

EZ-PD[™] CCG2 Datasheet

USB Type-C Port Controller

General Description

EZ-PD™ CCG2 is a USB Type-C controller that complies with the latest USB Type-C and PD standards. EZ-PD CCG2 provides a complete USB Type-C and USB Power Delivery port control solution for passive cables, active cables, and powered accessories. It can also be used in many upstream and downstream facing port applications. EZ-PD CCG2 uses Cypress's proprietary M0S8 technology with a 32-bit, 48-MHz ARM[®] Cortex[®]-M0 processor with 32-KB flash and integrates a complete Type-C Transceiver including the Type-C termination resistors R_P, R_D and R_A.

Applications

- USB Type-C EMCA cables
- USB Type-C powered accessories
- USB Type-C upstream facing ports
- USB Type-C downstream facing ports

Features

32-bit MCU Subsystem

- 48-MHz ARM Cortex-M0 CPU
- 32-KB Flash
- 4-KB SRAM
- In-system reprogrammable

Integrated Digital Blocks

- Integrated timers and counters to meet response times required by the USB-PD protocol
- Run-time reconfigurable serial communication block (SCB) with reconfigurable I²C, SPI, or UART functionality

Clocks and Oscillators

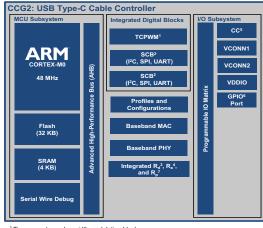
Integrated oscillator eliminating the need for external clock

Type-C Support

- Integrated transceiver (baseband PHY)
- Integrated UFP (R_D), EMCA (R_A) termination resistors, and current sources for DFP (R_P)
- Supports one USB Type-C port

Low-Power Operation

- 2.7-V to 5.5-V operation
- Two independent VCONN rails with integrated isolation between the two
- Independent supply voltage pin for GPIO that allows 1.71-V to 5.5-V signaling on the I/Os
- Reset: 1.0 µA, Deep Sleep: 2.5 µA, Sleep: 2.0 mA


System-Level ESD on CC and VCONN Pins

■ ±8-kV Contact Discharge and ±15-kV Air Gap Discharge based on IEC61000-4-2 level 4C

Packages

- 1.63 mm × 2.03 mm, 20-ball wafer-level CSP (WLCSP) with 0.4-mm ball pitch
- 2.5 mm × 3.5 mm × 0.6 mm 14-pin DFN
- 4.0 mm × 4.0 mm, 0.55 mm 24-pin QFN
- Supports industrial temperature range (-40 °C to +85 °C)

Logic Block Diagram

¹ Timer, counter, pulse-width modulation block ² Serial communication block configurable as UART, SPI, or I²C ³ Termination resistor denoting a UFP ⁴ Configuration Channel ⁶ Configuration Channel ⁶ Ceneral-purpose input/output ⁷ Current Sources to indicate a DFP

EZ-PD[™] CCG2 Datasheet

Contents

Functional Overview	3
CPU and Memory Subsystem	3
USB-PD Subsystem (SS)	
System Resources	. 4
Peripherals	5
GPIO	5
Pinouts	6
Power	8
Application Diagrams	9
Electrical Specifications	
Absolute Maximum Ratings	13
-	13
Digital Peripherals	16
Memory	18
System Resources	10

Ordering Information	. 21
Ordering Code Definitions	. 21
Packaging	
Acronyms	
Document Conventions	. 25
Units of Measure	. 25
Document History Page	. 26
Sales, Solutions, and Legal Information	
Worldwide Sales and Design Support	. 27
Products	
PSoC® Solutions	. 27
Cypress Developer Community	
Technical Support	

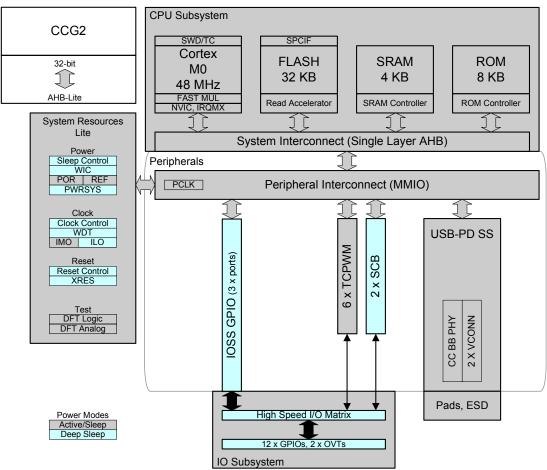


Figure 1. EZ-PD CCG2 Block Diagram

Functional Overview

CPU and Memory Subsystem

CPU

The Cortex-M0 CPU in EZ-PD CCG2 is part of the 32-bit MCU subsystem, which is optimized for low-power operation with extensive clock gating. It mostly uses 16-bit instructions and executes a subset of the Thumb-2 instruction set. This enables fully compatible binary upward migration of the code to higher performance processors such as the Cortex-M3 and M4, thus enabling upward compatibility. The Cypress implementation includes a hardware multiplier that provides a 32-bit result in one cvcle. It includes a nested vectored interrupt controller (NVIC) block with 32 interrupt inputs and also includes a Wakeup Interrupt Controller (WIC). The WIC can wake the processor up from the Deep Sleep mode, allowing power to be switched off to the main processor when the chip is in the Deep Sleep mode. The Cortex-M0 CPU provides a Non-Maskable Interrupt (NMI) input, which is made available to the user when it is not in use for system functions requested by the user.

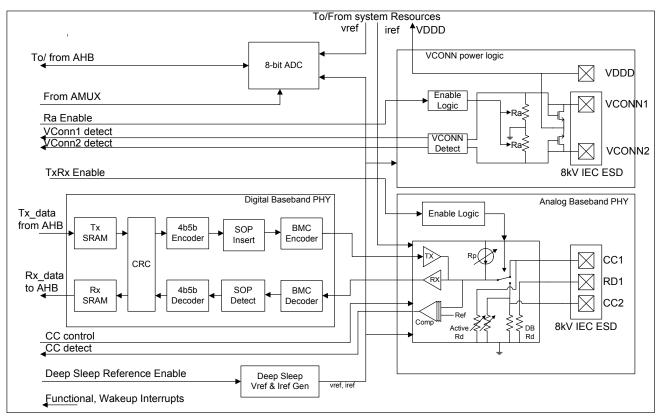
The CPU also includes a serial wire debug (SWD) interface, which is a 2-wire form of JTAG. The debug configuration used for EZ-PD CCG2 has four break-point (address) comparators and two watchpoint (data) comparators.

Flash

The EZ-PD CCG2 device has a flash module with a flash accelerator, tightly coupled to the CPU to improve average access times from the flash block. The flash block is designed to deliver 1 wait-state (WS) access time at 48 MHz and with 0-WS access time at 24 MHz. The flash accelerator delivers 85% of single-cycle SRAM access performance on average. Part of the flash module can be used to emulate EEPROM operation if required.

