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Abstract

We study N = 2 supersymmetric gauge theories on RP
2 × S

1 and compute the

superconformal index by using the localization technique. We consider not only the

round real projective plane RP
2 but also the squashed real projective plane RP

2
b

which turns back to RP
2 by taking a squashing parameter b as 1. In addition, we

find that the result is independent of the squashing parameter b. We apply our new

superconformal index to check the simplest case of 3d mirror symmetry, i.e. the

equivalence between the N = 2 SQED and the XYZ model on RP
2×S

1. We prove it

by using a mathematical formula called the q-binomial theorem. We also comment

on the N = 4 version of mirror symmetry, mirror symmetry via generalized indices,

and possibilities of generalizations from mathematical viewpoints.
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1 Introduction

The remarkable recent progress in 3d supersymmetric gauge theories is that we can exactly

investigate theories with interactions on various curved geometries by making use of the

localization [1, 2, 3, 4, 5, 6, 7, 8, 9]. One of the interesting quantities to which we can apply

this exact calculation is the superconformal index (SCI) [10, 11] defined as a refinement of

the Witten index. The SCI of N = 2 superconformal theories is defined by [12]

I(x, eiµa) = TrH

[

(−1)F̂x′{Q,Q
†}xĤ+ĵ3

∏

a

eiµa f̂a

]

, (1.1)

whereH is the Hilbert space of the theory, and the trace is taken over this Hilbert space (see

Section 3 for details). Basically, it counts the number of supersymmetric vacua, so-called

BPS states, with eigenvalues of certain operators commuting with both the Hamiltonian

{Q,Q†} and the fermion number operator F̂ . The SCI on S2 × S1 has been computed by

the localization in [13, 14].

An application of the SCI is to study 3d mirror symmetry [15, 16, 17, 18] of which

the duality between the N = 2 SQED and the XYZ model is the simplest example.

Mirror symmetry on S2 × S1 based on SCIs has been studied numerically in [14] and has

been manifested in [19] by using the q-binomial theorem and Ramanujan’s summation

(the special case for SCIs with gauging flavor symmetries called generalized indices also

has been proven in the same way [20]). An advantage in utilizing the SCI is that we can

establish mirror symmetry rigorously in the mathematical sense thanks to the localization.

On the other hand, one can construct 2d theories on the real projective plane RP
2

by taking precise boundary conditions of fields on the two-sphere S2 under the antipodal

identification

(π − ϑ, π + ϕ) ∼ (ϑ, ϕ), (1.2)

where ϑ, ϕ are coordinates of S2. The partition function on RP
2 has been computed exactly

in [21]. The authors also showed how to define 2d supersymmetry (SUSY) theories on the

squashed real projective plane RP
2
b by turning on an appropriate background U(1)R-gauge

field. This method was developed in [22] in the context of localization calculus on the

squashed two-sphere S2
b .

In this paper, we show that their constructions can be lifted naturally to these on

RP
2
b × S1 by adding the third coordinate y. We can get this curved space from S2

b × S1 by

identifying

(π − ϑ, π + ϕ, y) ∼ (ϑ, ϕ, y), (1.3)
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where ϑ ∈ [0, π], ϕ ∈ [0, 2π], and y ∈ [0, 2π]. Note that there is no difference between

S2
b × S1 and RP

2
b × S1 if we only discuss the local quantities. The difference between them

comes from the global distinction of topology and the boundary conditions of fields un-

der the antipodal identification (1.3). With these setups, we calculate the SCI of N = 2

supersymmetric gauge theories on RP
2
b × S1 by the localization. First of all, we take

the Kaluza-Klein (KK) expansion for all fields along the S1 direction, which reduces La-

grangians on RP
2
b × S1 to the sum of Lagrangians on RP

2
b over KK modes. Then, the

one-loop determinant of the vector multiplet and the matter multiplet can be obtained as

the product of one-loop determinants on RP
2
b computed in [21]. Furthermore, we specify

parity conditions named the B-parity condition, in order to make all fields consistent with

the antipodal identification. The B-parity condition is concluded by plausible requirements

from physical consideration. The one-loop determinant is expressed by the contribution of

the Z2-holonomy even or odd sector due to the B-parity condition. As a result, the SCI is

written as the sum of each contribution when the vector multiplet is considered. This is

different from the case where the SCI on S2
b ×S1 receives the contribution of the monopole

as the infinite sum over integers. In addition, the one-loop determinants and the SCI on

RP
2
b × S1 are independent of the squashing parameter b.

With our exact results, we check N = 2 Abelian mirror symmetry on RP
2
b×S1. Again,

the B-parity condition carries a crucial role to establish this duality. We verify it exactly

as the equality of the SCIs involving the q-shifted factorial and the basic hypergeometric

series.1. In this paper, we do not discuss the non-Abelian case because there is a slight

difficulty in the classical configuration of the gauge field. Its solutions of saddle point

equations consistent with the B-parity are written by the flat connection on RP
2
b and the

Wilson line phase along S1 (see (3.10)). After the localization, the final form of the index

becomes the integration over the saddle points (i.e., Coulomb moduli). Besides the one-

loop determinants, we have the Jacobian coming from fixing its integration measure onto

the Cartan subalgebla by using the gauge symmetry of the saddle points. However, this

factor is now undetermined since we do not find the explicit form of the flat connection.

It is straightforward to extend all other arguments to non-Abelian SUSY gauge theories.

We put off this issue as a future work.

The rest of this paper is organized as follows: In Section 2, we construct N = 2

supersymmetric gauge theories with the U(1) gauge group on RP
2
b × S1. Also, we indicate

the B-parity condition for a single flavor and its generalization to Nf flavors. In Section

1We follow these names used in [23, 19] The authors of [20] use the q-product instead of the q-shifted

factorial.
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3, we show the main idea of the localization computation on RP
2
b × S1 and the one-loop

determinant for the vector multiplet and the matter multiplet. In addition, we provide

the general formula of the new SCI for convenience. In Section 4, mirror symmetry on

RP
2
b×S1 is established as the relation of the SCI for the SQED and the XYZ model with the

appropriate identifications of variables. We must take account of the B-parity condition

correctly to get these SCIs. We justify it mathematically by employing the q-binomial

theorem. In Section 5, we summarize our results and comment on some open questions.

In Appendixes A and B, we explain calculation details of the one-loop determinants. In

addition to mirror symmetry, there is another example called an Abelian duality hold

between a gauge field and a scalar in a 3d Abelian gauge theory [24, 25, 26] to be able to

check the validity of our new SCI. We show how the SCI on RP
2
b × S1 precisely works on

Abelian duality in Appendix C. In Appendix D, we discuss mathematical generalizations

of our relation obtained as mirror symmetry.

2 Supersymmetry on RP
2
b × S

1

In this section, we show how to define 3d SUSY theories with U(1) gauge group on RP
2
b×S1.

Of course, we can also define the theories on S2
b×S1. In fact, the arguments in Section 2.1,

2.2, and 2.3 can be applied to the theories on S2
b × S1. However, we omit explanations for

the calculations of the index on S2
b×S1 because the final results are free from the squashing

parameter and just reproduce the known results on S2×S1 [13, 3, 14]. On the other hand,

discussions on RP
2
b × S1 produce truly new results even though they are free from the

squashing parameter. Therefore, we concentrate on the explanations of the theories on

RP
2
b × S1.

2.1 Our background and conventions

We extend the construction of 2d Killing spinors and the background U(1)R-gauge field in

[22, 21] to the 3d case.

Our background We consider the following dreibein and background U(1)R-gauge field:

e1 = f(ϑ)dϑ, e2 = l sinϑdϕ, e3 = dy, (2.1)

V R =
1

2
(1− l

f
)dϕ+

−i
2l

(1− l

f
)dy, (2.2)
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Table 1: Charge assignments for each field

Killing spinor ǫ ǫ

Spin 1/2 1/2

R̂ +1 −1

Field Aµ σ λ λ D φ φ ψ ψ F F

Spin 1 0 1/2 1/2 0 0 0 1/2 1/2 0 0

R̂ 0 0 +1 −1 0 −∆ ∆ −(∆− 1) ∆− 1 −(∆− 2) ∆− 2

where f(ϑ)2 = l̃ 2 sin2 ϑ + l2 cos2 ϑ. We use latin alphabet a, b, c for the local Lorentz

indices.

Covariant derivative The 3d covariant derivative is defined by

Dµ = ∂µ +
1

4
ωabµ Ĵab − iR̂V R

µ , (2.3)

where ωabµ is the spin connection computed from the dreibein (2.1), and the Ĵab’s are

Lorentz generators of the fields characterized by its spin:

spin-0 ⇒ Ĵab = 0,

spin-1/2 ⇒ Ĵab = γab,
(2.4)

where γab are antisymmetrized gamma matrices defined in (2.7), and R̂ is an R-charge.

See Table 1 for assignments of R-charges to each field.

Killing spinors Then, the spinors

ǫ(ϑ, ϕ, y) = e
1
2
( y
l
+iϕ)

(

cos ϑ
2

sin ϑ
2

)

, ǫ(ϑ, ϕ, y) = e
−1
2
( y
l
+iϕ)

(

sin ϑ
2

cos ϑ
2

)

(2.5)

satisfy the Killing spinor equations,

Dµǫ =
1

2f
γµγ3ǫ, Dµǫ =

−1

2f
γµγ3ǫ. (2.6)

Gamma matrices The gamma matrices γa are defined by the Pauli matrices

γ1 =

(

0 1

1 0

)

, γ2 =

(

0 −i
i 0

)

, γ3 =

(

1 0

0 −1

)

, γab =
1

2
(γaγb − γbγa). (2.7)
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Spinor bilinear Let us denote generic spinors by ǫ, ǫ, and λ. We take spinor bilinears

as

ǫλ =
(

ǫ1 ǫ2

)

(

0 1

−1 0

)(

λ1

λ2

)

, ǫγaλ =
(

ǫ1 ǫ2

)

(

0 1

−1 0

)

γa

(

λ1

λ2

)

.

