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Chapter 1

Introduction

1.1 Asynchronous circuits

Most of the digital design done today is “synchronous”, that is, a global
synchronization signal is used to get the different parts to work in lockstep.
It is simple and elegant, and requires little circuit overhead.

Yet, as VLSI circuits increase in size and complexity, distributing global
signals becomes more delicate, timing assumptions are harder to guarantee;
at the system level, the global clock has to be slowed down to accommodate
the slowest parts. It is interesting, at this point, to consider asynchronous
circuits, where the time can be eliminated from the specification.

A circuit is speed-independent when its correct operation is independent
of delays in operators. A circuit is delay-insensitive when its correct operation
is independent of the delays in operators and wires, except that the delays
be finite [Sei80] [vdS85]. No global synchronization signal, or knowledge
about delays is used. As a subclass of asynchronous circuits, delay-insensitive
circuits are very interesting for formal design methods; we can reason about
the correctness of such circuits independently of timing.

Our research group has developed a synthesis method to compile a high-
level description of a circuit down to a gate level description [Mar86] [Mar90].
This compilation is largely technology-independent; only at the stage of sizing
transistors for better performance do we have to look at the actual transistor
network.



1.2 Gallium Arsenide

Gallium Arsenide, or GaAs, has traditionally been used for microwave cir-
cuits, where it far outperforms silicon devices. However, its use for digital
circuits has always been marginal or very specialized because of high costs,
low yields, and limited integration compared to CMOS.

GaAs fabrication technology has evolved and matured. Today, yields are
up, and density is highly improved: 100,000 transistor chips are commercially
available, and 1,000,000 transistor chips are feasible.

The MESFET, or metal-semiconductor field effect transistor, is the nat-
ural GaAs transistor. It is a junction FET, where the gate connects to the
channel through a Schottky junction. Its main advantage is easy to manu-
facturing, with high density and good yield. An isolated gate FET would
be highly desirable, but no stable GaAs oxides have been discovered so far.
Complementary logic is also un-practical, since p-type transistors are ten
times slower than the n-type.

MESFET circuits have the simplicity of NMOS, the speed of ECL, and
VLSI integration. It is still far from being a competitor for CMOS, low RAM
density being one of the most notorious shortcomings of GaAs.

1.3 Asynchronous GaAs

At the higher speed achieved by GaAs circuits, problems like clock skew,
transmission delays, and the increasing penalty of off-chip communication
become critical. This makes the technology a good target for asynchronous
design; it can also let us discover new problems in asynchronous circuits at
increased speeds.

The purpose of this thesis is to propose a series of techniques to translate
the basic building blocks (“production rules”) of the synthesis method into
GaAs circuits.

Traditional GaAs MESFET logic families are not adequate for this pur-
pose. Optimized for synchronous circuits, they provide us with nor gates,
latches, and a few other specialized gates.

We first look for a straightforward implementation of production rules.
Production rules are programs of the type G; — A; where G; is a boolean
expression and A; sets or resets a given variable.



We also derive a timing model to predict performance, a fan-in and fan-
out model to predict electrical compatibility between the different gates,
and a power consumption model. As much as possible, we want to be able
to predict the correct functioning of the circuit without going to detailed
simulations.

1.4 Results

All of the techniques presented in this work have been tried on actual circuits.
The circuits tested have provided a lot of data on the different models, as well
as indications on which type of circuits to use where, better sizing techniques,
what to expect in terms of power consumption and yield, etc.

Although any circuit can be implemented directly using these techniques,
some gates are so much faster than others that there is a lot to be gained by
using this fact early on in the design. In this sense, the architecture of the
circuit is highly influenced by the underlying technology.

The experiments done so far have given us a basic understanding of how
digital GaAs circuits work. Many problems are still to be solved in the area
of power consumption, speed, and reliability. The data we have accumulated
so far gives a good indication on where improvements are possible.

1.5 Outline of this Thesis

Chapter 2 presents a brief introduction to Gallium Arsenide technology. A
model is given for the MESFET, some of the second order effects are
discussed, as well as a few circuits.

Chapter 3 presents several GaAs logic families used today. A brief descrip-
tion of advantages and disadvantages is given for each of them.

Chapter 4 introduces a new family of logic gates that will be used to imple-
ment asynchronous circuits, discusses their properties, and shows how
to use them.

Chapter 5 presents a linear timing model for some of the gates that were
introduced in the previous chapter, and shows how to use it to optimize
performance.



Chapter 6 presents an example of asynchronous design in GaAs, a register
array. The circuit was designed, fabricated and tested, and the results
are included.



Chapter 2

Gallium Arsenide Basics

Introduction

In this chapter we give an introduction to MESFET based GaAs technology.
The MESFET is, at this moment, the transistor of choice for GaAs digital
circuits. It is simple to manufacture in small geometries, it is reasonably fast,
and can be integrated to LSI and VLSI levels at a price that competes very
well with silicon.

MESFET, which stands for MEtal Semiconductor Field Effect Transistor,
is a junction FET (JFET), where the p-n junction between the gate and the
channel has been replaced by a Schottky junction (see Figure 2.1).

To predict correctly the behavior of MESFET circuits it is essential to
have an accurate DC model. The models and equations used for JFET’s can
be used for MESFET’s; however, second order effects have to be taken into
consideration, which make real devices behave differently from the first order
approximation. Back-gating, subthreshold currents, and drain current lag
affect the predicted operation of circuits, and have to be modeled. Also, GaAs
MESFET’s operate velocity saturated at much lower electric fields than silicon
transistors. Throughout this work we will use the Raytheon model [SNS*87].
All simulations were done with HSPICE, which uses an in-house modification
of the Raytheon model, specially tuned for the Vitesse fabrication process.