SROM

A supervisory ROM that contains boot and configuration routines is provided.


USB-PD Subsystem (SS)

EZ-PD CCG2 has a USB-PD subsystem consisting of a USB Type-C baseband transceiver and physical-layer logic. This transceiver performs the BMC and the 4b/5b encoding and decoding functions as well as the 1.2-V front end. This subsystem integrates the required termination resistors to identify the role of the EZ-PD CCG2 solution. R_A is used to identify EZ-PD CCG2 as an accessory or an electronically marked cable. R_D is used to identify EZ-PD CCG2 as a UFP in a hybrid cable or a dongle. When configured as a DFP, integrated current sources perform the role of R_P or pull-up resistors. These current sources can be programmed to indicate the complete range of current capacity on VBUS defined in the Type-C spec. EZ-PD CCG2 responds to all USB-PD communication. The

EZ-PD CCG2 USB-PD sub-system can be configured to respond to SOP, SOP', or SOP" messaging.

The USB-PD sub-system contains a 8-bit SAR (Successive Approximation Register) ADC for analog to digital conversions. The ADC includes a 8-bit DAC and a comparator. The DAC output forms the positive input of the comparator. The negative input of the comparator is from a 4-input multiplexer. The four inputs of the multiplexer are a pair of global analog multiplex busses an internal bandgap voltage and an internal voltage proportional to the absolute temperature. All GPIO inputs can be connected to the global Analog Multiplex Busses through a switch at each GPIO that can enable that GPIO to be connected to the mux bus for ADC use. The CC1, CC2 and RD1 pins are not available to connect to the mux busses.

Figure 2. USB-PD Subsystem

System Resources

Power System

The power system is described in detail in the section Power on page 8. It provides assurance that voltage levels are as required for each respective mode and either delay mode entry (on power-on reset (POR), for example) until voltage levels are as required for proper function or generate resets (Brown-Out Detect (BOD)) or interrupts (Low Voltage Detect (LVD)). EZ-PD CCG2 can operate from three different power sources over the range of 2.7 to 5.5 V and has three different power modes, transitions between which are managed by the power system. EZ-PD CCG2 provides Sleep and Deep Sleep low-power modes.

Clock System

The clock system for EZ-PD CCG2 consists of the Internal Main Oscillator (IMO) and the Internal Low-power Oscillator (ILO).

Peripherals

Serial Communication Blocks (SCB)

EZ-PD CCG2 has two SCBs, which can be configured to implement an I^2 C, SPI, or UART interface. The hardware I^2 C blocks implement full multi-master and slave interfaces capable of multimaster arbitration. In the SPI mode, the SCB blocks can be configured to act as master or slave.

In the I²C mode, the SCB blocks are capable of operating at speeds of up to 1 Mbps (Fast Mode Plus) and have flexible buffering options to reduce interrupt overhead and latency for the CPU. These blocks also support I²C that creates a mailbox address range in the memory of EZ-PD CCG2 and effectively reduce I²C communication to reading from and writing to an array in memory. In addition, the blocks support 8-deep FIFOs for receive and transmit which, by increasing the time given for the CPU to read data, greatly reduce the need for clock stretching caused by the CPU not having read data on time.

The I²C peripherals are compatible with the I²C Standard-mode, Fast-mode, and Fast-mode Plus devices as defined in the NXP I²C-bus specification and user manual (UM10204). The I²C bus I/Os are implemented with GPIO in open-drain modes.

The I^2C port on SCB 1 block of EZ-PD CCG2 is not completely compliant with the I^2C spec in the following respects:

- The GPIO cells for SCB 1's I²C port are not overvoltage-tolerant and, therefore, cannot be hot-swapped or powered up independently of the rest of the I²C system.
- Fast-mode Plus has an I_{OL} specification of 20 mA at a V_{OL} of 0.4 V. The GPIO cells can sink a maximum of 8-mA I_{OL} with a V_{OL} maximum of 0.6 V.
- Fast-mode and Fast-mode Plus specify minimum Fall times, which are not met with the GPIO cell; Slow strong mode can help meet this spec depending on the bus load.

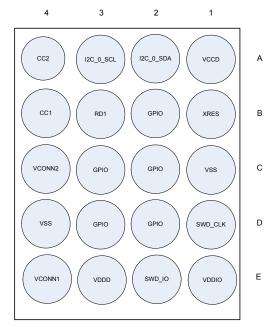
Timer/Counter/PWM Block (TCPWM)

EZ-PD CCG2 has six TCPWM blocks. Each implements a 16-bit timer, counter, pulse-width modulator (PWM), and quadrature decoder functionality. The block can be used to measure the period and pulse width of an input signal (timer), find the number of times a particular event occurs (counter), generate PWM signals, or decode quadrature signals.

GPIO

EZ-PD CCG2 has up to 10 GPIOs in addition to the I^2 C and SWD pins, which can also be used as GPIOs. The I^2 C pins from SCB 0 are overvoltage-tolerant. The number of available GPIOs vary with the package. The GPIO block implements the following:

- Seven drive strength modes:
- Input only
- Weak pull-up with strong pull-down
- Strong pull-up with weak pull-down
- Open drain with strong pull-down
- Open drain with strong pull-up
- □ Strong pull-up with strong pull-down
- Weak pull-up with weak pull-down
- Input threshold select (CMOS or LVTTL)
- Individual control of input and output buffer enabling/disabling in addition to the drive strength modes
- Hold mode for latching previous state (used for retaining I/O state in Deep Sleep mode)
- Selectable slew rates for dV/dt related noise control to improve EMI


During power-on and reset, the I/O pins are forced to the disable state so as not to crowbar any inputs and/or cause excess turn-on current. A multiplexing network known as a high-speed I/O matrix is used to multiplex between various signals that may connect to an I/O pin.

