CP-series CP1E CPU Units

CP1E-E $\square \square$ SD $\square-\square$ CP1E-N $\square \square S \square D-\square-\square$
CP1E-E $\square \square D \square-\square$ CP1E-N $\square \square D \square-\square / N A 20 D \square-\square$

The CP1E Programmable Controller: Economical, Easy to use, and Efficient

■The $E \square \square(S)$-type Basic CPU Units provide cost performance and easy application with only basic functionality.
-The $N \square \square(S \square)$ and NA-types Application CPU Units support Programmable Terminal connection, position control, and inverter connection

CP1E-E20SDR-A

CP1E-N40S1DR-A

Features

- New CP1E CPU Units now available.
- Lineup including CPU Units with built-in three ports: USB, RS-232C, RS-485.
- The depth of CPU Units with RS-232C connectors is reduced by 20 mm . (N30/40/60S(1))
- Easy connection with computers using commercially available USB cables.
- With E30/40/60(S), N30/40/60(S \square) or NA20 CPU Units, Add I/O, Analog I/O or Temperature Inputs by Connecting Expansion Units or Expansion I/O Units.
- Input interrupts
- Complete High-speed Counter Functionality.
- Versatile pulse control for Transistor Output for N14/20/30/40/60(S \square) or NA20 CPU Units.
- PWM Outputs for Transistor Output for N14/20/30/40/60(S \square) or NA20 CPU Units.
- Mounting Serial Option Boards, Ethernet Option Board and Analog Option Board to N30/40/60 or NA20 CPU Units.
- Built-in analog I/O, two inputs and one output, for NA-type CPU Units.

CP1E-E $\square \square$ (S)D $\square-\square$ CP1E-N $\square \square$ (S \square)D $\square-\square /$ NA20D $\square-\square$

System Configuration

Basic Model

Basic System Configuration Using an E $\square \square$ S-type CPU Unit

Basic System Configuration Using an E $\square \square$-type CPU Unit

Application Model

Basic System Configuration Using an N/NA $\square \square S(1)$-type CPU Unit

Basic System Configuration Using an N/NA-type CPU Unit

CP1E-E $\square \square(S) D \square-\square$ CP1E-N $\square \square(S \square) D \square-\square / N A 20 D \square-\square$

Model Number Structure

■ Model Number Legend (Not all models that can be represented with the model number legend can necessarily be produced.)

(1) (2)
(3) (4) (5) (6) (7)

1. Class

E : Basic mode
N : Application model
NA : Application model with built-in analog
2. I/O capacity

0: 10 I/O points (6 inputs, 4 outputs)
14: 14 I/O points (8 inputs, 6 outputs)
$20: 20$ I/O points (12 inputs, 8 outputs)
$30: 30$ I/O points (18 inputs, 12 outputs)
$40: 40$ I/O points (24 inputs, 16 outputs
$60: 60$ I/O points (36 inputs, 24 outputs)
3. Unit type S: Renewa None : Normal
4. Built-in RS-485 port 1: RS-485 None:-
5. Input type D: DC inputs
6. Output type

R: Relays outputs
T: Transistor outputs, sinking
T1: Transistor outputs, sourcing
7. Power supply

A: AC power supply
D : DC power supply

Difference between E/N/NA $\square \square$-type and $\mathrm{E} / \mathrm{N} \square \square \mathrm{S}(1)$-type

IBasic Model

E $\square \square(S)$-type CPU Units

Difference in Characteristics and Functions

Function	E \square-type (Normal)	E $\square \square$ S-type (Renewal)
Analog adjusters	2 adjusters (Setting range: 0 to 255)	None The analog adjuster PV in A642/A643 is fixed on 0000.

Product Lineup

Application Model

N/NA $\square \square(S)$-type CPU Units

Difference in Characteristics and Functions

Product Lineup

	Normal-typeN $\square \square$ CPU UnitRS-232C+1 option slot $(*)$				Renewal-type							
						$\begin{aligned} & N \square \square \\ & \text { 3uilt. } \end{aligned}$	$\begin{aligned} & \text { PU Unit } \\ & \text { S-232C } \end{aligned}$			$\begin{aligned} & \mathrm{N} \square \square \\ & \text {-in } \mathrm{F} \end{aligned}$	$\begin{aligned} & \text { PU Un } \\ & 32 C+R \end{aligned}$	
	Relay outputs		Transistor outputs (sinking/sourcing)		Relay outputs		Transistor outputs (sinking/sourcing)		Relay outputs		Transistor outputs (sinking/sourcing)	
Power supply	AC	DC										
$10 \mathrm{l} / \mathrm{O}$ points	--	--	--	--	--	--	--	--	--	--	--	--
14 I/O points	\bigcirc	\bigcirc	\bigcirc	\bigcirc	--	--	--	--	--	--	--	--
20 I/O points	\bigcirc	O	\bigcirc	\bigcirc	--	--	--	--	--	--	--	--
30 I/O points	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	--	--	\bigcirc	\bigcirc	--	--	\bigcirc
40 I/O points	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	--	--	\bigcirc	\bigcirc	--	--	\bigcirc
60 I/O points	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	--	--	\bigcirc	\bigcirc	--	--	\bigcirc
20 I/O points (Built-in analog)	O	--	--	\bigcirc	--	--	--	--	--	--	--	--

* 30,40 and 60 I/O points only.

CP1E-E $\square \square(S) D \square-\square$ CP1E-N $\square \square(S \square) D \square-\square / N A 20 D \square-\square$

Ordering Information

International Standards

- The standards are abbreviated as follows: U: UL, U1: UL (Class I Division 2 Products for Hazardous Locations), C: CSA, UC: cULus, UC1: cULus (Class I Division 2 Products for Hazardous Locations), CU: cUL, N: NK, L: Lloyd, and CE: EC Directives.
- Contact your OMRON representative for further details and applicable conditions for these standards.

Basic Model

-Renewal-type

©ED \square S-type CP1E CPU Units (Built-in USB port)

Product name	Specifications						External power supply (24 VDC) (A)	$\begin{gathered} \text { Current } \\ \text { consumption (A) } \end{gathered}$		Model	Standards
	Power Supply	Inputs	Outputs	Output type	Program capacity	Data memory capacity		5 V	24 V		
E \square S- type CPU Units with 14 I/O Points	$\begin{aligned} & 100 \text { to } 240 \\ & \text { VAC } \end{aligned}$	8	6	Relay	2K steps	2 K words	--	0.16	0.07	CP1E-E14SDR-A	CE
E \square S- type CPU Units with 20 I/O Points	$\begin{aligned} & 100 \text { to } 240 \\ & \text { VAC } \end{aligned}$	12	8	Relay	2K steps	2 K words	--	0.17	0.08	CP1E-E20SDR-A	CE
EロロS- type CPU Units with 30 I/O Points	$\begin{aligned} & 100 \text { to } 240 \\ & \text { VAC } \end{aligned}$	18	12	Relay	2K steps	2K words	0.30	0.17	0.07	CP1E-E30SDR-A	CE
E \square S- type CPU Units with 40 I/O Points	$\begin{aligned} & 100 \text { to } 240 \\ & \text { VAC } \end{aligned}$	24	16	Relay	2K steps	2K words	0.30	0.17	0.09	CP1E-E40SDR-A	CE
E \square S- type CPU Units with 60 I/O Points	$\begin{aligned} & 100 \text { to } 240 \\ & \text { VAC } \end{aligned}$	36	24	Relay	2K steps	2 K words	0.30	0.17	0.13	CP1E-E60SDR-A	CE

-Normal-type

$\square \square \square$-type CP1E CPU Units (Built-in USB port)

Product name	Specifications						External power supply (24 VDC) (A)	Current consumption (A)		Model	Standards
	Power Supply	Inputs	Outputs	Output type	Program capacity	Data memory capacity		5 V	24 V		
	$\begin{aligned} & 100 \text { to } 240 \\ & \text { VAC } \end{aligned}$	6	4	Relay	$\begin{array}{\|l\|} \hline \text { 2K } \\ \text { steps } \end{array}$	2K words	--	0.08	0.04	CP1E-E10DR-A	UC1, N, L, CE
				Transistor (sinking)			--	0.11	--	CP1E-E10DT-A	
				Transistor (sourcing)			--	0.11	--	CP1E-E10DT1-A	
				Relay			--	0.08	0.04	CP1E-E10DR-D	
	24 VDC			Transistor (sinking)			--	0.11	--	CP1E-E10DT-D	
				Transistor (sourcing)			--	0.11	--	CP1E-E10DT1-D	
E \square-type CPU Units with 14 I/O Points	$\begin{aligned} & 100 \text { to } 240 \\ & \text { VAC } \end{aligned}$	8	6	Relay	2K steps	2K words	--	0.16	0.07	CP1E-E14DR-A	$\begin{aligned} & \text { UC1, N, } \\ & \text { L, CE } \end{aligned}$
E \square-type CPU Units with 20 I/O Points	$\begin{aligned} & 100 \text { to } 240 \\ & \text { VAC } \end{aligned}$	12	8	Relay	2 K steps	2K words	--	0.17	0.08	CP1E-E20DR-A	$\begin{aligned} & \text { UC1, N, } \\ & \text { L, CE } \end{aligned}$
E \square-type CPU Units with 30 I/O Points	$\begin{aligned} & 100 \text { to } 240 \\ & \text { VAC } \end{aligned}$	18	12	Relay	2K steps	2 K words	0.30	0.17	0.07	CP1E-E30DR-A	$\begin{aligned} & \text { UC1, N, } \\ & \text { L, CE } \end{aligned}$
E \square-type CPU Units with 40 I/O Points	$\begin{aligned} & 100 \text { to } 240 \\ & \text { VAC } \end{aligned}$	24	16	Relay	2K steps	2 K words	0.30	0.17	0.09	CP1E-E40DR-A	UC1, N, L, CE

Application Model

ORenewal-type

$\square N \square \square$ S1-type CP1E CPU Units (Built-in RS-232C, RS-485, USB ports)

Product name	Specifications						External power supply (24 VDC) (A)	Current consumption (A)		Model	Standards
	Power Supply	Inputs	Outputs	Output type	Program capacity	Data memory capacity		5 V	24 V		
$\mathbf{N} \square \square \mathbf{S 1}-$ type CPU Units with $301 / 0$ Points	$\begin{aligned} & 100 \text { to } 240 \\ & \text { VAC } \end{aligned}$	18	12	Relay	8K steps	8K words	0.30	0.21	0.07	CP1E-N30S1DR-A	CE
	DC24V			Transistor (sinking)			--	0.27	0.02	CP1E-N30S1DT-D	
				Transistor (sourcing)			--	0.27	0.02	CP1E-N30S1DT1-D	
N $\square \square$ S1- type CPU Units with 40 I/O Points	$\begin{aligned} & 100 \text { to } 240 \\ & \text { VAC } \end{aligned}$	24	16	Relay	8K steps	8K words	0.30	0.21	0.09	CP1E-N40S1DR-A	CE
	DC24V			Transistor (sinking)			--	0.31	0.02	CP1E-N40S1DT-D	
				Transistor (sourcing)			--	0.31	0.02	CP1E-N40S1DT1-D	
$\mathrm{N} \square \square \mathbf{S 1 -}$ type CPU Units with	$\begin{aligned} & 100 \text { to } 240 \\ & \text { VAC } \end{aligned}$	36	24	Relay	8K steps	8K words	0.30	0.21	0.13	CP1E-N60S1DR-A	
Points	DC24V			Transistor (sinking)			--	0.31	0.02	CP1E-N60S1DT-D	CE
				Transistor (sourcing)			--	0.31	0.02	CP1E-N60S1DT1-D	

$\square N \square \square$ S-type CP1E CPU Units (Built-in RS-232C, USB ports)

Product name	Specifications						External power supply (24 VDC) (A)	Current consumption (A)		Model	Standards
	Power Supply	Inputs	Outputs	Output type	Program capacity	Data memory capacity		5 V	24 V		
N $\square \square \mathbf{S}-$ type CPU Units with 30 I/O Points	$\begin{aligned} & 100 \text { to } 240 \\ & \text { VAC } \end{aligned}$	18	12	Relay	8K steps	8K words	0.30	0.21	0.07	CP1E-N30SDR-A	CE
	DC24V			Transistor (sinking)			--	0.27	0.02	CP1E-N30SDT-D	
				Transistor (sourcing)			--	0.27	0.02	CP1E-N30SDT1-D	
N $\square \square \mathbf{S}-$ type CPU	$\begin{aligned} & 100 \text { to } 240 \\ & \text { VAC } \end{aligned}$	24	16	Relay	8K steps	8 K words	0.30	0.21	0.09	CP1E-N40SDR-A	
Points	DC24V			Transistor (sinking)			--	0.31	0.02	CP1E-N40SDT-D	CE
				Transistor (sourcing)			--	0.31	0.02	CP1E-N40SDT1-D	
N $\square \square \mathbf{S}$ - type CPU Units with 60 I/O Points	$\begin{aligned} & 100 \text { to } 240 \\ & \text { VAC } \end{aligned}$	36	24	Relay	8K steps	8K words	0.30	0.21	0.13	CP1E-N60SDR-A	
	DC24V			Transistor (sinking)			--	0.31	0.02	CP1E-N60SDT-D	CE
11				Transistor (sourcing)			--	0.31	0.02	CP1E-N60SDT1-D	

-Normal-type

N/NA $\square \square$-type CP1E CPU Units (Built-in RS-232C, USB ports)

Product name	Specifications						External power supply (24 VDC) (A)	Current consumption (A)		Model	Standards
	Power Supply	Inputs	Outputs	Output type	Program capacity	Data memory capacity		5 V	24 V		
	$\begin{aligned} & 100 \text { to } 240 \\ & \text { VAC } \end{aligned}$	8	6	Relay	8K steps	8K words	--	0.17	0.07	CP1E-N14DR-A	UC1, N, L, CE
				Transistor (sinking)			--	0.22	0.02	CP1E-N14DT-A	
				Transistor (sourcing)			--	0.22	0.02	CP1E-N14DT1-A	
	24 VDC			Relay			--	0.17	0.07	CP1E-N14DR-D	
				Transistor (sinking)			--	0.22	0.02	CP1E-N14DT-D	
				Transistor (sourcing)			--	0.22	0.02	CP1E-N14DT1-D	
N $\square \square$-type CPU Units with 20 I/O Points	$\begin{aligned} & 100 \text { to } 240 \\ & \text { VAC } \end{aligned}$	12	8	Relay	8 K steps	8 K words	--	0.18	0.08	CP1E-N20DR-A	
				Transistor (sinking)			--	0.23	0.02	CP1E-N20DT-A	
				Transistor (sourcing)			--	0.23	0.02	CP1E-N20DT1-A	
	24 VDC			Relay			--	0.18	0.08	CP1E-N20DR-D	
				Transistor (sinking)			--	0.23	0.02	CP1E-N20DT-D	
				Transistor (sourcing)			--	0.23	0.02	CP1E-N20DT1-D	
N $\square \square$-type CPU Units with 30 I/O Points	$\begin{aligned} & 100 \text { to } 240 \\ & \text { VAC } \end{aligned}$	18	12	Relay	8 K steps	8 K words	0.30	0.21	0.07	CP1E-N30DR-A	
				Transistor (sinking)			0.30	0.27	0.02	CP1E-N30DT-A	
				Transistor (sourcing)			0.30	0.27	0.02	CP1E-N30DT1-A	
	24 VDC			Relay			--	0.21	0.07	CP1E-N30DR-D	
				Transistor (sinking)			--	0.27	0.02	CP1E-N30DT-D	
				Transistor (sourcing)			--	0.27	0.02	CP1E-N30DT1-D	
N $\square \square$-type CPU Units with 40 I/O Points	$\begin{aligned} & 100 \text { to } 240 \\ & \text { VAC } \end{aligned}$	24	16	Relay	8K steps	8K words	0.30	0.21	0.09	CP1E-N40DR-A	
				Transistor (sinking)			0.30	0.31	0.02	CP1E-N40DT-A	
				Transistor (sourcing)			0.30	0.31	0.02	CP1E-N40DT1-A	UC1, N,
	24 VDC			Relay			--	0.21	0.09	CP1E-N40DR-D	
				Transistor (sinking)			--	0.31	0.02	CP1E-N40DT-D	
				Transistor (sourcing)			--	0.31	0.02	CP1E-N40DT1-D	

