6 and -7 only) ${ }^{[15]}$

(a) Load 1 (-6 and -7 only)

[^1]CY7C09089V/99V CY7C09179V/99V

Figure 5. Load Derating Curve

Switching Characteristics

Over the Operating Range

Parameter	Description	CY7C09079V/89V/99V CY7C09179V/89V/99V								Unit
		$-6^{[16]}$		-7 ${ }^{\text {[16] }}$		-9		-12		
		Min	Max	Min	Max	Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX1 }}$	$\mathrm{f}_{\text {Max }}$ Flow-through	-	53	-	45	-	40	-	33	MHz
$\mathrm{f}_{\text {MAX2 }}$	$\mathrm{f}_{\text {Max }}$ Pipelined	-	100	-	83	-	67	-	50	MHz
$\mathrm{t}_{\mathrm{CYC} 1}$	Clock Cycle Time - Flow-through	19	-	22	-	25	-	30	-	ns
$\mathrm{t}_{\mathrm{CYC2}}$	Clock Cycle Time - Pipelined	10	-	12	-	15	-	20	-	ns
$\mathrm{t}_{\mathrm{CH} 1}$	Clock HIGH Time - Flow-through	6.5	-	7.5	-	12	-	12	-	ns
$\mathrm{t}_{\mathrm{CL} 1}$	Clock LOW Time - Flow-through	6.5	-	7.5	-	12	-	12	-	ns
$\mathrm{t}_{\mathrm{CH} 2}$	Clock HIGH Time - Pipelined	4	-	5	-	6	-	8	-	ns
$\mathrm{t}_{\mathrm{CL2}}$	Clock LOW Time - Pipelined	4	-	5	-	6	-	8	-	ns
t_{R}	Clock Rise Time	-	3	-	3	-	3	-	3	ns
t_{F}	Clock Fall Time	-	3	-	3	-	3	-	3	ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up Time	3.5	-	4	-	4	-	4	-	ns
t_{HA}	Address Hold Time	0	-	0	-	1	-	1	-	ns
$\mathrm{t}_{\text {SC }}$	Chip Enable Set-Up Time	3.5	-	4	-	4	-	4	-	ns
t_{HC}	Chip Enable Hold Time	0	-	0	-	1	-	1	-	ns
$\mathrm{t}_{\text {SW }}$	R/్̄W Set-Up Time	3.5	-	4	-	4	-	4	-	ns
t_{HW}	R/్̄W Hold Time	0	-	0	-	1	-	1	-	ns
$\mathrm{t}_{\text {SD }}$	Input Data Set-Up Time	3.5	-	4	-	4	-	4	-	ns
t_{HD}	Input Data Hold Time	0	-	0	-	1	-	1	-	ns
$\mathrm{t}_{\text {SAD }}$	$\overline{\text { ADS Set-Up Time }}$	3.5	-	4	-	4	-	4	-	ns
$\mathrm{t}_{\text {HAD }}$	$\overline{\text { ADS }}$ Hold Time	0	-	0	-	1	-	1	-	ns
$\mathrm{t}_{\text {SCN }}$	$\overline{\text { CNTEN Set-Up Time }}$	3.5	-	4.5	-	5	-	5	-	ns
$\mathrm{t}_{\mathrm{HCN}}$	$\overline{\text { CNTEN }}$ Hold Time	0	-	0	-	1	-	1	-	ns
$\mathrm{t}_{\text {SRST }}$	CNTRST Set-Up Time	3.5	-	4	-	4	-	4	-	ns
$\mathrm{t}_{\text {HRST }}$	CNTRST Hold Time	0	-	0	-	1	-	1	-	ns
$\mathrm{t}_{\text {OE }}$	Output Enable to Data Valid	-	8	-	9	-	10	-	12	ns
$\mathrm{t}_{\mathrm{OLz}}{ }^{[17,18]}$	$\overline{\mathrm{OE}}$ to Low Z	2	-	2	-	2	-	2	-	ns
$\mathrm{t}_{\mathrm{OHz}}{ }^{\text {[17, 18] }}$	$\overline{\text { OE }}$ to High Z	1	7	1	7	1	7	1	7	ns
$\mathrm{t}_{\mathrm{CD} 1}$	Clock to Data Valid - Flow-through	-	15	-	18	-	20	-	25	ns
$\mathrm{t}_{\mathrm{CD} 2}$	Clock to Data Valid - Pipelined	-	6.5	-	7.5	-	9	-	12	ns
t_{DC}	Data Output Hold After Clock HIGH	2	-	2	-	2	-	2	-	ns
$\mathrm{t}_{\text {CKHZ }}{ }^{\text {[17, 18] }}$	Clock HIGH to Output High Z	2	9	2	9	2	9	2	9	ns
$\mathrm{t}_{\mathrm{CKLZ}}{ }^{\text {[17, 18] }}$	Clock HIGH to Output Low Z	2	-	2	-	2	-	2	-	ns

Notes

16. See page 9 and page 10 for Load Conditions.
17. Test conditions used are Load 2.
18. This parameter is guaranteed by design, but it is not production tested.