Because of their complexity, full models, however important to verify
designs, give us little insight on the general properties of the circuits we
are using. Therefore we use greatly simplified models, like the small signal
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Figure 2.1: Self aligned MESFET.

model, that give us a qualitative idea of the characteristics of the circuit.

2.1 Equivalent circuit for the MESFET

Figure 2.2 shows an equivalent circuit for the MESFET that will be the
basis for the equations presented later on. The diodes simulate the effect
of the junction; Cys and Cyy represent the gate-to-source-and gate-to-drain
capacitance and charge stored in the channel. The gate and drain resistances
take into account the diffusion resistance. [/ds is a current source controlled
by the gate to drain voltage. Finally, D and S are the internal drain and
source respectively.

2.1.1 Equations

These equations are based on the Raytheon model [SNS*87], developed by
Satz et al.
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Figure 2.2: Equivalent circuit for the MESFET.

DC model
For the DC model, we have:

BV V) aVis)?
]“_1+M%NJ®{1—<L—3 )}O+A%%

for0<Vds<§

I B(Vys = Vi)’
ds

- 1+ \Vy),
1+M%,;wﬂ )

for Vi, > %, where «, 3, b, and A are model parameters.

Subthreshold model

In the subthreshold region, there will still be some current flowing through
the channel [CVFC87]. If Vg, is low enough, this will be mostly a diffusion

current, and will have an exponential dependency on Vi and V,:

S b S S
to = o1 e (7)o () o (1)

where Iy, a, b, and ¢ are model parameters, k is Boltzman’s constant, and

T is the absolute temperature.
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Figure 2.3: Small signal model for the MESFET.

Backgating

This is similar to the body effect in MOSFET’s. Regions close to a transistor
that are more negative than its source will cause a reduction in the drain-
source current. This can be modeled as a shift in the threshold voltage of
the transistor:

Vi = Vro 4+ Ky (Vs — Vss)

Where V7 is the new threshold voltage, V7 is the threshold voltage with
no backgating, K, is a constant, Vs is the source voltage, and Vsg is the
most negative voltage in the neighborhood of the transistor.

2.1.2 Small signal model

To get a small signal model for a transistor circuit, we linearize the cir-
cuit equations around the DC quiescent point. If input signals are small
enough, this new circuit will be a good approximation of the behavior of
the more complex model. Figure 2.3 shows the linear circuit that replaces
each transistor. Parameters ¢,., 94, 95, 9o, 9gs, 9gd, Cys, Cya, are obtained by
differentiation of the transistor equations. In particular, conductances come
from the DC model, and capacitors come from the charge storage model.

11
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Figure 2.4: Common source amplifier, transistor schematic (a), small signal
model (b), simplified small signal model (c).

2.2 Some MESFET circuits

We can arrange transistors in a number of ways to create logic gates. A simple
study of the small-signal behavior of these circuits will help us to later justify
some of those arrangements. Specifically, we will discuss the common-source
and source-follower configurations [MHT72]. Because of the actual values of
the parameters, it is often possible to simplity the small signal model to get
simpler expressions for the circuit gain, input impedance, etc. This model
will be used in the following circuits

2.2.1 Common source amplifier

Figure 2.4 shows a schematic of the common source amplifier. We derive the
small signal gain from the current equation for the node V,,;:

1
m‘/zn = — Yo - ‘/ou
g (9 + RD) t
Therefore,
ngD
v - ~ mR
I+ g.Bp 77

12
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Figure 2.5: Source follower amplifier, transistor schematic (a), small signal

model (b), simplified small signal model (c).

And the input impedance:
1
Rin =
ggs
The main characteristics of this amplifier are large and negative voltage
gain ( between —10 and —50), and poor input impedance. It can be used for

restoring signals.

2.2.2 Source follower amplifier

Figure 2.5 shows a schematic of the source follower amplifier. As in the
previous case, we derive gain and input impedance:

1
(‘/zn - ‘/out)gm = (‘/out - ‘/in)ggs + ‘/out(go + _)

Rs
Therefore,
A, = Im + 9ys i
gm —I_ ggs —I_ go -I' R_S
1 1
R; =
1 — A, gys
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For practical values of the parameters, g,s > ¢g,. We choose Rs > 1/gm,
and we get, A, ~ 1 and the input impedance becomes very large. This stage
can be used to drive big loads.

14



Chapter 3

Logic Families in GaAs

Introduction

This chapter introduces several design styles currently in use for gallium
arsenide logic circuits. Some try to optimize delays, or power consumption,
or noise margins, but all, in some way or another, try to make up for the fact
that the MESFET is far from being an ideal switch.

The gate is connected to the channel through a Schottky junction; in most
configurations this causes an interaction between the input and the output,
or limits the excursion of the input signal, or adds current paths that have to
be considered carefully to make sure they are not the cause of any problem.

GaAs technology is inherited from the microwave circuit domain, where
lower densities are sufficient. To get LSI or even VLSI integration levels,
the depletion-mode-only process has to be improved to include enhancement
mode transistors.

3.1 Depletion Mode Only

Early GaAs processes had only depletion mode MESFET’s; this saves one
mask and one step in fabrication, increases yield, and lowers costs.

Since depletion mode transistors are normally on, we need a negative
power supply to turn off gates, not unlike depletion mode only NMOS cir-
cuits.