CP1E-E $\square \square$ (S)D $\square-\square$ CP1E-N $\square \square$ (S \square)D $\square-\square /$ NA20D $\square-\square$

Product name	Specifications						External power supply (24 VDC) (A)	Current consumption (A)		Model	Standards
	Power Supply	Inputs	Outputs	Output type	Program capacity	Data memory capacity		5 V	24 V		
N $\square \square$-type CPU Units with 60 I/O Points	$\begin{aligned} & 100 \text { to } 240 \\ & \text { VAC } \end{aligned}$	36	24	Relay	8K steps	8K words	0.30	0.21	0.13	CP1E-N60DR-A	UC1, N, L, CE
				Transistor (sinking)			0.30	0.31	0.02	CP1E-N60DT-A	
				Transistor (sourcing)			0.30	0.31	0.02	CP1E-N60DT1-A	
	24 VDC			Relay			--	0.21	0.13	CP1E-N60DR-D	
				Transistor (sinking)			--	0.31	0.02	CP1E-N60DT-D	
				Transistor (sourcing)			--	0.31	0.02	CP1E-N60DT1-D	
NA-type CPU Units with 20 I/O Points (Built-in analog)	$\begin{aligned} & 100 \text { to } 240 \\ & \text { VAC } \end{aligned}$	12 (Built-in analog inputs: 2)	8 (Built-in analog outputs: 1)	Relay	8K steps	8K words	0.30	0.18	0.11	CP1E-NA20DR-A	
	24 VDC			Transistor (sinking)			--	0.23	0.09	CP1E-NA20DT-D	UC1, N, L, CE
				Transistor (sourcing)			--	0.23	0.09	CP1E-NA20DT1-D	

Optional Products

Battery Set

Product name	Specifications	Model	Standards
Battery Set	For N/NA $\square \square(\mathrm{S} \square)$-type CP1E CPU Units Note: Mount a Battery to an N/NA $\square \square(\mathrm{S} \square)$-type CPU Unit if the data in the following areas must be backed up for power interruptions. - DM Area (D) (except backed up words in the DM Area), Holding Area (H), Counter Completion Flags (C), Counter Present Values (C), Auxiliary Area (A), and Clock Function (Use batteries within two years of manufacture.)	CP1W-BAT01	--

Option Board (for CP1E N30/40/60 or NA20 CPU Units)
The Options cannot be used for CP1E N14/20, N30/40/60S(1), E10/14/20/30/40/60(S) CPU Units.

Product name	Specifications	Model	Standards
RS-232C Option Board	One RS-232C Option Board can be mounted to the Option Board slot. One RS-232C connector is included.	CP1W-CIF01	UC1, N, L, CE
RS-422A/485 Option Board	One RS-422A/485 Option Board can be mounted to the Option Board slot.	CP1W-CIF11	
RS-422A/485 Isolated-type Option Board		CP1W-CIF12	
Ethernet Option Board	One Ethernet Option Board can be mounted to the Option Board slot. CP1E CPU Units are supported by CP1W-CIF41 version 2.0 or higher. When using CP1W-CIF41, CX-Programmer version 9.12 or higher is required.	CP1W-CIF41	
Analog Input Option Board	Can be mounted in CPU Unit Option Board slot. 2 analog inputs. $0-10 \mathrm{~V}$ (Resolution:1/4000), $0-20 \mathrm{~mA}$ (Resolution:1/2000).	CP1W-ADB21 *	
Analog Output Option Board	Can be mounted in CPU Unit Option Board slot. 2 analog outputs. 0-10V (Resolution:1/4000).	CP1W-DAB21V *	
Analog I/O Option Board	Can be mounted in CPU Unit Option Board slot. 2 analog inputs. $0-10 \mathrm{~V}$ (Resolution:1/4000), $0-20 \mathrm{~mA}$ (Resolution:1/2000). 2 analog outputs. 0-10V (Resolution:1/4000).	CP1W-MAB221 *	

Note: It is not possible to use a CP-series Ethernet Option Board version 1.0 (CP1W-CIF41), LCD Option Board (CP1W-DAM01), or Memory Card (CP1W-ME05M) with a CP1E CPU Unit.

* Support is provided with CP1E CPU Unit version 1.2 and later.

Expansion I/O Units and Expansion Units (for CP1E E30/40/60(S), N30/40/60(S \square), or NA20 CPU Units)
CP1E E10/14/20(S) or N14/20 CPU Units do not support Expansion I/O Units and Expansion Units.

Unit type	Product name	Specifications				Current consumption (A)		Model	Standards
		Inputs	Outputs	Output type		5 V	24 V		
CP1W Expansion I/O Units	Input Unit	8	--	24 VDC Input		0.018	--	CP1W-8ED	U, C, N, L, CE
	Output Units	--	8	Relay		0.026	0.044	CP1W-8ER	
				Transistor (sinking)		0.075	--	CP1W-8ET	
				Transistor (sourcing)		0.075	--	CP1W-8ET1	
		--	16	Relay		0.042	0.090	CP1W-16ER	N, L, CE
				Transistor (sinking)		0.076	--	CP1W-16ET	
				Transistor (sourcing)		0.076	--	CP1W-16ET1	
		--	32	Relay		0.049	0.131	CP1W-32ER	N, L, CE
				Transistor (sinking)		0.113	--	CP1W-32ET	
				Transistor (sourcing)		0.113	--	CP1W-32ET1	
	1/O Units	12	8	Relay		0.103	0.044	CP1W-20EDR1	U, C, N, L, CE
				Transistor (sinking)		0.130	--	CP1W-20EDT	
				Transistor (sourcing)		0.130	--	CP1W-20EDT1	
		24	16	Relay		0.080	0.090	CP1W-40EDR	N, L, CE
				Transistor (sinking)		0.160	--	CP1W-40EDT	
				Transistor (sourcing)		0.160	--	CP1W-40EDT1	
CP1W Expansion Units	Analog Input Unit	4 CH	--	Input range: 0 to $5 \mathrm{~V}, 1$ to 5 V , 0 to $10 \mathrm{~V}, \pm 10 \mathrm{~V}$, 0 to 20 mA , or 4 to 20 mA .	Resolution: 1/6000	0.100	0.090	CP1W-AD041	$\begin{aligned} & \text { UC1, N, L, } \\ & \text { CE } \end{aligned}$
					Resolution: $1 / 12000$	0.100	0.050	CP1W-AD042	UC1, N, CE
	Analog Output Unit	--	2 CH	Output range: 1 to 5 V , 0 to $10 \mathrm{~V}, \pm 10 \mathrm{~V}$, 0 to 20 mA , or 4 to 20 mA .	$\begin{aligned} & \text { Resolution: } \\ & 1 / 6000 \end{aligned}$	0.040	0.095	CP1W-DA021	$\begin{aligned} & \text { UC1, N, L, } \\ & \text { CE } \end{aligned}$
		--	4 CH		Resolution: 1/6000	0.080	0.124	CP1W-DA041	
					Resolution: $1 / 12000$	0.070	0.160	CP1W-DA042	UC1, N, CE
	Analog I/O Unit	4CH	4CH	Input range: 0 to $5 \mathrm{~V}, 1$ to 5 V , 0 to $10 \mathrm{~V}, \pm 10 \mathrm{~V}$, 0 to 20 mA , or 4 to 20 mA . Output range: 1 to $5 \mathrm{~V}, 0$ to $10 \mathrm{~V}, \pm 10 \mathrm{~V}$, 0 to 20 mA , or 4 to 20 mA .	Resolution: 1/12000	0.120	0.170	CP1W-MAD44	UC1, N, CE
		4 CH	2 CH		Resolution: 1/12000	0.120	0.120	CP1W-MAD42	
		2 CH	1CH		$\begin{aligned} & \text { Resolution: } \\ & 1 / 6000 \end{aligned}$	0.083	0.110	CP1W-MAD11	$\begin{aligned} & \text { UC1, N, L, } \\ & \text { CE } \end{aligned}$
	Temperature Sensor Unit	2CH	--	Sensor type: Thermocouple (J or K)		0.040	0.059	CP1W-TS001	$\begin{aligned} & \text { UC1, N, L, } \\ & \text { CE } \end{aligned}$
		4 CH	--	Sensor type: Thermocouple (J or K)		0.040	0.059	CP1W-TS002	
		2 CH	--	Sensor type: Platinum resistancethermometer(Pt100 or JPt100)		0.054	0.073	CP1W-TS101	
		4 CH	--	Sensor type: Platinum resistance thermometer (Pt100 or JPt100)		0.054	0.073	CP1W-TS102	
		4 CH	--	Sensor type: Thermocouple (J or K) 2channels can be used as analog input. Input range: 1 to $5 \mathrm{~V}, 0$ to 10 V, 4-20 mA	Resolution: 1/12000	0.070	0.030	CP1W-TS003	UC1, N, CE
		12CH	--	Sensor type: Thermocouple (J or K)		0.080	0.050	CP1W-TS004	
	CompoBus/S I/O Link Unit	8	8	CompoBus/S slave		0.029	--	CP1W-SRT21	$\begin{aligned} & \text { UC1, N, L, } \\ & \text { CE } \end{aligned}$

I/O Connecting Cable

Product name	Specifications	Model	
I/O Connecting Cable	80 cm (for CP1W Expansion I/O Units and Expansion Units) Only one I/O Connecting Cable can be used in each PLC.	CP1W-CN811	UC1, N, L, CE

Note: An I/O Connecting Cable (approx. 6 cm) for horizontal connection is provided with CP1W Expansion I/O Units and Expansion Units.

CP1E-E $\square \square(S) D \square-\square$ CP1E-N $\square \square(S \square)$ D $\square-\square /$ NA20D $\square-\square$

DIN Track Accessories

Name	Specifications	Model	Standards
DIN Track	Length: 0.5 m ; Height: 7.3 mm	PFP-50N	
	Length: 1 m ; Height: 7.3 mm	PFP-100N	
	Length: 1 m ; Height: 16 mm	PFP-100N2	
End Plate	A stopper to secure the Units on the DIN Track.	PFP-M	

Programming Devices

Software

Product name	Specifications			Model	Standards
		Number of licenses	Media		
FA Integrated Tool Package CX-One Lite Ver.4.	CX-One Lite is a subset of the complete CX-One package that provides only the Support Software required for micro PLC applications. CX-One Lite runs on the following OS. OS: Windows XP (Service Pack 3 or higher, 32-bit version) / Windows Vista (32-bit/64-bit version) / Windows 7 (32-bit/64-bit version) / Windows 8 (32-bit/64-bit version) / Windows 8.1 (32-bit/64-bit version) CX-One Lite Ver. 4. \square includes Micro PLC Edition CX-Programmer Ver.9. \square.	1 license	CD	CXONE-LT01C-V4	--
FA Integrated Tool Package CX-One Package Ver. $4 . \square$	CX-One is a comprehensive software package that integrates Support Software for OMRON PLCs and components. CX-One runs on the following OS. OS: Windows XP (Service Pack 3 or higher, 32-bit version) / Windows Vista (32-bit/64-bit version) / Windows 7 (32-bit/64-bit version) / Windows 8 (32-bit/64-bit version) / Windows 8.1 (32-bit/64-bit version) CX-One Ver. $4 . \square$ includes CX-Programmer Ver. 9. \square.	1 license *	DVD	CXONE-AL01D-V4	--

Note: 1. The E20/30/40(S), N20/N30/N40(S) CPU Units are supported by CX-Programmer version 8.2 or higher.
The E10, E14, N14, N60, and NA20 CPU Units are supported by CX-Programmer version 9.03 or higher. When Micro PLC Edition CXProgrammer is used, you need version 9.03 or higher.
The E60S CPU Units are supported by CX-Programmer version 9.42 or higher. When Micro PLC Edition CX-Programmer is used, you need version 9.42 or higher.
2. The CX-One and CX-One Lite cannot be simultaneously installed on the same computer.

* Multi licenses are available for the CX-One (3, 10, 30 or 50 licenses).

The following tables lists the Support Software that can be installed from CX-One

Support Software in CX-One		CX-One Lite Ver.4. \square	CX-One Ver.4. \square	Support Software in CX-One	CX-One Lite Ver.4.	CX-One Ver.4. \square	
Micro PLC Edition CX-Programmer	Ver.9. \square	Yes	No	CX-Drive	Ver.1. \square	Yes	Yes
CX-Programmer	Ver.9. \square	No	Yes	CX-Process Tool	Ver.5. \square	No	Yes
CX-Integrator	Ver.2. \square	Yes	Yes	Faceplate Auto-Builder for NS	Ver.3. \square	No	Yes
Switch Box Utility	Ver.1. \square	Yes	Yes	CX-Designer	Ver.3. \square	Yes	Yes
CX-Protocol	Ver.1. \square	No	Yes	NV-Designer	Ver.1. \square	Yes	Yes
CX-Simulator	Ver.1. \square	Yes	Yes	CX-Thermo	Ver.4. \square	Yes	Yes
CX-Position	Ver.2. \square	No	Yes	CX-ConfiguratorFDT	Ver.1. \square	Yes	Yes
CX-Motion-NCF	Ver.1. \square	No	Yes	CX-FLnet	Ver.1. \square	No	Yes
CX-Motion-MCH	Ver.2. \square	No	Yes	Network Configurator	Ver.3. \square	Yes	Yes
CX-Motion	Ver.2. \square	No	Yes	CX-Server	Ver.4. \square	Yes	Yes

Note: For details, refer to the CX-One Catalog (Cat. No. R134).

Unit Versions

Units	Model numbers	Unit version
CP1E CPU Units	CP1E-E $\square \square$ SDR-A	
	CP1E-N $\square \square$ S $\square \square-\square$	Unit version 1. \square
	CP1E- $\square \square \square-\square$	
	CP1E-N $\square \square \square \square-\square$	
	CP1E-NA $\square \square D \square-\square$	

Unit Versions and Programming Devices

The following tables show the relationship between unit versions and CX-Programmer versions.

CPU Unit	Functions	Required Programming Device *1						
		CX-Programmer			Micro PLC Edition CX-Programmer			CX- Programmer for CP1E Ver.1.0
		Ver.8.2 or higher	Ver.9.03 or higher	Ver. 9.42 or higher	Ver.8.2 or higher	Ver.9.03 or higher	Ver.9.42 or higher	
CP1E-E20/30/40(S)D \square-A CP1E-N20/30/40(S \square)D \square -	Unit version 1 \square functions	$\begin{aligned} & \text { Yes } \\ & * 3 \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & * 2 \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & * 2 \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & * 3 \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & * 2 \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & * 2 \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & * 2 \end{aligned}$
$\begin{aligned} & \text { CP1E-E10D } \square-\square \\ & \text { CP1E- } \square 14(\mathrm{~S}) \mathrm{D} \square-\square \\ & \text { CP1E-N60(S } \square) \mathrm{D} \square-\square \\ & \text { CP1E-NA20D } \square-\square \end{aligned}$	Unit version 1. \square functions	No	$\begin{aligned} & \text { Yes } \\ & \text { *2 } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { *2 } \end{aligned}$	No	$\begin{aligned} & \text { Yes } \\ & \text { *2 } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { *2 } \end{aligned}$	No
CP1E-E60SDR-A	Unit version 1. \square functions	No	No	$\begin{aligned} & \text { Yes } \\ & * 2 \end{aligned}$	No	No	$\begin{aligned} & \text { Yes } \\ & * 2 \end{aligned}$	No

Note: 1. To update the CX-Programmer, the CX-One version 3/version 4 auto-update must be installed.
2. Use the CX-Programmer version 9.12 or higher, when the CP1W-CIF41 is applied.