Switching Characteristics (continued)

Over the Operating Range

Parameter	Description	CY7C09079V/89V/99V CY7C09179V/89V/99V								Unit
		$-6^{[16]}$		-7 ${ }^{\text {[16] }}$		-9		-12		
		Min	Max	Min	Max	Min	Max	Min	Max	
Port to Port Delays										
$\mathrm{t}_{\text {CWDD }}$	Write Port Clock HIGH to Read Data Delay	-	30	-	35	-	40	-	40	ns
$\mathrm{t}_{\mathrm{CCS}}$	Clock to Clock Set-Up Time	-	9	-	10	-	15	-	15	ns

Switching Waveforms

Figure 6. Read Cycle for Flow-through Output $\left(\overline{\mathrm{FT}} / \mathrm{PIPE}=\mathbf{V}_{\mathrm{IL}}\right)^{[19,20,21,22]}$

[^2]Switching Waveforms (continued)
Figure 7. Read Cycle for Pipelined Operation $\left(\overline{\mathrm{FT}} / \mathrm{PIPE}=\mathbf{V}_{\mathrm{IH}}\right)^{[23,24,25,26]}$

Notes

23. OE is asynchronously controlled; all other inputs are synchronous to the rising clock edge.
24. $\overline{\mathrm{ADS}}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{CNTEN}}$ and CNTRST $=\mathrm{V}_{\mathrm{IH}}$.
25. The output is disabled (high-impedance state) by $\overline{C E}_{0}=V_{\text {仡 }}$ or $C E_{1}=V_{I L}$ following the next rising edge of the clock.
26. Addresses do not have to be accessed sequentially since $\overline{A D S}=V_{I L}$ constantly loads the address on the rising edge of the CLK. Numbers are for reference only.

Switching Waveforms (continued)
Figure 8. Bank Select Pipelined Read ${ }^{[27, ~ 28]}$

[^3]Switching Waveforms (continued)
Figure 9. Left Port Write to Flow-through Right Port Read ${ }^{[29,}$ 30, 31, 32]

Notes

29. The same waveforms apply for a right port write to flow-through left port read
30. $\overline{\mathrm{CE}}_{0}$ and $\overline{\mathrm{ADS}}=\mathrm{V}_{\mathrm{IL}} ; \mathrm{CE}_{1}, \overline{\mathrm{CNTEN}}$, and $\overline{\mathrm{CNTRST}}=\mathrm{V}_{\mathrm{IH}}$.
31. $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$ for the right port, which is being read from. $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$ for the left port, which is being written to.
32. It $t_{C C S} \leq$ maximum specified, then data from right port READ is not valid until the maximum specified for $t_{C W D D}$. If $t_{C C S}>$ maximum specified, then data is not valid until $\mathrm{t}_{\mathrm{CCS}}+\mathrm{t}_{\mathrm{CD} 1} . \mathrm{t}_{\mathrm{CWDD}}$ does not apply in this case.

Switching Waveforms (continued)
Figure 10. Pipelined Read-to-Write-to-Read $\left(\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}\right)^{[33,34,35,36]}$

[^4]Switching Waveforms (continued)
Figure 11. Pipelined Read-to-Write-to-Read ($\overline{\mathrm{OE}}$ Controlled) ${ }^{[37, ~ 38, ~ 39, ~ 40] ~}$

Notes

37. Addresses do not have to be accessed sequentially since $\overline{\mathrm{ADS}}=\mathrm{V}_{I L}$ constantly loads the address on the rising edge of the CLK. Numbers are for reference only. 38. Output state (HIGH, LOW, or high-impedance) is determined by the previous cycle control signals.
38. $\overline{\mathrm{CE}}_{0}$ and $\overline{\mathrm{ADS}}=\mathrm{V}_{\mathrm{IL}} ; \mathrm{CE}_{1}, \overline{\mathrm{CNTEN}}$, and $\overline{\mathrm{CNTRST}}=\mathrm{V}_{\mathrm{IH}}$.
39. During "No Operation", data in memory at the selected address may be corrupted and should be re-written to ensure data integrity.

