BUD42D

High Speed, High Gain Bipolar NPN Transistor with Antisaturation Network and Transient Voltage Suppression Capability

The BUD42D is a state-of-the-art bipolar transistor. Tight dynamic characteristics and lot to lot minimum spread make it ideally suitable for light ballast applications.

Features

- Free-Wheeling Diode Built-In
- Flat DC Current Gain
- Fast Switching Times and Tight Distribution
- "6 Sigma" Process Providing Tight and Reproducible Parameter Spreads
- Epoxy Meets UL 94 V-0 @ 0.125 in
- These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant

Two Versions

- BUD42D-1: Case 369D for Insertion Mode
- BUD42D, BUD42DT4: Case 369C for Surface Mount Mode

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Sustaining Voltage	$\mathrm{V}_{\mathrm{CEO}}$	350	Vdc
Collector-Base Breakdown Voltage	$\mathrm{V}_{\mathrm{CBO}}$	650	Vdc
Collector-Emitter Breakdown Voltage	$\mathrm{V}_{\mathrm{CES}}$	650	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	9	Vdc
Collector Current - Continuous	I_{C}	4.0	Adc
Collector Current - Peak (Note 1)	I_{CM}	8.0	Adc
Base Current - Continuous	I_{B}	1.0	Adc
Base Current - Peak (Note 1)	I_{BM}	2.0	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	P_{D}	25	W
Derate above 25 ${ }^{\circ} \mathrm{C}$		0.2	$\mathrm{~W} /{ }^{\circ} \mathrm{C}$
Operating and Storage Temperature	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
ESD - Human Body Model	HBM	3 B	V
ESD - Machine Model	MM	C	V

TYPICAL GAIN

Typical Gain @ $\mathrm{I}_{\mathrm{C}}=1 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=2 \mathrm{~V}$	$\mathrm{~h}_{\mathrm{FE}}$	13	-
Typical Gain @ $\mathrm{I}_{\mathrm{C}}=0.3 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=1 \mathrm{~V}$	$\mathrm{~h}_{\mathrm{FE}}$	16	-

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Pulse Test: Pulse Width $=5.0 \mathrm{~ms}$, Duty Cycle $=10 \% 10$

\oplus

ON Semiconductor ${ }^{\circledR}$

http://onsemi.com

4 AMPERES 650 VOLTS, 25 WATTS POWER TRANSISTOR

A	$=$ Assembly Location
Y	$=$ Year
WW	$=$ Work Week
BUD43D	Device Code
G	P Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 10 of this data sheet.

BUD42D

THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta J C}$	5.0	
Thermal Resistance, Junction-to-Ambient	$R_{\theta J A}$	71.4	
Maximum Lead Temperature for Soldering Purposes: $1 / 8$ in from Case for 5 seconds	T_{L}	260	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Collector-Emitter Sustaining Voltage$\left(\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}, \mathrm{~L}=25 \mathrm{mH}\right)$		$\mathrm{V}_{\text {CEO(sus) }}$	350	430	-	Vdc
$\begin{aligned} & \text { Collector-Base Breakdown Voltage } \\ & \text { (ICBO =1 mA) } \end{aligned}$		$\mathrm{V}_{\text {CBO }}$	650	780	-	Vdc
Emitter-Base Breakdown Voltage $\left(I_{\text {EBO }}=1 \mathrm{~mA}\right)$		$\mathrm{V}_{\text {EBO }}$	9.0	12	-	Vdc
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CE}}=\text { Rated } \mathrm{V}_{\mathrm{CEO}}, \mathrm{I}_{\mathrm{B}}=0\right)$	@ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ @ $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	$I_{\text {CEE }}$			$\begin{aligned} & 100 \\ & 200 \end{aligned}$	$\mu \mathrm{Adc}$
Collector Cutoff Current ($\mathrm{V}_{\mathrm{CE}}=$ Rated $\mathrm{V}_{\mathrm{CES}}, \mathrm{V}_{\mathrm{EB}}=0$)	@ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ @ $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	Ices			$\begin{gathered} 10 \\ 200 \end{gathered}$	$\mu \mathrm{Adc}$
Emitter-Cutoff Current $\left(\mathrm{V}_{\mathrm{EB}}=9 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=0\right)$		$\mathrm{l}_{\text {ebo }}$	-	-	100	$\mu \mathrm{Adc}$

ON CHARACTERISTICS

Base-Emitter Saturation Voltage ($\mathrm{I}_{\mathrm{C}}=1 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=0.2 \mathrm{Adc}$)	$\mathrm{V}_{\mathrm{BE} \text { (sat) }}$	-	0.85	1.2	Vdc
Collector-Emitter Saturation Voltage ($I_{C}=2 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=0.5 \mathrm{Adc}$)	$\mathrm{V}_{\text {CE(sat) }}$	-	0.2	1.0	Vdc
DC Current Gain $\begin{aligned} & \left(\mathrm{I}_{\mathrm{C}}=1 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=2 \mathrm{Vdc}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=2 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{Vdc}\right) \end{aligned}$	$\mathrm{h}_{\text {FE }}$	$\begin{aligned} & 8.0 \\ & 10 \end{aligned}$	$\begin{aligned} & 13 \\ & 12 \end{aligned}$	-	-