* 1 A Programming Console cannot be used.
* 2 Supports Smart Input function.
* 3 Does not support Smart Input function.

CP1E-E $\square \square$ (S)D $\square-\square$ CP1E-N $\square \square$ (S \square)D $\square-\square /$ NA20D $\square-\square$

General Specifications

Type		AC power supply models	DC power supply models
Model		$\begin{gathered} \text { CP1E- } \square \square \square S \square D \square-A \\ \text { CP1E- } \square \square D \square-A \end{gathered}$	$\begin{gathered} \text { CP1E- } \square \square \square \text { S } \square D \square-D \\ \text { CP1E- } \square \square \square \square-D \end{gathered}$
Enclosure		Mounted in a panel	
Dimensions ($\mathrm{H} \times \mathrm{D} \times \mathrm{W}$)		E/N/NADロ-type CPU Unit with 10 I/O points (CP1E-E10D $\square-\square$): $90 \mathrm{~mm} * 1 \times 85 \mathrm{~mm} * 2 \times 66 \mathrm{~mm}$ CPU Unit with 14 or $20 \mathrm{I} / \mathrm{O}$ points (CP1E- $\square 14 \mathrm{D} \square-\square / \square 20 \mathrm{D} \square-\square$): $90 \mathrm{~mm} * 1 \times 85 \mathrm{~mm} * 2 \times 86 \mathrm{~mm}$ CPU Unit with 30 I/O points (CP1E- $\square 30 \mathrm{D} \square-\square$): $90 \mathrm{~mm} * 1 \times 85 \mathrm{~mm} * 2 \times 130 \mathrm{~mm}$ CPU Unit with 40 I/O points (CP1E- $\square 40 \mathrm{D} \square-\square$): $90 \mathrm{~mm} * 1 \times 85 \mathrm{~mm} * 2 \times 150 \mathrm{~mm}$ CPU Unit with 60 I/O points (CP1E-N60DD-D): $90 \mathrm{~mm} * 1 \times 85 \mathrm{~mm} * 2 \times 195 \mathrm{~mm}$ CPU Unit with 20 I/O points and built-in analog (CP1E-NA20D $\square-\square$): $90 \mathrm{~mm} * 1 \times 85 \mathrm{~mm} * 2 \times 130 \mathrm{~mm}$ E/N/ $\square \square S(1)$-type CPU Unit with 14 or 20 I/O points (CP1E- $\square 14$ SD $\square-\square / \square 20 S D \square-\square$): $90 \mathrm{~mm} * 1 \times 79 \mathrm{~mm} * 2 \times 86 \mathrm{~mm}$ CPU Unit with 30 I/O points (CP1E- $\square 30$ S(1)DD- \square): $90 \mathrm{~mm} * 1 \times 79 \mathrm{~mm} * 2 \times 130 \mathrm{~mm}$ CPU Unit with 40 I/O points (CP1E- $\square 40 \mathrm{~S}(1) \mathrm{D} \square-\square$): $90 \mathrm{~mm} * 1 \times 79 \mathrm{~mm} * 2 \times 150 \mathrm{~mm}$ CPU Unit with 60 I/O points (CP1E- $\square 60 \mathrm{~S}(1) \mathrm{DD}-\square)$) $90 \mathrm{~mm} * 1 \times 79 \mathrm{~mm} * 2 \times 195 \mathrm{~mm}$	
Weight		CPU Unit with 10 I/O points (CP1E-E10DD-D): 300 g max. CPU Unit with 14 I/O points (CP1E- $\square 14(\mathrm{~S}) \mathrm{D} \square-\mathrm{D}): 360 \mathrm{~g}$ max. CPU Unit with 20 I/O points (CP1E-प20(S)D $\square-\square$): 370 g max. CPU Unit with 30 I/O points (CP1E- $\square 30(S \square) D \square-\square$): 600g max. CPU Unit with 40 I/O points (CP1E- $\square 40$ (SD)D D- \square): 660 g max. CPU Unit with 60 I/O points (CP1E- $\square 60$ (S \square)D $\square-\square$): 850 g max. CPU Unit with 20 I/O points and built-in analog (CP1E-NA20DD-D): 680g max.	
Electrical specifications	Supply voltage	100 to 240 VAC $50 / 60 \mathrm{~Hz}$	24 VDC
	Operating voltage range	85 to 264 VAC	20.4 to 26.4 VDC
	Power consumption	15 VA/100 VAC max. $25 \mathrm{VA} / 240$ VAC max. (CP1E-E10D $\square-\mathrm{A} / \square 14(\mathrm{~S}) \mathrm{D} \square-\mathrm{A} / \square 20(\mathrm{~S}) \mathrm{D} \square-\mathrm{A})$	9 W max. (CP1E-E10Dロ-D) 13 W max. (CP1E-N14D $\square-D / N 20 D \square-D)$
		```50 VA/100 VAC max. 70 VA/240 VAC max. (CP1E-NA20D\square-A/\square30(S\square)D\square-A/\square40(S\square)D\square-A/ N60(S\square)D\square-A)```	20 W max.   (CP1E-NA20D $\square$-D/N30(S $\square$ )D $\square-D / N 40(S \square) D \square-D /$ N60(S $\square$ )D $\square$-D) $* 4$
	Inrush current	120 VAC, 20 A for 8 ms max. for cold start at room temperature   240 VAC, 40 A for 8 ms max. for cold start at room temperature	$24 \mathrm{VDC}, 30 \mathrm{~A}$ for 20 ms max. for cold start at room temperature
	External power supply *3	Not provided.   (CP1E-E10D $\square-\mathrm{A} / \square 14(\mathrm{~S}) \mathrm{D} \square-\mathrm{A} / \square 20(\mathrm{~S}) \mathrm{D} \square-\mathrm{A})$   24 VDC, 300 mA   (CP1E-NA20D $\square$-A/ $\square 30 \mathrm{D} \square-\mathrm{A} / \square 40 \mathrm{D} \square$-A/ $\square 60 \mathrm{D} \square$-A/   $\square 30$ SDR-A/ $\square 40$ SDR-A/ $\square 60$ SDR-A)	Not provided
	Insulation resistance	$20 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC ) between the external AC terminals and GR terminals	Except between DC primary current and DC secondary current
	Dielectric strength	2,300 VAC $50 / 60 \mathrm{~Hz}$ for 1 min between AC external and GR terminals Leakage current: 5 mA max.	Except between DC primary current and DC secondary current
	Power OFF detection time	10 ms min .	$2 \mathrm{~ms} \mathrm{min}$.
Application environment	Ambient operating temperature	0 to $55^{\circ} \mathrm{C}$	
	Ambient humidity	10\% to 90\%	
	Atmosphere	No corrosive gas.	
	Ambient storage temperature	-20 to $75{ }^{\circ} \mathrm{C}$ (excluding battery)	
	Altitude	2,000 m max.	
	Pollution degree	2 or less: Conforms to JIS B3502 and IEC 61131-2.	
	Noise resistance	2 kV on power supply line (Conforms to IEC61000-4-4.)	
	Overvoltage category	Category II: Conforms to JIS B3502 and IEC 61131-2.	
	EMC Immunity Level	Zone B	
	Vibration resistance	Conforms to JIS 60068-2-6.   5 to 8.4 Hz with $3.5-\mathrm{mm}$ amplitude, 8.4 to 150 Hz   Acceleration of $9.8 \mathrm{~m} / \mathrm{s}^{2}$ for 100 min in $\mathrm{X}, \mathrm{Y}$, and Z directions ( 10 sweeps of 10 min each $=100 \mathrm{~min}$ total)	
	Shock resistance	Conforms to JIS 60068-2-27.   $147 \mathrm{~m} / \mathrm{s}^{2}$, 3 times in $\mathrm{X}, \mathrm{Y}$, and Z directions	
Terminal block		Fixed (not removable)	
Terminal screw size		M3	
Applicable standards		Conforms to EC Directive	
Grounding method		Ground to $100 \Omega$ or less.	

* 1 Total of 110 mm with mounting brackets.
* 2 Excluding cables.
* 3 Use the external power supply to power input devices. Do not use it to drive output devices.
* 4 This is the rated value for the maximum system configuration. Use the following formula to calculate power consumption for CPU Units with DC power. Formula: DC power consumption $=(5 \mathrm{~V}$ current consumption $\times 5 \mathrm{~V} / 70 \%$ (internal power efficiency) +24 V current consumption) $\times 1.1$ (current fluctuation factor)
The above calculation results show that a DC power supply with a greater capacity is required.


## CP1E-E $\square \square(S) D \square-\square$ CP1E-N $\square \square(S \square) D \square-\square / N A 20 D \square-\square$

## Performance Specifications

Item			CP1E-E $\square$ पSD $\square-\square$ CP1E- $\square \square D-\square$	CP1E-N $\square \square$ S $\square D \square-\square$ CP1E-NDCDD-CP1E-NA $\square \square D \square-\square$
Program capacity			2 K steps (8 Kbytes) including the symbol table, comments, and program indices of the CX-Programmer	8 K steps ( 32 Kbytes ) including the symbol table, comments, and program indices of the CX-Programmer
Control method			Stored program method	
I/O control method			Cyclic scan with immediate refreshing	
Program language			Ladder diagram	
Instructions			Approximately 200	
Processing speed	Overhead processing time		0.4 ms	
	Instruction execution times		Basic instructions (LD): $1.19 \mu \mathrm{~s}$ min. Special instructions (MOV): $7.9 \mu \mathrm{~s}$ min.	
Number of CP1W-series Expansion Units connected			CP1E-E10D $\square-\square / \square 14(\mathrm{~S}) \mathrm{D} \square-\square / \square 20(\mathrm{~S}) \mathrm{D} \square-\square$ : NoneCP1E- $\square 30(\mathrm{~S} \square) \mathrm{D} \square-\square / \square 40(\mathrm{~S} \square) \mathrm{D} \square-\square / \square 60(\mathrm{~S} \square) \mathrm{D} \square-\square / \mathrm{NA} 20(\mathrm{~S} \square) \mathrm{D} \square-\square$ : 3 units	
Maximum number of I/O points			CP1E-E10D( $-\square: 10$CP1E- $\square 14($ S) D $\square-\square: 14$CP1E- $\square 2(S) D \square-\square: 20$CP1E- $-30(S \square) D \square-\square: 150$ ( 30 built in, $40 \times 3$ expansion)CP1E- $\square 40(S \square) D \square-\square: 160$ (40 built in, $40 \times 3$ expansion)CP1E- $600(S \square) D \square-\square: 180$ (60 built in, $40 \times 3$ expansion)CP1E-NA20D $\square-\square: 140$ (20 built in, $40 \times 3$ expansion)	
Built-in I/O				
Built-in input functions	High-speed counters	High-speed counter mode/ maximum frequency	```Incremental Pulse Inputs 10 kHz : 6 counters 5 counters (only for 10 I/O points) Up/Down Inputs 10 kHz : 2 counters Pulse + Direction Inputs 10 kHz : 2 counters Differential Phase Inputs (4x) 5 kHz : 2 counters```	Incremental Pulse Inputs   100 kHz : 2 counters, $10 \mathrm{kHz}: 4$ counters   Up/Down Inputs   100 kHz : 1 counters, 10 kHz : 1 counters   Pulse + Direction Inputs 100 kHz : 2 counters   Differential Phase Inputs (4x)   50 kHz : 1 counter, $5 \mathrm{kHz}: 1$ counter
		Counting mode	Linear mode Ring mode	
		Count value	32 bits	
		Counter reset modes	Phase Z and software reset (excluding increment pulse input) Software reset	
		Control method	Target Matching Range Comparison	
	Input interrupts		6 inputs (4 inputs only for 10 I/O points) Interrupt input pulse width: $50 \mu \mathrm{~s}$ min.	
	Quick-response Inputs		6 inputs (4 inputs only for 10 I/O points) Input pulse width: $50 \mu \mathrm{~s}$ min.	
	Normal input	Input constants	Delays can be set in the PLC Setup ( 0 to 32 ms , default: 8 ms ). Set values: $0,1,2,4,8,16$, or 32 ms	
Built-in output functions	Pulse outputs (Models with transistor outputs only)	Pulse output method and output frequency	Pulse output function not included	Pulse + Direction Mode   1 Hz to 100 kHz : 2 outputs
		Output mode		Continuous mode (for speed control) Independent mode (for position control)
		Number of output pulses		Relative coordinates: 00000000 to 7FFF FFFF hex (0 to 2147483647)   Absolute coordinates: 80000000 to 7FFF FFFF hex (-2147483647 to 2147483647)
		Acceleration/ deceleration curves		Trapezoidal acceleration and deceleration (Cannot perform S-curve acceleration and deceleration.)
		Changing SVs during instruction execution		Only target position can be changed.
		Origin searches		Included
	Pulse outputs (Models with transistor outputs only)	Frequency	PWM output function not included	2.0 to $6,553.5 \mathrm{~Hz}$ (in increments of 0.1 Hz ) with 1 output or 2 Hz to $32,000 \mathrm{~Hz}$ (in increments of 1 Hz ) with 1 output