Using this convention, one can prove the following formulas:

ǫλ = (−1)1+|ǫ|·|λ|λǫ, ǫγaλ = (−1)|ǫ|·|λ|λγaǫ, (γaǫ)λ = −ǫγaλ,
ǫ(ǫλ) + (−1)1+|ǫ|·|ǫ|ǫ(ǫλ) + (ǫǫ)λ = 0, (−1)1+|ǫ|·|ǫ|ǫ(ǫλ) + 2(ǫǫ)λ+ (−1)1+|λ|·|ǫ|(ǫγaλ)γ

aǫ = 0,

where |ǫ| means the spinor ǫ’s statistics such that |ǫ| = 0 for a bosonic ǫ and |ǫ| = 1 for a

fermonic ǫ.

2.2 Supersymmetry

We show our definition of supersymmetry in this subsection. There are two kinds of

multiplets in the 3d N = 2 theory. The first one is the vector multiplet composed of gauge

field Aµ, scalar σ, gauginos λ, λ, and an auxiliary field D. The supersymmetry for the

vector multiplet is given by

δǫAµ = − i

2
λγµǫ, δǫAµ = − i

2
ǫγµλ, (2.8)

δǫσ = +
1

2
λǫ, δǫσ = +

1

2
ǫλ, (2.9)

δǫλ =
1

2
γµνǫFµν −Dǫ+ iγµǫDµσ +

i

f
σγ3ǫ, δǫλ = 0, (2.10)

δǫλ = 0, δǫλ =
1

2
γµνǫFµν +Dǫ− iγµǫDµσ +

i

f
σγ3ǫ, (2.11)

δǫD = +
i

2
Dµλγ

µǫ+
i

4f
λγ3ǫ, δǫD = − i

2
ǫγµDµλ+

i

4f
ǫγ3λ, (2.12)

where we use the same supersymmetry as in [27], which takes δǫ and δǫ to be purely

fermionic. We use the Killing spinors in (2.5) as supersymmetry parameters. f is the

function that appeared in (2.1). One can verify that the above SUSY closes within the

translation, rotation, R-symmetry, and the gauge transformation.

The second one is the matter multiplet composed of scalars φ, φ, spinors ψ, ψ, and

auxiliary fields F, F which couple to the vector multiplet via the gauge symmetry with a

6



charge q. Also, we have the following SUSY transformations for the matter multiplet:

δǫφ = 0, δǫφ = ǫψ, (2.13)

δǫφ = ǫψ, δǫφ = 0, (2.14)

δǫψ = iγµǫDA
µ φ+ iqǫσφ− i∆

f
ǫγ3φ, δǫψ = ǫF, (2.15)

δǫψ = Fǫ, δǫψ = iγµǫDA
µφ+ iqφσǫ− i∆

f
φγ3ǫ, (2.16)

δǫF = iǫγµDA
µψ − iqσǫψ − iqǫλφ+

i(2∆− 1)

2f
ǫγ3ψ, δǫF = 0, (2.17)

δǫF = 0, δǫF = iǫγµDA
µψ − iqǫψσ + iqφǫλ− i(2∆− 1)

2f
ǫγ3ψ. (2.18)

Of course, the SUSY algebra is closed within the translation, rotation, R-symmetry, and

the gauge transformation. Here, we use the covariant derivative coupled with A,

DA
µΦ = DµΦ− iqAµΦ, DA

µΦ = DµΦ + iqΦAµ. (2.19)

If one wants a neutral matter, it is achieved by turning off q. In our convention, Aµ has

the same dimension as ∂µ; thus, the charge q must be dimensionless, or, equivalently, q is

just a number. One of the most important features of the above SUSY is nilpotency

δ2ǫ = δ2ǫ = 0. (2.20)

2.3 Lagrangians

SUSY-exact terms In order to use the localization method, we need so-called SUSY-

exact terms for the vector multiplet and the matter multiplet. For the vector multiplet,

we can use the super-Yang-Mills term as a SUSY-exact term. In fact, one can verify

LYM =
1

2
FµνF

µν +D2 +DµσDµσ + ǫ3ρσ
σ

f
Fρσ +

σ2

f 2
+ iλγµDµλ− i

2f
λγ3λ

= δǫ

(

(δǫ→ǫ†λ)λ
)

(2.21)
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up to a total derivative term. The notation δǫ→ǫ† is defined in the same way in [27]. In

addition, the following term for the matter multiplet is also SUSY-exact:

Lmat = −i(ψγµDA
µψ) + iq(ψσψ)− iqφ(λψ)− i∆

2f
(ψγ3ψ) + FF

+ iq(ψλ)φ+ gµνDA
µφDA

ν φ+ q2φσ2φ+ iqφDφ − ∆

f
φDA

3 φ− ∆

2f 2
φφ+

∆

4
Rφφ

− ∆− 1

f
viφDA

i φ− ∆− 1

f
ωqφσφ− i

∆− 1

2f
vi(ψγiψ)− i

∆− 1

2f
ω(ψψ)

= δǫ

(

δǫ→ǫ† [Fφ]− i
∆− 1

f
δǫ[φφ]

)

, (2.22)

where i runs for 1, 2, or equivalently, ϑ, ϕ. Here, we define

vµ = ǫγµǫ, ω = ǫǫ. (2.23)

We use these actions as “regulators” for the localization. Thanks to the nilpotency (2.20),

these terms are δǭ-invariant automatically.

Other terms Of course, we can construct other SUSY-invariant terms. The famous one

is the supersymmetric Chern-Simons term

LCS =
1√
g
ǫµνλ(Aµ∂νAλ)− λλ+ 2Dσ. (2.24)

This term is, however, prohibited on RP
2
b × S1 as we will explain later. We consider the

U(1) gauge group; therefore, the Fayet-Iliopoulos term

LFI = D − 1

f
A3 (2.25)

can be taken into account. If there is an additional dynamical vector multiplet, say,

(Bµ, σ̃, λ̃, λ̃, D̃), which has the same SUSY transformations as (2.8) - (2.12), then we can

write down the following supersymmetric BF term:

LBF =
1√
g
ǫµνλ(BµFνλ)− λλ̃− λ̃λ+ 2Dσ̃ + 2D̃σ. (2.26)

However, this term is also prohibited on RP
2
b × S1. In addition, the superpotential terms

for the matter multiplet are also SUSY-invariant. It may be interesting to construct them

explicitly on our curved space. For example, there is a known result how to write them

explicitly on S
3 [28].
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2.4 Parity conditions

As studied in [21], we have to find parity conditions compatible with the antipodal iden-

tification (1.3) for component fields. Our guiding principles are as follows:

• The squared parity transformation becomes +1 for bosons and −1 for fermions.

• The regulator Lagrangians (2.21) and (2.22) must be invariant under the parity.

• SUSY δǫ, δǫ must be consistent with the parity.

Vector multiplet After simple calculus, we find a set of parity conditions for the vector

multiplet,

A1(π − ϑ, π + ϕ, y) = −A1(ϑ, ϕ, y), A2,3(π − ϑ, π + ϕ, y) = +A2,3(ϑ, ϕ, y),

σ(π − ϑ, π + ϕ, y) = −σ(ϑ, ϕ, y),
λ(π − ϑ, π + ϕ, y) = +iγ1λ(ϑ, ϕ, y), λ(π − ϑ, π + ϕ, y) = −iγ1λ(ϑ, ϕ, y),
D(π − ϑ, π + ϕ, y) = +D(ϑ, ϕ, y).

(2.27)

These are similar to the ones in [21] called B-parity. Therefore, we would like to call the

conditions in (2.27) the B-parity condition.

Matter multiplet The one flavor matter multiplet has two choices:

φ(π − ϑ, π + ϕ, y) = ±φ(ϑ, ϕ, y), φ(π − ϑ, π + ϕ, y) = ±φ(ϑ, ϕ, y),
ψ(π − ϑ, π + ϕ, y) = ∓iγ1ψ(ϑ, ϕ, y), ψ(π − ϑ, π + ϕ, y) = ±iγ1ψ(ϑ, ϕ, y),
F (π − ϑ, π + ϕ, y) = ±F (ϑ, ϕ, y), F (π − ϑ, π + ϕ, y) = ±F (ϑ, ϕ, y).

(2.28)

The existence of the compatible two choices can be regarded as the existence of a holonomy

with respect to a background U(1)flavor flat gauge field Bflavor
flat . In other words, the parity

conditions are characterized by the holonomy of Bflavor
flat ,

±1 = ei
∮
γ
fBflavor

flat , (2.29)

where γ is a noncontractible cycle on RP
2, and f is the corresponding U(1)flavor charge

defined by f̂Φ = fΦ. f̂ is a flavor charge operator used later in the definition of the

superconformal index. This is an analogue of the background U(1)flavor monopole gauge

field on S2 × S1 in [20]. If we have many flavors, we can generalize these conditions. Let
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us denote a multiflavor field by

~Φ =















Φ1

Φ2

...

ΦNf















. (2.30)

Then, the generic B-parity condition is

~φ(π − ϑ, π + ϕ, y) = M~φ(ϑ, ϕ, y), ~φ(π − ϑ, π + ϕ, y) = N
~φ(ϑ, ϕ, y),

~ψ(π − ϑ, π + ϕ, y) = −iγ1M~ψ(ϑ, ϕ, y), ~ψ(π − ϑ, π + ϕ, y) = iγ1N
~ψ(ϑ, ϕ, y),

~F (π − ϑ, π + ϕ, y) = M~F (ϑ, ϕ, y), ~F (π − ϑ, π + ϕ, y) = N
~F (ϑ, ϕ, y),

(2.31)

where M and N are Nf ×Nf matrices constrained by

NTM = 1, M2 = N2 = 1. (2.32)

Comments on the B-parity condition There are two comments. The first one is

related to the vector multiplet. In order to use LYM (2.21) as a regulator when we perform

the localization, we would like to maintain it to be invariant under the B-parity (2.27) as

we noted in our guiding principles. In fact, LYM is invariant under (2.27). On the other

hand, LCS (2.24) and LBF (2.26) become parity odd

LCS/BF(π − ϑ, π + ϕ, y) = − LCS/BF(ϑ, ϕ, y). (2.33)

It means that we cannot take it on RP
2
b×S1 as we commented just below (2.24) and (2.26).