15
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3.1.1 Schottky Diode Fet Logic

Using diode circuits plus a voltage restoring gate we can create complex logic
functions with little circuit overhead.

Figure 3.1 shows a three-input nor-gate of this type. Several other diode
configurations can be used.

Using diodes for the logic function offers significant gains in speed, area
and power over FET only logic, and admits a large fanout. However, to
prevent the noise margins and switching speed from deteriorating, the gate
has to be “buffered”; that is the function of the two extra transistors in the
output stage.

3.1.2 Fet Logic

Figure 3.2 shows a fet-logic nor gate. Here the logic function is performed
by transistors; the output is fully restored.

The output stage can produce a limited amount of current and frequently
needs to be buffered. Since the input transistors are always on, they dissipate
a significant amount of static power.

Nor gates are the primitive building blocks for this family. Two input
nand gates can be implemented, but they are problematic and have very
small noise margins.

16
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Figure 3.2: Fet logic nor-gate.

3.1.3 Current mode logic

This is a differential amplifier based logic. All gates generate differential
signals, like ECL. This is the fastest gate style, and uses only one power
supply. On the down side, it requires a lot of area and current, and a higher
power supply. Also, several reference voltages have to be generated.

Because all signals are dual ended, circuits like a D-latch become very
simple (see Figure 3.3).

3.2 Enhancement-Depletion Mode Logic

The second power supply can be eliminated by adding transistors with a
positive threshold voltage. Since these transistors can be totally cut, the
static power dissipation also goes down.

In particular, large loads can be driven with high efficiency, using a push-
pull super buffer (see Figure 3.6).

3.2.1 Direct Coupled Fet Logic
Direct Coupled Fet Logic, or DCFL, is a direct equivalent of DCFL in NMOS.

We have an example of an inverter and a nor gate in Figure 3.4.

17
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This is the most compact design style, offering a good tradeoff between
power and speed. However, noise margins are small, and extra circuitry is
required to drive loads bigger than 3 or 4 gates. Also, nand-gates have too
many problems to be useful.

For VLSI applications, DCFL is certainly the gate of choice, because of
density and power consumption. Noise margins can be enhanced with a
number of techniques, and some circuit overhead. It is the most widely used
design style, and probably the one that will allow us to design 1,000,000
transistor chips.

However, DCFL is not always adequate for self-timed circuits. Direct
implementations of C-elements with nor gates have hazards; we either have
to carefully design around them, make timing assumptions, or add circuitry
that will eliminate them. Figure 3.5 shows a c-element implemented with
nor-gates. A glitch can occur at the output for the sequence aT;al;07;0].

3.2.2 Super Buffered Fet Logic

For larger loads, a super buffer stage can be used (see Figure 3.6 (a)). This
style combines well with DCFL, and provides some savings in power for
similar delays. A price is paid in the area used.

The buffering is achieved by a push-pull stage, that does not require
static power. However, there is a moment in the switching transient when

18



out

iny %

iny %

out

e

ing

(b)

L

Figure 3.4: DCFL circuits, (a) inverter, and (b) nor-gate.

Figure 3.5: Nor-gate C-element. Observe that it has a race condition for the
sequence aT;a |;0T;6 |. Normally, this sequence should not produce any

output. Initially, ¢ is low
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both transistors are turned on, and care has to be taken that this current
spike does not cause any problem in neighboring circuits.

When the load is highly capacitive, and the fanout is small, the pull up
transistor will end up being too large and force the next voltage well above
the maximum input voltage to the next gate. This has to be prevented, since
it will cause the output gate to malfunction. Figure 3.6 (b) and (c¢) show two
ways of achieving this objective.

20



Chapter 4

A New Logic Family

Introduction

In this chapter we present a novel way of implementing logic circuits in GaAs.
This logic style is specifically designed for asynchronous circuits. The special
needs of these circuits make usual nor-gate based technologies to be less than
ideal, specially for the lack of C-elements, complex gates, completion trees,
etc.

Although all basic elements can be implemented with nor gates, this
introduces extra nodes in the circuit that have to be taken care of. The
delay insensitivity would be greatly compromised without making extensive
timing assumptions on those intermediate nodes, assumptions that we would
be unable to guarantee if, for example, we use a standard cell place and route
program to generate the layout.

Also, noise margins and fanout have to be increased to simplify the task of
mapping logic equations into actual circuits. It is an important feature that
the designer need not be overly concerned with the electrical characteristics
of the target circuitry.

4.1 Input Stage

Several input stages have been designed, depending on the logic function to
be implemented. Even though they have different characteristics with respect
to load, they share the same logic levels, and can be arbitrarily mixed.

21
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Figure 4.1: SFFL inverter (a) and nor gate (b).

This stage allows the input signal to switch rail to rail, implements the
logic in the gate, and reduces the coupling between the input and output
signals. However, a price is paid in some extra delay and power consumption.

4.1.1 Inverter

An inverter illustrates how the basic gate works (see Figure 4.1 (a)). The
input stage is a source follower. The input signal is shifted in level and
isolated from the output circuitry. This allows the input to switch rail to
rail. The power supply is selected so that the Schottky junction of the input
transistor is barely forward biased over Vp (threshold voltage of the schottky
diode), so that there is very little current going into the gate (see Figure 4.2)

The correct operation of this circuit depends on the ratio between the pull-
up transistor and the passive pull-down. The constraint on the ratio is two
sided, to guarantee a good logic low and high for the output stage. A spice
simulation puts this ratio between 1 and 2. However, if the threshold voltage
of the d-mode transistors is approximately the same as the threshold voltage
of the diode, the logic low for the output stage is guaranteed irrespective of
the ratio.