		Duty factor		$0.0 \%$ to $100.0 \%$ (in increments of $0.1 \%$ ) Accuracy: $+1 \% /-0 \%$ at 2 Hz to $10,000 \mathrm{~Hz}$ and $+5 \% /-0 \%$ at $10,000 \mathrm{~Hz}$ to $32,000 \mathrm{kHz}$
		Output mode		Continuous Mode
Built-in analog		Analog input	Analog function not included	Setting range: 0 to 6,000 (2 channels only for NA-type)
		Analog output		Setting range: 0 to 6,000 (1 channels only for NA-type)
Analog adjusters			E/N/NA $\square \square$-type: 2 adjusters (Setting range: 0 to 255) $\mathrm{E} / \mathrm{N} \square \square \mathrm{S}(1)$-type: None	

## CP1E-E $\square \square(S) D \square-\square$ CP1E-N $\square \square(S \square) D \square-\square / N A 20 D \square-\square$

Item		CP1E-E $\square \square$ SD $\square-\square$ CP1E-ED $\square$ D- $\square$	CP1E-N $\square \square$ S $\square$ D $\square-\square$ CP1E-NロロD $\square-\square$ CP1E-NA $\square \square D \square-\square$
Communications	B-type Peripheral USB Port	Conforming to USB 2.0 B type connector	
	Transmission distance	5 m max.	
	Built-in RS-232C port	No built-in RS-232C port	Interface: Conforms to EIA RS-232C.
	Communications method		Half duplex
	- ${ }^{\text {a }}$ ( ${ }^{\text {synchronization }}$		Start-stop
	Baud rate		1.2, 2.4, 4.8, 9.6, 19.2, 38.4, 57.6, or 115.2 kbps
	Transmission distance		15 mmax .
	Supported protocol		- Host Link   - 1:N NT Link   - No-protocol mode   - Serial PLC Links (master, slave)   - Modbus-RTU Easy Master
	Built-in RS-485 port	No built-in RS-485 port	N30/40/60S1-type only Interface: Conforms to EIA RS-485. 2-wire sensors No isolation
	Communications method		Half duplex
	synchronization		Start-stop
			1.2, 2.4, 4.8, 9.6, 19.2, 38.4, 57.6, or 115.2 kbps
	Transmission distance		50 m max.
	Supported protocol		- Host Link   - 1:N NT Link   - No-protocol mode   - Serial PLC Links (master, slave)   - Modbus-RTU Easy Master
	Serial Option port	Option Board cannot be mounted.	N30/40/60 and NA20-type only 1 port
	Mountable Option Boards		- One RS-232C port: CP1W-CIF01   - One RS-422A/485 port (not isolated): CP1W-CIF11   - One RS-422A/485 port (isolated): CP1W-CIF12   - One Ethernet port: CP1W-CIF41
	Communications method		Depends on Option Board.
	synchronization		Depends on Option Board.
	Baud rate		1.2, 2.4, 4.8, 9.6, 19.2, 38.4, 57.6, or 115.2 kbps
	Compatible protocols		- Host Link   - 1:N NT Link   - No-protocol mode   - Serial PLC Links (master, slave)   - Modbus-RTU Easy Master
Number of tasks		17   - One cyclic execution task   - One scheduled interrupt task (always interrupt task 1 )   - Six input interrupt tasks (interrupt tasks 2 to 7 )   - Sixteen high-speed counter interrupt tasks (interrupt tasks 1 to 16)	
Maximum subroutine number		128	
Maximum jump number		128	
Scheduled interrupt tasks		1 interrupt task	
Clock		Clock function not included.   The time of error occurrence displays 01-01-01 01:01:01 Sunday	Included.   Accuracy (monthly deviation):   -4.5 min to -0.5 min at ambient temperature of $55^{\circ} \mathrm{C}$,   -2.0 min to +2.0 min at ambient temperature of $25^{\circ} \mathrm{C}$,   -2.5 min to +1.5 min at ambient temperature of $0^{\circ} \mathrm{C}$
Memory backup	Built-in EEPROM	Ladder programs and parameters are automatically saved to built-in EEPROM A section of the Data Memory Area can be saved to the built-in EEPROM.	
	Battery backup With CP1W-BAT01 Battery (Sold separately)	Battery cannot be mounted.	CP1W-BAT01 can be used.   Maximum battery service life: 5 years   Backup Time   Guaranteed value (ambient temperature: $55^{\circ} \mathrm{C}$ ):   13,000 hours (approx. 1.5 years)   Effective value (ambient temperature: $25^{\circ} \mathrm{C}$ ):   43,000 hours (approx. 5 years)
CIO Area	Input Bits	1,600 bits (100 words): ClO 0.00 to ClO 99.15 (CIO 00 to ClO 99 )	
	Output Bits	1,600 bits ( 100 words): CIO 100.00 to ClO 199.15 (CIO 100 to CIO 199)	
	Serial PLC Link Words	1,440 bits ( 90 words): ClO 200.00 to CIO 289.15 (words CIO 200 to CIO 289)	
Work Area (W)		1,600 bits (100 words): W0.00 to W99.15 (W0 to W99)	
Holding Area (H)		800 bits ( 50 words): H 0.00 to H 49.15 (H0 to H49) Bits in this area maintain their ON/OFF status when operating mode is changed.	
Auxiliary Area (A)		Read-only: 7,168 bits (448 words) A0 to A447   Read/write: 4,896 bits (306 words) in words A448 to A753	
Temporary Relay Area (TR) (TR Area)		16 bits: TR0 to TR15	
Timer Area (T)		256 timer numbers (T0 to T255 (separate from counters))	
Counter Area (C)		256 counter numbers (C0 to C255 (separate from timers))	


Item	CP1E-E $\square$ DSD- $\square$ CP1E-E $\square \square D-\square$	CP1E-N $\square \square$ S $\square D \square-\square$ CP1E-NDロDD- $\square$ CP1E-NA $\square$ D $\square-\square$
Data Memory Area (D)	2 Kwords: D0 to D2047 Of these, 1,500 words can be saved to the backup memory (built-in EEPROM) using settings in the Auxiliary Area.	8 Kwords: D0 to D8191 Of these, 7,000 words can be saved to the backup memory (built-in EEP-ROM) using settings in the Auxiliary Area
Operating modes	PROGRAM mode: Program execution is stopped.   Preparations can be executed prior to program execution in this mode.   MONITOR mode: Programs are executed.   Some operations, such as online editing, and changes to present values in I/O memory, are enabled in this mode.   RUN mode: Programs are executed.   This is the normal operating mode.	

## CP1E-E $\square \square(S) D \square-\square$ CP1E-N $\square \square(S \square) D \square-\square / N A 20 D \square-\square$

## Internal Memory in the CPU Units

## CPU Unit Memory Backup Structure

The internal memory in the CPU Unit consists of built-in RAM and built-in EEPROM. The built-in RAM is used as execution memory and the builtin EEPROM is used as backup memory.


## OPrecautions for Correct Use

Create a system and write the ladder programs so that problems will not occur in the system if the data in these area may be unstable.

- Data in areas such as the DM area (D), Holding Area (H), the Counter Present Values (C) and the status of Counter Completion Flags (C), which is retained by the battery, may be unstable when the power supply is turned off (Except for the DM area that are retained by the built-in EEPROM using the Auxilliary Area bit.)
- The error log, and clock data (N/NA $\square \square(\mathrm{S} \square)$-type CPU Unit only) in the Auxiliary Area will become unstable. Other words and bits in the Auxiliary Area will be cleared to their default values.
The built-in capacitor's backup time varies with the ambient temperature as shown in the following graph.



## I/O Memory Areas

Data can be read and written to I/O memory from the ladder programs. I/O memory consists of an area for I/O with external devices, user areas, and system areas.


## I/O Memory Areas

Name		No. of bits	Word addresses	Remarks
CIO Area	Input Bits	1,600 bits (100 words)	ClO 0 to CIO 99	For NA-type, CIO90, CIO91 is occupied by analog input 0, 1.
	Output Bits	1,600 bits (100 words)	CIO 100 to CIO 199	For NA-type, CIO190 is occupied by analog output 0 .
	Serial PLC Link Words	1,440 bits (90 words)	CIO 200 to CIO 289	--
Work Area (W)		1,600 bits (100 words)	W0 to W99	--
Holding Area (H)		800 bits (50 words)	H0 to H49	Data in this area is retained during power interruptions if a Battery Set (sold separately) is mounted to an N/NA $\square \square(\mathrm{S} \square)$ type CPU Unit.
Data Memory Area (D)	E $\square \square$ (S)-type CPU Unit	2K words	D0 to D2047	Data in specified words of the DM Area can be retained in the built-in EEPROM in the backup memory by using a bit in the Auxiliary Area.   Applicable words: D0 to D1499   (One word can be specified at a time.)
	N/NA $\square \square(\mathrm{S} \square)$ )-type CPU Unit	8 K words	D0 to D8191	Data in specified words of the DM Area can be retained in the built-in EEPROM in the backup memory by using a bit in the Auxiliary Area.   Applicable words: D0 to D6999   (One word can be specified at a time.)
Timer Area (T)	Present values	256	T0 to T255	---
	Timer Completion Flags	256		--
Counter Area (C)	Present values	256	C0 to C255	Data in this area is retained during power interruptions if a Battery Set (sold separately) is mounted to an N/NA $\square \square(\mathrm{S} \square)$ type CPU Unit.
	Counter Completion Flags	256		--
Auxiliary Area (A)	Read only	7168 bits (448 words)	A0 to A447	Data in this area is retained during power interruptions if a Battery Set (sold separately) is mounted to an N/NA $\square \square(\mathrm{S} \square)$ type CPU Unit.
	Read-write	4,896 bits (306 words)	A448 to A753	

## CP1E-E $\square \square$ (S)D $\square-\square$ CP1E-N $\square \square$ (S $\square$ )D $\square-\square / N A 20 D \square-\square$

## Backing Up and Restoring DM Area Data

The contents of the DM Area (D) will become unstable if the power supply is interrupted for longer than the backup time of the built-in capacitor ( 50 hours for an $\mathrm{E} \square \square$ (S)-type CPU Unit, 40 hours for an N/NA $\square \square$ (S $\square$ )-type CPU Unit without a Battery).
The contents of the specified words in the DM Area data can be backed up from RAM to the built-in EEPROM backup memory during operation by turning ON a bit in the Auxiliary Area. The number of DM Area words to back up is specified in the Number of CH of DM for backup Box in the PLC Setup. If the Restore D0- from backup memory Check Box is selected in the PLC Setup, the backup data will automatically be restored to RAM when the power is turned back ON so that data is not lost even if power is interrupted.


## Conditions for Executing Backup

Specified words starting from DO in the RAM can be saved to the built-in EEPROM backup memory by turning ON A751.15. (These words are called the DM backup words and the data is called the DM backup data.)
A751.15 (DM Backup Save Start Bit) can be used in any operating mode (RUN, MONITOR, or PROGRAM mode).

## Words That Can Be Backed Up

- E $\square \square(\mathrm{S})$-type CP1E CPU Units: D0 to D1499
- N/NA $\square \square(\mathrm{S} \square)$-type CP1E CPU Units: D0 to D6999


## Number of Words To Back Up

The number of words to back up starting from DO is set in the Number of CH of DM for backup Box in the Startup Data Read Area in the PLC Setup.

## Restoring DM Backup Data to RAM When Power Is Turned ON

The DM backup data can be restored to RAM when power is turned ON by selecting the Restore DO-from backup memory Check Box in the Startup Data Read Area in the PLC Setup.
The DM backup data will be read from the backup memory even if the Clear retained memory area (HR/DM/CNT) Check Box is selected in the PLC Setup.