The second comment concerns the matter multiplet. Suppose we have two flavors and

the B-parity condition described by the 2× 2 matrices

M = N =

(

0 1

1 0

)

. (2.34)

Then, we can lift its Lagrangian on RP
2
b × S

1 to the one on S
2
b × S

1 by defining a new

matter multiplet on S2
b × S1 as

Φ(ϑ, ϕ, y) =







Φ1(ϑ, ϕ, y), ϑ ∈ [0,
π

2
],

Φ2(ϑ, ϕ, y), ϑ ∈ [
π

2
, π].

(2.35)

The authors of [21] also commented on this fact. This is quite similar to the doubling trick

in string theory. In Section 4, we use such B-parity condition exactly in the context of 3d

mirror symmetry.
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3 Localization calculus on RP
2
b × S

1

In this section, we calculate the superconformal index (SCI)

I(x, α) = TrH
RP2

b

[

(−1)F̂x′Ĥ+R̂−ĵ3xĤ+ĵ3αf̂
]

, (3.1)

where F̂ is the fermion number operator, Ĥ is the energy operator, R̂ is the R-charge

operator, ĵ3 is the third component of the orbital angular momentum operator which

acts on RP
2
b , and f̂ is the flavor charge operator. Note that we have opposite R-charge

assignments compared with [14, 19, 20, 29]. HRP
2
b
represents the Hilbert space of the

theory on RP
2
b . The squashing procedure is compatible with the definition (3.1) because

this procedure preserves the isometry generated by ĵ3. We take each fugacity as

x′ = e−β1, x = e−β2 , α = eiµ, (3.2)

where µ is a chemical potential and define the relations

β1 + β2 =
2π

l
, Ω =

β1 − β2
β1 + β2

, (3.3)

where we introduce the parameter Ω for later simplicity.

3.1 Vector multiplet contribution

First, we have to identify the locus of the Lagrangian LYM (2.21) characterized by LYM = 0.

In order to find it, it is useful to introduce the combination of the fields

Fµ =
1

2
ǫµρσFρσ + ∂µσ +

1

f
δµ3σ. (3.4)

The Lagrangian LYM can be rewritten as

LYM = FµFµ +D2 + iλγµDµλ− i

2f
λγ3λ (3.5)

up to total derivative. Now, the locus is obtained by

Fµ = 0, (3.6)

D = 0, λ = 0, λ = 0. (3.7)

11



Locus on RP
2
b × S1 A nontrivial equation is (3.6). This is equivalent to the following

equation expressed by differential forms:

∗F + dσ +
e3

f
σ = 0. (3.8)

We have to know the configuration invariant under the B-parity condition (2.27) which

satisfies (3.8). It can be characterized by

F = 0, σ = 0. (3.9)

The first equation in (3.9) means, of course, the flat connection. The flat connection A on

RP
2 × S1 is expressed by

A = Aflat +
θ

2π
dy, (3.10)

where Aflat is a flat connection of RP2 related to the holonomy along the noncontractible

cycle γ of RP2. There are two choices for Aflat = A
(±)
flat characterized by

exp
(

i

∮

γ

A
(±)
flat

)

= ±1, (3.11)

Also, there is a constraint on θ as

θ ∼ θ + 2π. (3.12)

Therefore, we have to sum up these contributions weighted by the Gaussian parts, or,

equivalently, the one-loop determinants Z(±)
1-loop,

I(x, α) =
∫ 2π

0

dθ

2π
Z(+)

1-loop +

∫ 2π

0

dθ

2π
Z(−)

1-loop. (3.13)

One important thing is that we can perform calculus even if we do not know the explicit

form of A
(±)
flat . This is similar to the calculation of the partition function on RP

2
b in [21].

3d to 2d One might think that the U(1) vector multiplet contribution is trivial because

the result on S
2 × S

1 was so [13, 3, 14]. However, there is a nontrivial contribution once

we put the theory on RP
2
b × S1. We can use results of 2d calculations [21] to compute our

3d SCI (3.13). Let us show how it works. First, we expand each component field around

the loci (3.7), (3.9), and (3.10), then we get the following linearized Lagrangians:

Lboson =
1

2
[∂µAν − ∂νAµ]

2 + (∂µσ)
2 + ǫ3µν

σ

f
[∂µAν − ∂νAµ] +

σ2

f 2
, (3.14)

Lfermion = iλγµDµλ− i

2f
λγ3λ. (3.15)
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Here, our starting Lagrangian has only a U(1) gauge symmetry. In other words, (2.21) is

the one of a Gaussian-type theory. Therefore, the above Lagrangians have nothing but the

same form as the original one (2.21).

Usually, in the context of localization calculus, one expand these fields with respect

to the direct product of some harmonic functions on RP
2 and Kaluza-Klein modes of S1.

Here, however, we take a much quicker route. We expand each field with respect to the

Kaluza-Klein modes only :

Ai =
∑

n

1√
2π
e

(

in−
β1−β2

2π
ĵ3

)

yA
(n)
i (ϑ, ϕ) (i = 1, 2), (3.16)

A3 =
∑

n

1√
2π
e

(

in−
β1−β2

2π
ĵ3

)

yA
(n)
3 (ϑ, ϕ), (3.17)

σ =
∑

n

1√
2π
e

(

in−
β1−β2

2π
ĵ3

)

yσ(n)(ϑ, ϕ), (3.18)

λ =
∑

n

1√
2π
e

(

in+(1−ĵ3)
β1
2π

+ĵ3
β2
2π

)

yλ(n)(ϑ, ϕ), (3.19)

λ =
∑

n

1√
2π
e

(

in+(−1−ĵ3)
β1
2π

+ĵ3
β2
2π

)

yλ
(n)

(ϑ, ϕ), (3.20)

where ĵ3 is the orbital angular momentum operator2

ĵ3 = −i∂ϕ. (3.21)

Then, one can get the sum of 2d Lagrangians L2d (n) of Kaluza-Klein fields labeled by n

after performing the integral along S1,
∫

d3x
√
g3L =

∫

d2x
√
g2
∑

n

L2d (n). (3.22)

The bosonic part and the fermionic part are as follows:

√
g2L2d (n)

boson =









A(−n)

A
(−n)
3

σ(−n)









T

∧ ∗2









−(∗2d)2 + h2n −ihnd − ∗2 d 1
f

−ihn ∗2 d∗2 −(∗2d)2 0

+ 1
f
∗2 d 0 −(∗2d)2 + 1

f2
+ h2n

















A(n)

A
(n)
3

σ(n)









,

(3.23)

L2d (n)
fermion = λ

(−n)
(

iγiDi + γ3
(

hn +
i

2l
Ω
)

)

λ(n), (3.24)

2When one generalizes it with the non-Abelian gauge group, one should replace ∂ϕ by the covariant

derivative defined by the precise flat connection A
(±)
flat in (3.21) corresponding to the locus around which

the fluctuation fields are expanded.
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where ∗2 is the Hodge star of RP2
b , and the exterior derivative d and the gauge field A(n)

are 1-forms on RP
2
b . The symbol hn represents an operator defined by

hn = −
(

n+
i

l
Ωĵ3

)

. (3.25)

The Lagrangians (3.23) and (3.24) are quite similar to the ones on RP
2
b in [21] by identifying

hn ∼ α · σ. Although, in the fermionic term (3.24), a slightly different contribution exists,

we can do the same procedure performed in the Appendix in [21]. See Appendix A for

details.

One-loop determinant The final result is

Zvector(+)
1-loop (x) = Zvector(−)

1-loop (x) = Zvector
1-loop(x) = x+

1
4 exp

(

∞
∑

m=1

1

m
fvector(x

m)
)

, (3.26)

fvector(x) =
x2

1− x4
− x4

1− x4
, (3.27)

where the prefactor preceding the exponent is the Casimir energy explained in detail in

Appendixes A and B. As the end of the discussion here, we would like to mention the origin

of the U(1) vector one-loop determinant. Intuitively, it is concluded as the difference of

spins of bosonic and fermionic fields. More precisely, Z2-holonomy splits the eigenvalues

of ĵ3 into two sets of integers which are assigned to each sector according to the spins

of the fields. As a result, the eigenvalues run for odd integers in the bosonic sector and

even integers in the fermionic sector under the B-parity condition (2.27). This mismatch

of the eigenvalues leads to the nontrivial one-loop determinant for U(1) gauge group. The

readers can see this explicitly also in Appendix A.1.