22
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Figure 4.2: Vdd has to be less than 3 x Vp to prevent forward conduction
on the gate of the input transistor.

4.1.2 Nor gate

We make the inverter into a nor gate by adding another input transistors
(see Figure 4.1 (b)). The input stage looks now like a wired-or gate.

Very wide nor gates are possible. However, as the intermediate node
becomes larger, the asymmetry between the up-going and down-going tran-
sitions grows; the passive pull-down is weaker than the active pull-up.

Even wider nor gates can be implemented by using a DCFL nor gate as
the output stage, thus using both stages of the gate for logic.

4.1.3 Nand gate

The obvious way of implementing a nand function in this design style would
be to stack several transistors in the pull-up chain. However, this will not
work, since the current flowing into the gate of the lower transistor may be
enough to force the gate on, even if the top transistor is cut. This effect
can be easily verified with a SPICE simulation of the circuit in Figure 4.3.
The input transistor is now working as a diode, and the input signal has to
provide the current to maintain the high level. Depending on the strength
of the input signal, either the gate will switch or it will pull the input down
to =~ 2 X VD.

23
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Figure 4.3: Current leakage into the gate of a nand gate. When the top
transistor is cut, the gate will behave as the circuit on the right.

Protection Circuitry

To circumvent this problem we can use the protection circuitry shown in
Figure 4.4. The extra input transistor limits the current going into the gate
of the next transistor, and is cut-off when the top input transistor cuts the
path to V.

This protection circuit can be used with more inputs, to get bigger nand
gates. The practical limit seems to be around 5 inputs, as derived from

SPICE simulations.

Sneak Paths

The protection circuitry introduces a conductive path to ground when the
input is low. If we have a complex pull-up, we have to be careful that we are
not creating a Vdd to ground path through forward conducting diodes ( see
Figure 4.5). The safest way to get around this problem is to use one pull-up
chain, including an extra diode, for each minterm in the sum-of-minterms
representation of the logic function we are implementing. Simplifications are
possible in particular circuits, but we have to make sure that all sneak paths
have been considered.

24



Figure 4.4: Nand gate with protection circuit.

(b)

Figure 4.5: Sneak path in an And-Or-Invert gate (a) and how to fix it (b).
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4.1.4 Parallel configuration Nand gate

An alternate way of implementing nand gates is shown in Figure 4.6. In this
case the forward conduction on the Schottky junction is used to create an
input stage similar to the TTL multi-emitter transistor. Since these transis-
tors are in parallel, we can build large gates, like 32-input completion trees.
This will be the main use of this configuration.

As a disadvantage, it requires a large pull-down transistor to get the input
down to logic low. This is specially important if that signal has to go to other
inputs of different type.

4.2 Output Stage

The input stage generates a signal with DCFL logic levels. This signal has
to be restored to rail-to-rail voltage swing.

4.2.1 DCFL output stage

The simplest output stage we can use is a DCFL inverter. Since the output
will not be tied to another DCFL gate, it will be able to have a wider output
swing, depending on the type of input it goes to.

26



The strength ratio between the output transistors can be calculated to
maximize the noise margins, as in DCFL gates. This results in much weaker
ratios than are typical for DCFL, between 6 and 8 instead of 10 to 14.

4.2.2 SBFL output stage

For bigger loads it is advantageous to use a super-buffer configuration for the
output. The small d-mode transistor in the pull-up is added to increase the
noise margins, at the expense of some power.

The design and sizing of this super-buffer is very different from the DCFL
super buffer. The load is mostly the capacitive load of the wires. Some extra
current is necessary to drive the parallel type nand inputs in the fanout.

This output circuitry is preferred in most cases for capacitive loads, since
the passive pull-up is not very fast driving a signal all the way to the Vdd
rail.

4.3 C-elements and Completion Trees

We have two different strategies for building C-elements.

4.3.1 Majority Gates

Given the pair of production rules,

ul ANu2 A... —  z7
—dlI AN=d2N... — z|

we can transform them into z =ul Au2A...VzA(dlVd2V...). This can be
implemented as a complex gate. Figure 4.7 shows what a two-up two-down
C-element would look like.

As before, there are two alternatives for implementing the and part of the
equation. The series chain is preferred for two or three inputs, the parallel
chain being used above that.

27



Ui dl d2

Us

ﬁﬁ

i
L] e— )

(a) (b)

Figure 4.7: Two-up two-down C-element, transistor network (a), and gate
schematic (b).

4.3.2 Cross-coupled Operators

The same production rules can be implemented in a different way; we provide
two versions for each signal z, zf and zt, and the production rules for this
new set becomes,

2tV ult Nu2t A ... —  zfl
—zt A=(ult ANultAL) — 2]

A VAIf A2 AL
—zf A=(dIf A2 A

—  zt]
— ]

These circuits are combinational, and can be directly implemented with
complex gates. Also, the negative logic version of this circuit is realizable,
and might be more convenient in some cases, since it requires wide nor gates
instead of wide and gates.

4.3.3 Completion Trees

We build a completion tree as shown in Figure 4.8. Note that instead of
using an extra inverter in each majority gate we use the fact that each stage

28
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Figure 4.10: Two input arbiter.

is inverting and we get the feedback signal from the following stage. We need
an inverter in the last stage to staticize the whole tree.