Pinouts

Group	Name	Pin Map 24-QFN	Ball Location 20-CSP	Pin Map 14-DFN	Description
USB Type-C Port	CC1	2	B4	3	USB PD connector detect/Configuration Channel 1
	CC2	1	A4	N/A	USB PD connector detect/Configuration Channel 2
	RD1	3	В3	N/A	Dedicated Rd resistor pin for CC1 Must be left open for cable applications and connected together with CC1 ball for UFP or DFP with dead battery applications
GPIOs and serial interfaces	GPIO	22	C3	N/A	GPIO / SPI_0_CLK / UART_0_ RX
	GPIO	18	D3	13	GPIO / SPI_0_MOSI / UART_0_TX
	GPIO	13	C2	10	GPIO / I2C_1_SDA / SPI_1_MISO / UART_1_RX
	GPIO	10	D2	N/A	GPIO / I2C_1_SCL / SPI_1_CLK / UART_1_TX
	GPIO	15	B2	11	GPIO / SPI_1_SEL / UART_1_RTS
	GPIO	14	N/A	N/A	GPIO
	GPIO	17	N/A	N/A	GPIO
	GPIO	21	N/A	N/A	GPIO
	GPIO	23	N/A	N/A	GPIO
	GPIO	24	N/A	N/A	GPIO
	I2C_0_SCL	20	A3	1	GPIO / I2C_0_SCL / SPI_0_MISO / UART_0_RTS
	I2C_0_SDA	19	A2	14	GPIO / I2C_0_SDA / SPI_0_SEL / UART_0_CTS
	SWD_IO	11	E2	8	SWD IO / GPIO / UART_1_CTS / SPI_1_MOSI
	SWD_CLK	12	D1	9	SWD clock / GPIO
RESET	XRES	16	B1	12	Reset input
POWER	VCONN1	5	E4	5	VCONN 1 input (4.0 V to 5.5 V)
	VCONN2	4	C4	4	VCONN 2 input (4.0 V to 5.5 V)
	VDDIO	8	E1	N/A	1.71-V to 5.5-V supply for I/Os
	VCCD	7	A1	6	1.8-V regulator output for filter capacitor
	VDDD	9	E3	7	VDDD supply input/output (2.7 V to 5.5 V)
	VDDD	6	J	1	VDDD supply input/output (2.7 V to 5.5 V)
	VSS		N/A	EPAD	Ground supply
	VSS	EPAD	D4	0	Ground supply
	VSS		C1	2	Ground supply

Figure 3. 20-ball WLCSP EZ-PD CCG2 Ball Map (Bottom (Balls Up) View)

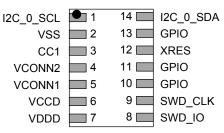
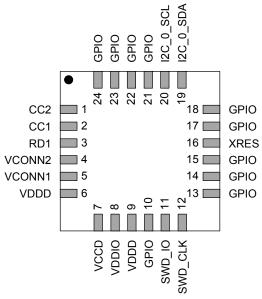



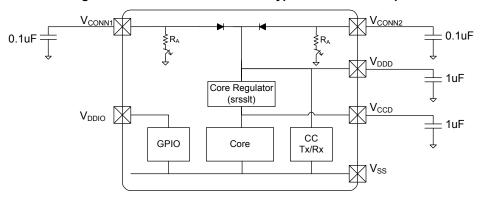
Figure 5. 24-Pin QFN Pin Map (Top View)

Power

The following power system diagram shows the set of power supply pins as implemented in EZ-PD CCG2.

EZ-PD CCG2 can operate from three different power sources. VCONN1 and VCONN2 pins can be used as connections to the VCONN pins on a Type-C plug of a cable or VCONN-powered accessory. Each of these inputs support operation over 4.0 to 5.5 V. An internal isolation between VCONN1 and VCONN2 pins is provided allowing them to be at different levels simultaneously. CCG2 can be used in EMCA applications with only one or both VCONN pins as power sources. This is illustrated later in the section on Applications. Besides being power inputs, each VCONN pin is also internally connected to a R_A termination resistor required for EMCA and VCONN-powered accessories.

EZ-PD CCG2 can also be operate from 2.7 to 5.5 V when operated from the VDDD supply pin. VCONN-powered accessory applications require that CCG2 work down to 2.7 V. In such applications, both the VDDD and VCONN pins should be connected to the VCONN pin of the Type-C plug in the accessory.


In UFP, DFP, and DRP applications, CCG2 can be operated from VDDD as the only supply input. In such applications, the VCONN pins are left open. In DFP applications, the lowest VDDD level that CCG2 can operate is 3.0 V due to the need to support disconnect detection thresholds of up to 2.7 V.

A separate I/O supply pin, VDDIO, allows the GPIOs to operate at levels from 1.71 to 5.5 V. The VDDIO pin can be equal to or less than the voltages connected to the VCONN1, VCONN2, and VDDD pins. The independent VDDIO supply is not available on the 14-DFN package. On this package, the VDDIO rail is internally connected to the VDDD rails.

The VCCD output of EZ-PD CCG2 must be bypassed to ground via an external capacitor (in the range of 1 to 1.6 $\mu F;$ X5R ceramic or better).

Bypass capacitors must be used from VDDD and VCONN pins to ground; typical practice for systems in this frequency range is to use a 0.1- μ F capacitor. Note that these are simply rules of thumb and that for critical applications, the PCB layout, lead inductance, and the bypass capacitor parasitic should be simulated to design and obtain optimal bypassing.

An example of the power supply bypass capacitors is shown in Figure 6.

Figure 6. EZ-PD CCG2 Power and Bypass Scheme Example

Application Diagrams

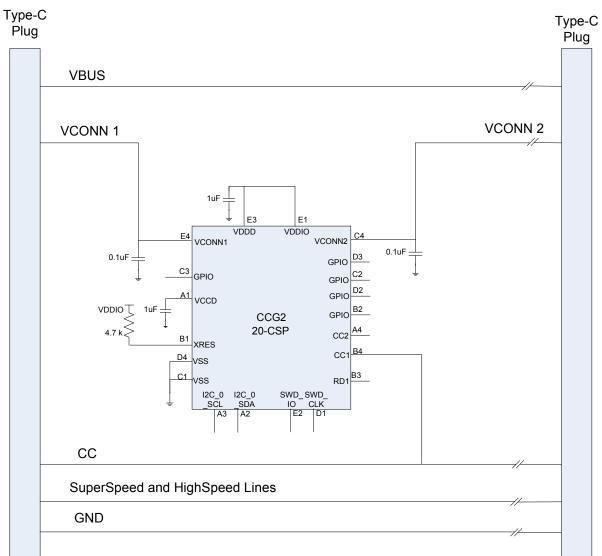


Figure 7. Passive EMCA Application – Single EZ-PD CCG2 Per Cable

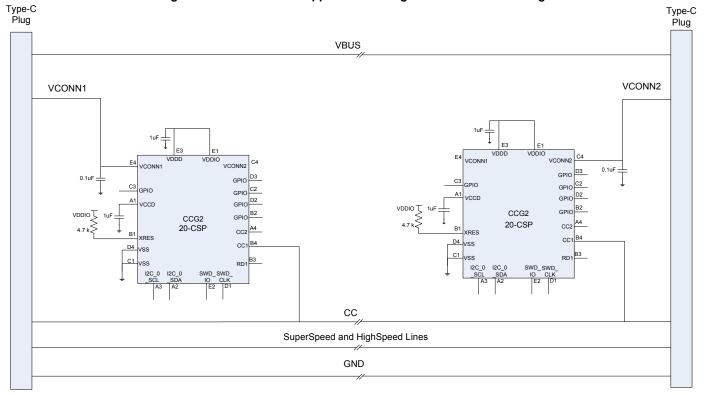
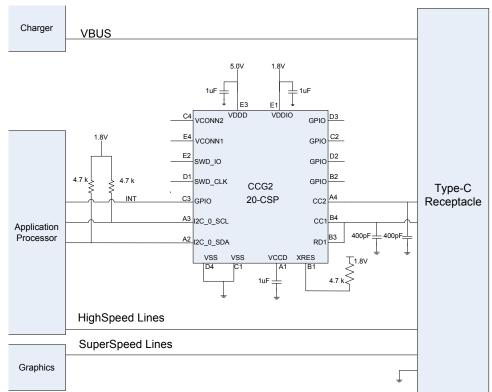