DIODE CHARACTERISTICS

| Forward Diode Voltage
 $\left(\mathrm{I}_{\mathrm{EC}}=1.0\right.$ Adc $)$ | V_{EC} | | 0 | V |
| :--- | :---: | :---: | :---: | :---: | :---: |

SWITCHING CHARACTERISTICS: Resistive Load (D.C. $\leq 10 \%$, Pulse Width $=40 \mu \mathrm{~s}$)

$\left.\begin{array}{l}\text { Turn-Off Time } \\ \left(I_{C}=1.2 ~ A d c, ~\right. \\ \mathrm{I}_{1}\end{array}=0.4 \mathrm{~A}, \mathrm{I}_{\mathrm{B} 2}=0.1 \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=300 \mathrm{~V}\right)$	$\mathrm{T}_{\text {off }}$	4.6	-
Fall Time $\left(\mathrm{I}_{\mathrm{C}}=2.5 \mathrm{Adc}, \mathrm{I}_{\mathrm{B} 1}=\mathrm{I}_{\mathrm{B} 2}=0.5 \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=150 \mathrm{~V}, \mathrm{~V}_{\mathrm{BE}}=-2 \mathrm{~V}\right)$	T_{f}		4.55

DYNAMIC SATURATION VOLTAGE

Dynamic Saturation Voltage: Determined $1 \mu \mathrm{~s}$ and 3μ s respectively after rising $\mathrm{I}_{\mathrm{B} 1}$ reaches 90% of final $l_{B 1}$	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=400 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{B} 1}=40 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=300 \mathrm{~V} \end{aligned}$	@ 1 us	@ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ @ $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CE} \text { (dsat) }}$	-	$\begin{aligned} & 2.8 \\ & 3.2 \end{aligned}$	-	V
		@ $3 \mu \mathrm{~s}$	@ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ @ $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$			$\begin{gathered} 0.75 \\ 1.3 \end{gathered}$		
		@ 1 us	@ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ @ $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$		-	$\begin{aligned} & \hline 2.1 \\ & 4.7 \end{aligned}$		
	$\begin{aligned} & \mathrm{I}_{\mathrm{B} 1}=200 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=300 \mathrm{~V} \end{aligned}$	@ $3 \mu \mathrm{~s}$	@ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ @ $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$		-	$\begin{gathered} \hline 0.35 \\ 0.6 \end{gathered}$	-	

TYPICAL STATIC CHARACTERISTICS

Figure 1. DC Current Gain @ $\mathrm{V}_{\mathrm{CE}}=1 \mathrm{~V}$

Figure 3. Collector Saturation Region

Figure 5. Collector-Emitter Saturation Voltage

Figure 2. DC Current Gain @ $\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}$

Figure 4. Collector-Emitter Saturation Voltage

Figure 6. Collector-Emitter Saturation Voltage

BUD42D

TYPICAL STATIC CHARACTERISTICS

Figure 7. Base-Emitter Saturation Region

Figure 9. Base-Emitter Saturation Region

Figure 8. Base-Emitter Saturation Region

Figure 10. Forward Diode Voltage

Figure 11. Capacitance

Figure 13. Resistive Switching, t_{on}

Figure 15. Inductive Storage Time,

Figure 12. $B_{\text {vCER }}=f\left(R_{B E}\right)$

Figure 14. Resistive Switching, $\mathrm{t}_{\text {off }}$

Figure 16. Inductive Storage Time,
$\mathbf{t}_{\text {ci }} @ \mathbf{h t r}_{\text {en }} 10$

TYPICAL SWITCHING CHARACTERISTICS

Figure 17. Inductive Fall and Cross Over Time, $t_{f i}$ and $t_{c} @ h_{\text {FE }}=5$

Figure 19. Inductive Cross Over Time, $\mathbf{t}_{\mathrm{c}} @ \mathrm{~h}_{\mathrm{FE}}=10$

Figure 21. Inductive Fall Time, \mathbf{t}_{f}

Figure 18. Inductive Fall Time,
$\mathbf{t}_{\mathrm{fi}} @ \mathbf{h}_{\mathrm{FE}}=10$