Using combinations of 2-input and 3-input elements, we can build an 8
input tree with 2 levels of logic, a 16 input tree with 3, and a 32 input tree
with 4.

This circuit does not work as a general purpose C-element, because of
races in the intermediate nodes.

4.4 Arbiter

Figure 4.10 shows an implementation of an arbiter circuit [Sei80]. This is a
mutual exclusion element; it takes possibly concurrent requests and generates
mutually exclusive acknowledge signals.

Notice that this is the same arbiter we would use for DCFL logic, with
level conversion in the input signals. The output signals can go rail to rail.

Figure 4.11 shows an HSPICE simulation of the arbiter circuit, with both
inputs arriving at the same time. The numerical noise in the circuit simulator
breaks the symmetry to produce a winner in the arbitration. Notice that even
with very low noise level the arbiter will make a decision in a very short time.

30



ITER.TRO

o

2.25

:;,:;::f:;,:;::f:;::f:; i::j:;:,;::j:;::j

o o o o
[T RTO R}
N o

WX0XLON—=0Z J—Z

o

—

=
o

o
0
N

=
o

o
o
Lo

=
o

o
0
o

>

o

o

o
o
N

=
o

o
o
w

=
o

o
o
Lo

LX0orum

=
o

o
o
+

-0z

=
o

o
o
m

=z

=
o

o
o
o

Figure 4.11: Spice simulation of the arbiter of Figure 4.10
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Up,

Figure 4.12: Circuit used to determine the noise margins.

4.5 Noise margins

We define the noise margins as the amplitude of the noise signal necessary to
switch the output of a latch [LB90]. This can be measured using the circuit
shown in Figure 4.12. Because signals switch rail to rail, noise margins are
greatly improved with respect to other design styles. For the simple inverter,
we get approximately 0.8V; noise margins in DCFL are about 0.2V for the
same power supply.
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Chapter 5

Timing Model

Introduction

In this chapter we characterize a timing model for the family of logic gates
that we have just introduced. The target technology is Vitesse’s enhancement-
depletion mode gallium arsenide process (Hgaas II). A linear timing model
analogous to the 7-model of CMOS is necessary to estimate circuit perfor-
mance and transistor sizes [Bur91]. However, this is difficult to achieve due
to the nature of the gates used. Some analysis of the circuits is necessary to
get such a model, with some loss of accuracy.

The circuits designed using this timing model are close in performance to
those obtained by very computationally intensive methods, hence the model
represents a good way of giving an initial guess for the transistor sizing.
Other applications include choosing between several buffer styles, making
power estimates, finding critical paths, and cycle times.

Since the Hspice model for Vitesse’s process was highly accurate in several
chips that were designed, tested and checked against the simulated figures,
we used this program to get the data to fit the model.

5.1 (Gate Speed

To characterize the speed of an inverting gate, we define the following pa-
rameters (see Figure 5.1).
The first two parameters indicate how fast the output stage is.
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o Rise time, t,;5.: the time it takes for the output of the gate to go from

10% to 90% of its high value (0% is its original value).

o Fall time, ¢4, the time it takes for the output of the gate to go from
90% to 10% of its final value.

The next two parameters represent the delay we get per gate in a long
chain.

e Low to high gate delay, t4;: Time from input reaching switching volt-
age to output reaching switching voltage, with the output going low to

high.

o High to low gate delay, t45;: Same as above, with the output going high
to low.

The next two parameters represent how long it takes for the gate to switch
after a change in one of the inputs. They can be used as a worst case for
gate delay.

e Input up to output low time, ¢,;: Time from input going up to output
is low.

e Input down to output high time, ¢4;: Time from input going down to
output high.

5.2 Simplified gate model

We use a simple switch model for all transistors in the gate, to get a model
for the delays. Transistors will be modeled as an ideal switch plus a series
(drain) resistance. The model will be checked later against simulations to
adjust the theoretical parameters [LB90].

5.2.1 Input stage

The input stage can be modeled as a fixed delay independent of the load con-
ditions, plus a variable part dependent on the size of the output stage. The
fixed delay is technology dependent, and related to the internal capacitances
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Figure 5.1: Delay model for an inverting gate.

of the MESFET’s in the input stage. The variable part depends primarily
on the gate to substrate capacitance of the output transistor. Since we are
charging this capacitance with current sources, we will assume this depen-
dency to be linear.

This stage will not affect the rise time of the input signal, since it has
unit voltage gain.

The transfer from input voltage to current in this first stage is roughly
linear, from 0 to /; (see Figure 5.2). The maximum current is limited by the
size of the pull-down transistor. If we assume that the fraction of time that
the input is high is 6 and that the fraction of time that the input spends
switching from low to high or high to low is v, then the power consumption
of this stage is:

Piy = Vaa x I x (64 3)
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Figure 5.2: Inverter currents.

5.2.2 Output stage

The output stage acts as a current source that can provide an output current
17 in the high state, and an input current /5 — I in the low state. [; is the
saturation current of the pull-up transistor, I is the saturation current of
the pull-down transistor turned on (see Figure 5.2). These two currents have
to charge the load capacitance. The time to do so is:

Vi = V) x C
trise:( i l) l—l'tOl
A
(Vi = V1) x €y
ta - ta
fall -1, + ton

Where () is the load capacitance, V; and V) are the logic low and high
voltages respectively, ¢g is a fixed delay due to the internal capacitances of
the model, and t,;5. and ts,; were defined previously (see Figure 5.1).