```
-Startup Data Read
\Gamma Clear retained memory area(HR/DM/CNT)
The retained memory value becomes irregular when running without battery.
\(\Gamma\) Restore DO- from backup memory
Number of CH of DM for backup \(\quad 0 \quad \mathrm{CH}\)
E type: Max 1500CH D0-01499
N type: Max 7000CH D0-D6999
```


## Built-in Inputs

## Terminal Arrangements

Olnput Terminal Arrangement for CPU Unit with 10 I/O Points AC power supply models

ClO 0					
L1 L2	L2/N			03	05
NC	$\bigcirc$	00	02		4

DC power supply models

ClO 0					
+	CO				05
NC	$\bigcirc$	00	02	04	

Olnput Terminal Arrangement for CPU Unit with 14 I/O Points AC power supply models

CIO 0
L1 L2/N COM 01 03 05 07 NC NC
NC

DC power supply models


OInput Terminal Arrangement for CPU Unit with 20 I/O Points AC power supply models


DC power supply models


OInput Terminal Arrangement for CPU Unit with 30 I/O Points AC power supply models


DC power supply models


## CP1E-E $\square \square(S) D \square-\square$ CP1E-N $\square \square(S \square) D \square-\square / N A 20 D \square-\square$

## Olnput Terminal Arrangement for CPU Unit with 40 I/O Points

AC power supply models

CIO 0
L1 L2/N COM 01 03 05 07 09 11 01 03 05 07 09 11$~$

DC power supply models

$\mathrm{CIO} 0 \quad \mathrm{ClO} 1$																	
+	COM		01	03	05	07	09	11	01		03		05	07	09		11
NC	$\stackrel{\square}{\square}$	00	02	04	06	08			00	02		04	06		08	10	

## Olnput Terminal Arrangement for CPU Unit with 60 I/O Points

 AC power supply models

DC power supply models


OInput Terminal Arrangement for CPU Unit with 20 I/O Points and Built-in Analog AC power supply models

CIO 0										CIO 90			CIO 91	
L1 L2	2/N	COM	01	03			07	09		11	I INO	AG	1 IN	1
会	$\dagger$	) 00		2	04	06		8	10	VI	NO CO	M0 V	N1	COM1

DC power supply models


## Allocating Built-in Inputs to Functions

Input terminals are allocated functions by setting parameters in the PLC Setup. Set the PLC Setup so that each terminal is used for only one function.


## CP1E-E $\square \square$ (S)D $\square-\square$ CP1E-N $\square \square(S \square) D \square-\square / N A 20 D \square-\square$

## Built-in Outputs

## Terminal Arrangements

©Output Terminal Arrangement for CPU Unit with 10 I/O Points
AC power supply model
DC power supply model


CIO 100

## -Output Terminal Arrangement for CPU Unit

 with 14 I/O PointsAC power supply model
DC power supply model


CIO 100
-Output Terminal Arrangement for CPU Unit with 20 I/O Points
AC power supply model
DC power supply model

-Output Terminal Arrangement for CPU Unit with 30 I/O Points
AC power supply model
E/N30(S $\square$ )D $\square$-A


DC power supply model
N30D $\square$-D


N30S(1)DT-D


Note: V- and COM(V-) are internally connected.
N30S(1)DT1-D


Note: $\mathrm{V}+$ and $\mathrm{COM}(\mathrm{V}+)$ are internally connected.
-Output Terminal Arrangement for CPU Unit with 40 I/O Points AC power supply model E/N40(S■)DC-A


DC power supply model
N40D - -D

NC	00	01	02	03	04	06	00	01	03	04	06


| $N C$ | COM | COM | COM | COM | 05 | 07 | COM | 02 | COM | 05 | 07 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

CIO 100
CIO 101
N40S(1)DT-D


Note: V - and $\mathrm{COM}(\mathrm{V}-)$ are internally connected.
N40S(1)DT1-D


Note: $\mathrm{V}+$ and $\mathrm{COM}(\mathrm{V}+)$ are internally connected.
-Output Terminal Arrangement for CPU Unit with 60 I/O Points AC power supply model E/N60(S $\square$ )D $\square-A$


DC power supply model
N60D $\square$-D
 CIO 100

$$
\text { CIO } 101
$$

CIO 102
N60S(1)DT-D


Note: V- and $\mathrm{COM}(\mathrm{V}-)$ are internally connected.
N60S(1)DT1-D


[^0]
## CP1E-E $\square \square$ (S)D $\square-\square$ CP1E-N $\square \square$ (S $\square$ )D $\square-\square /$ NA20D $\square-\square$

OUtput Terminal Arrangement for CPU Unit with 20 I/O Points and Built-in Analog

AC power supply model


DC power supply model


## Allocating Built-in Output Terminals to Functions

Output terminals are allocated functions by setting parameters in the PLC Setup. Set the PLC Setup so that each terminal is used for only one function.


## I/O Specifications for CPU Units

## Input Specifications



* 1 The bits that can be used depend on the model of CPU Unit.
* 2 The response time is the delay caused by hardware. The delay set in the PLC Setup ( 0 to 32 ms , default: 8 ms ) for a normal input must be added to this value.

Pulse plus direction input mode,
Increment mode
Up/down input mode Differential phase mode

N/NA $\square \square(\mathrm{S} \square)$-type: 0.00/0.01

$E \square \square(S)$-type: 0.00 to 0.07 N/NA $\square \square(\mathrm{S} \square)$-type: 0.02 to 0.07



CP1E-E $\square \square(S) D \square-\square$ CP1E-N $\square \square(S \square) D \square-\square / N A 20 D \square-\square$

## Output Specifications

-Output Specifications for Relay Outputs

Item			Specification
Maximum switching capacity			$\begin{aligned} & 250 \mathrm{VAC} / 2 \mathrm{~A}(\cos \phi=1) \\ & 2 \mathrm{~A}, 24 \mathrm{VDC}(4 \mathrm{~A} / \text { common }) \end{aligned}$
Minimum switching capacity			$5 \mathrm{VDC}, 10 \mathrm{~mA}$
Service life of relay	Electrical	Resistive load	200,000 operations (24 VDC)
		Inductive load	70,000 operations ( $250 \mathrm{VAC}, \cos \phi=0.4$ )
	Mechanical		20,000,000 operations
ON delay			15 ms max.
OFF response time			15 ms max.
Circuit configuration			

## Estimating the Service Life of Relays

Under normal conditions, the service life of output contacts is as shown above. The service life of relays is as shown in the following diagram as a guideline


Relationship between Continuous Simultaneous ON Rate and Ambient Temperature
There are restrictions on the power supply voltage and output load current imposed by the ambient temperature. Make sure that the power supply voltage and output load current are within the following ranges.

CP1E-N20DR-D	CP1E-N30DR-D	CP1E-N40DR-D
CP1E- $\square$ 20 $\square$ DR-A/N20DT $\square-\square$	CP1E-NA20DR-A	CP1E-N60DR-D

Note: The above restrictions apply to the relay output load current from the CPU Unit even if Expansion I/O Units are not connected.
-Output Specifications for Transistor Outputs (Sinking or Sourcing)

## Normal Outputs

Item	Specification	
	$\begin{aligned} & \text { N } \square \square(S \square) \text {-type } \\ & 100.00,100.01 \end{aligned}$	```N\square\square(S\square)-type 100.02 to 102.07 *2 E10-type 100.00 to 100.03```
	N $\square \square \mathbf{S}(1)$-type $\quad$ N $\square \square$-type	
Maximum switching capacity	0.3 A/output, 0.9 A/common *1   4.5 to 30 VDC   CP1E-E10D $\square-\square$ : 0.9 A/Unit CP1E-N40(S $\square$ )D $\square-\square$ : $3.6 \mathrm{~A} /$ Unit CP1E-N14D $\square-\square: 1.5 \mathrm{~A} /$ Unit CP1E-N60(S $\square$ )D $\square-\square: 5.4 \mathrm{~A} /$ Unit CP1E-N20D $\square-\square: 1.8$ A/Unit CP1E-NA20D $\square-\square: 1.8$ A/Unit CP1E-N30(S $\square$ )D $\square-\square$ : 2.7 A/Unit	
Minimum switching capacity	1 mA 4.5 to 30 VDC	
Leakage current	0.1 mA max.	
Residual voltage	0.6 V max.	1.5 V max.
ON response time	0.1 ms max.	0.1 ms max.
OFF response time	0.1 ms max.	1 ms max.
Fuse	Not provided.	
External Power Supply	20.4 to 26.4 V VDC   30mA max. None	None
Circuit configuration	N $\square \square$ ( 1 )-type   sinking   sourcing	sinking   sourcing
	N/NA $\square \square$-type sinking   sourcing	

Note: Do not connect a load to an output terminal or apply a voltage in excess of the maximum switching capacity.

* 1 Also do not exceed 0.9 A for the total for CIO 100.00 to CIO 100.03 . ( CIO 100.00 to CIO 100.03 is different common.) * 2 The bits that can be used depend on the model of CPU Unit.

Pulse Outputs (CIO 100.00 and CIO 100.01)

Item	Specification	
Maximum switching capacity	$100 \mathrm{~mA} / 4.5$ to 26.4 VDC	
Minimum switching capacity	$7 \mathrm{~mA} / 4.5$ to 26.4 VDC	
Maximum output frequency	100 kHz	
	OFF 90\%	
Output waveform	ON $10 \%$	

$\overline{\text { Note: 1. The load for the above values is assumed to be the resistance load, and does not take into account the impedance for the connecting }}$ cable to the load.
2. Due to distortions in pulse waveforms resulting from connecting cable impedance, the pulse widths in actual operation may be smaller than the values shown above.
3. The OFF and ON refer to the output transistor. The output transistor is ON at level "L".

## CP1E-E $\square \square(S) D \square-\square$ CP1E-N $\square \square(S \square) D \square-\square / N A 20 D \square-\square$

PWM Output (CIO 100.01)

Item	Specification
Maximum switching capacity	$30 \mathrm{~mA} / 4.5$ to 26.4 VDC
Maximum output frequency	32 kHz
PWM output accuracy	For ON duty $+1 \%, .0 \%: 10 \mathrm{kHz}$ output For ON duty $+5 \%, .0 \%$ : 0 to 32 kHz output
Output waveform	

Note: The OFF and ON refer to the output transistor. The output transistor is ON at level "L".

## Built-in Analog I/O (NA-type CPU Units)

## -Analog Input Specifications

Item		Voltage input	Current input
Number of inputs		2 inputs (Allocated 2 words: CIO 90 to CIO 91.$)$	
Input signal range		0 to $5 \mathrm{~V}, 1$ to $5 \mathrm{~V}, 0$ to 10 V , or -10 to 10 V	0 to 20 mA or 4 to 20 mA
Max. rated input		$\pm 15 \mathrm{~V}$	$\pm 30 \mathrm{~mA}$
External input impedance		$1 \mathrm{M} \Omega$ min.	Approx. $250 \Omega$
Resolution		1/6000	
Overall accuracy	At $25^{\circ} \mathrm{C}$	$\pm 0.3 \%$ full scale	$\pm 0.4 \%$ full scale
	0 to $55^{\circ} \mathrm{C}$	$\pm 0.6 \%$ full scale	$\pm 0.8 \%$ full scale
A/D conversion data	-10 to +10 V	F448 to 0BB8 hex Full Scale	
	Other ranges	0000 to 1770 hex Full Scale	
Averaging function		Supported (Set for individual inputs in the PLC Setup.)	
Open-circuit detection function		Supported (Value when disconnected: 8000 hex)	

-Analog Output Specifications

Item	Voltage output	Current output	
Number of outputs	1 output (Allocated 1 word: CIO 190.)		
Output signal range	0 to $5 \mathrm{~V}, 1$ to $5 \mathrm{~V}, 0$ to 10 V , or -10 to 10 V	0 to 20 mA or 4 to 20 mA	
Allowable external output load resistance	$1 \mathrm{k} \Omega \mathrm{min}$.	$600 \Omega \mathrm{max}$.	
External input impedance	$0.5 \Omega \mathrm{max}$.	---	
Resolution	$1 / 6000$		
Overall accuracy	At $25^{\circ} \mathrm{C}$	$\pm 0.4 \%$ full scale $*$	
	0 to $55^{\circ} \mathrm{C}$	$\pm 0.8 \%$ full scale $*$	
D/A conversion data	-10 to +10 V	F448 to 0BB8 hex Full Scale	
	Other ranges	0000 to 1770 hex Full Scale	

* In 0 to 20 mA mode, accuracy cannot be ensured at 0.2 mA or less.
-Shared I/O Specifications

Item	Specification
Conversion time	$2 \mathrm{~ms} /$ point (6 ms total for 2 analog inputs and 1 analog output.)
Isolation method	Photocoupler isolation between analog I/O terminals and internal circuits.   No isolation between analog I/O signals.

# CP1E-E $\square \square(S) D \square-\square$ CP1E-N $\square \square(S \square) D \square-\square / N A 20 D \square-\square$ 

## Specifications of Expansion I/O Units and Expansion Units

## Expandable CPU Units

- Expansion I/O Units and Expansion Units cannot be connected to E10/14/20(S) or N14/20 CPU Units.
- A total of up to three Expansion I/O Units and Expansion Units can be connected to an E30/40/60(S), N30/40/60(S $\square$ ), NA20 CPU Unit.
-CP1E E10/14/20(S) or N14/20CPU Unit


CP-series Expansion Units and Expansion I/O Units cannot be connected.
-CP1E E30/40(S), N30/40/60(S $\square$ ) or NA20 CPU Unit


## Connection Methods

Connection cables for the Expansion I/O Units and Expansion Units are used to connect the Units. The length can be extended by using a CP1WCN811 I/O Connection Cable (length: 800 m ).

## Maximum Number of I/O Points for an Expanded System

CPU Unit	Built-in I/O on CPU Unit			Built-in Analog		Total number of Expansion I/O Units and Expansion Units that can be connected	Number of inputs: $\mathbf{2 4}$   Number of outputs: 16   Total number of I/O points when three CP1W-40ED $\square$ Expansion I/O Units are connected		
	Total	Number of inputs	Number of outputs	AD	DA		Total	Number of inputs	Number of outputs
CP1E-E10D $\square$ - $\square$	10	6	4	None	None	Not possible.	10	6	4
CP1E- $\square 14 \square \mathrm{D} \square-\square$	14	8	6				14	8	6
CP1E- $\square 20 \square$ D $\square-\square$	20	12	8				20	12	8
CP1E- $\square 30 \square \mathrm{D} \square-\square$	30	18	12			3 Units maximum	150	90	60
CP1E- $\square 40 \square \mathrm{D} \square-\square$	40	24	16				160	96	64
CP1E- $\square 60 \square \mathrm{D} \square-\square$	60	36	24				180	108	72
CP1E-NA20D $\square-\square$	20	12	8	2	1		140	84	56

## Restrictions on External Power Supply Capacity

The following restrictions apply when using the CPU Unit's external power supply.

## -AC-power-supply E30/40(S), N30/40/60(S $\square$ ) or NA20 CPU Unit

The power supply capacity is restricted for AC-power-supplyE30/40/60(S), N30/40/60(S $\square$ ), NA20 CPU Units. It may not be possible to use the full 300 mA of the external power supply, though a CPU Unit can connect any CP-series Expansion I/O Unit or Expansion Unit.
The entire 300 mA from the external power supply can be used if Expansion Units and Expansion I/O Units are not connected.
Refer to the CP1E CPU Unit Hardware Manual (Cat. No. W479) for details.
-AC-power-supply or DC-power-supply E10/14/20(S), N14/20(S) CPU Unit
There is no external power supply on AC-power-supply or DC-power-supply E10/14/20, N14/20 CPU Units.

## CP1E-E $\square \square$ (S)D $\square-\square$ CP1E-N $\square \square$ (S $\square$ )D $\square-\square /$ NA20D $\square-\square$

Specifications of Expansion I/O Units
-lnput Specifications (CP1W-40EDR/40EDT/40EDT1/20EDR1/20EDT/20EDT1/8ED)

Item	Specification
Input voltage	24 VDC +10\%/-15\%
Input impedance	$4.7 \mathrm{k} \Omega$
Input current	5 mA typical
ON voltage	14.4 VDC min.
OFF voltage	5.0 VDC max.
ON delay	1 ms max. *
OFF delay	$1 \mathrm{~ms} \mathrm{max}$. *
Circuit configuration	

Note: Do not apply voltage in excess of the rated voltage to the input terminal