Figure 8. Passive EMCA Application – Single EZ-PD CCG2 Per Plug

Figure 9. Upstream Facing Port (UFP) Application – Tablet with a Type-C Port

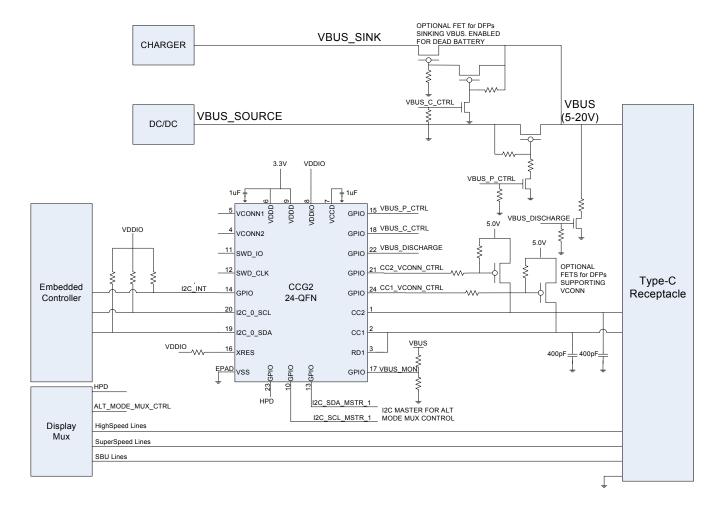


Figure 10. Dual Role Port (DRP) Application

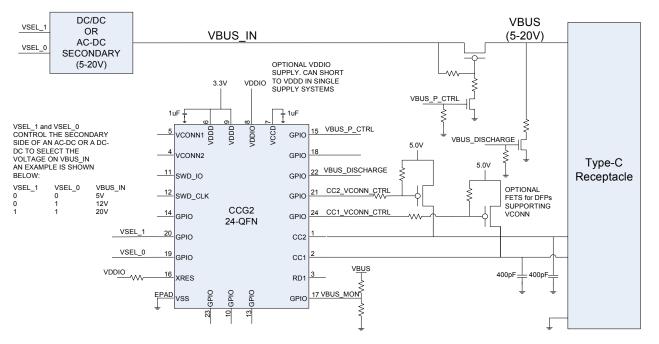


Figure 11. Downstream Facing Port (DFP) Application

Electrical Specifications

Absolute Maximum Ratings

Table 1. Absolute Maximum Ratings^[1]

Parameter	Description	Min	Тур	Max	Units	Details/Conditions
V _{DDD_MAX}	Digital supply relative to V _{SS}	-0.5	-	6	V	Absolute max
V _{CONN1_MAX}	Max supply voltage relative to V_{SS}			6	V	Absolute max
V _{CONN2_MAX}	Max supply voltage relative to V_{SS}			6	V	Absolute Max
V _{DDIO_MAX}	Max supply voltage relative to V_{SS}			6	V	Absolute Max
V _{GPIO_ABS}	GPIO voltage	-0.5	-	V _{DDIO} + 0.5	V	Absolute max
I _{GPIO_ABS}	Maximum current per GPIO	-25	-	25	mA	Absolute max
I _{GPIO_injection}	GPIO injection current, Max for V_{IH} > V_{DDD} , and Min for V_{IL} < V_{SS}	-0.5	-	0.5	mA	Absolute max, current injected per pin
ESD_HBM	Electrostatic discharge human body model	2200	-	-	V	-
ESD_CDM	Electrostatic discharge charged device model	500	-	-	V	_
LU	Pin current for latch-up	-200	-	200	mA	-
ESD_IEC_CON	Electrostatic discharge IEC61000-4-2	8000	_	-	V	Contact discharge on CC1, CC2, VCONN1, and VCONN2 pins
ESD_IEC_AIR	Electrostatic discharge IEC61000-4-2	15000	_	-	V	Air discharge for pins CC1, CC2, VCONN1, and VCONN2

Device Level Specifications

All specifications are valid for –40 °C \leq TA \leq 85 °C and TJ \leq 100 °C, except where noted. Specifications are valid for 3.0 V to 5.5 V, except where noted.

Table 2. DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.PWR#1	V _{DDD}	Power supply input voltage	2.7	-	5.5	V	UFP Applications
SID.PWR#1_A	V _{DDD}	Power supply input voltage	3.0	-	5.5	V	DFP/DRP Applications
SID.PWR#23	V _{CONN1}	Power supply input voltage	4.0	-	5.5	V	-
SID.PWR#23_A	V _{CONN2}	Power supply input voltage	4.0	-	5.5	V	-
SID.PWR#13	V _{DDIO}	GPIO power supply	1.71	-	5.5	V	-
SID.PWR#24	V _{CCD}	Output voltage (for core logic)	-	1.8	-	V	-
SID.PWR#15	C _{EFC}	External regulator voltage bypass on V_{CCD}	1	1.3	1.6	μF	X5R ceramic or better
SID.PWR#16	C _{EXC}	Power supply decoupling capacitor on V_{DDD}	_	1	-	μF	X5R ceramic or better
SID.PWR#25		Power Supply Decoupling Capacitor on V_{CONN1} and V_{CONN2}	_	0.1	_	μF	X5R ceramic or better

Note

Usage above the absolute maximum conditions listed in Table 1 may cause permanent damage to the device. Exposure to absolute maximum conditions for extended periods of time may affect device reliability. The maximum storage temperature is 150 °C in compliance with JEDEC Standard JESD22-A103, High Temperature Storage Life. When used below absolute maximum conditions but above normal operating conditions, the device may not operate to specification.