CY7C09089V/99V

Switching Waveforms (continued)
Figure 12. Flow-through Read-to-Write-to-Read $\left(\overline{\mathrm{OE}}=\mathbf{V}_{\mathrm{IL}}\right)^{[41, ~ 42, ~ 43, ~ 44, ~ 45] ~}$

[^5]Switching Waveforms (continued)
Figure 13. Flow-through Read-to-Write-to-Read ($\overline{\mathrm{OE}}$ Controlled) ${ }^{[46,47,48,49,50]}$

[^6]Switching Waveforms (continued)
Figure 14. Pipelined Read with Address Counter Advance ${ }^{[51]}$

Figure 15. Flow-through Read with Address Counter Advance ${ }^{[51]}$

[^7]CY7C09089V/99V
CY7C09179V/99V

Switching Waveforms (continued)
Figure 16. Write with Address Counter Advance (Flow-through or Pipelined Outputs) ${ }^{[52,53]}$

[^8]Switching Waveforms (continued)
Figure 17. Counter Reset (Pipelined Outputs) ${ }^{[54,55,56,57]}$

[^9]Read/Write and Enable Operation ${ }^{[58,59,60]}$

Inputs					Outputs	Operation
$\overline{\mathrm{OE}}$	CLK	$\overline{C E}_{0}$	CE_{1}	R/W	$1 / \mathrm{O}_{0}-1 / \mathrm{O}_{9}$	
X	-	H	X	X	High Z	Deselected ${ }^{[61]}$
X	\checkmark	X	L	X	High Z	Deselected ${ }^{[61]}$
X	-	L	H	L	D_{IN}	Write
L	-	L	H	H	Dout	Read ${ }^{[61]}$
H	X	L	H	X	High Z	Outputs Disabled

Address Counter Control Operation ${ }^{[58,62,63,64]}$

Address	Previous Address	CLK	$\overline{\text { ADS }}$	$\overline{\text { CNTEN }}$	CNTRST	I/O	Mode	Operation
X	X	-	X	X	L	$\mathrm{D}_{\text {out(0) }}$	Reset	Counter Reset to Address 0
A_{n}	X	-	L	X	H	$\mathrm{D}_{\text {out(n) }}$	Load	Address Load into Counter
X	A_{n}	-	H	H	H	$\mathrm{D}_{\text {out }(\mathrm{n})}$	Hold	External Address Blocked—Counter Disabled
X	A_{n}	-	H	L	H	$\mathrm{D}_{\text {out(n+1) }}$	Increment	Counter Enabled—Internal Address Generation

[^10]
Ordering Information

The following table contains only the parts that are currently available. If you do not see what you are looking for, contact your local sales representative. For more information, visit the Cypress website at www.cypress.com and refer to the product summary page at http://www.cypress.com/products
Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives and distributors. To find the office closest to you, visit us at http://www.cypress.com/go/datasheet/offices.

64 K $\times 8$ 3.3 V Synchronous Dual-Port SRAM

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
12	CY7C09089V-12AXI	A100	100-pin Thin Quad Flat Pack (Pb-free)	Industrial

$128 \mathrm{~K} \times 8$ 3.3 V Synchronous Dual-Port SRAM

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
$7.5^{[65]}$	CY7C09099V-7AXI	A100	100-pin Thin Quad Flat Pack (Pb-free)	Industrial
12	CY7C09099V-12AXC	A100	100-pin Thin Quad Flat Pack (Pb-free)	Commercial

32 K $\times 9$ 3.3 V Synchronous Dual-Port SRAM

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
$6.5^{[65]}$	CY7C09179V-6AXC	A100	100-pin Thin Quad Flat Pack (Pb-free)	Commercial
12	CY7C09179V-12AXC	A100	100-pin Thin Quad Flat Pack (Pb-free)	Commercial

128 K $\times 9$ 3.3 V Synchronous Dual-Port SRAM

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
9	CY7C09199V-9AXC	A100	100-pin Thin Quad Flat Pack (Pb-free)	Commercial

Ordering Code Definitions

Note

65 . See page 9 and page 10 for Load Conditions.