* The response time is the hardware delay value. The delay set in the PLC Setup ( 0 to 32 ms , default: 8 ms ) must be added to this value. For the CP1W-40EDR/EDT/EDT1, a fixed value of 16 ms must be added.


## -Output Specifications

Relay Outputs (CP1W-40EDR/32ER/20EDR1/16ER/8ER)

Item			Specification
Max. switching capacity			2 A, 250 VAC $(\cos \phi=1)$,   $2 \mathrm{~A}, 24 \mathrm{VDC}$ (4 A/common)
Min. switching capacity			$5 \mathrm{VDC}, 10 \mathrm{~mA}$
Service life of relay (See note.)	ctrical	Resistive load	150,000 operations (24 VDC)
	Electrical	Inductive load	100,000 operations (240 VAC, $\cos \phi=0.4$ )
	Mechanical		20,000,000 operations
ON delay			15 ms max.
OFF delay			15 ms max.
Circuit configuration			

Note: 1. Estimating the Service Life of Relays
The service life of output contacts is as shown in the following diagram.

2. Restrictions of CP1W-16ER/32ER

Limit the output load current to satisfy the following derating curve.


Ambient temperature( $\left.{ }^{\circ} \mathrm{C}\right)$
3. CP1W-32ER's maximum number of simultaneously ON output points is 24 ( $75 \%$ ).

Relation between Number of ON Outputs and Ambient Temperature (CP1W-32ER)

4. According to the ambient temperature, there are restrictions on power supply voltage and output load current for the CPU Units connected with the Expansion I/O Units (CP1W-8ER/16ER/20EDR1/32ER/40EDR). Use the PLC in the range of the power supply voltage and output load current as show below.
The ambient temperature is restricted for the power-supply CPU Units (CP1E-N/NA $\square \square \square \square-\square$ ). Derating curve of the output load current for Expansion I/O Units (CP1W-8ER/16ER/20EDR1/32ER/40EDR).

-Transistor Outputs (Sinking or Sourcing)

Item	Specification				
	CP1W-40EDT CP1W-40EDT1	CP1W-32ET CP1W-32ET1	CP1W-20EDT CP1W-20EDT 1	CP1W-16ET CP1W-16ET1	CP1W-8ET CP1W-8ET1
Max. switching capacity *1	4.5 to 30 VDC 0.3 A/output   0.9 A/common   3.6 A/Unit	4.5 to 30 VDC 0.3 A/output   0.9 A/common 7.2 A/Unit	24 VDC +10\%/-5\%   0.3 A/output   0.9 A/common   1.8 A/Unit	4.5 to 30 VDC 0.3 A/output   0.9 A/common   3.6 A/Unit	4.5 to 30 VDC 0.3 A/output   0.9 A/common   1.8 A/Unit
Leakage current	0.1 mA max.				
Residual voltage	1.5 V max.				
ON delay	0.1 ms max.	0.1 ms max.	0.1 ms .	0.1 ms max.	0.1 ms max.
OFF delay	$\begin{aligned} & 1 \mathrm{~ms} \max . \\ & 24 \mathrm{VDC}+10 \% /-5 \% \\ & 5 \text { to } 300 \mathrm{~mA} \end{aligned}$	1 ms max. 24 VDC +10\%/-5\% 5 to 300 mA	1 ms max.   24 VDC +10\%/-5\%   5 to 300 mA	$\begin{aligned} & 1 \mathrm{~ms} \max . \\ & 24 \mathrm{VDC}+10 \% /-5 \% \\ & 5 \text { to } 300 \mathrm{~mA} \end{aligned}$	1 ms max.   24 VDC +10\%/-5\%   5 to 300 mA
Max. number of Simultaneously ON Points of Output	16 pts (100\%)	24 pts (75\%)	8 pts (100\%)	16 pts (100\%)	8 pts (100\%)
Fuse *2	1 fuse/common				
Circuit configuration					

*1 If the ambient temperature is maintained below $50^{\circ} \mathrm{C}$, up to $0.9 \mathrm{~A} /$ common can be used.

*2 The fuse cannot be replaced by the user. Replace the Unit if the fuse breaks due to an short-circuit or overcurrent.
*3 Do not connect a load to an output terminal or apply a voltage in excess of the maximum switching capacity.

# CP1E-E $\square \square(\mathrm{S}) \mathrm{D} \square-\square$ CP1E-N $\square \square(\mathrm{S} \square) \mathrm{D} \square-\square / \mathrm{NA} 20 \mathrm{D} \square-\square$ 

Specifications of Expansion Units
-Analog Input Units

Model	CP1W-AD041		CP1W-AD042	
Item	Voltage Input	Current Input	Voltage Input	Current Input
Number of inputs	4 inputs (4 words allocated)			
Input signal range	0 to 5 VDC, 1 to 5 VDC, 0 to 10 VDC , or -10 to 10 VDC	0 to 20 mA or 4 to 20 mA	0 to 5 VDC, 1 to 5 VDC, 0 to 10 VDC , or -10 to 10 VDC	0 to 20 mA or 4 to 20 mA
Max. rated input	$\pm 15 \mathrm{~V}$	$\pm 30 \mathrm{~mA}$	$\pm 15 \mathrm{~V}$	$\pm 30 \mathrm{~mA}$
External input impedance	$1 \mathrm{M} \Omega \mathrm{min}$.	Approx. $250 \Omega$	$1 \mathrm{M} \Omega \mathrm{min}$.	Approx. $250 \Omega$
Resolution	1/6000 (full scale)		1/12000 (full scale)	
Overall accuracy $\quad 25^{\circ} \mathrm{C}$	0.3\% full scale	0.4\% full scale	0.2\% full scale	0.3\% full scale
Overall accuracy 0 to $55^{\circ} \mathrm{C}$	0.6\% full scale	0.8\% full scale	0.5\% full scale	0.7\% full scale
A/D conversion data	16-bit binary (4-digit hexadecimal) Full scale for -10 to 10 V: F448 to OBB8 Hex Full scale for other ranges: 0000 to 1770 Hex		16-bit binary (4-digit hexadecimal)   Full scale for -10 to 10 V: E890 to 1770 Hex   Full scale for other ranges: 0000 to 2EEO Hex	
Averaging function	Supported (Set in output words $\mathrm{n}+1$ and $\mathrm{n}+2$.)			
Open-circuit detection function	Supported			
Conversion time	$2 \mathrm{~ms} /$ point (8 ms/all points)		$1 \mathrm{~ms} /$ point (4 ms/all points)	
Isolation method	Photocoupler isolation between analog I/O terminals and internal circuits. No isolation between analog I/O signals.			
Current consumption	5 VDC: 100 mA max.; 24 VDC: 90 mA max.		5 VDC: 100 mA max.; 24 VDC: 50 mA max.	

-Analog Output Units

Model			CP1W-DA021/CP1W-DA041		CP1W-DA042	
Item			Voltage Output	Current Output	Voltage Input	Current Input
Analog output section	Number of outputs		CP1W-DA021: 2 outputs (2 words allocated) CP1W-DA041: 4 outputs (4 words allocated)		4 outputs (4 words allocated)	
	Output signal range		1 to 5 VDC, 0 to 10 VDC, or -10 to 10 VDC	0 to 20 mA or 4 to 20 mA	1 to 5 VDC, 0 to 10 VDC, or -10 to 10 VDC	0 to 20 mA or 4 to 20 mA
	External output allowable load resistance		$2 \mathrm{k} \Omega \mathrm{min}$.	$350 \Omega$ max.	$2 \mathrm{k} \Omega \mathrm{min}$.	$350 \Omega$ max.
	External output impedance		$0.5 \Omega$ max.	---	$0.5 \Omega$ max.	---
	Resolution		1/6000 (full scale)		1/12000 (full scale)	
	Overall accuracy	$25^{\circ} \mathrm{C}$	0.4\% full scale		0.3\% full scale	
		0 to $55^{\circ} \mathrm{C}$	0.8\% full scale		0.7\% full scale	
	D/A conversion data		16-bit binary (4-digit hexadecimal) Full scale for -10 to 10 V: F448 to OBB8 Hex Full scale for other ranges: 0000 to 1770 Hex		16-bit binary (4-digit hexadecimal)   Full scale for -10 to 10 V: E890 to 1770 Hex   Full scale for other ranges: 0000 to 2EEO Hex	
Conversion time			CP1W-DA021: $2 \mathrm{~ms} /$ point ( $4 \mathrm{~ms} /$ all points) CP1W-DA041: $2 \mathrm{~ms} /$ point ( $8 \mathrm{~ms} /$ all points)		$1 \mathrm{~ms} /$ point ( $4 \mathrm{~ms} / \mathrm{all}$ points)	
Isolation method			Photocoupler isolation between analog I/O terminals and internal circuits. No isolation between analog I/O signals.			
Current consumption			CP1W-DA021: 5 VDC: 40 mA max.; 24 VDC: 95 mA max. CP1W-DA041: 5 VDC: 80 mA max.; 24 VDC: 124 mA max.		5 VDC: 70 mA max.; 24 VDC: 160 mA max .	

## CP1E-E $\square \square(S) D \square-\square$ CP1E-N $\square \square(S \square) D \square-\square / N A 20 D \square-\square$

## -Analog I/O Units

Model			CP1W-MAD42/CP1W-MAD44		CP1W-MAD11	
Item			Voltage I/O	Current I/O	Voltage I/O	Current I/O
Analog Input Section	Number of inputs		4 inputs (4 words allocated)		2 inputs (2 words allocated)	
	Input signal range		0 to 5 VDC, 1 to 5 VDC, 0 to 10 VDC, or -10 to 10 VDC	0 to 20 mA or 4 to 20 mA	0 to 5 VDC, 1 to 5 VDC,   0 to 10 VDC , or -10 to 10 VDC	0 to 20 mA or 4 to 20 mA
	Max. rated input		$\pm 15 \mathrm{~V}$	$\pm 30 \mathrm{~mA}$	$\pm 15 \mathrm{~V}$	$\pm 30 \mathrm{~mA}$
	External input impedance		$1 \mathrm{M} \Omega \mathrm{min}$.	Approx. $250 \Omega$	$1 \mathrm{M} \Omega \mathrm{min}$.	Approx. $250 \Omega$
	Resolution		1/12000 (full scale)		1/6000 (full scale)	
	Overall accuracy	$25^{\circ} \mathrm{C}$	0.2\% full scale	0.3\% full scale	0.3\% full scale	0.4\% full scale
		0 to $55^{\circ} \mathrm{C}$	0.5\% full scale	0.7\% full scale	0.6\% full scale	0.8\% full scale
	A/D conversion data		16-bit binary (4-digit hexadecimal) Full scale for -10 to 10 V : E890 to 1770 hex Full scale for other ranges: 0000 to 2EEO hex		16-bit binary (4-digit hexadecimal) Full scale for -10 to 10 V: F448 to 0BB8 hex Full scale for other ranges: 0000 to 1770 hex	
	Averaging function		Supported		Supported (Settable for individual inputs via DIP switch)	
	Open-circuit detection function		Supported			
Analog Output Section	Number of outputs		CP1W-MAD42: 2 outputs (2 words allocated) CP1W-MAD44: 4 outputs ( 4 words allocated)		1 output (1 word allocated)	
	Output signal range		1 to 5 VDC, 0 to 10 VDC, or -10 to 10 VDC	0 to 20 mA or 4 to 20 mA	1 to 5 VDC, 0 to 10 VDC, or -10 to 10 VDC ,	0 to 20 mA or 4 to 20 mA
	Allowable external output load resistance		$2 \mathrm{k} \Omega \mathrm{min}$.	$350 \Omega$ max.	$1 \mathrm{k} \Omega \mathrm{min}$.	$600 \Omega$ max.
	External output impedance		$0.5 \Omega$ max.	---	$0.5 \Omega$ max.	---
	Resolution		1/12000 (full scale)		1/6000 (full scale)	
	Overall accuracy	$25^{\circ} \mathrm{C}$	0.3\% full scale		0.4\% full scale	
		0 to $55^{\circ} \mathrm{C}$	0.7\% full scale		0.8\% full scale	
	Set data (D/A conversion)		16-bit binary (4-digit hexadecimal)   Full scale for -10 to 10 V : E890 to 1770 hex   Full scale for other ranges: 0000 to 2EEO hex		16-bit binary (4-digit hexadecimal)   Full scale for -10 to 10 V : F448 to OBB8 hex Full scale for other ranges: 0000 to 1770 hex	
Conversion time			CP1W-MAD42: $1 \mathrm{~ms} /$ point ( $6 \mathrm{~ms} /$ all points) CP1W-MAD44: $1 \mathrm{~ms} /$ point ( $8 \mathrm{~ms} /$ all points)		$2 \mathrm{~ms} /$ point ( $6 \mathrm{~ms} /$ all points)	
Isolation method			Photocoupler isolation between analog I/O terminals and internal circuits. No isolation between analog I/O signals.			
Current consumption			CP1W-MAD42: 5 VDC: 120 mA max., 24 VDC: 120 mA max. CP1W-MAD44: 5 VDC: 120 mA max., 24 VDC: 170 mA max.		5 VDC: 83 mA max., 24 VDC: 110 mA max.	

## -Temperature Sensors Units

Item	CP1W-TS001	CP1W-TS002	CP1W-TS101	CP1W-TS102
	Thermocouples		Platinum resistance thermometer	
Temperature sensors	Switchable between K and J, but same type must be used for all inputs.		Switchable between Pt100 and JPt100, but same type must be used for all inputs.	
Number of inputs	2	4	2	4
Allocated input words	2	4	2	4
Accuracy	(The larger of $\pm 0.5 \%$ of converted value or $\pm 2^{\circ} \mathrm{C}$ ) $\pm 1$ digit max. *		(The larger of $\pm 0.5 \%$ of converted value or $\pm 1^{\circ} \mathrm{C}$ ) $\pm 1$ digit max.	
Conversion time	250 ms for 2 or 4 input points			
Converted temperature data	16-bit binary data (4-digit hexadecimal)			
Isolation	Photocouplers between all temperature input signals			
Current consumption	5 VDC: 40 mA max., 24 VDC: 59 mA max.		5 VDC: 54 mA max., 24 VDC: 73 mA max.	

* Accuracy for a K-type sensor at $-100^{\circ} \mathrm{C}$ or less is $\pm 4^{\circ} \mathrm{C} \pm 1$ digit max.

The rotary switch is used to set the temperature range.

Setting		CP1W-TS001/TS002			CP1W-TS101/TS102		
		Input type	Range ( ${ }^{\circ} \mathrm{C}$ )	Range ( ${ }^{\text {F }}$ )	Input type	Range ( ${ }^{\circ} \mathrm{C}$ )	Range ( ${ }^{\circ} \mathrm{F}$ )
	0	K	-200 to 1,300	-300 to 2,300	Pt100	-200.0 to 650.0	-300.0 to 1,200.0
	1		0.0 to 500.0	0.0 to 900.0	JPt100	-200.0 to 650.0	-300.0 to 1,200.0
	2	J	-100 to 850	-100 to 1,500	---	Cannot be set.	
	3		0.0 to 400.0	0.0 to 750.0	---		
	4 to F	---	Cannot be set.		---		

## -Main Specifications

Item		CP1W-TS003
Temperature sensors		Thermocouples or analog input
		Switchable between K and J, but same type must be used for all inputs.
Number of inputs		Thermocouples inputs :4, Analog inputs :2 Two analog inputs can be shared with thermocouples inputs.
Accuracy at $25^{\circ} \mathrm{C}$	Thermocouple inputs	(The larger of $\pm 0.5 \%$ of converted value or $\pm 2^{\circ} \mathrm{C}$ ) $\pm 1$ digit max. $* 1$
	Analog voltage inputs	0.5\% full scale
	Analog inputs	0.6\% full scale
Accuracy at 0 to$55^{\circ} \mathrm{C}$	Thermocouple inputs	(The larger of $\pm 1 \%$ of converted value or $\pm 4^{\circ} \mathrm{C}$ ) $\pm 1$ digit max. $* 2$
	Analog voltage inputs	1.0 \% full scale
	Analog inputs	1.2 \% full scale
Input signal range	Thermocouple inputs	K: -200.0 to $1300.0^{\circ} \mathrm{C}$ or .300 .0 to $2300.0^{\circ} \mathrm{F}$ $\mathrm{J}:-100.0$ to $850.0^{\circ} \mathrm{C}$ or .100 .0 to $1500.0^{\circ} \mathrm{F}$
	Analog voltage inputs	0 to $10 \mathrm{~V} / 1$ to 5 V
	Analog inputs	4 to 20 mA
Resolution	Thermocouple inputs	$0.1{ }^{\circ} \mathrm{C}$ or $0.1^{\circ} \mathrm{F}$
	Analog inputs	1/12000 (full scale)
Max. rated input	Analog voltage inputs	$\pm 15 \mathrm{~V}$
	Analog inputs	$\pm 30 \mathrm{~mA}$
External input impedance	Analog voltage inputs	$1 \mathrm{M} \Omega \mathrm{min}$.
	Analog inputs	Approx. $250 \Omega$
Open-circuit detection function		Supported
Averaging function		Unsupported
Conversion time		250 ms for 4 input points
Converted temperature data		16-bit binary data (4-digit hexadecimal)
Converted AD data		16-bit binary data (4-digit hexadecimal)
Isolation		Photocouplers between any two input signals
Current consumption		5 VDC: 70 mA max., 24 VDC: 30 mA max.

* 1 Accuracy for a K-type sensor at $-100^{\circ} \mathrm{C}$ or less is $\pm 4^{\circ} \mathrm{C} \pm 1$ digit max.
$* 2$ Accuracy for a K-type sensor at $-100^{\circ} \mathrm{C}$ or less is $\pm 10^{\circ} \mathrm{C} \pm 1$ digit max.


## DIP Switch Settings

The DIP switch is used to set the input type (temperature or analog input), the input thermocouple type (K or J) and the temperature unit ( ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$ ). Note: Set the temperature range according to the type of temperature sensor connected to the Unit. Temperature data will not be converted correctly if the temperature range does not match the sensor.

SW		Setting		
	1	Thermocouple type of temperature sensor	ON	J
			OFF	K
	2	Temperature unit	ON	${ }^{\circ} \mathrm{F}$
			OFF	${ }^{\circ} \mathrm{C}$
	3	NC		
	4	Input type selection for the third input (Input 2)	ON	Analog input
			OFF	Thermocouple
	5	Input type selection for the fourth input (Input 3)	ON	Analog input
			OFF	Thermocouple
	6	Analog input signal range	ON	1 to $5 \mathrm{~V} / 4$ to 20 mA
			OFF	0 to 10 V


Temperature input					