Table 2. DC Specifications (continued)

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/Conditions				
Active Mode, V	Active Mode, V_{DDD} = 2.7 to 5.5 V. Typical values measured at V_{DD} = 3.3 V.										
SID.PWR#12	I _{DD12}	Supply current	_	7.5	_	mA	V_{CONN1} or $V_{CONN2} = 5 V$, $T_A = 25 °C$, CC I/O IN Transmit or Receive, R_A discon- nected, no I/O sourcing current, CPU at 12 MHz				
Sleep Mode, V _{DI}	_{DD} = 2.7 to 5.	5 V									
SID25A	I _{DD20A}	I ² C wakeup. WDT ON. IMO at 48 MHz	_	2.0	3.0	mA	V_{DDD} = 3.3 V, T_A = 25 °C, all blocks except CPU are ON, CC I/O ON, no I/O sourcing current				
Deep Sleep Mod	le, V _{DDD} = 2.	7 to 3.6 V (Regulator on)									
SID_DS_RA	I _{DD_DS_RA}	V _{CONN1} = 5.0, R _A switch enabled	_	100	_	μΑ	R_A switch enabled on V_{CONN1} and V_{CONN2} $V_{CONN} / V_{CONN2} = 5 V$, TA = 25 °C				
SID34	I _{DD29}	V _{DDD} = 2.7 to 3.6 V. I ² C wakeup and WDT ON	-	50	-	μA	R_A switch disabled on V _{CONN1} and V _{CONN2} . V _{DDD} = 3.3 V, T _A = 25 °C				
SID_DS	I _{DD_DS}	V _{DDD} = 2.7 to 3.6 V. CC wakeup ON	_	2.5	_	μΑ	Power source = V _{DDD} , Type-C not attached, CC enabled for wakeup, R _P disabled				
XRES Current											
SID307	I _{DD_XR}	Supply current while XRES asserted	_	1	10	μA	_				

Table 3. AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.CLK#4	F _{CPU}	CPU frequency	DC	-	48	MHz	$3.0~V \leq V_{DDD} \leq 5.5~V$
SID.PWR#20	T _{SLEEP}	Wakeup from sleep mode	_	0	_	μs	Guaranteed by character- ization
SID.PWR#21	T _{DEEPSLEEP}	Wakeup from Deep Sleep mode	_	_	35	μs	24-MHz IMO. Guaranteed by characterization
SID.XRES#5	T _{XRES}	External reset pulse width	5	_	_	μs	Guaranteed by character- ization
SYS.FES#1	T_ _{PWR_RDY}	Power-up to "Ready to accept I2C / CC command"	_	5	25	ms	Guaranteed by character- ization

I/O

Table 4. I/O DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.GIO#37	V _{IH} ^[2]	Input voltage HIGH threshold	0.7 × V _{DDIO}	-	-	V	CMOS input
SID.GIO#38	V _{IL}	Input voltage LOW threshold	Ι	_	0.3 × V _{DDIO}	V	CMOS input

Note 2. V_{IH} must not exceed V_{DDIO} + 0.2 V.

Table 4. I/O DC Specifications (continued)

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/Conditions
SID.GIO#39	V _{IH} ^[2]	LVTTL input, V _{DDIO} < 2.7 V	0.7× V _{DDIO}	-	_	V	-
SID.GIO#40	V _{IL}	LVTTL input, V _{DDIO} < 2.7 V	-	-	0.3 × V _{DDIO}	V	-
SID.GIO#41	V _{IH} ^[2]	LVTTL input, $V_{DDIO} \ge 2.7 V$	2.0	-	-	V	-
SID.GIO#42	V _{IL}	LVTTL input, $V_{DDIO} \ge 2.7 V$	-	-	0.8	V	-
SID.GIO#33	V _{OH}	Output voltage HIGH level	V _{DDIO} -0.6	-	-	V	I _{OH} = 4 mA at 3-V V _{DDIO}
SID.GIO#34	V _{OH}	Output voltage HIGH level	V _{DDIO} -0.5	_	-	V	I _{OH} = 1 mA at 1.8-V V _{DDIO}
SID.GIO#35	V _{OL}	Output voltage LOW level	-	—	0.6	V	I _{OL} = 4 mA at 1.8-V V _{DDIO}
SID.GIO#36	V _{OL}	Output voltage LOW level	-	-	0.6	V	I _{OL} = 8 mA at 3 V V _{DDIO}
SID.GIO#5	R _{PULLUP}	Pull-up resistor	3.5	5.6	8.5	kΩ	-
SID.GIO#6	R _{PULLDOWN}	Pull-down resistor	3.5	5.6	8.5	kΩ	-
SID.GIO#16	IIL	Input leakage current (absolute value)	-	_	2	nA	25 °C, V _{DDIO} = 3.0 V
SID.GIO#17	C _{IN}	Input capacitance	-	-	7	pF	_
SID.GIO#43	V _{HYSTTL}	Input hysteresis LVTTL	25	40	-	mV	$V_{DDIO} \ge 2.7$ V. Guaranteed by characterization
SID.GPIO#44	V _{HYSCMOS}	Input hysteresis CMOS	0.05 × V _{DDIO}	_	_	mV	Guaranteed by characterization
SID69	I _{DIODE}	Current through protection diode to V_{DDIO}/Vss	-	-	100	μA	Guaranteed by characterization
SID.GIO#45	I _{TOT_GPIO}	Maximum total source or sink chip current	-	_	200	mA	Guaranteed by characterization

Table 5. I/O AC Specifications

(Guaranteed by Characterization)

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/Conditions
SID70	T _{RISEF}	Rise time	2	-	12	ns	3.3-V V_{DDIO} , Cload = 25 pF
SID71	T _{FALLF}	Fall time	2	-	12	ns	3.3-V V _{DDIO} , Cload = 25 pF

XRES

Table 6. XRES DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.XRES#1	V _{IH}	Input voltage HIGH threshold	0.7 × V _{DDIO}	-	-	V	CMOS input
SID.XRES#2	V _{IL}	Input voltage LOW threshold	-	-	0.3 × V _{DDIO}	V	CMOS input
SID.XRES#3	C _{IN}	Input capacitance	-	-	7	pF	-
SID.XRES#4	V _{HYSXRES}	Input voltage hysteresis	-	_	0.05 × V _{DDIO}	mV	Guaranteed by characterization

Digital Peripherals

The following specifications apply to the Timer/Counter/PWM peripherals in the Timer mode.

Pulse Width Modulation (PWM) for GPIO Pins

Table 7. PWM AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.TCPWM.3	T _{CPWMFREQ}	Operating frequency	-	Fc	-	MHz	Fc max = CLK_SYS. Maximum = 48 MHz
SID.TCPWM.4	T _{PWMENEXT}	Input trigger pulse width	-	2/Fc	-	ns	For all Trigger Events
SID.TCPWM.5	T _{PWMEXT}	Output trigger pulse width	-	2/Fc	-	ns	Minimum possible width of Overflow, Underflow, and CC (Counter equals Compare value) outputs
SID.TCPWM.5A	T _{CRES}	Resolution of counter	-	1/Fc	-	ns	Minimum time between successive counts
SID.TCPWM.5B	PWM _{RES}	PWM resolution	-	1/Fc	-	ns	Minimum pulse width of PWM output
SID.TCPWM.5C	Q _{RES}	Quadrature inputs resolution	_	1/Fc	_		Minimum pulse width between quadrature-phase inputs