Package Diagram

Figure 18. 100 -pin TQFP $14 \times 14 \times 1.4 \mathrm{~mm}$ A100SA (51-85048)

Acronyms

Acronym	Description
CMOS	complementary metal oxide semiconductor
I/O	input/output
$\overline{\mathrm{OE}}$	output enable
SRAM	static random access memory
TQFP	thin quad flat pack
TTL	transistor transistor logic
$\overline{\text { WE }}$	write enable

Document Conventions
Units of Measure

Symbol	Unit of Measure
${ }^{\circ} \mathrm{C}$	degree Celcius
MHz	Mega Hertz
$\mu \mathrm{A}$	micro Amperes
mA	milli Amperes
mm	milli meter
ms	milli seconds
mV	milli Volts
ns	nano seconds
Ω	Ohms
$\%$	percent
pF	pico Farad
V	Volts
W	Watts

Document History Page

Document Title: CY7C09089V/99V, CY7C09179V/99V, 3.3 V 32 K/64 K/128 K $\times 8 / 9$ Synchronous Dual-Port Static RAM Document Number: 38-06043

Rev.	ECN No.	Orig. of Change	Orig. of Change	Description of Change
**	110191	SZV	09/29/01	Change from Spec number: 38-00667 to 38-06043
*A	122293	RBI	12/27/02	Power up requirements added to Operating Conditions Information
*B	365034	PCN	See ECN	Added Pb-Free Logo Added Pb-Free Part Ordering Information: CY7C09089V-6AXC, CY7C09089V-12AXC, CY7C09099V-6AXC, CY7C09099V-7AI, CY7C09099V-7AXI, CY7C09099V-12AXC, CY7C09179V-6AXC, CY7C09179V-12AXC, CY7C09189V-6AXC, CY7C09189V-12AXC, CY7C09199V-6AXC, CY7C09199V-7AXC, CY7C09199V-9AXC, CY7C09199V-9AXI, CY7C09199V-12AXC
*C	2623658	VKN/PYRS	12/17/08	Added CY7C09089V-12AXI part in the Ordering information table
*D	2897159	RAME	03/22/10	Removed inactive parts from ordering information table. Updated package diagram. Added Note in ordering information section.
*E	3110406	ADMU	12/14/2010	Updated Ordering Information. Added Ordering Code Definitions.
*F	3264673	ADMU	05/24/2011	Updated Document Title to read "CY7C09089V/99V, CY7C09179V/99V, 3.3 V 32 K/64 K/128 K $\times 8 / 9$ Synchronous Dual-Port Static RAM". Updated Features. Updated Pin Configurations (Removed the Note "This pin is NC for CY7C09079V." in page 5). Updated Selection Guide. Updated Package Diagram. Added Acronyms and Units of Measure. Updated in new template.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at cypress.com/sales.

Products

Automotive	cypress.com/go/automotive	
Clocks \& Buffers	cypress.com/go/clocks Interface cypress.com/go/interface	psoc.cypress.com/solutions
Lighting \& Power Control	cypress.com/go/powerpsoc cypress.com/go/plc	PSoC $1 \mid$ PSoC $3 \mid$ PSoC 5

 application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

 the express written permission of Cypress.

 a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

[^0]: Notes
 4. When writing simultaneously to the same location, the final value cannot be guaranteed.
 5. See page 9 and page 10 for Load Conditions.

[^1]: Note
 15. Test Conditions: $\mathrm{C}=10 \mathrm{pF}$.

[^2]: Notes
 19. $\overline{\mathrm{OE}}$ is asynchronously controlled; all other inputs are synchronous to the rising clock edge.
 20. $\overline{\mathrm{ADS}}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{CNTEN}}$ and $\overline{\text { CNTRST }}=\mathrm{V}_{\mathrm{IH}}$.
 21. The output is disabled (high-impedance state) by $\overline{C E}_{0}=V_{\mathrm{AH}}$ or $C E_{1}=V_{I L}$ following the next rising edge of the clock.
 22. Addresses do not have to be accessed sequentially since $\overline{\mathrm{ADS}}=\mathrm{V}_{\mathrm{IL}}$ constantly loads the address on the rising edge of the CLK. Numbers are for reference only.

[^3]: Notes
 27. In this depth expansion example, B1 represents Bank \#1 and B2 is Bank \#2; Each Bank consists of one Cypress dual-port device from this datasheet. ADDRESS $_{(\mathrm{B} 1)}=$ ADDRESS $_{(\mathrm{B} 2)}$.
 28. $\overline{O E}$ and $\overline{A D S}=V_{I L} ; C_{1(B 1)}, C E_{1(B 2)}, R / \bar{W}, \overline{C N T E N}$, and $\overline{C N T R S T}=V_{I H}$.