Input type				Range ( ${ }^{\circ} \mathbf{C}$ )	Range ( ${ }^{\circ} \mathrm{F}$ )
K	-200.0 to 1300.0	-300 to 2300			
J	-100.0 to 850.0	-100.0 to 1500			

## CP1E-E $\square \square(S) D \square-\square$ CP1E-N $\square \square(S \square) D \square-\square / N A 20 D \square-\square$

## -Main Specifications

Item		CP1W-TS004
Temperature sensors		Thermocouples
		Switchable between K and J, but same type must be used for all inputs.
Number of inputs		12 (2 input words and 1 output word allocated)
Accuracy	$25^{\circ} \mathrm{C}$	(The larger of $\pm 0.5 \%$ of converted value or $\pm 2^{\circ} \mathrm{C}$ ) $\pm 1$ digit max. $* 1$
	0 to $55^{\circ} \mathrm{C}$	(The larger of $\pm 1 \%$ of converted value or $\pm 4^{\circ} \mathrm{C}$ ) $\pm 1$ digit max. $* 2$
Conversion time		500 ms for 12 input points
Converted temperature data		16-bit binary data (4-digit hexadecimal) 2-decimal-place mode is not supported
Isolation		Photocouplers between any two input signals
Current consumption		5 VDC: $80 \mathrm{~mA} \mathrm{max.}$,24 VDC: 50 mA max.

*1 Accuracy for a K-type sensor at $-100^{\circ} \mathrm{C}$ or less is $\pm 4^{\circ} \mathrm{C} \pm 1$ digit max.

* 2 Accuracy for a K-type sensor at $-100^{\circ} \mathrm{C}$ or less is $\pm 10^{\circ} \mathrm{C} \pm 1$ digit max.


## DIP Switch Settings

The DIP switch is used to set the temperature unit and to set the temperature input range.
Note: Set the temperature range according to the type of temperature sensor connected to the Unit. Temperature data will not be converted correctly if the temperature range does not match the sensor.


## -CompoBus/S I/O Link Unit

Model number	CP1W-SRT21
Master/slave	CompoBus/S Slave
Number of I/O points	8 input points, 8 output points
Number of words allocated in CPU   Unit I/O memory	1 input word, 1 output word
Node number setting	Set using the DIP switch   (Set before turning on the CPU Unit's power supply.)

## Analog Option Board

An analog option board can be added to the CP1E-N/NA $\square \square$.
Note: 1. Can be used for the CP1E-N/NA $\square \square$ version 1.2 or later.
2. Analog boards can not be used for $\mathrm{E} \square \square$-type and $\mathrm{N} \square \square \mathrm{S}(1)$-type.


Specifications of Analog Option Board
-CP1W-ADB21

Item	Specifications	
	Voltage Input	Current Input
Input signal range	0 to 10 VDC	0 to 20 mA
Max. rated input	0 to 15 VDC	0 to 30 mA
External input impedance	$200 \mathrm{k} \Omega \mathrm{min}$.	Approx. $250 \Omega$
Resolution	$1 / 4000$ (full scale)	$1 / 2000$ (full scale)
Overall   accuracy	$\mathbf{2 5}{ }^{\circ} \mathbf{C}$	$0.5 \%$ full scale
$\mathbf{0}$ to $\mathbf{5 5} \mathbf{5}^{\circ} \mathbf{C}$	$1.0 \%$ full scale	$1.6 \%$ full scale
A/D conversion data	0000 to 0 FAO Hex	0000 to 07DO Hex
Averaging function	None	
Isolation method	No isolation between analog I/O terminals and   internal circuits.	
Current consumption	5 VDC: 20 mA max.	

## -CP1W-DAB21V

Item	Specifications	
	Voltage Output	Current Output
Output signal range	0 to 10 VDC	---
External output allowable   load resistance	$2 \mathrm{k} \Omega$ min.	---
External output impedance	$0.5 \Omega$ max.	---
Resolution	$1 / 4000$ (full scale)	---
Overall   accuracy	$\mathbf{2 5}{ }^{\circ} \mathrm{C}$	$0.5 \%$ full scale
0 to $\mathbf{5 5}{ }^{\circ} \mathbf{C}$	$1.0 \%$ full scale	---
Set data (D/A conversion)	0000 to 0FA0 Hex	---
Isolation method	No isolation between analog I/O terminals and   internal circuits.	
Current consumption	5 VDC: 60 mA max.	

## -CP1W-MAB221

Item			Specifications	
			Voltage I/O	Current I/O
Analog Input Section	Input signal range		0 to 10 VDC	0 to 20 mA
	Max. rated input		0 to 15 VDC	0 to 30 mA
	External input impedance		$200 \mathrm{k} \Omega \mathrm{min}$.	Approx. $250 \Omega$
	Resolution		1/4000 (full scale)	1/2000 (full scale)
	Overall accuracy	$25^{\circ} \mathrm{C}$	0.5\% full scale	0.6\% full scale
		0 to $55^{\circ} \mathrm{C}$	1.0\% full scale	1.2\% full scale
	A/D conversion data		0000 to OFAO Hex	0000 to 07D0 Hex
	Averaging function		None	
Analog Output Section	Output signal range		0 to 10 VDC	---
	External output allowable load resistance		$2 \mathrm{k} \Omega \mathrm{min}$.	---
	External output impedance		$0.5 \Omega$ max.	---
	Resolution		1/4000 (full scale)	---
	Overall accuracy	$25^{\circ} \mathrm{C}$	0.5\% full scale	---
		0 to $55^{\circ} \mathrm{C}$	1.0\% full scale	---
	Set data (D/A conversion)		0000 to 0FA0 Hex	---
Isolation method			No isolation between analog I/O terminals and internal circuits.	
Current consumption			5 VDC: 80 mA max.	

CP1E-E $\square \square(\mathrm{S}) \mathrm{D} \square-\square$ CP1E-N $\square \square(\mathrm{S} \square) \mathrm{D} \square-\square / \mathrm{NA} 20 \mathrm{D} \square-\square$

## Analog Option Board Refresh Time

Analog Opiton Board	Cycle time (ms)		
	$\mathbf{1} \mathbf{~ m s}$	$\mathbf{1 0} \mathbf{~ m s}$	$\mathbf{2 0} \mathbf{~ m s}$
CP1W-ADB21	$40 \pm 30 \%$	$50 \pm 30 \%$	$80 \pm 30 \%$
CP1W-DAB21V	$30 \pm 40 \%$	$40 \pm 50 \%$	$70 \pm 40 \%$
CP1W-MAB221(AD)	$60 \pm 40 \%$	$80 \pm 60 \%$	$100 \pm 50 \%$
CP1W-MAB221(DA)	$40 \pm 80 \%$	$60 \pm 60 \%$	$90 \pm 50 \%$

## External Interfaces

The CP1E CPU Units provide the following external interfaces.
E14/20S CPU Units



E10/14/20 CPU Units


Note: Terminal Block (Fixed)

## E30/40 CPU Units



Note: Terminal Block (Fixed)


## N14/20 CPU Units



## N30/40/60 or NA20 CPU Units

N $\square \square$-type/NA-type


## CP1E-E $\square \square(\mathrm{S}) \mathrm{D} \square-\square$ CP1E-N $\square \square(\mathrm{S} \square) \mathrm{D} \square-\square / \mathrm{NA} 20 \mathrm{D} \square-\square$

## Serial Communications Port for N/NA $\square \square$ (S $\square$ )-type CPU Units

The Serial Communication Port can be used for a CP1E N/NA $\square \square(\mathrm{S} \square)$-type CPU Unit.

## N30/40/60S1 CPU Units

Built-in RS-232C, RS-485 ports.


## N30/40/60 or NA20 CPU Units

One built-in RS-232C port and one Option Board can be used.


Optional Serial Communication Board

Model number	Port	Maximum   transmission   distance	Connection method
CP1W-CIF01	One RS-232C port	15 m	Connector   (D-sub, 9 pin female)
CP1W-CIF11	One RS-422A/485 port   (not isolated)	50 m	Terminal block   (using ferrules)
CP1W-CIF12	One RS-422A/485 port   (isolated)	500 m	Terminal block   (using ferrules)
CP1W-CIF41	One Ethernet port	100 m	Connector   (RJ45, 8 pin modular)

Note: The Optional Serial Communication Board cannot be used for CP1E N/NA $\square \square S(1)$-type CPU Units and $E \square \square$-type CPU Units.

## N30/40/60S CPU Units

Built-in RS-232C port.


## N14/20 CPU Units

Built-in RS-232C ports.


[^1]
## Built-in RS-232C Port and CP1W-CIF01 RS-232C Option Board

-RS-232C Connector


Front Back
Communications Status Indicator


RS-232 Connector


CPU Unit Connector

Pin	Abbreviation for signal name		Signal name	Signal direction
		$N \square \square S(1)$-type Buit-in RS-232C port		
1	FG		Frame ground	--
2	SD (TXD)		Send data	Output
3	RD (RXD)		Receive data	Input
4	RS (RTS)		Request to send	Output
5	CS (CTS)		Clear to send	Input
6	5 V		Power supply	--
7	DR (DSR)	NC *	Data set ready	Input
8	ER (DTR)	NC*	Data terminal ready	Output
9	SG (0 V)		Signal ground	--
Connector hood	FG		Frame Ground	--

* Built-in RS-232C port of $\mathrm{N} \square \square \mathrm{S}(1)$-type does not support DR/ER. CJ1W-CIF11 cannot be used for the built-in RS-232C port of N $\square \square S(1)$-type.


## Built-in RS-232C Port (2-wire sensors) (N $\square \square$ S1-type only)

ORS-485 Terminal Block

©DIP Switch for Terminating Resistance Settings

Settings		
ON	ON (both ends)	Terminating resistance selection
OFF	OFF	Resistance: Approx. $220 \Omega$

## CP1W-CIF11/CIF12 RS-422A/485 Option Board



CP1W-CIF41 Ethernet Option Board version 2.0 or higher

Front


LED Indicators
Display the operating status of the Option Board.

Rear


CPU Unit connector

## -Specifications

Type		100/10Base-TX (Auto-MDIX)	
Support Software		CX-Programmer version 9.12 or higher	
Transfer	Media access method	CSMA/CD	
	Modulation method	Baseband	
	Transmission paths	Star form	
	Baud rate	$\begin{array}{\|l} \hline 100 \mathrm{Mbit} / \mathrm{s} \\ (100 \mathrm{Base}-\mathrm{TX}) \end{array}$	$10 \mathrm{Mbit} / \mathrm{s}$ (10Base-TX)
		- Half/full auto-negotiation for each port   - Link speed auto-sensing for each port	
	Transmission media	- Unshielded twisted-pair (UDP) cable Categories: $5,5 \mathrm{e}$   - Shielded twistedpair (STP) cable Categories: $100 \Omega$ at $5,5 \mathrm{e}$	- Unshielded twisted-pair (UDP) cable Categories: $3,4,5,5 e$   - Shielded twistedpair (STP) cable Categories: $100 \Omega$ at $3,4,5,5 e$
	Transmission Distance	100 m (distance between hub and node)	
	Number of cascade connections	No restrictions if switching hubs are used.	

-FINS Communications Service Specifications

Number of nodes	254	
Message Length	552 bytes max.	
Date Length	540 bytes max.   (except for FINS header 10 byte and Command   header 2 byte.)	
	8 k byte	FINS/TCP method
Protocol name	FINS/UDP method	TCP/IP
Protocol used	UDP/IP	TCI
	The selection of UDP/IP or TCP/IP is   made from the FINS/TCP Tab by the Web   browser function.	
	Only server (Cannot be used as a client)	
Number of connections	---	
Port number	9600 (default)   Can be changed.	9600 (default)   Can be changed.
Protection	Yes (Specification   of client IP   addresses when   unit is used as a   server)	

## Connecting to Support Software

## Operating Environment and System Configuration

The following system is required to operate the CX-Programmer. Make sure your system provides the following conditions and has the necessary components.

Item	Description
Supported computer	IBM PC/AT or equivalent
CD-ROM or DVD-ROM drive	One or more
Supported Operating Systems	Windows 2000 (Service Pack 4 or higher), XP, Vista, or 7   (except 64-bit edition)
CPU	Pentium II 333 MHz or faster
RAM	256 MB min. 512 MB or more recommended
Available hard disk space	600 MB min.
Display	$800 \times 600$ SVGA min.
PLC and connection port	USB port, RS-232C port, RS-422A/485 port or Ethernet port

## Connecting Methods

Using commercially available USB cable, connect the CX-Programmer to the peripheral USB port on the CPU Unit. Host link connection can be made with RS-232C port to connect the Programming Device (CX-Programmer).

CX-Programmer


## Connecting Cable

Use the following cable to connect the CP1E CPU Unit to the computer running the Support Software.
USB port

Port at Unit	Port at computer	Network type   (communications mode)	Model numbers	Length
Peripheral USB port   (Conforming to USB 2.0, B connector)	USB port	USB 2.0 (or 1.1)	Commercially available USB cable   (A connector - B connector)	Less than 5 m

## RS-232C Port for N/NA $\square \square$ (S $\square$ )-type CPU Units

Port at Unit	Port at computer	Communications mode	Connecting Cable		
			Model	Length	Remarks
RS-232C Port or CP1W-CIF01   (Add this to the option board slot.)	RS-232C port *	Host Link (SYSWAY)	XW2Z-200S-CV	2 m	With anti-static connectors
			XW2Z-500S-CV	5 m	With anti-static connectors
			XW2Z-200S-V	2 m	---
			XW2Z-500S-V	5 m	---

[^2]
## CP1E-E $\square \square$ (S)D $\square-\square$ CP1E-N $\square \square$ (S $\square$ )D $\square-\square /$ NA20D $\square-\square$

## Programming Instructions

## Sequence Input Instructions

Instruction	Mnemonic
LOAD	LD
LOAD NOT	LD NOT
AND	AND
AND NOT	AND NOT
OR	OR
OR NOT	OR NOT
AND LOAD	AND LD
OR LOAD	OR LD
NOT	NOT
CONDITION ON	UP
CONDITION OFF	DOWN

## Sequence Output Instructions

Instruction	Mnemonic
OUTPUT	OUT
OUTPUT NOT	OUT NOT
KEEP	KEEP
DIFFERENTIATE UP	DIFU
DIFFERENTIATE DOWN	DIFD
SET	SET
RESET	RSET
MULTIPLE BIT SET	SETA
MULTIPLE BIT RESET	RSTA
SINGLE BIT SET	SETB
SINGLE BIT RESET	RSTB

Sequence Output Instructions

Instruction	Mnemonic
END	END
NO OPERATION	NOP
INTERLOCK	IL
INTERLOCK CLEAR	ILC
MULTI-INTERLOCK	
DIFFERENTIATION HOLD	MILH
MULTI-INTERLOCK	MILR
DIFFERENTIATION RELEASE	MILC
MULTI-INTERLOCK CLEAR	JMP
JUMP	JME
JUMP END	CJP
CONDITIONAL JUMP	FOR
FOR LOOP	BREAK
BREAK LOOP	NEXT
NEXT LOOP	

## Timer and Counter Instructions

Instruction	Mnemonic
TIMER	TIM
	TIMX
COUNTER	CNT
	CNTX
HIGH-SPEED TIMER	TIMH
	TIMHX
ONE-MS TIMER	TMHH
	TMHHX
ACCUMULATIVE TIMER	TTIM
	TTIMX
LONG TIMER	TIML
	TIMLX
REVERSIBLE COUNTER	CNTR
	CNTRX
RESET TIMER/COUNTER	CNR
	CNRX

## Comparison Instructions

Instruction	Mnemonic
Input Comparison Instructions (unsigned)	LD,AND,OR+=
	LD,AND,OR+<>
	LD,AND,OR+<
	LD,AND,OR+<=
	LD,AND,OR+>
	LD,AND,OR+>=
Input Comparison Instructions (double, unsigned)	LD,AND, OR+=+L
	LD,AND, OR+<>+L
	LD,AND,OR+<+L
	LD,AND, OR+<=+L
	LD,AND,OR+>+L
	LD,AND, OR+>=+L
Input Comparison Instructions (signed)	LD,AND,OR+=+S
	LD,AND,OR+<>+S
	LD,AND,OR+<+S
	LD,AND,OR+<=+S
	LD,AND,OR+>+S
	LD,AND,OR+>=+S
Input Comparison Instructions (double, signed)	LD,AND,OR+=+SL
	LD,AND,OR+<>+SL
	LD,AND,OR+<+SL
	LD,AND,OR+<=+SL
	LD,AND,OR+>+SL
	LD,AND,OR+>=+SL
Time Comparison Instructions	=DT
	<>DT
	<DT
	<=DT
	>DT
	>=DT
COMPARE	CMP
DOUBLE COMPARE	CMPL
SIGNED BINARY COMPARE	CPS
DOUBLE SIGNED BINARY COMPARE	CPSL
TABLE COMPARE	TCMP
UNSIGNED BLOCK COMPARE	BCMP
AREA RANGE COMPARE	ZCP
DOUBLE AREA RANGE COMPARE	ZCPL

Data Movement Instructions

Instruction	Mnemonic
MOVE	MOV
DOUBLE MOVE	MOVL
MOVE NOT	MVN
MOVE BIT	MOVB
MOVE DIGIT	MOVD
MULTIPLE BIT TRANSFER	XFRB
BLOCK TRANSFER	XFER
BLOCK SET	BSET
DATA EXCHANGE	XCHG
SINGLE WORD DISTRIBUTE	DIST
DATA COLLECT	COLL

Data Shift Instructions

Instruction	Mnemonic
SHIFT REGISTER	SFT
REVERSIBLE SHIFT REGISTER	SFTR
WORD SHIFT	WSFT
ARITHMETIC SHIFT LEFT	ASL
ARITHMETIC SHIFT RIGHT	ASR
ROTATE LEFT	ROL
ROTATE RIGHT	ROR
ONE DIGIT SHIFT LEFT	SLD
ONE DIGIT SHIFT RIGHT	SRD
SHIFT N-BITS LEFT	NASL
DOUBLE SHIFT N-BITS LEFT	NSLL
SHIFT N-BITS RIGHT	NASR
DOUBLE SHIFT N-BITS RIGHT	NSRL

Increment/Decrement Instructions

Instruction	Mnemonic
INCREMENT BINARY	++
DOUBLE INCREMENT BINARY	++L
DECREMENT BINARY	--
DOUBLE DECREMENT BINARY	--L
INCREMENT BCD	++B
DOUBLE INCREMENT BCD	++BL
DECREMENT BCD	--B
DOUBLE DECREMENT BCD	--BL