The to; and to, parameters depend on the ratio of strengths of the two
output transistors, as well as their gate lengths. Since the gate lengths are
fixed by the technology, and the strength ratio is determined by maximizing
the noise margin of the gate, these parameters are constant; the currents [y
and [ scale with the output stage.

We separate the power consumption of this stage in two parts, as usual.
One contribution comes from the static current in the low state, /;. This is
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provided by the power supply at Vy; Volts, dissipating
P, =V x1; x6

where ¢ is the fraction of time that the gate spends on the output low state.
There is no static power dissipation in the high state. The rest of the power
comes from charging and discharging the load capacitance. Since we are
assuming that this capacitor is charged by a current source, the energy dis-
sipated every cycle is

Pd:CZX‘/deXfS

where f; is the switching frequency.

5.2.3 Delay model and power-delay product

We can now put everything together to get a model for delays and power
consumption. Taking into account all terms, we have,
ki x C ks x S
Lrise = + ko +
S TS

ks x C ke x S
Lyanr = 45 ks + GS_

The load capacitance C} is formed by the wiring capacitance and the gate
capacitance of the transistors the node is connected to. We add those two
terms explicitly and we get:

g, = k%—l—k%x%+k1 So_|_k1><50
ta = kf+k§x§_j+k§x§_i+kixfgzt
trise = ki + k5 x %—I_k?) %+k3 y f;:t
tran = ki +ky x %+k4 %—I—k4>< ];ozt

The parameters S, and 5; are size factors for the output and the input
stage respectively, relative to the size of the minimum inverter. These times
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Figure 5.3: Circuit used to determine the delay model parameters.

can be obtained from measurements or simulations. For this linear model, we
can use least squares analysis to determine the parameters. The correlation
coefficient indicates how well the model fits the data.

We put together a similar model for the power consumption.
PT:PZ'X((S—I—%)XSZ'—I-(POX5—|-PJ£><C[)><SO

Where ¢ is the duty cycle, v is the transition time as a fraction of the pe-
riod. Again, this model is linear, and can be calculated from simulations
or measurements. Coefficient P; represents the contribution to power from
the input stage, P, comes from the output stage, and Py is the frequency
dependent part.

5.3 Inverter parameters

We first calculate a set of parameters for a simple inverter, using the tech-
nology parameters from VITESSE’s 1.2y process. Since these parameters
depend somewhat on the shape of the input voltage, we use a standardized
input that represents reasonably well the signals on-chip (see Figure 5.3).
Other parameters like 6 and v can be fixed to some standard value in the
model.
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This set of parameters was calculated using Hspice simulations on a stan-
dard inverter . These simulations were repeated for a total of 480 different
combinations of input stage size, output stage size, load capacitance, and
fanout. The values were:

S; € {1.0,2.0,3.0,4.0}

S, € {1.0,2.0,3.0,4.0,6.0,8.0}
Cr, € {5.0,10.0,20.0,40.0}
fanout € {1,2,3,4,8}

Where S; x 2.8 is the width in pgm of the transistors of the input stage,
S, x 2.0 is the width in pm of the pull-up transistor of the output stage and
C'r, is the load capacitance in ff. The lengths of all transistors is 1.2um. The
width of the output pull-down is 7 times the width of the output pull-up, as
determined by noise-margin maximization.

From each of these simulations we extract seven parameters, tyn, tqn,
Lrises tyaut, P, P, Py as defined previously. Low and high limits were taken
to be 30% and 70% respectively.

A Least Squares Fit is used to extract the model parameters and get
an estimate of the correlation of the fit. The correlation coefficient between
estimated and measured parameters was better than 99% in all cases.

5.4 Multi-input gates

Once we have the model parameters for the inverter, we would like to see
what effect the number of inputs has on the gate delay. For nor gates with a
small number of inputs (less than four) the effect is minor, and absorbed by
the model errors. For two-input nand gates, the largest we are considering
in this style, we get the same model parameters by choosing properly the
relative sizes of the transistors in the input stage.

In general, small corrections can be added to take into account the number
of inputs and asymmetries, as in the case of nand gates, trading accuracy for
simplicity.
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5.4.1 Other delay models

There are other types of gates with slightly different topologies, that require
that the delay model be specially fitted for them. One such gate is the super
buffer stage, that can be used to increase the drive capability of any of the
other gates. This stage can be modeled independently as a load to a standard
gate, or it can be modeled as a simple gate. The second alternative is better,
since the relative sizing of the different stages has to be altered for optimum
speed and power.

5.5 Numerical results
The data for the fit was obtained from the following Hspice file.

* Calculate tdhl tdlh tr tf and power.

.param vdd=2.2 vlo=0.0 hi=vdd mid=1.1 11=0.3 hh=1.8
.global vdd vddp % Vdd for circuit and environment.
*

* Load circuit. This is the unit fanout.

.subckt load in

j1 vddp in sfdl depl.2 L=1.2u W=2.8u

j2 sfdc sfdl sfdc ddepl.2 L=1.2u W=2.0u

j3 sfdc gnd gnd depl.2 L=1.2u w=2.0u

.ends load

*

* Input Signal to the test circuit

vin in gnd dc 0.0 exp(vlo hi O 80ps 1000ps 80ps)
vdd vdd gnd dc vdd

vddp vddp gnd dc vdd

*

* Define the test circuit with parameters.