[^4]: Notes
 33. Addresses do not have to be accessed sequentially since $\overline{\mathrm{ADS}}=\mathrm{V}_{\mathrm{IL}}$ constantly loads the address on the rising edge of the CLK. Numbers are for reference only. 34. Output state (HIGH, LOW, or high-impedance) is determined by the previous cycle control signals.
 35. $\overline{\mathrm{CE}}_{0}$ and $\overline{\mathrm{ADS}}=\mathrm{V}_{\mathrm{IL}} ; \mathrm{CE}_{1}, \overline{\mathrm{CNTEN}}$, and $\overline{\mathrm{CNTRST}}=\mathrm{V}_{\mathrm{IH}}$.
 36. During "No Operation", data in memory at the selected address may be corrupted and should be re-written to ensure data integrity

[^5]: Notes
 41. $\overline{\text { ADS }}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{CNTEN}}$ and $\overline{\mathrm{CNTRST}}=\mathrm{V}_{\mathrm{IH}}$.
 42. Addresses do not have to be accessed sequentially since $\overline{\mathrm{ADS}}=\mathrm{V}_{\mathrm{IL}}$ constantly loads the address on the rising edge of the CLK. Numbers are for reference only.
 43. Output state (HIGH, LOW, or high-impedance) is determined by the previous cycle control signals.
 44. $\overline{\mathrm{CE}}_{0}$ and $\overline{\mathrm{ADS}}=\mathrm{V}_{\mathrm{IL}} ; \mathrm{CE}_{1}, \overline{\mathrm{CNTEN}}$, and $\overline{\mathrm{CNTRST}}=\mathrm{V}_{\mathrm{IH}}$.
 45. During "No Operation", data in memory at the selected address may be corrupted and should be re-written to ensure data integrity.

[^6]: Notes 46. $\overline{\text { ADS }}=V_{I L}, \overline{\text { CNTEN }}$ and $\overline{\text { CNTRST }}=V_{I H}$.
 47. In this depth expansion example, B1 represents Bank \#1 and B2 is Bank \#2; Each Bank consists of one Cypress dual-port device from this datasheet. $\operatorname{ADDRESS}_{(\mathrm{B} 1)}=\operatorname{ADDRESS}_{(\mathrm{B} 2)}$.
 48. Output state (HIGH, LOW, or high-impedance) is determined by the previous cycle control signals
 49. $\overline{\mathrm{CE}}_{0}$ and $\overline{\mathrm{ADS}}=\mathrm{V}_{\mathrm{IL}} ; \mathrm{CE}_{1}, \overline{\mathrm{CNTEN}}$, and $\overline{\mathrm{CNTRST}}=\mathrm{V}_{\mathrm{IH}}$.
 50. During "No Operation", data in memory at the selected address may be corrupted and should be re-written to ensure data integrity.

[^7]: Note
 Note
 51.
 CE_{0} and $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}} ; C E_{1}, \mathrm{R} / \overline{\mathrm{W}}$ and $\overline{\mathrm{CNTRST}}=\mathrm{V}_{\mathrm{IH}}$.

[^8]: Notes
 52. $\overline{C E}_{0}$ and $R / \bar{W}=V_{I L} ; C E_{1}$ and $\overline{C N T R S T}=V_{I H}$.
 53. The "Internal Address" is equal to the "External Address" when $\overline{\mathrm{ADS}}=\mathrm{V}_{\mathrm{IL}}$ and equals the counter output when $\overline{\mathrm{ADS}}=\mathrm{V}_{\mathrm{IH}}$

[^9]: Notes
 54. Addresses do not have to be accessed sequentially since $\overline{\mathrm{ADS}}=\mathrm{V}_{\mathrm{IL}}$ constantly loads the address on the rising edge of the CLK. Numbers are for reference only. 55. Output state (HIGH, LOW, or high-impedance) is determined by the previous cycle control signals.
 56. $\overline{C E}_{0}=V_{I L} ; C E_{1}=V_{I H}$.
 57. No dead cycle exists during counter reset. A READ or WRITE cycle may be coincidental with the counter reset.

[^10]: Notes
 58. "X" = "Don't Care", "H" $=V_{I H}$, "L" $=V_{\text {IL }}$.
 59. ADS, CNTEN, CNTRST = "Don't Care."
 60. $\overline{\mathrm{OE}}$ is an asynchronous input signal.
 61. When $\overline{\mathrm{CE}}$ changes state in the pipelined mode, deselection and read happen in the following clock cycle.
 62. CE_{0} and $\mathrm{OE}=\mathrm{V}_{\mathrm{IL}} ; C E_{1}$ and $\mathrm{R} / \mathrm{W}=\mathrm{V}_{\mathrm{IH}}$.
 63. Data shown for flow-through mode; pipelined mode output will be delayed by one cycle.
 64. Counter operation is independent of $\overline{C E}_{0}$ and CE_{1}.