## Symbol Math Instructions

Instruction	Mnemonic
SIGNED BINARY ADD WITHOUT   CARRY	+
DOUBLE SIGNED BINARY ADD   WITHOUT CARRY	+L
SIGNED BINARY ADD WITH CARRY	+C
DOUBLE SIGNED BINARY ADD   WITH CARRY	+CL
BCD ADD WITHOUT CARRY	+B
DOUBLE BCD ADD WITHOUT CARRY	+BL
BCD ADD WITH CARRY	+BC
DOUBLE BCD ADD WITH CARRY	+BCL
SIGNED BINARY SUBTRACT   WITHOUT CARRY	-
DOUBLE SIGNED BINARY   SUBTRACT WITHOUT CARRY	-L
SIGNED BINARY SUBTRACT WITH   CARRY	-C
DOUBLE SIGNED BINARY   SUBTRACT WITH CARRY	-CL
BCD SUBTRACT WITHOUT CARRY	-B
DOUBLE BCD SUBTRACT   WITHOUT CARRY	-BL
BCD SUBTRACT WITH CARRY	-BC
DOUBLE BCD SUBTRACT WITH	-BCL
CARRY	SIGNED BINARY MULTIPLY
DOUBLE SIGNED BINARY MULTIPLY	$* \mathrm{FL}$
BCD MULTIPLY	$* B$
DOUBLE BCD MULTIPLY	$* B L$
SIGNED BINARY DIVIDE	$/$
DOUBLE SIGNED BINARY DIVIDE	/L
BCD DIVIDE	B
DOUBLE BCD DIVIDE	BL

Conversion Instructions

Instruction	Mnemonic
BCD-TO-BINARY	BIN
DOUBLE BCD-TO-DOUBLE   BINARY	BINL
BINARY-TO-BCD	BCD
DOUBLE BINARY-TO-DOUBLE BCD	BCDL
2'S COMPLEMENT	NEG
DATA DECODER	MLPX
DATA ENCODER	DMPX
ASCII CONVERT	ASC
ASCII TO HEX	HEX

## Logic Instructions

Instruction	Mnemonic
LOGICAL AND	ANDW
DOUBLE LOGICAL AND	ANDL
LOGICAL OR	ORW
DOUBLE LOGICAL OR	ORWL
EXCLUSIVE OR	XORW
DOUBLE EXCLUSIVE OR	XORL
COMPLEMENT	COM
DOUBLE COMPLEMENT	COML

## Special Math Instructions

Instruction	Mnemonic
ARITHMETIC PROCESS	APR
BIT COUNTER	BCNT

Floating-point Math Instructions

Instruction	Mnemonic
FLOATING TO 16-BIT	FIX
FLOATING TO 32-BIT	FIXL
16-BIT TO FLOATING	FLT
32-BIT TO FLOATING	FLTL
FLOATING-POINT ADD	+F
FLOATING-POINT SUBTRACT	-F
FLOATING-POINT DIVIDE	/F
FLOATING-POINT MULTIPLY	*F
Floating Symbol Comparison	LD, AND, OR+=F
	LD, AND, OR+<>F
	LD, AND, OR+<F
	LD, AND, OR+<=F
	LD, AND, OR+>F
	LD, AND, OR+>=F
FLOATING- POINT TO ASCII	FSTR
ASCII TO FLOATING-POINT	FVAL

Table Data Processing Instructions

Instruction	Mnemonic
SWAP BYTES	SWAP
FRAME CHECKSUM	FCS

Data Control Instructions

Instruction	Mnemonic
PID CONTROL WITH AUTOTUNING	PIDAT
TIME-PROPORTIONAL OUTPUT	TPO
SCALING	SCL
SCALING 2	SCL2
SCALING 3	SCL3
AVERAGE	AVG

CP1E-E $\square \square(S) D \square-\square$ CP1E-N $\square \square(S \square) D \square-\square / N A 20 D \square-\square$

## Subroutine Instructions

Instruction	Mnemonic
SUBROUTINE CALL	SBS
SUBROUTINE ENTRY	SBN
SUBROUTINE RETURN	RET

## Interrupt Control Instructions

Instruction	Mnemonic
SET INTERRUPT MASK	MSKS
CLEAR INTERRUPT	CLI
DISABLE INTERRUPTS	DI
ENABLE INTERRUPTS	EI

High-speed Counter and Pulse Output Instructions

Instruction	Mnemonic
MODE CONTROL	INI
HIGH-SPEED COUNTER PV READ	PRV
COMPARISON TABLE LOAD	CTBL
SPEED OUTPUT	SPED
SET PULSES	PULS
PULSE OUTPUT	PLS2
ACCELERATION CONTROL	ACC
ORIGIN SEARCH	ORG
PULSE WITH VARIABLE DUTY	PWM
FACTOR	

## Step Instructions

Instruction	Mnemonic
STEP DEFINE	STEP
STEP START	SNXT

I/O Unit Instructions

Instruction	Mnemonic
I/O REFRESH	IORF
7-SEGMENT DECODER	SDEC
DIGITAL SWITCH INPUT	DSW
MATRIX INPUT	MTR
7-SEGMENT DISPLAY OUTPUT	7SEG

Serial Communications Instructions

Instruction	Mnemonic
TRANSMIT	TXD
RECEIVE	RXD

Clock Instructions

Instruction	Mnemonic
CALENDAR ADD	CADD
CALENDAR SUBTRACT	CSUB
CLOCK ADJUSTMENT	DATE

Failure Diagnosis Instructions

Instruction	Mnemonic
FAILURE ALARM	FAL
SEVERE FAILURE ALARM	FALS

## Other Instructions

Instruction	Mnemonic
SET CARRY	STC
CLEAR CARRY	CLC
EXTEND MAXIMUM CYCLE TIME	WDT

## CP1E CPU Unit

## -CPU Units with 10 I/O Points


©CPU Units with 14 or 20 I/O Points CP1E- $14 / 20 \mathrm{D} \square \mathrm{D}-\mathrm{\square}$


CP1E- $\square 14 / 20 S D \square \square-\square$

-CPU Units with 30 I/O Points
CPU Units with 20 I/O Points and Built-in Analog
CP1E- $\square$ 30D $\square \square-\square$, CP1E-NA20D $\square-\square$


## CP1E-E $\square \square(S) D \square-\square$ CP1E-N $\square \square(S \square) D \square-\square / N A 20 D \square-\square$

CP1E- $\square$ 30S(1)D $\square \square-\square$


## -CPU Units with 40 I/O Points

## CP1E- $\square$ 40D $\square \square-\square$



CP1E- $\square$ 40S(1)D $\square \square-\square$

-CPU Units with 60 I/O Points
CP1E-N60D $\square-\square$


CP1E- $\square 60 S(1) D \square \square-\square$


Expansion I/O Units and Expansion Units -CP1W-8EDC/CP1W-SRT21

-CP1W-20ED $\square / C P 1 W-16 E \square \square / C P 1 W-A D 04 \square / C P 1 W-D A 021 / C P 1 W-D A 04 \square / C P 1 W-M A D \square \square /$ CP1W-TS $\square \square 1 / \square \square 2 / \square \square 3$

-CP1W-40ED $\square / C P 1 W-32 E \square \square / C P 1 W$-TS004


CP1E-E $\square \square$ (S)D $\square-\square$ CP1E-N $\square \square$ (S $\square$ )D $\square-\square /$ NA20D $\square-\square$
Related Manuals

Manual name	Cat. No.	Model numbers	Application	Contents
SYSMAC CP Series CP1E CPU Unit Hardware Manual	W479	$\begin{aligned} & \text { CP1E-E } \square \text { SD } \square-\square \\ & \text { CP1E-N } \square \square \text { S } \square D-\square \\ & \text { CP1E-E } \square \mathrm{D} \square-\square \\ & \text { CP1E-N } \square \square D-\square \\ & \text { CP1E-NA } \square \square D-\square \end{aligned}$	To learn the hardware specifications of the CP1E PLCs	Describes the following information for CP1E PLCs.   - Overview and features   - Basic system configuration   - Part names and functions   - Installation and settings   - Troubleshooting
			Use this manual together with the CP1E CPU Unit Software Manual (Cat. No. W480) and CP1E CPU Unit Instructions Reference Manual (Cat. No. W483).	
SYSMAC CP Series CP1E CPU Unit Software Manual	W480	CP1E-E $\square$ SD $\square-\square$   CP1E-N $\square$ पS $\square \square-\square$   CP1E-EDDDD-   CP1E-N $\square \square D \square-\square$   CP1E-NA $\square \square D \square-\square$	To learn the software specifications of the CP1E	Describes the following information for CP1E PLCs.   - CPU Unit operation   - Internal memory   - Programming   - Settings   - CPU Unit built-in functions   - Interrupts   - High-speed counter inputs   - Pulse outputs   - Serial communications   - Analog I/O function   - Other functions
			Use this manual together with the CP1E CPU Unit Hardware Manual (Cat. No. W479) and CP1E CPU Unit Instructions Reference Manual (Cat. No. W483).	
SYSMAC CP Series CP1E CPU Unit Instructions Reference Manual	W483	CP1E-E $\square$ SD $\square-\square$   CP1E-N $\square \square$ S $\square D \square-\square$   CP1E-EDDDD-   CP1E-N $\square$ DD-   CP1E-NA $\square \square D \square-\square$	To learn programming instructions in detail	Describes each programming instruction in detail.   When programming, use this manual together with the CP1E CPU Unit Hardware Manual (Cat. No. W479) and CP1E CPU Unit Software Manual (Cat. No. W480).
CS/CJ/CP/NSJ Series Communications Commands Reference Manual	W342		To learn communications commands for CS/CJ/CP/NSJ-series Controllers in detail	Describes 1) C-mode commands and 2) FINS commands in detail.   Read this manual for details on C-mode and FINS commands addressed to CPU Units.
			Note: This manual describes commands addressed to CPU Units. It does not cover commands addressed to other Units or ports (e.g., serial communications ports on CPU Units, communications ports on Serial Communications Units/Boards, and other Communications Units).	
SYSMAC CP Series CP1L/CP1E CPU Unit Introduction Manual	W461	CP1L-L10D $\square-\square$   CP1L-L14DD-   CP1L-L20DD-   CP1L-M30D $\square$ -   CP1L-M40D■-   CP1L-M60DD- $\square$   CP1E-EDDDD-   CP1E-N $\square \square D-\square$   CP1E-NA $\square \square D-\square$	To learn the basic setup methods of the CP1L/CP1E PLCs	Describes the following information for CP1L/CP1E PLCs.   - Basic configuration and component names   - Mounting and wiring   - Programming, data transfer, and debugging using the CX-Programmer   - Application program examples

## Terms and Conditions Agreement

## Read and understand this catalog.

Please read and understand this catalog before purchasing the products. Please consult your OMRON representative if you have any questions or comments.

## Warranties.

(a) Exclusive Warranty. Omron's exclusive warranty is that the Products will be free from defects in materials and workmanship for a period of twelve months from the date of sale by Omron (or such other period expressed in writing by Omron). Omron disclaims all other warranties, express or implied.
(b) Limitations. OMRON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, ABOUT NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OF THE PRODUCTS. BUYER ACKNOWLEDGES THAT IT ALONE HAS DETERMINED THAT THE PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR INTENDED USE.

Omron further disclaims all warranties and responsibility of any type for claims or expenses based on infringement by the Products or otherwise of any intellectual property right. (c) Buyer Remedy. Omron's sole obligation hereunder shall be, at Omron's election, to (i) replace (in the form originally shipped with Buyer responsible for labor charges for removal or replacement thereof) the non-complying Product, (ii) repair the non-complying Product, or (iii) repay or credit Buyer an amount equal to the purchase price of the non-complying Product; provided that in no event shall Omron be responsible for warranty, repair, indemnity or any other claims or expenses regarding the Products unless Omron's analysis confirms that the Products were properly handled, stored, installed and maintained and not subject to contamination, abuse, misuse or inappropriate modification. Return of any Products by Buyer must be approved in writing by Omron before shipment. Omron Companies shall not be liable for the suitability or unsuitability or the results from the use of Products in combination with any electrical or electronic components, circuits, system assemblies or any other materials or substances or environments. Any advice, recommendations or information given orally or in writing, are not to be construed as an amendment or addition to the above warranty.
See http://www.omron.com/global/ or contact your Omron representative for published information.

## Limitation on Liability; Etc.

OMRON COMPANIES SHALL NOT BE LIABLE FOR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, LOSS OF PROFITS OR PRODUCTION OR COMMERCIAL LOSS IN ANY WAY CONNECTED WITH THE PRODUCTS, WHETHER SUCH CLAIM IS BASED IN CONTRACT, WARRANTY, NEGLIGENCE OR STRICT LIABILITY.
Further, in no event shall liability of Omron Companies exceed the individual price of the Product on which liability is asserted.

## Suitability of Use.

Omron Companies shall not be responsible for conformity with any standards, codes or regulations which apply to the combination of the Product in the Buyer's application or use of the Product. At Buyer's request, Omron will provide applicable third party certification documents identifying ratings and limitations of use which apply to the Product. This information by itself is not sufficient for a complete determination of the suitability of the Product in combination with the end product, machine, system, or other application or use. Buyer shall be solely responsible for determining appropriateness of the particular Product with respect to Buyer's application, product or system. Buyer shall take application responsibility in all cases.
NEVER USE THE PRODUCT FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR PROPERTY OR IN LARGE QUANTITIES WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO ADDRESS THE RISKS, AND THAT THE OMRON PRODUCT(S) IS PROPERLY RATED AND INSTALLED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM.

## Programmable Products.

Omron Companies shall not be responsible for the user's programming of a programmable Product, or any consequence thereof.

## Performance Data.

Data presented in Omron Company websites, catalogs and other materials is provided as a guide for the user in determining suitability and does not constitute a warranty. It may represent the result of Omron's test conditions, and the user must correlate it to actual application requirements. Actual performance is subject to the Omron's Warranty and Limitations of Liability.

## Change in Specifications.

Product specifications and accessories may be changed at any time based on improvements and other reasons. It is our practice to change part numbers when published ratings or features are changed, or when significant construction changes are made. However, some specifications of the Product may be changed without any notice. When in doubt, special part numbers may be assigned to fix or establish key specifications for your application. Please consult with your Omron's representative at any time to confirm actual specifications of purchased Product.

## Errors and Omissions.

Information presented by Omron Companies has been checked and is believed to be accurate; however, no responsibility is assumed for clerical, typographical or proofreading errors or omissions.

Note: Do not use this document to operate the Unit.

## OMRON Corporation Industrial Automation Company

Tokyo, JAPAN

## Contact: www.ia.omron.com

Regional Headquarters
OMRON EUROPE B.V.
Wegalaan 67-69-2132 JD Hoofddorp
The Netherlands
Tel: (31)2356-81-300/Fax: (31)2356-81-388

OMRON ASIA PACIFIC PTE. LTD.
No. 438A Alexandra Road \# 05-05/08 (Lobby 2),
Alexandra Technopark,
Singapore 119967
Tel: (65) 6835-3011/Fax: (65) 6835-2711

## OMRON ELECTRONICS LLC

One Commerce Drive Schaumburg,
L 60173-5302 U.S.A
Tel: (1) 847-843-7900/Fax: (1) 847-843-7787

## OMRON (CHINA) CO., LTD.

Room 2211, Bank of China Tower, 200 Yin Cheng Zhong Road,
PuDong New Area, Shanghai, 200120, China Tel: (86) 21-5037-2222/Fax: (86) 21-5037-2200

Authorized Distributor:


[^0]:    Note: $\mathrm{V}+$ and $\mathrm{COM}(\mathrm{V}+)$ are internally connected.

[^1]:    Note: Option Boards cannot be used for CP1E N14/20 CPU Units.

[^2]:    Note: Connectable with CX-Programmer Ver.9.1 or higher only.

    * Use the USB-Serial Conversion Cable CS1W-CIF31 together to connect a PLC to a personal computer's USB port.