 I^2C

Table 8. Fixed I²C DC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Мах	Units	Details/Conditions
SID149	I _{I2C1}	Block current consumption at 100 kbps	_	-	60	μA	-
SID150	I _{I2C2}	Block current consumption at 400 kbps	—	-	185	μA	-
SID151	I _{I2C3}	Block current consumption at 1 Mbps	-	-	390	μA	-
SID152	I _{I2C4}	I ² C enabled in Deep Sleep mode	_	-	1.4	μA	-

Table 9. Fixed I²C AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID153	F _{I2C1}	Bit rate	-	Ι	1	Mbps	-

Table 10. Fixed UART DC Specifications

(Guaranteed by Characterization)

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/Conditions
SID160	I _{UART1}	Block current consumption at 100 Kbits/sec	-	-	125	μA	_
SID161	I _{UART2}	Block current consumption at 1000 Kbits/sec	-	-	312	μA	_

Table 11. Fixed UART AC Specifications

(Guaranteed by Characterization)

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/Conditions
SID162	F _{UART}	Bit rate	-	-	1	Mbps	_

Table 12. Fixed SPI DC Specifications

(Guaranteed by Characterization)

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/Conditions
SID163		Block current consumption at 1Mbits/sec	-	-	360	μA	_
SID164		Block current consumption at 4 Mbits/sec	-	-	560	μA	-
SID165		Block current consumption at 8 Mbits/sec	-	-	600	μA	-

Table 13. Fixed SPI AC Specifications

(Guaranteed by Characterization)

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/Conditions
SID166		SPI Operating frequency (Master; 6X oversampling)	_	Ι	8	MHz	-

Table 14. Fixed SPI Master Mode AC Specifications

(Guaranteed by Characterization)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details / Conditions
SID167	T _{DMO}	MOSI Valid after SClock driving edge	-	_	15	ns	-
SID168	T _{DSI}	MISO Valid before SClock capturing edge	20	_	_	ns	Full clock, late MISO sampling
SID169	T _{HMO}	Previous MOSI data hold time	0	_	_	ns	Referred to Slave capturing edge

Table 15. Fixed SPI Slave Mode AC Specifications

(Guaranteed by Characterization)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details / Conditions
SID170	T _{DMI}	MOSI Valid before Sclock Capturing edge	40	-	-	ns	-
SID171	T _{DSO}	MISO Valid after Sclock driving edge	_	_	42 + 3*T _{CPU}	ns	T _{CPU} = 1/F _{CPU}
SID171A	T _{DSO_EXT}	MISO Valid after Sclock driving edge in Ext Clk mode			48	ns	-
SID172	T _{HSO}	Previous MISO data hold time	0	-	-	ns	-
SID172A	T _{SSELSCK}	SSEL Valid to first SCK Valid edge	100			ns	_

Memory

Table 16. Flash AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.MEM#4	T _{ROWWRITE} ^[3]	Row (block) write time (erase and program)	_	_	20	ms	Row (block) = 128 bytes
SID.MEM#3	T _{ROWERASE} ^[3]	Row erase time	-	-	13	ms	-
SID.MEM#8	T _{ROWPROGRAM} ^[3]	Row program time after erase	-	-	7	ms	-
SID178	T _{BULKERASE} ^[3]	Bulk erase time (32 KB)	-	-	35	ms	-
SID180	T _{DEVPROG} ^[3]	Total device program time	_	_	7.5	seconds	Guaranteed by characterization
SID181	F _{END}	Flash endurance	100 K	_	-	cycles	Guaranteed by characterization
SID182	F _{RET1}	Flash retention. T _A ≤ 55 °C, 100 K P/E cycles	20	_	_	years	Guaranteed by characterization
SID182A	F _{RET2}	Flash retention. $T_A \le 85 \text{ °C}$, 10 K P/E cycles	10	_	_	years	Guaranteed by characterization

System Resources

Power-on-Reset (POR) with Brown Out

Table 17. Imprecise Power On Reset (PRES)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID185	V _{RISEIPOR}	Rising trip voltage	0.80	-	1.50		Guaranteed by charac- terization
SID186	V _{FALLIPOR}	Falling trip voltage	0.75	-	1.4		Guaranteed by charac- terization

Table 18. Precise Power On Reset (POR)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID190	V _{FALLPPOR}	BOD trip voltage in active and sleep modes	1.48	-	1.62	V	Guaranteed by charac- terization
SID192	V _{FALLDPSLP}	BOD trip voltage in Deep Sleep	1.1	-	1.5	V	Guaranteed by charac- terization

Note

It can take as much as 20 milliseconds to write to Flash. During this time the device should not be Reset, or Flash operations will be interrupted and cannot be relied on to have completed. Reset sources include the XRES pin, software resets, CPU lockup states and privilege violations, improper power supply levels, and watchdogs. Make certain that these are not inadvertently activated.

SWD Interface

Table 19. SWD Interface Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.SWD#1	F_SWDCLK1	$3.3~V \le V_{DDIO} \le 5.5~V$	-	-	14	MHz	SWDCLK ≤ 1/3 CPU clock frequency
SID.SWD#2	F_SWDCLK2	$1.8 \text{ V} \leq \text{V}_{\text{DDIO}} \leq 3.3 \text{ V}$	-	-	7	MHz	SWDCLK ≤ 1/3 CPU clock frequency
SID.SWD#3	T_SWDI_SETUP	T = 1/f SWDCLK	0.25*T	-	_	ns	Guaranteed by charac- terization
SID.SWD#4	T_SWDI_HOLD	T = 1/f SWDCLK	0.25*T	-	-	ns	Guaranteed by charac- terization
SID.SWD#5	T_SWDO_VALID	T = 1/f SWDCLK	-	-	0.5*T	ns	Guaranteed by charac- terization
SID.SWD#6	T_SWDO_HOLD	T = 1/f SWDCLK	1	_	_	ns	Guaranteed by charac- terization

Internal Main Oscillator

Table 20. IMO DC Specifications

(Guaranteed by Design)

Spec ID		Description	Min	Тур	Мах	Units	Details/Conditions
SID218	I _{IMO}	IMO operating current at 48 MHz	_	1	1000	μA	_

Table 21. IMO AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.CLK#13	F _{IMOTOL}	Frequency variation at 24, 36, and 48 MHz (trimmed)	-	-	±2	%	-
SID226	T _{STARTIMO}	IMO startup time	-	-	7	μs	-
SID229	T _{JITRMSIMO}	RMS jitter at 48 MHz	-	145	-	ps	-
F _{IMO}	-	IMO frequency	24	1	48	MHz	_

Internal Low-Speed Oscillator

Table 22. ILO DC Specifications

(Guaranteed by Design)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID231	I _{ILO}	ILO operating current at 32 kHz	_	0.3	1.05	μΑ	Guaranteed by Characterization
SID233	I _{ILOLEAK}	ILO leakage current	_	2	15	nA	Guaranteed by Design