* si = size of the input stage

* so = size of the output stage

jl1 vdd in sfdl depl.2 L=1.2u W=’2.8u*si’

j2 sfdc sfdl sfdc ddepl.2 L=1.2u W=2.0u

j3 sfdc gnd gnd depl.2 L=1.2u w=’2.0u*si’

j4 out sfdc gnd enhl.2 L=1.2u W=’14.0u*so’

j5 vdd out out depl.2 L=1.2u W=’2.0u*so’
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*

x1 out load M=fanout

cl out gnd cload

*

* Measure delays, rise and fall time, power dissipation.

.meas TRAN tdhl TRIG v(in) VAL=mid RISE=1 TARG v(out) VAL=mid FALL=1
.meas TRAN tdlh TRIG v(in) VAL=mid FALL=1 TARG v(out) VAL=mid RISE=1
.meas TRAN trise TRIG v(out) VAL=11 RISE=1 TARG v(out) VAL=hh RISE=1
.meas TRAN tfall TRIG v(out) VAL=hh FALL=1 TARG v(out) VAL=11 FALL=1
.probe par(’so/si’) par(’si/so’)

.measure TRAN pd AVG par(’-p(vdd)’)

.tran 10ps 2000ps SWEEP data=datan

.include ’delays.data’

.include ’/arpa/jat/cad/hspice/vscmodels/models’
.1lib ’/arpa/jat/cad/hspice/vscmodels/corners’ tt
.end

These are the numerical results for the inverter simulations:

tan = 35.0449.6 x %%—+-4_1 x g%_+_11.7 y {;Zt
tgm = 98.6 4 18.3 x %4- 0.7 % g_ol_l_ 0.3 x fg:t

trise = 29.0+65.3 x §_+ T4 % %+ 91 6 f;“f
tran = 109.0 +18.7 X §_+ 0.9 x %+ 0.0 x fgj

Pd = 025><SZ—|-04><SO

Times are in ps, capacitances in ff, f,,; in number of equivalent gates,
and power is in mW. The Pj parameter was found to be too small to be
meaningful compared with P; and P,, and was left out.
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5.6 Example: D-element

Consider the circuit of Figure 5.4. We will try to size the different gates
for optimum speed, as defined by the oscillation frequency. In this case, the
metric is:

T = tap + tann + tane + taniz + tans + tans + tana + tania

We will assume a standard wiring capacitance of 10.0ff on all wires. We
constrain the search space by limiting the static power dissipation to 5mW.

L. we modify the power

In this circuit all gates work with a duty cycle of z;

equation accordingly, that is, 6 = 0.3, v = 0.
Making all gates equal, we get the following equation to minimize,
10.0 S

T _ .. o .
7= 13364679 x = +48x = +120x

subject to the constraint,
5>1.25 x5 +20x.5,

There is a minimum for S, = 1.2, 5; = 2.1, for which the period is T' =
936ps. A direct simulation of this circuit yields a period of T' = 998ps. The
same circuit was optimized directly with Hspice; the same power equation
was used as a constraint, with the following results: S, = 1.6 5; = 1.4

T = 920ps.

5.7 Conclusions

A linear timing model was generated for this family of logic gates. This
model was made linear, with the objective of using it to optimize delays,
cycle times, critical paths, since tools for such a model are available. In
general, this model has given a good approximation of the optimum for the
circuit, and with low computational complexity. This optimum can be used
as a starting point for a more elaborate procedure, or used directly if the
complexity of the circuit is too high.

More elaborate models can be generated in the same way if the required
accuracy has to be higher. However, simpler models can be used to design
very large circuits, which was one of the motivations for this experiment.
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Figure 5.4: Free running D-element.
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Chapter 6

Design Example

Introduction

The ideas presented in this document were used to build a number of circuits.
Among them, several memories and register files, and a simplified version of
the Caltech asynchronous processor.

The process used was VITESSE’s HGaAs 11, offered through the MOSIS
foundry brokerage service.

In this chapter, we show the design of a static RAM as an example of an
asynchronous circuit built with the logic family presented earlier.

6.1 Self timed memory

This section describes an implementation in GaAs of a Self-Timed random
access memory chip. This memory chip has a capacity of 64 words of 4 bits,
a simulated read time of 2.6 ns and a simulated write time of 3.0ns. The chip
is fully delay insensitive, except for some isochronic forks and the circuitry
to convert to and from dual rail encoding. The original circuit for a CMOS
version of the memory was derived by H. P. Hofstee[Hof91].

6.1.1 Decoder

The decoder takes as input the address encoded in dual rail, and generates
a decode signal:
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*[[v(Address)]; s(Address)T; [z(Address)]; s(Address)|]
This is implemented as an array of C-elements:

a0t Nal? N ... —  sal
—al0? AN—al?N... — sal

where each question mark represents either a 1 or a 0, to fully decode all
addresses.

These C-elements are implemented in SFFL style, with parallel input
nand gates. The output is super-buffered, with the sizes optimized for a row
of 4 bits. The feedback inverter has an extra transistor to take into account
the shift in threshold in the memory cells. The output of these C-elements
goes to DCFL nand gates in the memory arrays.

Alternate outputs go on alternate sides of the decoder, so as to reduce
the height of the columns to half in number of bit-cells. A total of 4 decoders
take care of the 8 memory arrays.

6.1.2 Bit-cell

The bit-cell was implemented with 12 transistors. This is the basic 10 tran-
sistor cell used in the CMOS version of the memory, where two extra tran-
sistors were added to ensure that every signal goes to the same level in all
pull-down chains (Figure 6.1). The data lines have passive pull-ups, which
are reasonably fast due to the small height (8 words) of each memory array.

