
CAN BUS Varistor

GENERAL DESCRIPTION

The CAN BUS varistor is a zinc oxide (ZnO) based ceramic semiconductor device with non-linear voltage-current characteristics (bi-directional) similar to back-to-back Zener diodes and an EMC capacitor in parallel (see equivalent circuit model). They have the added advantage of greater current and energy handling capabilities as well as EMI/RFI attenuation. Devices are fabricated by a ceramic sintering process that yields a structure of conductive ZnO grains surrounded by electrically insulating barriers, creating varistor like behavior.

HOW TO ORDER

Array

PERFORMANCE CHARACTERISTICS

AVX Part No.	V _w (DC)	V _w (AC)	V _B	ال	E _T	I _P	Сар.	Case Size	Elements
CAN0001	≤18	≤14	120	2	0.015	4	22	0603	1
CAN0002	≤18	≤14	70	2	0.015	4	22	0405	2
CAN0004	≤18	≤14	100	2	0.015	4	22	0612	4
CAN0005	≤18	≤14	21.6	5µa	0.020	1	15pF ±30%	0402	1

I,

└ Termination Finish Code

— Packaging Code

$V_W(DC)$	DC Working Voltage (V)
$V_{W}(AC)$	AC Working Voltage (V)

V_B Typical Breakdown Voltage (V @ 1mA_{DC})

 V_c Clamping Voltage (V @ I_{vc})

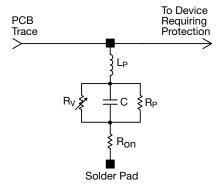
Test Current for V_c (A, 8x20 μ S)

Maximum Leakage Current at the Working Voltage (µA)

Array

 E_T Transient Energy Rating (J, 10x1000 μ S) I_P Peak Current Rating (A, 8x20 μ S)

0402, 0603

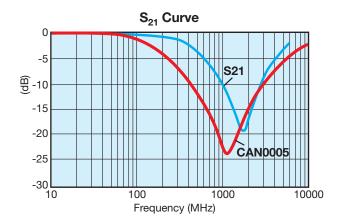

Discrete

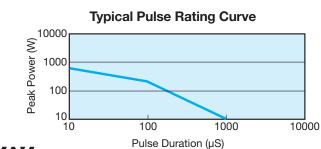
Cap Maximum Capacitance (pF) @ 1 MHz and 0.5Vrms

Temp Range -55°C to +125°C

EQUIVALENT CIRCUIT MODEL

Discrete MLV Model



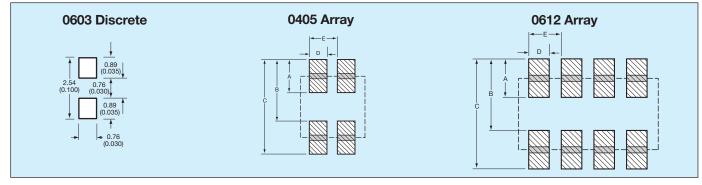

Where: R_V = Voltage Variable resistance (per VI curve)

 $R_p \geq 10^{12} \Omega$

C = defined by voltage rating and energy level

 R_{on} = turn on resistance L_{p} = parallel body inductance

CAN BUS Varistor


PHYSICAL DIMENSIONS

mm (inches)

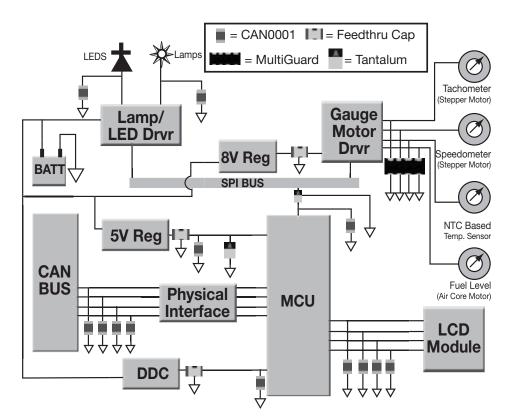
	0402 Discrete	0603 Discrete	0405 Array	0612 Array
Length	1.00 ±0.10 (0.040 ±0.004)	1.60 ±0.15 (0.063 ±0.006)	1.00 ±0.15 (0.039 ±0.006)	1.60 ±0.20 (0.063 ±0.008)
Width	0.50 ±0.10 (0.020 ±0.004)	0.80 ±0.15 (0.032 ±0.006)	1.37 ±0.15 (0.054 ±0.006)	3.20 ±0.20 (0.126 ±0.008)
Thickness	0.60 Max. (0.024 Max.)	0.90 Max. (0.035 Max.)	0.66 Max. (0.026 Max.)	1.22 Max. (0.048 Max.)
Term Band Width	0.25 ±0.15 (0.010 ±0.006)	0.35 ±0.15 (0.014 ±0.006)	0.36 ±0.10 (0.014 ±0.004)	0.41 ±0.10 (0.016 ±0.010)

SOLDER PAD DIMENSIONS

mm (inches)

0405	Array
------	-------

Α	В	С	D	Е
0.46	0.74	1.20	0.38	0.64
(0.018)	(0.029)	(0.047)	(0.015)	(0.025)


0612 Array

		-				
Α		В	С	D	Е	
	0.89	1.65	2.54	0.46	0.76	
	(0.035)	(0.065)	(0.100)	(0.018)	(0.030)	

APPLICATION

AVX CAN BUS varistors offer significant advantages in general areas of a typical CAN network as shown on the right. Some of the advantages over diodes include:

- space savings
- higher ESD capability @ 25kV contact
- higher in rush current (4A) 8 x 20µS
- FIT rate ≤0.1 failures (per billion hours)