3.2 Singlet matter multiplet contribution

Second, we have to know the locus of the matter Lagrangian Lmat (2.22). However, it is

somewhat trivial because the configuration is realized by turning off all fields in the matter

multiplet. Therefore, by expanding around it, we get the following linearized Lagrangians:

Lboson = gµνDA

µ φDA

ν φ− ∆

f
φDA

3 φ− ∆

2f 2
φφ+

∆

4
Rφφ− ∆− 1

f
viφDA

i φ, (3.28)

Lfermion = −i(ψγµDA

µ ψ)−
i∆

2f
(ψγ3ψ)− i

∆− 1

2f
vi(ψγiψ)− i

∆− 1

2f
ω(ψψ). (3.29)

Here, the superscript A means the covariant derivative (2.19) defined with the locus value

of the gauge field (3.10).
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3d to 2d By expanding Kaluza-Klein modes first, we can get the 2d action as well as

the case of the vector multiplet. In order to preserve SUSY, we have to read the precise

boundary conditions from the fugacities in the index (3.1):

φ(ϑ, ϕ, y) =

∞
∑

n=−∞

1√
2π
e

(

in+(−∆−ĵ3)
β1
2π

+ĵ3
β2
2π

− ifµ
2π

)

yφ(n)(ϑ, ϕ), (3.30)

φ(ϑ, ϕ, y) =

∞
∑

n=−∞

1√
2π
e

(

in+(+∆−ĵ3)
β1
2π

+ĵ3
β2
2π

+ ifµ
2π

)

yφ
(n)

(ϑ, ϕ), (3.31)

ψ(ϑ, ϕ, y) =
∞
∑

n=−∞

1√
2π
e

(

in+(−∆+1−ĵ3)
β1
2π

+ĵ3
β2
2π

− ifµ
2π

)

yψ(n)(ϑ, ϕ), (3.32)

ψ(ϑ, ϕ, y) =
∞
∑

n=−∞

1√
2π
e

(

in+(+∆−1−ĵ3)
β1
2π

+ĵ3
β2
2π

+ ifµ
2π

)

yψ
(n)

(ϑ, ϕ), (3.33)

where ĵ3 is the orbital angular momentum operator

ĵ3 = −i
(

∂ϕ − iqAflat
ϕ

)

. (3.34)

Note that there is a nontrivial contribution from the gauge field on the locus because the

matter multiplet couples with the vector multiplet via the gauge symmetry. This effect is

absent in the vector multiplet’s case because it is neutral when the gauge group is U(1).

Now, once we perform the integral over S
1 as for the vector multiplet, we can get 2d

Lagrangians,

L2d (n)
boson = φ

(−n)
(

− gijDAflat
i DAflat

j + (pn − i
∆

2l
Ω)2 +

∆2 − 2∆

4f 2
+

∆

4
R− ∆− 1

f
viDAflat

i

)

φ(n),

(3.35)

L2d (n)
fermion = ψ

(−n)
(

− iγiDAflat
i − γ3(pn − i

∆− 1

2l
Ω)− i

1

2f
γ3 − i

∆− 1

2f
viγi − i

∆− 1

2f
ω
)

ψ(n),

(3.36)

where the symbol pn represents an operator defined by

pn = −(n +
i

l
Ωĵ3) +

qθ + fµ

2π
. (3.37)

The Lagrangians (3.35) and (3.36) are also similar to the ones on RP
2
b in [21] by identifying

pn ∼ σ. As we can see in the fermionic part of the Lagrangian for the vector multiplet,

there are also distinctions between (3.35), (3.36) and the corresponding ones in [21]. Even

with these extra terms, we can perform exact calculations. See more details in Appendix

A.
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One-loop determinant The final result is

Z∆(+)
1-loop(e

iqθ, x, αf ) = x+
∆−1
4 e+

i
4
qθα+ 1

4
f exp

(

∞
∑

m=1

1

m
f
(+)
matter(e

imqθ, xm, αmf )
)

, (3.38)

f
(+)
matter(e

iqθ, x, αf) = e+iqθα+f x∆

1− x4
− e−iqθα−f x2−∆

1− x4
(3.39)

for the even holonomy sector which gives ei
∮
γ
(qAflat+fBflavor

flat ) = +1. The other final form is

Z∆(−)
1-loop(e

iqθ, x, αf ) = x−
∆−1
4 e−

i
4
qθα− 1

4
f exp

(

∞
∑

m=1

1

m
f
(−)
matter(e

imqθ, xm, αmf )
)

, (3.40)

f
(−)
matter(e

iqθ, x, αf) = e+iqθα+f x2+∆

1− x4
− e−iqθα−f x4−∆

1− x4
(3.41)

when we have the odd holonomy sector ei
∮
γ
(qAflat+fBflavor

flat ) = −1.

3.3 Doublet matter multiplet contribution

If we have a doublet matter multiplet constructed from two matter multiplets

Φ1, Φ2 (3.42)

with the matrix (2.34),

M = N =

(

0 1

1 0

)

(3.43)

in the parity condition (2.31), then, we can regard them as one matter multiplet on S2
b×S1

as commented above.

One-loop determinant Therefore, we can get the corresponding one-loop determinant

just by quoting the one in the zero-monopole sector on S2
b × S1 [14]:

Z∆(2)
1-loop(e

iqθ, x, αf) = exp
(

∞
∑

m=1

1

m
f
(2)
matter(e

imqθ, xm, αmf )
)

, (3.44)

f
(2)
matter(e

iqθ, x, αf) = e+iqθα+f x∆

1− x2
− e−iqθα−f x2−∆

1− x2
. (3.45)

Note that there is (1 − x2) in the denominator of (3.45) different from (1 − x4) in (3.39)

and (3.41).
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3.4 Formulas of the SCI on RP
2
b × S1

Now, we summarize the relevant formulas of the SCI on RP
2
b×S1 for later use in the check

of 3d mirror symmetry. We specify with two types of theories. The first one is a class of

matter theories. The second one is a class of U(1) gauge theories. Before proceeding to

the details of the formulas, we rewrite one-loop determinants in (3.26), (3.38), and (3.40)

as more convenient forms. We now focus on the exponential part called the plethystic

exponential of the one-loop determinant of the vector multiplet (3.26). It can be rewritten

as follows. We use a geometric series for the one-particle index (3.27) and perform the

sum over m. Then, the plethystic exponential becomes

exp

(

∑

m≥1

1

m
fvector (x

m)

)

= exp

(

∑

k≥0

{

log(1− x4x4k)− log(1− x2x4k)
}

)

=
∏

k≥0

(

1− x4x4k
)

(1− x2x4k)

=
(x4; x4)∞
(x2; x4)∞

, (3.46)

where we use the q-shifted factorial defined by [23]

(Z; q)n :=











































1 for n = 0,

n−1
∏

k=0

(1− Zqk) for n ≥ 1,

−n
∏

k=1

(1− Zq−k)−1 for n ≤ −1,

(3.47)

where Z and q are complex numbers and (Z; q)∞ := limn→∞(Z; q)n with 0 < |q| < 1. For

simplicity, we will use the notation

(Z1, Z2, · · · , Zr; q)∞ := (Z1; q)∞(Z2; q)∞ · · · (Zr; q)∞. (3.48)

The plethystic exponential of (3.38), (3.40), and (3.44) can be written in the same manner

with the q-shifted factorial,

exp

(

∑

m≥1

1

m
f
(+)
matter

(

zqm, xm, αfm
)

)

=
(z−qα−fx(2−∆); x4)∞
(z+qα+fx∆; x4)∞

, (3.49)

exp

(

∑

m≥1

1

m
f
(−)
matter

(

zqm, xm, αfm
)

)

=
(z−qα−fx(4−∆); x4)∞
(z+qα+fx(2+∆); x4)∞

, (3.50)

exp

(

∑

m≥1

1

m
f
(2)
matter

(

zqm, xm, αfm
)

)

=
(z−qα−fx(2−∆); x2)∞
(z+qα+fx∆; x2)∞

, (3.51)
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where we define z := eiθ. Combining the Casimir energy (B.6), (B.8), and (B.10) together,

we have the following one-loop determinants for each multiplet:

Zvector
1-loop(x) = x+

1
4
(x4; x4)∞
(x2; x4)∞

,

Z∆(+)
1-loop(z

q, x, αf) = x+
∆−1
4 z+

1
4
qα+ 1

4
f (z

−qα−fx(2−∆); x4)∞
(z+qα+fx∆; x4)∞

,

Z∆(−)
1-loop(z

q, x, αf) = x−
∆−1
4 z−

1
4
qα− 1

4
f (z

−qα−fx(4−∆); x4)∞
(z+qα+fx(2+∆); x4)∞

,

Z∆(2)
1-loop(z

q, x, αf) =
(z−qα−fx(2−∆); x2)∞
(z+qα+fx∆; x2)∞

.

(3.52)

SCI for matter theory First of all, for later use, we consider a theory constructed only

by multimatter multiplets as follows:

• Singlet matter multiplets with the upper sign in (2.28): Φa+,Φ
a

+, a = 1, 2, . . . , N
(+)
f .

• Singlet matter multiplets with the lower sign in (2.28) : Φb−,Φ
b

−, b = 1, 2, . . . , N
(−)
f .

•Doublet matter multiplets with the parity by (2.34) : ΦA1,2,Φ
A

1,2, A = 1, 2, . . . , N
(2)
f .

We can turn on arbitrary superpotentials. However, we assume here that we turn a certain

superpotential which restricts the flavor symmetries to one global U(1) symmetry, and

we denote the corresponding fugacity by α. In this case, the SCI does not contain any

summation or integral over the configuration of the gauge field, and our result is

I(x, α) =
N

(+)
f
∏

a=1

Z∆a(+)
1-loop (1, x, α

fa)

N
(−)
f
∏

b=1

Z∆b(−)
1-loop (1, x, α

fb)

N
(2)
f
∏

A=1

Z∆A(2)
1-loop (1, x, α

fA), (3.53)

where flavor charges fa, f b, fA for the global U(1) symmetry and R-charges ∆a,∆b,∆A

are assigned to the matter multiplets Φa+, Φ
b
−, and ΦA1,2, respectively.

SCI for gauge theory The second example is a U(1) gauge theory constructed from

• a vector multiplet : V,

• singlet matter multiplets with the upper sign in (2.28) : Φa+,Φ
a

+, a = 1, 2, . . . , N
(+)
f ,

• singlet matter multiplets with the lower sign in (2.28) : Φb−,Φ
b

−, b = 1, 2, . . . , N
(−)
f ,

• doublet matter multiplets with the parity by (2.34) : ΦA1,2,Φ
A

1,2, A = 1, 2, . . . , N
(2)
f .