Table 23. ILO AC Specifications

Spec ID	Parameter	Description	Min	Тур	Мах	Units	Details/Conditions
SID234	T _{STARTILO}	ILO startup time	_	_	2	ms	Guaranteed by characterization
SID236	T _{ILODUTY}	ILO duty cycle	40	50	60	%	Guaranteed by characterization
SID.CLK#5	F _{ILO}	ILO Frequency	20	40	80	kHz	_

Power Down

Table 24. PD DC Specifications

Spec ID	Parameter	Description	Min	Тур	Мах	Units	Details/Conditions	
SID.PD.1	Rp_std	DFP CC termination for default USB Power	64	80	96	μA	-	
SID.PD.2	Rp_1.5A	DFP CC termination for 1.5A power	166	180	194	μA	_	
SID.PD.3	Rp_3.0A	DFP CC termination for 3.0A power	304	330	356	μA	-	
SID.PD.4	Rd	UFP CC termination	4.59	5.1	5.61	kΩ	-	
SID.PD.5	Rd_DB	UFP Dead Battery CC termination on RD1 and CC2	4.08	5.1	6.12	kΩ	All supplies forced to 0 V and 0.6 V applied at RD1 or CC2	
SID.PD.6	R _A	Power cable termination	0.8	1.0	1.2	kΩ	All supplies forced to 0 V and 0.2 V applied at V_{CONN1} or V_{CONN2}	
SID.PD.7	Ra_OFF	Power cable termination - Disabled	0.4	0.75	-	MΩ	2.7 V applied at V_{CONN1} or V_{CONN2} with R_{A} disabled	
SID.PD.8	Rleak_1	V _{CONN} leaker for 0.1-µF load	_	-	216	kΩ		
SID.PD.9	Rleak_2	V _{CONN} leaker for 0.5-µF load	-	—	41.2	kΩ		
SID.PD.10	Rleak_3	V _{CONN} leaker for 1.0-µF load	-	-	19.6	kΩ	Managed Active Cable (MAC)	
SID.PD.11	Rleak_4	V _{CONN} leaker for 2.0-µF load	-	-	9.8	kΩ	discharge	
SID.PD.12	Rleak_5	V _{CONN} leaker for 5.0-µF load	-	—	4.1	kΩ		
SID.PD.13	Rleak_6	V _{CONN} leaker for 10-µF load	-	—	2.0	kΩ		
SID.PD.14	lleak	Leaker on V_{CONN1} and V_{CONN2} for discharge upon cable detach	150	_	_	μA	_	

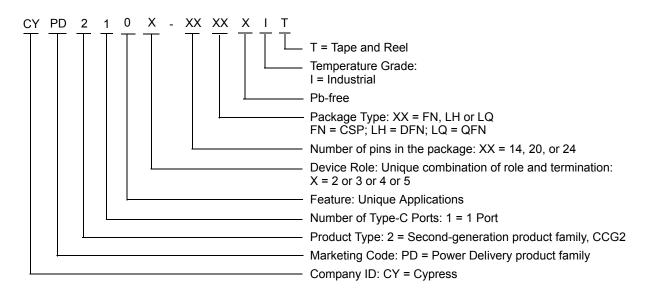
Analog to Digital Converter

Table 25. ADC DC Specifications

Spec ID	Parameter	Description	Min	Тур	Мах	Units	Details/Conditions
SID.ADC.1	Resolution	ADC resolution	-	8	-	bits	_
SID.ADC.2	INL	Integral non-linearity	-1.5	-	1.5	LSB	_
SID.ADC.3	DNL	Differential non-linearity	-2.5	-	2.5	LSB	_
SID.ADC.4	Gain Error	Gain error	-0.5	-	0.5	LSB	_

Table 26. ADC AC Specifications

Spec ID	Parameter	Description	Min	Тур	Мах	Units	Details/Conditions
SID.ADC.5		Rate of change of sampled voltage signal	-	-	3	V/ms	-


Ordering Information

The EZ-PD CCG2 part numbers and features are listed in Table 27.

Table 27. EZ-PD CCG2 Ordering Information

Part Number	Application	Type-C Ports	Termination Resis- tor	Role	Package
CYPD2103-20FNXIT	Cable	1	R _A ^[4]	Cable	20-Ball CSP
CYPD2103-14LHXIT	Cable	1	R _A ^[4]	Cable	14-Pin DFN
CYPD2105-20FNXIT	Active Cable	1	R _A ^[4]	Active Cable	20-Ball CSP
CYPD2104-20FNXIT	Accessory	1	R _D ^[5]	Accessory	20-Ball CSP
CYPD2122-20FNXIT	Tablets	1	R _P ^[6] , R _D ^[5]	DRP	20-Ball CSP
CYPD2122-24LQXIT	Note Books	1	R _P ^[6] , R _D ^[5]	DRP	24-Pin QFN
CYPD2134-24LQXIT	DFP	1	R _P ^[6]	DFP	24-Pin QFN

Ordering Code Definitions

Notes

- Termination resistor denoting an EMCA. Termination resistor denoting an accessory or upstream facing port. Termination resistor denoting a downstream facing port. 4. 5. 6.

Packaging

Table 28. Package Characteristics

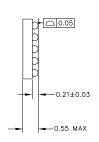
Parameter	Description	Conditions	Min	Тур	Мах	Units
T _A	Operating ambient temperature	-	-40	25	85	°C
TJ	Operating junction temperature	-	-40	-	100	°C
T _{JA}	Package θ_{JA} (20-ball WLCSP)	-	-	66	-	°C/W
T _{JC}	Package θ_{JC} (20-ball WLCSP)	-	-	0.7	-	°C/W
T _{JA}	Package θ_{JA} (14-pin DFN)	-	-	31	-	°C/W
T _{JC}	Package θ_{JC} (14-pin DFN)	-	-	59	-	°C/W
T _{JA}	Package θ_{JA} (24-pin QFN)	-	-	22	-	°C/W
T _{JC}	Package θ_{JC} (24-pin QFN)	_	-	29	-	°C/W

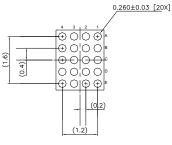
Table 29. Solder Reflow Peak Temperature

Package	Maximum Peak Temperature	Maximum Time within 5 °C of Peak Temperature
20-ball WLCSP	260 °C	30 seconds
14-pin DFN	260 °C	30 seconds
24-pin QFN	260 °C	30 seconds

Table 30. Package Moisture Sensitivity Level (MSL), IPC/JEDEC J-STD-2

Package	MSL
20-ball WLCSP	MSL 1
14-pin DFN	MSL 3
24-pin QFN	MSL 3


Figure 12. 20-ball WLCSP (1.63 × 2.03 × 0.55 mm) FN20B Package Outline, 001-95010

