
MPEG Clock Generator with VCXO

Features

- Integrated Phase-Locked Loop (PLL)
- Low Jitter, High Accuracy Outputs
- VCXO with Analog Adjust
- 3.3V Operation
- Compatible with MK3727 (-1, -4)
- Application compatibility for a wide variety of Designs
- Enables Design compatibility
- Lower Drive Strength settings (CY241V08A–04)

Benefits

- Digital VCXO control
- Second source for existing designs
- Highest performance PLL tailored for multimedia applications
- Meets critical timing requirements in complex system designs

Selector Guide

Part Number	Outputs	Input Frequency Range	Output Frequencies	VCXO Control Curve	Other Features
CY241V08A-01		13.5 MHz pullable crystal input according to Cypress specification	1 copy of 27 MHz	linear	Compatible with MK3727
CY241V08A-04	1	13.5 MHz pullable crystal input according to Cypress specification	1 copy of 27 MHz		Same as CY241V08A-01 except lower drive strength settings

Pin Configurations

Figure 1. CY241V08A-01, -04 8-Pin SOIC

Pin Descriptions

Name	Pin Number	Description			
XIN	1	Reference crystal input			
VDD	2	Voltage supply			
VCXO	3	Input analog control for VCXO			
VSS	4	Ground			
27 MHz	5	7 MHz clock output			
NC/VDD	6	o connect or voltage supply			
NC/VSS	7	No connect or ground			
XOUT	8	eference crystal output			

[+] Feedback

Absolute Maximum Conditions

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested. Supply Voltage (V_{DD})......–0.5 to +7.0V DC Input Voltage-0.5V to V_{DD} + 0.5 Storage Temperature (Non-condensing) -55°C to +125°C

Junction Temperature	-40°C to +125°C
Data Retention at Tj = 125°C	> 10 years
Package Power Dissipation	350 mW
ESD (Human Body Model) MIL-STD-883	> 2000V

Pullable Crystal Specifications[1]

Parameter	Description	Comments	Min	Тур	Max	Unit
F _{NOM}	Nominal crystal frequency	Parallel resonance, fundamental mode, AT cut	-	13.5	_	MHz
C _{LNOM}	Nominal load capacitance		-	14	_	pF
R ₁	Equivalent series resistance (ESR)	Fundamental mode	_	_	25	Ω
R ₃ /R ₁	Ratio of third overtone mode ESR to fundamental mode ESR	Ratio used because typical R ₁ values are much less than the maximum spec	3	_	_	_
DL	Crystal drive level	No external series resistor assumed	150	_	_	μW
F _{3SEPHI}	Third overtone separation from 3*F _{NOM}	High side	300	_	_	ppm
F _{3SEPLO}	Third overtone separation from 3*F _{NOM}	Low side	_	_	-150	ppm
C ₀	Crystal shunt capacitance		_	_	7	pF
C ₀ /C ₁	Ratio of shunt to motional capacitance		180	-	250	-
C ₁	Crystal motional capacitance		14.4	18	21.6	fF

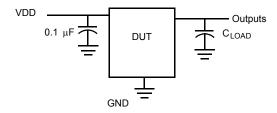
Recommended Operating Conditions

Parameter	Description	Min	Тур	Max	Unit
V_{DD}	Operating Voltage	3.135	3.3	3.465	V
T _A	Ambient Temperature	0	_	70	°C
C _{LOAD}	Maximum Load Capacitance	_	_	15	pF
t _{PU}	Power up time for all VDD pins to reach minimum specified voltage (power ramps must be monotonic)	0.05	_	500	ms

DC Electrical Specifications

Parameter	Name	Description	Min	Тур	Max	Unit
I _{OH}	Output HIGH Current	$V_{OH} = V_{DD} - 0.5V, V_{DD} = 3.3V$	12	24	_	mA
I _{OL}	Output LOW Current	V _{OL} = 0.5V, V _{DD} = 3.3V	12	24	_	mA
C _{IN}	Input Capacitance	Except XIN, XOUT pins	_	_	7	pF
V _{VCXO}	VCXO Input Range		0	_	V_{DD}	V
$f_{\Delta XO}^{[2]}$	VCXO Pullability Range	Low Side	-	_	-115	ppm
		High Side	115	_	_	ppm
I _{VDD}	Supply Current		_	30	35	mA

Notes


- 1. Crystals that meet this specification include: Ecliptek ECX-5788-13.500M, Siward XTL001050A-13.5-14-400, Raltron A-13.500-14-CL,PDI HA13500XFSA14XC.
- -115/+115 ppm assumes 2.5 pF of additional board level load capacitance. This range will be shifted down with more board capacitance or shifted up with less board capacitance.