In addition to the global U(1) symmetry and R-charges, we assign U(1) gauge charges

qa, qb, qA ∈ Z for Φa+, Φ
b
−,Φ

A
1,2, respectively. As noted in (3.13), we have a summation
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over two terms coming from two distinct loci Aflat = A
(±)
flat and an integral over loci θ ∈

[0, 2π]. With the results (3.26), (3.38), and (3.40) obtained by the localization, the one-loop

determinants for the multiplets are given as follows:

V → Zvector
1-loop always in (3.52),

Φa+,Φ
a

+ → Z∆a

1-loop depending on the sign ei
∮
γ
(qaAflat+faB

a
flat) = +ei

∮
γ
(qaAflat),

Φb−,Φ
b

− → Z∆b

1-loop depending on the sign ei
∮
γ
(qbAflat+fbB

b
flat) = −ei

∮
γ
(qbAflat),

ΦA1,2,Φ
A

1,2 → Z∆A(2)
1-loop always in (3.52).

The one-loop determinant Z∆(±)
1-loop for a singlet matter multiplet is slightly complicated, and

let us give a detailed explanation here. For the Aflat = A
(+)
flat sector, we have ei

∮
γ
(qA+

flat) =

(ei
∮
γ
A+

flat)q = (+1)q = +1, and then we get the one-loop determinants for Φ± as Z∆(±)
1-loop in

(3.52), respectively.

On the other hand, for the Aflat = A
(−)
flat sector, we have e

i
∮
γ
(qA−

flat) = (ei
∮
γ
A−

flat)q = (−1)q,

and its value depends on the parity of q ∈ Z. For simplicity, we assume the following

circumstances:

Each charge qa, qb takes its value in odd integers. (3.54)

This is satisfied in the latter part of this paper. Then, we get the one-loop determinants

for Φ± as Z∆(∓)
1-loop in (3.52) with Aflat = A

(−)
flat sector. Under the condition (3.54), we arrive

at the following formula for the SCI by defining z = eiθ:

I(x, α)

=
Zvector

1-loop(x)

(Sym)

∮

C0

dz

2πiz











N
(+)
f
∏

a=1

Z∆a(+)
1-loop (z

qa , x, αfa)

N
(−)
f
∏

b=1

Z∆b(−)
1-loop (z

qb, x, αfb)

N
(2)
f
∏

A=1

Z∆A(2)
1-loop (z

qA, x, αfA)

+

N
(+)
f
∏

a=1

Z∆a(−)
1-loop (z

qa , x, αfa)

N
(−)
f
∏

b=1

Z∆b(+)
1-loop (z

qb, x, αfb)

N
(2)
f
∏

A=1

Z∆A(2)
1-loop (z

qA , x, αfA)











.

(3.55)

The integration contour C0 is defined by |z| = 1 because |z| = |eiθ| = 1 by definition. The

symbol (Sym) represents degrees of a redundant symmetry between two sectors ei
∮
γ
Aflat =

±1. If the first integrand is identical to the second one, it is 2. If not, it is 1.
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4 Abelian Mirror Symmetry

We start with the review of Abelian mirror symmetry for 3d N = 2 theories [15, 16, 17, 18]

with a single flavor. Then, we explain how this duality can be realized in terms of the

SCIs for theories on RP2
b × S1 in the physical sense and provide the mathematically exact

verification to it.

4.1 Review of 3d mirror symmetry

N = 2 mirror symmetry states the duality between the SQED and the XYZ model. From

the renormalization group point of view, theses two theories are defined in the UV region

and flow to the same IR fixed point. The N = 2 SQED has one vector multiplet V and

one flavor consisting of two chiral fields Q, Q̃ with charges q = +1,−1 under the U(1)

gauge group, respectively. This theory possesses extra U(1) global symmetries: one is a

topological U(1)J , and the other is a flavor symmetry U(1)A with a charge f = +1 which

rotates Q and Q̃ by the phase with the same weight as seen in Table 2. On the other

hand, the XYZ model is the theory containing three chiral fields3 X, Y , and Z interacting

through the superpotential W = XY Z. This theory has two U(1) global symmetries,

named U(1)V and U(1)A in [20], whose charges assigned on each field are shown in Table

3.

U(1)J and U(1)A in the SQED are identified with U(1)V and U(1)A in the XYZ model,

respectively, and the currents JA associated with each U(1)A are mapped with flipping

the sign (see Table 4). Furthermore, there exists the correspondence between the moduli

spaces of those theories (at least on the flat space). The moduli parameters of the SQED

are QQ̃ characterizing the Higgs branch and (σ + iρ) where ρ is the dual photon defined

by

1

2
ǫµνρF

νρ = ∂µρ. (4.1)

The expectation values of two chiral superfields e(σ+iρ)/e
2
, e−(σ+iρ)/e2 (e is a coupling con-

stant) parametrize the corresponding regions of the Coulomb branch. In the context of

mirror symmetry, we can identify e(σ+iρ)/e
2
, e−(σ+iρ)/e2 , and QQ̃ with X, Y, and Z on the

moduli space of the XYZ model, respectively (Table 4).

We can also construct the N = 4 version of mirror symmetry. In the SQED, we

introduce an adjoint (uncharged) chiral field S̃ coupling to QQ̃. Similarly for the XYZ

3In the literature [14, 19, 20], they are named q, q̃, and S, respectively.
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Table 2: Charges in the SQED

U(1) U(1)J U(1)A R̂

Q +1 0 +1 −∆

Q̃ −1 0 +1 −∆

Table 3: Charges in the XYZ model

U(1)V U(1)A R̂

X +1 +1 −(1−∆)

Y −1 +1 −(1−∆)

Z 0 −2 −2∆

Table 4: The mirror map

SQED XYZ

U(1)J ↔ U(1)V

U(1)A, JA ↔ U(1)A, −JA
e(σ+iρ)/e

2
, e−(σ+iρ)/e2 ↔ X , Y

QQ̃ ↔ Z

model, Z̃ is added via the superpotential ZZ̃ making Z and Z̃ massive. We can obtain the

(twisted) free theory with chiral fields X and Y by integrating out Z and Z̃. The duality

between those theories is referred to as N = 4 mirror symmetry.

Let us now consider gauging a flavor symmetry and denote a corresponding background

gauge field by Bflavor. In addition to JA, there is a topological current4 JT = ∗F associated

with U(1)J where ∗ is the Hodge star defined by a 3d metric. The flavor symmetry can be

gauged by coupling Bflavor with JT , which is the same thing as adding a BF term to the

original action [30, 17]. This fact can be employed to demonstrate mirror symmetry with

general Nf in terms of generalized indices [20].

4.2 Physical derivation on RP2
b × S1

In this subsection, we construct Abelian mirror symmetry on RP2
b × S1 from physical

viewpoints. Here, we should note that U(1)J in the SQED and U(1)V in the XYZ model

on RP2
b × S1 cannot be turned on. This is because, for U(1)J , a BF term is parity odd

under the B-parity condition as well as the Chern-Simons term (see (2.26) and (2.33)).

On the dual side, since σ receives the change of sign by the antipodal identification (2.27),

X and Y seem to be interchanged from each other from the mirror map (the third line of

Table 4). However, this violates U(1)V because X has its charge opposite to that of Y .

This is why there do not exist variables in the SCIs parametrizing U(1)J and U(1)V in the

4For non-Abelian theories, a topological current should be in the form JT = ∗TrF .
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latter argument.

SQED The SCI should be the sum of the even and odd holonomy sector of the dynamical

gauge field as described in (3.55). We consider the following situations:

• the vector multiplet V with the parity condition (2.27), and (4.2)

• the matter multiplets Q, Q̃ with the upper sign of the parity condition in (2.28).

(4.3)

Then, by taking into account the charge assignments in Table 2, we get the SCI for the

SQED immediately from the general formula (3.55) as

ISQED(x, α)

= Zvector
1-loop(x)

∮

C0

dz

2πiz

{

Z∆(+)
1-loop(z

+1x, α)Z∆(+)
1-loop(z

−1, x, α) + Z∆(−)
1-loop(z

+1x, α)Z∆(−)
1-loop(z

−1, x, α)
}

(4.4)

To make the SCI easy to deal with, we introduce new variables,

q = x2, a = α−2x2(1−∆). (4.5)

Then, we get the following representation:

ISQED(x, α)

= q+
1
8
(q2; q2)∞
(q; q2)∞

∮

C0

dz

2πiz

{

a−
1
4
(z−1a+

1
2 q

1
2 , z+1a+

1
2 q

1
2 ; q2)∞

(z+1a−
1
2 q

1
2 , z−1a−

1
2 q

1
2 ; q2)∞

+ a+
1
4
(z−1a+

1
2 q

3
2 , z+1a+

1
2 q

3
2 ; q2)∞

(z+1a−
1
2 q

3
2 , z−1a−

1
2 q

3
2 ; q2)∞

}

,

(4.6)

We follow the way of [19, 20] to perform the above integrals. We start to handle the first

integral in (4.6). There are many single poles coming from the origin and the q-shifted

factorial. Those poles can be separated into the set inside and outside the unit circle C0.