6.1.3 Ram arrays

The memory has 8 8-word ram arrays, for a total of 64 words. The ram
arrays are paired with nand gates on the data-buses, to reduce by a factor
of two the load on the passive pull-ups of the bit lines. This nand gate also
converts the DCFL level of the bit line into SFFL level to be processed by
the output circuitry.

The output circuitry determines whether the operation was a read or a
write, and generates the output data, again in DCFL level.

The 4 resulting pairs are connected together via an output data bus,
pulled up with passive pull-ups. This bus goes to the pads and the completion
detection circuitry.
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Figure 6.1: Transistor schematic of a 12T bitcell

All buses in this design were implemented in DCFL logic levels. Due to
the limited voltage swing, they operate faster and can be pulled up with a
passive pull-up. Whenever possible, third level metal was used to minimize
the capacitance to ground. Otherwise, second level metal was use; there are
no buses in first level metal.

6.1.4 Single rail to dual rail conversion

This conversion was done at DCFL levels, which seemed to offer the best
figures in power dissipation and speed.

The address buffers had to generate very strong signals to drive the de-
coders, and with rail to rail voltage swing. This required very careful electri-
cal design, and uses a good part of the total power dissipation ( about 30%).
For a bigger decoder, some pre-decoding needs to be done so that the fanout
of the address bus does not become too large.

6.1.5 Completion signal.

The completion signal was derived from the data output. An SFFL C-element
was used. The data was converted to SFFL level with nand gates taking both
rails of each bit signal as input. There is no separate completion for read
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and write, though they can be generated by duplicating the C-element and
adding one input for the corresponding control signal.

6.1.6 Sizing.

Sizing was done with the Hspice optimizer on each individual circuit, using
nominal loads. The loads were taken from a preliminary sizing and layout,
or from already sized circuits.

The circuits were optimized for speed, but the power consumption was
added as a soft constraint to get a reasonable result.

The first circuit to be sized was the bitcell. The first parameter to be
determined was the maximum height of the array that could be handled by
passive pull-ups on the bit lines. Though 16 seemed to be possible, it required
that the transistors on the bitcell itself be too big. Eight by four arrays were
therefore used.

The transistors on the bitcell came next. The sizes were estimated, and
then optimized for speed on a write cycle.

With the bitcell fixed, the next circuit to be sized was the decoder. The
actual load, the bitcell array, was abstracted and used in the process. The
optimization goal was to get about the same delay on the decoder as on the
array.

Address single-to-dual rail converters and drivers were sized next. The
load had to be carefully calculated, since there is interaction between the
different inputs to the decoder’s C-elements. It turned out that the load
represented by the 32 inputs was roughly the same as 11 equivalent gates
with no interaction.

Data drivers and output circuitry was sized next. This represented a
small percentage of the total delay, since it is done concurrently with other
operations.

The total breakdown in delays is as follows: data conversion 25%, decod-
ing of the address 25%, memory array 25%, pad delays 25%.

6.1.7 Simulation results

We show here the simulation results for the memory(Figure 6.2). This was
done with Hspice on the whole circuit. The simulation consists of two write
actions, followed by two read actions.
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The read operation access time is 2.7ns; the write operation takes 3.0ns;
cycle time is 6ns. The total power dissipation for this memory is 700mW.

6.1.8 Experiment results

The memory was fabricated and tested. Results agree with the simulation
to a high degree, in timing and power consumption. However, part of the
circuitry does not work at the nominal voltage. This is attributed so far to
inaccuracies of the spice model, or the way the circuit parasitics are extracted.
The contact resistances in the input stage could play an important role, and
are ignored by the extractor.
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Chapter 7

Conclusions

So far, we have achieved the following objectives:

We designed a number of circuits that implement directly arbitrary pro-
duction rules. Some are specialized for some specific functions, like
completion trees or arbiters.

We derived a simple timing and power model that allows us to get a quit
estimate of delays and power consumption, for a subset of the circuits
introduced earlier.

A standard cell library was implemented, that is used by the standard cell
place and route program Vgladys. This library was used in several
circuits that were fabricated.

A program was written to do several syntactic and static checks on the
transistor network extracted from the circuit layout, to verify as much
as possible that the circuit is legal, and create a new circuit that can be
simulated using Cosmos. Cosmos is a ternary switch level simulator.

A number of circuits were fabricated to test different aspects of this design
style. Among them, divide-by-two counters, D-elements, register files,
RAM arrays, and am asynchronous microprocessor. The last one is not
fully functional, but has provided some useful data.

On the down side, we noticed the following problems:
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These circuits require more power than equivalent circuits implemented in
DCFL, and sometimes extra delay. However, it is very hard to imple-
ment arbitrary production rules in DCFL, without compromising the
delay-insensitivity of the circuit.

Some gates become extremely complex and slow. In these cases, it is al-
ways a good idea to look for an alternative circuit, by transforming the
production rules.

These gates turned out to be rather sensitive to sizing, specially the more
complex ones. So far they have been fixed at the expense of extra
power.

Future work

We need a better sizing strategy, that gives robust gates with respect to
parameter variation, and doesn’t have a big price in power dissipation.

A more elaborate timing model, that takes into account a wider variety
of gates would be useful for complex designs.

DCFL circuits should be used a lot more, to gain in density and power
dissipation. This would require in general that the productions rules for
the circuit be changed so that they can be implemented with combinational
gates; an alternative would be to implement the datapath in DCFL, reserving
our gates for the control circuitry.
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