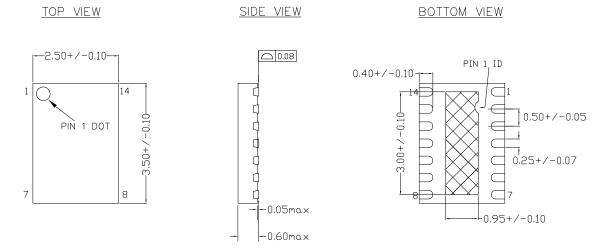

TOP VIEW

SIDE VIEW

BOTTOM VIEW

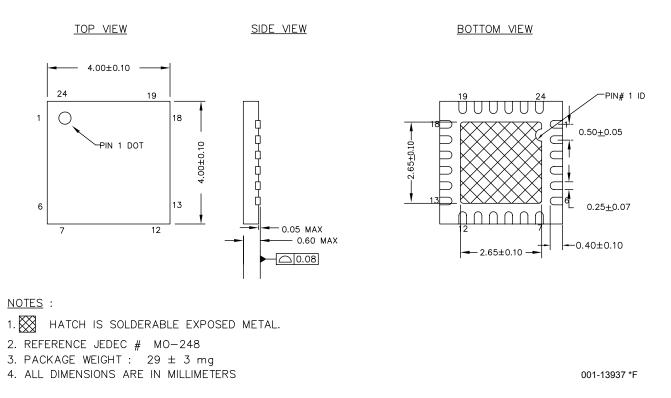
PIN 1 PIN 1 PIN 1 C DOT F 1.63±0.025

NOTES:


1. REFERENCE JEDEC PUBLICATION 95, DESIGN GUIDE 4.18

2. ALL DIMENSIONS ARE IN MILLIMETERS

001-95010 *A


Figure 13. 14-pin DFN (2.5 × 3.5 × 0.6 mm), LH14A, 0.95 × 3.00 E-Pad (Sawn) Package Outline, 001-96312

<u>NOTES</u> :

- 1. HATCH AREA IS SOLDERABLE EXPOSED METAL
- 2. ALL DIMENSIONS ARE IN MILLIMETERS

001-96312 **

Figure 14. 24-Pin QFN (4 × 4 × 0.55 mm), LQ24A, 2.65 × 2.65 E-Pad (Sawn) Package Outline, 001-13937

Acronyms

Table 31. Acronyms Used in this Document

Acronym	Description
ADC	analog-to-digital converter
API	application programming interface
ARM®	advanced RISC machine, a CPU architecture
CC	configuration channel
CCG2	Cable Controller Generation 2
CPU	central processing unit
CRC	cyclic redundancy check, an error-checking protocol
CS	current sense
DFP	downstream facing port
DIO	digital input/output, GPIO with only digital capabil- ities, no analog. See GPIO.
DRP	dual role port
EEPROM	electrically erasable programmable read-only memory
EMCA	a USB cable that includes an IC that reports cable characteristics (e.g., current rating) to the Type-C ports
EMI	electromagnetic interference
ESD	electrostatic discharge
FPB	flash patch and breakpoint
FS	full-speed
GPIO	general-purpose input/output
IC	integrated circuit
IDE	integrated development environment
I ² C, or IIC	Inter-Integrated Circuit, a communications protocol
ILO	internal low-speed oscillator, see also IMO
IMO	internal main oscillator, see also ILO
I/O	input/output, see also GPIO
LVD	low-voltage detect
LVTTL	low-voltage transistor-transistor logic
MCU	microcontroller unit
NC	no connect
NMI	nonmaskable interrupt

Acronym	Description			
NVIC	nested vectored interrupt controller			
opamp	operational amplifier			
OCP	overcurrent protection			
OVP	overvoltage protection			
РСВ	printed circuit board			
PD	power delivery			
PGA	programmable gain amplifier			
PHY	physical layer			
POR	power-on reset			
PRES	precise power-on reset			
PSoC [®]	Programmable System-on-Chip™			
PWM	pulse-width modulator			
RAM	random-access memory			
RISC	reduced-instruction-set computing			
RMS	root-mean-square			
RTC	real-time clock			
RX	receive			
SAR	successive approximation register			
SCL	l ² C serial clock			
SDA	l ² C serial data			
S/H	sample and hold			
SPI	Serial Peripheral Interface, a communications protocol			
SRAM	static random access memory			
SWD	serial wire debug, a test protocol			
ТΧ	transmit			
Туре-С	a new standard with a slimmer USB connector and a reversible cable, capable of sourcing up to 100 W of power			
UART	Universal Asynchronous Transmitter Receiver, a communications protocol			
USB	Universal Serial Bus			
USBIO	USB input/output, CCG2 pins used to connect to a USB port			
	external reset I/O pin			

Table 31. Acronyms Used in this Document (continued)

Document Conventions

Units of Measure

Table 32. Units of Measure

Symbol	Unit of Measure			
°C	degrees Celsius			
Hz	hertz			
KB	1024 bytes			
kHz	kilohertz			
kΩ	kilo ohm			
Mbps	megabits per second			
MHz	megahertz			
MΩ	mega-ohm			
Msps	megasamples per second			
μA	microampere			
μF	microfarad			
μs	microsecond			
μV	microvolt			
μW	microwatt			
mA	milliampere			
ms	millisecond			
mV	millivolt			
nA	nanoampere			
ns	nanosecond			
Ω	ohm			
pF	picofarad			
ppm	parts per million			
ps	picosecond			
S	second			
sps	samples per second			
V	volt			

Document History Page

Description Title: EZ-PD [™] CCG2 Datasheet USB Type-C Port Controller Document Number: 001-93912						
Revision	ECN	Orig. of Change	Submission Date	Description of Change		
*E	4680071	GAYA	03/07/2015	Release to web		
*F	4718374	AKN	04/09/2015	Added 24-pin QFN pin and package information. Added DRP and DFP Application diagrams		
*G	4774142	AKN	06/15/2015	Changed datasheet status from Preliminary to Final. Updated Logic Block Diagram. Changed number of GPIOs to 10 and added a note about the number of GPIOs varying depending on the package. Updated Power and Digital Peripherals section. Updated Application diagrams. Added SID.PWR#1_A parameter. Added CYPD2122-20FNXIT part in Ordering Information. Removed Errata.		

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive	cypress.com/go/automotive
Clocks & Buffers	cypress.com/go/clocks
Interface	cypress.com/go/interface
Lighting & Power Control	cypress.com/go/powerpsoc
Memory	cypress.com/go/memory
PSoC	cypress.com/go/psoc
Touch Sensing	cypress.com/go/touch
USB Controllers	cypress.com/go/USB
Wireless/RF	cypress.com/go/wireless

PSoC[®] Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Community | Forums | Blogs | Video | Training

Technical Support cypress.com/go/support

© Cypress Semiconductor Corporation, 2014-2015. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document Number: 001-93912 Rev. *G

Revised June 15, 2015

All products and company names mentioned in this document may be the trademarks of their respective holders.