AC Electrical Specifications ($V_{DD} = 3.3V$)^[3]

Parameter ^[3]	Name	Description	Min	Тур	Max	Unit
DC	Output Duty Cycle	Duty Cycle is defined in Figure 2, 50% of V _{DD}	45	50	55	%
ER _{OR}	Rising Edge Rate –01	Output Clock Edge Rate, Measured from 20% to 80% of V _{DD} , CLOAD = 15 pF See Figure 3.	0.8	1.4	_	V/ns
ER _{OF}	Falling Edge Rate –01	Output Clock Edge Rate, Measured from 80% to 20% of V _{DD} , CLOAD = 15 pF See Figure 3.	0.8	1.4	_	V/ns
ER _{OR}	Rising Edge Rate –04	Output Clock Edge Rate, Measured from 20% to 80% of V _{DD} , CLOAD = 15 pF See Figure 3.	0.7	1.1	_	V/ns
ER _{OF}	Falling Edge Rate –04	Output Clock Edge Rate, Measured from 80% to 20% of V _{DD} , CLOAD = 15 pF See Figure 3.	0.7	1.1	_	V/ns
t ₉	Clock Jitter Peak-to-peak period jitter		-	_	100	ps
t ₁₀	PLL Lock Time		_	_	3	ms

Test and Measurement Setup

Voltage and Timing Definitions

Figure 2. Duty Cycle Definition

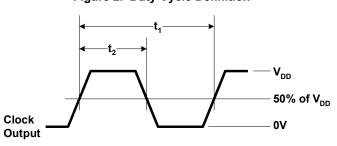
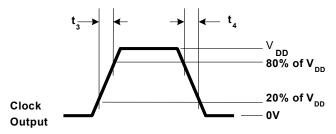
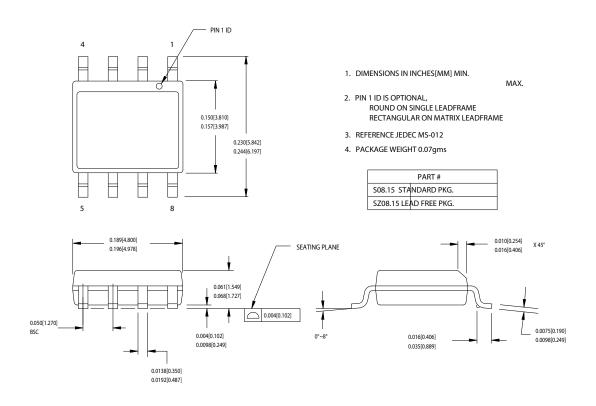



Figure 3. ER = $(0.6 \text{ x V}_{DD})/t_3$, EF = $(0.6 \text{ x V}_{DD})/t_4$

Note

3. Not 100% tested.

[+] Feedback



Ordering Information

Ordering Code	Package Type	Operating Range	Operating Voltage	Features
CY241V08ASC-01	8-pin SOIC	Commercial	3.3V	Linear VCXO control curve
CY241V08ASC-01T	8-pin SOIC –Tape and Reel	Commercial	3.3V	Linear VCXO control curve
CY241V08ASC-04	8-pin SOIC	Commercial	3.3V	Linear VCXO control curve
CY241V08ASC-04T	8-pin SOIC –Tape and Reel	Commercial	3.3V	Linear VCXO control curve
Pb-free			•	
CY241V8ASXC-01	8-pin SOIC	Commercial	3.3V	Linear VCXO control curve
CY241V8ASXC-01T	8-pin SOIC –Tape and Reel	Commercial	3.3V	Linear VCXO control curve
Pure Sn			•	
CY241V8ASXC-1S	8-pin SOIC	Commercial	3.3V	Linear VCXO control curve
CY241V8ASXC-1ST	8-pin SOIC –Tape and Reel	Commercial 3.3V Linear VCX		Linear VCXO control curve

Package Drawing and Dimensions

Figure 4. 8-Pin (150-Mil) SOIC

51-85066-*C

Document History Page

	Document Title: CY241V08A-01,04/CY241V8A-01MPEG Clock Generator with VCXO Document Number: 38-07656						
REV.	REV. ECN NO. Submission Date Orig. of Change Description of Change		Description of Change				
**	214069	See ECN	RGL	New Data Sheet			
*A	220404	See ECN	RGL	Minor Change: To post on web			
*B	393122	See ECN	RGL	Added Lead-free device for -01 Added the CY241V8A-01 in the title			
*C	414184	See ECN	RGL	Minor Change: Deleted unnecessary text in the benefit section			
*D	455059	See ECN	RGL	Added Pure Sn parts for -01			
*E	2759384	09/02/2009	TSAI	Updated template Post to external web			

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at cypress.com/sales.

Products

PSoC psoc.cypress.com
Clocks & Buffers clocks.cypress.com
Wireless wireless.cypress.com
Memories memory.cypress.com
Image Sensors image.cypress.com

© Cypress Semiconductor Corporation, 2004-2009. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document #: 38-07656 Rev. *E

Revised September 01, 2009

Page 6 of 6

All products and company names mentioned in this document may be the trademarks of their respective holders