We set |q| < 1 for the convergence of the q-shifted factorial and assume |a− 1
2 q

1
2 | < 1. Then

the poles we should take into account are the ones inside the unit circle,

z = a−
1
2 q

1
2
+2j , j = 0, 1, 2, · · · . (4.7)

We can relax the assumption by analytic continuation after obtaining the final result. In

addition, we assume 0 < ∆ < 1 because picking up the pole on the origin leads to the

infinite product
∞
∏

j=0

a =

∞
∏

j=0

α−2q(1−∆) (4.8)
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except the Casimir energy. α is just a phase, and this product converges to zero if and only

if we impose such condition on ∆ with |q| < 1. Eventually, we can ignore the contribution

of the pole on the origin. Then, the integral over z with these assumptions gives the sum

over residues from (4.7) as

a−
1
4

∑

j≥0

(aq−2j , q1+2j; q2)∞
(a−1q1+2j , q2; q2)∞

1

(q−2j ; q2)j
. (4.9)

We also rewrite the sum over j as follows. The dummy index j in arguments of the q-shifted

factorial can be subtracted outside such as

(aq−2j; q2)∞ = (−1)jajq−j(j+1)(a−1q2; q2)j(a; q
2)∞, (4.10)

(q1+2j ; q2)∞ =
(q; q2)∞
(q; q2)j

. (4.11)

With above expressions, (4.9) reduces to

a−
1
4

(a, q; q2)∞
(a−1q, q2; q2)∞

∑

j≥0

(a−1q2, a−1q; q2)j
(q; q2)j

aj

(q2; q2)j

= a−
1
4

(a, q; q2)∞
(a−1q, q2; q2)∞

2ϕ1

(

a−1q2, a−1q; q; q2, a
)

, (4.12)

where we use the basic hypergeometric series defined by [23]

rϕs (α1, α2, · · · , αr; β1, · · · , βs; q, z) =
∑

j≥0

(α1, α2, · · · , αr; q)j
(β1, · · · , βs; q)j

zj

(q; q)j

{

(−1)jq
1
2
j(j−1)

}1+s−r

.

(4.13)

The convergence radius of the basic hypergeometric series is ∞, 1, or 0 for r − s < 1,

r−s = 1, or r−s > 1, respectively. Now, we proceed the same way for the second integral

in (4.6). We pick up the poles again inside the unit circle C0,

z = a−
1
2 q

3
2
+2j , j = 0, 1, 2, · · · , (4.14)

and then the sum over residues in terms of the basic hypergeometric series becomes

a+
1
4

(a, q3; q2)∞
(a−1q3, q2; q2)∞

2ϕ1

(

a−1q2, a−1q3; q3; q2, a
)

, (4.15)

where the residue of the origin is not included as discussed in (4.8). Thus, (4.6) results in

ISQED(x, α) = q+
1
8
(q2; q2)∞
(q; q2)∞

{

a−
1
4

(a, q; q2)∞
(a−1q, q2; q2)∞

2ϕ1

(

a−1q2, a−1q; q; q2, a
)

+ a+
1
4

(a, q3; q2)∞
(a−1q3, q2; q2)∞

2ϕ1

(

a−1q2, a−1q3; q3; q2, a
)

}

. (4.16)
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In terms of original variables, the index (4.16) is given by

ISQED(x, α) = x+
1
4
(x4; x4)∞
(x2; x4)∞

×
{

x+
∆−1
2 α+ 1

2
(α−2x2(1−∆), x2; x4)∞
(α+2x2∆, x4; x4)∞

2ϕ1

(

α+2x2(∆+1), α+2x2∆; x2; x4, α−2x2(1−∆)
)

+ x−
∆−1
2 α− 1

2
(α−2x2(1−∆), x6; x4)∞
(α+2x2(2+∆), x4; x4)∞

2ϕ1

(

α+2x2(∆+1), α+2x2(2+∆); x6; x4, α−2x2(1−∆)
)

}

.

(4.17)

XYZ model We must determine the suitable pair of B-parity condition for three chiral

fields which is “mirror” to the pair of parity condition (4.2) and (4.3) for the SQED

to obtain the correct results. As described above, X turns into Y under the antipodal

identification, and vice versa. We assume that this observation also holds for the quantum

fluctuations of the XYZ model. Then, we set the B-parity condition for these fields as

X(π − ϑ, π + ϕ, y) = Y (ϑ, ϕ, y),

Y (π − ϑ, π + ϕ, y) = X(ϑ, ϕ, y),

Z(π − ϑ, π + ϕ, y) = Z(ϑ, ϕ, y).

(4.18)

This means that X and Y form the doublet that appears in the previous section and pro-

vides the contribution of a single field on S2
b×S1. With the charge assignments summarized

in Table 3, we get the following contribution from X and Y :

Z(1−∆)(2)
1-loop (1, x, α̃f) =

(α̃−1x(1+∆); x2)∞
(α̃+1x(1−∆); x2)∞

=
(ã−

1
2 q; q)∞

(ã+
1
2 ; q)∞

, (4.19)

where we define a fugacity α̃ for the U(1)A global symmetry in the XYZ model and also

ã := α̃+2x2(1−∆) for later use. On the other hand, because Z is a scalar invariant under the

antipodal identification, the contribution of Z corresponds to that of the even holonomy

sector in the matter multiplet with the R-charge −2∆,

Z(2∆)(+)
1-loop (1, x, α̃f) = x+

2∆−1
4 α̃− 1

2
(α̃+2x2(1−∆); x4)∞
(α̃−2x2∆; x4)∞

= q+
1
8 ã−

1
4

(ã; q2)∞
(ã−1q; q2)∞

. (4.20)

Because of the formula in (3.53), the SCI for the XYZ model results in

IXYZ(x, α̃) = q+
1
8 ã−

1
4
(ã−

1
2 q; q)∞

(ã+
1
2 ; q)∞

(ã; q2)∞
(ã−1q; q2)∞

. (4.21)

Equivalently, (4.21) with original variables is written by

IXYZ(x, α̃) = x+
2∆−1

4 α̃− 1
2
(α̃−1x(1+∆); x2)∞
(α̃+1x(1−∆); x2)∞

(α̃+2x2(1−∆); x4)∞
(α̃−2x2∆; x4)∞

. (4.22)
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In the expressions of the SCIs, the usual mirror map for a flavor symmetry is realized

by the identification α ∼ α̃−1, or, equivalently, a ∼ ã in our notation. Accordingly, we

declare N = 2 Abelian mirror symmetry on RP
2
b × S1 as the equality

ISQED(x, α) = IXYZ(x, α̃
−1). (4.23)

Note that (4.23) should be true with an arbitrary ∆, whereas the R-charge in theories

without anomalous dimensions must take the canonical value as mentioned in [14]. In the

next subsection, we will show the mathematically rigorous proof of (4.23).

N = 4 mirror symmetry As explained above, we can obtain N = 4 mirror symmetry

by introducing an adjoint chiral field Z̃. In the XYZ model, the fact that the superpotential

ZZ̃ must be uncharged for a flavor symmetry and have the R-charge 2 determines the U(1)A

charge and the R-charge of Z̃ to be +2 and 2(1+∆), respectively. For the SCIs, the effect

of Z̃ is identical with moving the contribution of Z (4.20) in the rhs of (4.23) to the lhs.

Concretely, we have the equality for N = 4 mirror symmetry as

2ϕ1

(

a−1q2, a−1q; q; q2, a
)

+ a+
1
2
(a−1q, q3; q2)∞
(a−1q3, q; q2)∞

2ϕ1

(

a−1q2, a−1q3; q3; q2, a
)

=
(a−

1
2 q; q)∞

(a+
1
2 ; q)∞

.

(4.24)

One can easily conform the correctness of (4.24) because this emerges on the way of the

proof in the next subsection.

Generalized index The generalized index is defined as the SCI with gauging flavor

symmetries [20]. In our context, we introduce a background flat gauge field Bflavor
flat by

gauging the U(1)A flavor symmetry, and the parity conditions must be classified in terms

of both the holonomy for the dynamical gauge field Aflat and the holonomy for Bflavor
flat , that

is,

ei
∮
γ
(qAflat+fBflavor

flat ) = ±1, (4.25)

as explained in Appendix A.2. Since our argument for theories with a single flavor does

not change, our generalized indices are still (4.6) and (4.21), and mirror symmetry with

gauging a flavor symmetry can also be concluded as (4.23). The generalized index carries

much more important roles when one discusses the multiflavor case of mirror symmetry.
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4.3 Mathematical proof of RP2
b × S1

In this subsection, we give the proof of our new relation (4.23). At first, we review the

q-binomial theorem [23] derived mainly by Cauchy [31] and Heine [32],

1ϕ0(a;−; q, x) =
(ax; q)∞
(x; q)∞

, |x| < 1. (4.26)

This formula is the q-analogue of the binomial theorem

2F1(a, c; c; z) = 1F0(a;−; z) =
∑

n≥0

(a)n
n!

zn = (1− z)−a, (4.27)

where |z| < 1. (a)n is the classical shifted factorial (a)n = a(a + 1) . . . (a + n − 1), and

(a)0 = 1. We prove our new relation (4.23) by utilizing the q-binomial theorem. The

starting point is the SCI for the XYZ model (4.21),

IXYZ(x, α̃) = q+
1
8 ã−

1
4
(ã−

1
2 q; q)∞

(ã+
1
2 ; q)∞

(ã; q2)∞
(ã−1q; q2)∞

= q+
1
8 ã−

1
4

(ã; q2)∞
(ã−1q; q2)∞

(ã−
1
2 q; q)∞

(ã+
1
2 ; q)∞

= q+
1
8 ã−

1
4

(ã; q2)∞
(ã−1q; q2)∞

1ϕ0(ã
−1q;−; q, ã+

1
2 )

= q+
1
8 ã−

1
4

(ã; q2)∞
(ã−1q; q2)∞

∑

n≥0

(ã−1q; q)n
(q; q)n

(

ã+
1
2

)n

= q+
1
8 ã−

1
4

(ã; q2)∞
(ã−1q; q2)∞

{

∑

m≥0

(ã−1q; q)2m
(q; q)2m

(

ã+
1
2

)2m

+
∑

m≥0

(ã−1q; q)2m+1

(q; q)2m+1

(

ã+
1
2

)2m+1
}

.