Figure 20. Inductive Storage Time, $\mathbf{t}_{\mathbf{s i}}$

Figure 22. Inductive Cross Over Time, $\mathbf{t}_{\mathbf{c}}$

Figure 23. Inductive Storage Time, $\mathbf{t}_{\mathbf{s i}}$

Figure 25. Dynamic Saturation Voltage Measurements

Figure 24. Forward Recovery Time, t_{fr}

Figure 26. Inductive Switching Measurements

BUD42D

TYPICAL SWITCHING CHARACTERISTICS

Table 1. Inductive Load Switching Drive Circuit

$$
\begin{aligned}
& \mathrm{V}_{\text {(BR) CEO(sus) }} \\
& \mathrm{L}=10 \mathrm{mH} \\
& \mathrm{R}_{\mathrm{B} 2}=\infty \\
& \mathrm{V}_{\mathrm{CC}}=20 \mathrm{Volts} \\
& \mathrm{I}_{\mathrm{C}(\mathrm{pk})}=100 \mathrm{~mA}
\end{aligned}
$$

Inductive Switching	RBSOA
$L=200 \mu \mathrm{H}$	$\mathrm{L}=500 \mu \mathrm{H}$
$\mathrm{R}_{\mathrm{B} 2}=0$	$\mathrm{R}_{\mathrm{B} 2}=0$
$\mathrm{~V}_{\mathrm{CC}}=15$ Volts	$\mathrm{V}_{\mathrm{CC}}=15$ Volts
$\mathrm{R}_{\mathrm{B} 1}$ selected for	$\mathrm{R}_{\mathrm{B} 1}$ selected for
desired $\mathrm{I}_{\mathrm{B} 1}$	desired $\mathrm{I}_{\mathrm{B} 1}$

Figure 27. t_{fr} Measurement

MAXIMUM RATINGS

Figure 28. Forward Bias Safe Operating Area

Figure 29. Reverse Bias Safe Operating Area

Figure 30. Power Derating

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $I_{C}-V_{C E}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 28 is based on $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} ; \mathrm{T}_{\mathrm{j}(\mathrm{pk})}$ is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when $\mathrm{T}_{\mathrm{C}}>25^{\circ} \mathrm{C}$. Second Breakdown limitations do not derate like thermal limitations. Allowable current at the voltages shown on

Figure 28 may be found at any case temperature by using the appropriate curve on Figure 30.
$\mathrm{T}_{\mathrm{j}(\mathrm{pk})}$ may be calculated from the data in Figure 31. At any case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. For inductive loads, high voltage and current must be sustained simultaneously during turn-off with the base to emitter junction reverse biased. The safe level is specified as reverse biased safe operating area (Figure 29). This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode.

Figure 31. Thermal Response

ORDERING INFORMATION

Device	Package	Shipping †
BUD42D-1G	DPAK Straight Lead (Pb-Free)	75 Units / Rail
BUD42DT4G	DPAK (Pb-Free)	2500 Units / Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

SCALE 1:1

IPAK
CASE 369D-01
ISSUE C
DATE 15 DEC 2010

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982
2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	0.235	0.245	5.97	6.35
B	0.250	0.265	6.35	6.73
C	0.086	0.094	2.19	2.38
D	0.027	0.035	0.69	0.88
E	0.018	0.023	0.46	0.58
F	0.037	0.045	0.94	
G	0.090 BSC		2.29	
BSC				
H	0.034	0.040	0.87	1.01
J	0.018	0.023	0.46	0.58
K	0.350	0.380	8.89	9.65
R	0.180	0.215	4.45	5.45
S	0.025	0.040	0.63	1.01
V	0.035	0.050	0.89	1.27
Z	0.155	---	3.93	---

MARKING
DIAGRAMS

STYLE 1:	
PIN 1.	BASE
2.	COLLECTOR
3.	EMITTER
4.	COLLECTOR

STYLE 2:	STYLE 3:	
PIN 1. GATE	PIN 1. ANODE	
2. DRAIN	2. CATHODE	
3. SOURCE	3. ANODE	
4. DRAIN	4. CATHODE	
STYLE 6:	STYLE 7:	
PIN 1. MT1	PIN 1.	GATE
2. MT2	2.	COLLECTOR
3. GATE	3. EMITTER	
4. MT2	4.	COLIECTOR

xxxxxxxxx	$=$ Device Code
A	$=$ Assembly Location
IL	= Wafer Lot
Y	Y Year
WW	Work Week

| DOCUMENT NUMBER: | 98AON10528D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | IPAK (DPAK INSERTION MOUNT) | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

DPAK (SINGLE GAUGE)
CASE 369C
ISSUE F
DATE 21 JUL 2015

SCALE 1:1

SOLDERING FOOTPRINT*

A	$=$ Assembly Location
L	$=$ Wafer Lot
Y	$=$ Year
WW	$=$ Work Week
G	$=$ Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking.
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

| DOCUMENT NUMBER: | 98AON10527D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | DPAK (SINGLE GAUGE) | PAGE 1 OF 1 |

[^0] rights of others.

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. Typical parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Email Requests to: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

[^0]: ON Semiconductor and ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