(4.28)

We remark that there are the following relations:

(a; q)2m = (a, aq; q2)m, (a; q)2m+1 = (1− a)(aq, aq2; q2)m. (4.29)

We apply the relations (4.29) to (4.28),

q+
1
8 ã−

1
4

(ã; q2)∞
(ã−1q; q2)∞

{

∑

m≥0

(ã−1q; q)2m
(q; q)2m

(

ã+
1
2

)2m

+
∑

m≥0

(ã−1q; q)2m+1

(q; q)2m+1

(

ã+
1
2

)2m+1
}

= q+
1
8 ã−

1
4

(ã; q2)∞
(ã−1q; q2)∞

{

∑

m≥0

(ã−1q, ã−1q2; q)m
(q; q2)m(q2; q2)m

(ã)m + ã+
1
2
1− ã−1q

1− q

∑

m≥0

(ã−1q2, ã−1q3; q)m
(q3; q2)m(q2; q2)m

(ã)m
}

= q+
1
8 ã−

1
4

(ã; q2)∞
(ã−1q; q2)∞

{

2ϕ1(ã
−1q, ã−1q2; q; q2, ã) + ã+

1
2
1− ã−1q

1− q
2ϕ1(ã

−1q2, ã−1q3; q3; q2, ã)

}

.

(4.30)
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The part (1− ã−1q)/(1− q) can be rewritten as

1− ã−1q

1− q
=

(ã−1q : q2)∞
(ã−1q3; q2)∞

(q3; q2)∞
(q; q2)∞

. (4.31)

Combining the relations (4.30) and (4.31), we have

q+
1
8 ã−

1
4

(ã; q2)∞
(ã−1q; q2)∞

{

2ϕ1(ã
−1q, ã−1q2; q; q2, ã)

+ ã+
1
2
1− ã−1q

1− q
2ϕ1(ã

−1q2, ã−1q3; q3; q2, ã)

}

= q+
1
8

(ã; q2)∞
(ã−1q; q2)∞

{

ã−
1
4 2ϕ1(ã

−1q, ã−1q2; q; q2, ã)

+ ã+
1
4
(ã−1q : q2)∞
(ã−1q3; q2)∞

(q3; q2)∞
(q; q2)∞

2ϕ1(ã
−1q2, ã−1q3; q3; q2, ã)

}

= q+
1
8
(q2; q2)∞
(q; q2)∞

{

ã−
1
4

(ã, q; q2)∞
(ã−1q, q2; q2)∞

2ϕ1(ã
−1q, ã−1q2; q; q2, ã)

+ ã+
1
4

(ã, q3; q2)∞
(ã−1q3, q2; q2)∞

2ϕ1(ã
−1q2, ã−1q3; q3; q2, ã)

}

. (4.32)

Therefore, we obtain the conclusion

q+
1
8 ã−

1
4
(ã−

1
2 q; q)∞

(ã+
1
2 ; q)∞

(ã; q2)∞
(ã−1q; q2)∞

= q+
1
8
(q2; q2)∞
(q; q2)∞

{

ã−
1
4

(ã, q; q2)∞
(ã−1q, q2; q2)∞

2ϕ1(ã
−1q, ã−1q2; q; q2, ã)

+ ã+
1
4

(ã, q3; q2)∞
(ã−1q3, q2; q2)∞

2ϕ1(ã
−1q2, ã−1q3; q3; q2, ã)

}

.

(4.33)

5 Discussion

We presented how to define N = 2 supersymmetric gauge theories on RP
2
b × S1 and got

the exact form of the superconformal index with an arbitrary number of vector multiplets

and matter multiplets with a U(1) gauge symmetry. As commented, the results are not

dependent on l and l̃, that is, the squashing parameter b. This fact is expected because it

is verified in 2d cases [22, 21]. Also, we gave the exact check of N = 2 and N = 4 Abelian

mirror symmetry with the simplest case Nf = 1 and Abelian duality (Appendix C) on

RP
2
b ×S1 by using the q-binomial theorem essentially. In the rest of this section, we would

like to comment briefly on some open questions and future directions.

Open questions and future directions The first question is related to a subtlety in our

computation of the superconformal index. We used an ad hoc way to regulate the Casimir
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energy presented in [14, 33] (see Appendixes A and B). They showed that the precise

Chern-Simons level shift on S2 × S1 emerges within this regularization scheme. However,

as noted in Section 2, we cannot take the Chern-Simons term into account. Therefore, we

cannot adopt the level shift as the guiding principle of the regularization and do not know

why our regularization of the Casimir energy works so well. It is interesting to find more

fundamental treatment to resolve it. As the second one, we would like to know the origin

of our B-parity condition on the XYZ model side. We took a little bit of an ad hoc way

to determine it based on the correspondence between the moduli spaces. In addition, we

should check precisely whether our B-parity is unique or not. One straightforward way

to solve this problem is using the brane construction of mirror symmetry [34]. We expect

that the generalized mathematical formulas will emerge if this program is accomplished.

The third question is related to the so-called “factorization” property of 3d exact results

[35, 36, 37, 38]. The partition functions on S3
b and the superconformal indices on S2 × S1

can be decomposed into the product of more fundamental quantities called holomorphic

blocks. This property of both cases naively comes from the fact that each curved space is

characterized by solid-torus decomposition. However, RP2×S1 cannot be expressed simply

by using solid-torus decomposition. Instead, one can get RP
2 × S1 by gluing the surface

of a solid torus in an appropriate manner. One may find the unexpected description

of our results in terms of holomorphic blocks via this method. The final comment is

concerned with an extension of our arguments. There are obvious open problems; we did

not perform the check of Abelian mirror symmetry with general Nf flavors. Also, we did

not present the generalization of the exact calculation with a non-Abelian gauge symmetry

as mentioned in the Introduction. We hope to complete these problems in the near future.

Moreover, we found generalized mirror symmetry equalities in Appendix D. In Appendix

D.1, we provided the generalized equality with the parameter λ and its proof in terms

of the q-binomial theorem. In Appendix D.2, we showed another relation derived by the

properties of the theta function of Jacobi. The idea of the proof comes from connection

problems on linear q-difference equations [39, 40]. The generalized relation also gives the

connection formula for the 1ϕ0(λ;−; q, z)-type equation between the solutions of the linear

q-difference equations around the origin and around infinity. The important point is that

we obtain the same relation (4.23) as the special case even though these relations in the

subsections are essentially different from each other. These formulas suggest the possibility

to add one more parameter to our system, and its physical meaning may be found in the

brane construction. If these are derived from string theory generally, our mathematical

conclusion will give us new physical perspective.
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A Calculation details

In this appendix, we show the details of the calculations for one-loop determinants. Our

method discussed below is similar to the one discussed in [22, 21]. Their way did not

respect the symmetry generated by ĵ3, whereas we derive (3.26) with preserving ĵ3 structure

explicitly because it has an important meaning in our SCI (3.1). In the latter discussions,

we get the following type of a infinite product in each final step:

∏

n∈Z

∏

k≥0

2πin + 2zf(k)

2πin+ 2zb(k)
, (A.1)

where the zf/b(k)’s represent certain k-dependent functions. By using the infinite product

formula of sinh z, we can deform it to

∏

k≥0

2 sinh zf (k)

2 sinh zb(k)
=
(

∏

k≥0

ezf (k)−zb(k)
)

× exp
(

∞
∑

m=1

−1

m

∑

k≥0

(e−2mzf (k) − e−2mzb(k))
)

. (A.2)

We call the first part in (A.2) the Casimir energy which must be regularized (see Appendix

B for our regularization scheme) and the second part,

−
∑

k≥0

(e−2zf (k) − e−2zb(k)) =: f(x, . . . ), (A.3)

the one-particle index. As one can verify later, both the Casimir energy and the one-

particle index do not depend on x′. In this appendix, we use 2d Killing spinors

ε(ϑ, ϕ) = e
i
2
ϕ

(

cos ϑ
2

sin ϑ
2

)

, ε(ϑ, ϕ) = e−
i
2
ϕ

(

sin ϑ
2

cos ϑ
2

)

(A.4)

which satisfy

Diε =
1

2f
γiγ3ε, Diε = − 1

2f
γiγ3ε, (A.5)
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where i runs for ϑ, ϕ. We must consider the B-parity condition in order to get the index

on RP
2
b × S1. If we ignore the B-parity condition, then, of course, we can get the index on

S2
b ×S1. However, as noted in the beginning of Section 2, the results do not depend on the

squashing parameter. Consequently, the results without the B-parity condition reproduce

the known results on S2 × S1 [13, 3, 14].

A.1 Vector multiplet

Gauge fixing By repeating the same argument for the “shortcut” way of the gauge

fixing [5, 22, 21], we can restrict the path integral onto the configuration satisfying

A
(n)
3 = 0, (A.6)

∗2d ∗2 A(n) = 0 (A.7)

for all n’s without any Fadeev-Popov determinants. Then, we need to consider the opera-

tor’s determinant

∏

n∈Z

det∆
(n)
f

√

det∆
(n)
b

, (A.8)

where

∆
(n)
b =

(

−(∗2d)2 + h2n − ∗2 d 1
f

+ 1
f
∗2 d −(∗2d)2 + 1

f2
+ h2n

)

, (A.9)

∆
(n)
f = iγiDi + γ3

(

hn +
i

2l
Ω
)

. (A.10)

In addition, we can make this problem simpler by notifying

det δ
(n)
b =

√

det∆
(n)
b (A.11)

up to the sign where

δ
(n)
b =

(

ihn − ∗2 d
∗2d 1

f
+ ihn

)

. (A.12)

Namely, the one-loop determinant, which we should know5 is

Zvector
1−loop =

∏

n∈Z

det γ3∆
(n)
f

det δ
(n)
b

. (A.13)

As one can see, the contribution of the U(1) vector multiplet already does not have the

dependence on the holonomy. Therefore, we omit the superscript ± from now on.

5The insertion of γ3 in the numerator does not spoil the validity and make the problem simple [22, 21].
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Pairing structure The calculation is based on the eigenvalues pairing structure as fol-

lows. Let (A, σ)T and λ be the eigenmodes,

δ
(n)
b

(

A
σ

)

= −iM
(

A
σ

)

, (A.14)

∆
(n)
f λ = −Mλ. (A.15)

Then, we can map the one side to the other by defining

Λ := (γ3γ
iAi + iσγ3)ε, (A.16)

(

B
Σ

)

:=

(

−i(M + hn)εγiλe
i − d(εγ3λ)

(M + hn)ελ

)

. (A.17)

The modes which have no pair only contribute to the one-loop determinant (A.13). In

other words, we have to find the eigenvalues constrained by the following conditions:

M =Mb which satisfies (A.14) and (A.16) = 0, (A.18)

M =Mf which satisfies (A.15) and (A.17) = 0. (A.19)

The constraints (A.16) = 0 and (A.17) = 0 are solved by taking
(

A
σ

)

= eij
b
3ϕhb(ϑ)

(

e1 + i cosϑe2

i sinϑ

)

, (A.20)

λ = (Mf + hn +
i

2l
Ω)eij

f
3ϕhf (ϑ)ε, (A.21)

where j
b/f
3 ∈ Z. Substituting these representations into (A.14) and (A.15), we get the

following sets of equations:










1

f(ϑ)
∂ϑhb(ϑ) +

cosϑ

sinϑ

( 1

f(ϑ)
− jb3

l

)

hb(ϑ) = 0,

Mbl = i
(

(Ω− 1)jb3 − iln
)

,

(A.22)















1

f(ϑ)
∂ϑhf(ϑ) +

cosϑ

sin ϑ

( 1

f(ϑ)
+
jf3 − 1

l

)

hf (ϑ) = 0,

Mf l = i
(

(Ω− 1)(jf3 − 1)− iln
)

.

(A.23)

One can get the conditions of j3 as jb3 ≥ 1 for bosons and jf3 ≤ 0 for fermions because,

around ϑ ∼ 0, one can easily solve the equation for hb(ϑ) and hf (ϑ) in (A.22) and (A.23),

respectively, as

hb(ϑ) ∼ sin(jb3−1) ϑ, (A.24)

hf (ϑ) ∼ sin−jf3 ϑ. (A.25)
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Note that the coefficients of differential equations with respect to ϑ in (A.22) and (A.23)

are invariant under the antipodal identification (1.2), that is,

hb/f (π − ϑ) = hb/f (ϑ). (A.26)

B-parity condition Usually, j3 takes an arbitrary value in integers Z. Therefore, one

may think that jb3 = 1, 2, 3, ... and jf3 = 0,−1,−2, ...; however, it is not in our case because

of the B-parity condition. We can determine the possible values for j
b/f
3 from the explicit

forms of the eigenmodes (A.20) and (A.21), the invariance of hb/f (A.26), and the B-parity

condition (2.27). Combining these arguments, one can get the condition

eij3π = −1. (A.27)

This means that we have










Mb =
i

l

(

(Ω− 1)(2k + 1)− iln
)

,

Mf =
i

l

(

− (Ω− 1)(2k + 2)− iln
)

,
(A.28)

where k = 0, 1, 2, ..., and n ∈ Z. Note that the eigenvalues for bosons shift by one from

those of fermions, which results in the nontrivial one-loop determinant for the U(1) vector

multiplet.

One-loop determinant We can get the explicit form of (A.13) just by substituting all

relevant eigenvalues (A.28) into it:

(A.13) =
∏

all

Mf

Mb

=
∏

n∈Z

(

∏

k≥0

(1− Ω)(2k + 2)− iln

(Ω− 1)(2k + 1)− iln

)

∼
∏

n∈Z

(

∏

k≥0

(1− Ω)(2k + 2) + iln

(1− Ω)(2k + 1) + iln

)

, (A.29)

where ∼ represents the equality up to the sign. This regularization is guaranteed in the

2d case [21]. From the above expression, substituting

2zf(k) = 2β2(2k + 2), 2zb(k) = 2β2(2k + 1) (A.30)

into (A.2), we can get (3.26) and (3.27). The Casimir energy can be regularized by using

the zeta function regularization formula (B.4) explained in Appendix B.
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A.2 Matter multiplet

We start with the pairing structure of (3.35) and (3.36). To make our argument com-

prehensive, we define the differential operators ∆
(n)
φ and ∆

(n)
ψ acting on φ(n) and ψ(n),

respectively, as

∆
(n)
φ = −gijDAflat

i DAflat
j + (pn − i

∆

2l
Ω)2 +

∆2 − 2∆

4f 2
+

∆

4
R− ∆− 1

f
viDAflat

i , (A.31)

∆
(n)
ψ = −iγiDAflat

i − γ3(pn − i
∆− 1

2l
Ω)− i

1

2f
γ3 − i

∆− 1

2f
viγi − i

∆− 1

2f
ω, (A.32)

where DAflat
i is defined with a flat connection Aflat.

Pairing structure Let φ and ψ be the eigenmodes for ∆
(n)
φ and ∆

(n)
ψ , i.e.

∆
(n)
φ φ = −M

(

M − 2(pn − i
∆

2l
Ω)
)

φ, (A.33)

γ3∆
(n)
f ψ =Mψ. (A.34)

Then,

(

Ψ1

Ψ2

)

=

(

γ3εφ

iγiεDAflat
i φ+ γ3ε([hn − i∆

2l
Ω] + i ∆

2f
)φ

)

, (A.35)

Φ = εψ (A.36)

satisfy the equations

γ3∆
(n)
ψ

(

Ψ1

Ψ2

)

=

(

−2(pn − i∆−1
2l

Ω) 1

M(M − 2(pn − i∆−1
2l

Ω)) 0

)(

Ψ1

Ψ2

)

, (A.37)

∆
(n)
φ Φ = −M

(

M − 2(pn − i
∆

2l
Ω)
)

Φ. (A.38)

As discussed in [5, 22, 21], one can find the relevant spectra characterized by

M =Mφ which satisfies (A.33) and Ψ2 =MΨ1, (A.39)

M =Mψ which satisfies (A.34) and (A.36) = 0. (A.40)

Then, we take each relevant mode as

φ = ei
∮
γ
qAflateij

b
3ϕhb(ϑ), (A.41)

ψ = ei
∮
γ
qAflateij

f
3ϕhf(ϑ)ε, (A.42)
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where j
b/f
3 ∈ Z. Substituting these forms into Ψ2 = MφΨ1 and (A.36) = 0, we get the

following sets of equations:















1

f
∂ϑhb(ϑ) +

cosϑ

sin ϑ

( ∆

2f(ϑ)
− 1

l
(jb3 +

∆

2
)
)

hb(ϑ) = 0,

Mφl = i
(

(1− Ω)(jb3 +
∆

2
) + i

l

2π
[2πn− qθ − fµ]

)

,

(A.43)















1

f
∂ϑhf(ϑ)−

cos ϑ

sin ϑ

(∆− 2

2f(ϑ)
− 1

l
(jf3 +

∆− 2

2
)
)

hf (ϑ) = 0,

Mψl = i
(

(Ω− 1)(jf3 +
∆− 2

2
)− i

l

2π
[2πn− qθ − fµ]

)

.

(A.44)

One can get also the conditions of j3 as j
b
3 ≥ 0 for bosons and jf3 ≤ 0 for fermions because

the behaviors of hb/f (ϑ) around ϑ ∼ 0 become

hb(ϑ) ∼ sinj
b
3 ϑ, (A.45)

hf (ϑ) ∼ sin−jf3 ϑ. (A.46)

Note that these functions Eqs. (A.43) and (A.44) have the symmetry (A.26).

B-parity condition We have to limit j3 to preserve the B-parity conditon (2.31) as we

have done in the vector multiplet, but an additional issue occurs because the matter is

charged through q. The permitted region depends on the B-parity choice ± and the value

of the holonomy,

ei
∮
γ
qAflateij3π = ±1. (A.47)

Here, it is found that the consistent two choices of the B-parity condition correspond to

the background U(1)flavor holonomies

±1 = ei
∮
γ
fBflavor

flat , (A.48)

where f is the appropriate flavor charge. Therefore, we can get

eij3π = ei
∮
γ
(qAflat+fBflavor

flat ). (A.49)
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It means that we have

(

ei
∮
γ
(qAflat+fBflavor

flat ) = +1

)

⇒











Mφl = i
(

(1− Ω)(2k +
∆

2
) + i

l

2π
[2πn− qθ − fµ]

)

,

Mψl = i
(

(Ω− 1)(−2k − 1 +
∆

2
)− i

l

2π
[2πn− qθ − fµ]

)

,

(A.50)

(

ei
∮
γ
(qAflat+fBflavor

flat ) = −1

)

⇒











Mφl = i
(

(1− Ω)(2k + 1 +
∆

2
) + i

l

2π
[2πn− qθ − fµ]

)

,

Mψl = i
(

(Ω− 1)(−2k − 2 +
∆

2
)− i

l

2π
[2πn− qθ − fµ]

)

.

(A.51)

Therefore, the one-loop determinant changes its form depending on the value of the total

holonomy ei
∮
γ
(qAflat+fBflavor

flat ).

One-loop determinant We can get each one-loop determinant by calculating

∏

all

Mψ

Mφ

. (A.52)

We read the eigenvalue of each holonomy sector from (A.50) and (A.51), and the corre-

sponding infinite products (A.52) are written as

(

ei
∮
γ
(qAflat+fBflavor

flat ) = +1

)

⇒
(

(A.52) =
∏

n∈Z

∏

k≥0

(1− Ω)(2k + 1− ∆
2
)− i l

2π
[2πn− qθ − fµ]

(1− Ω)(2k + ∆
2
) + i l

2π
[2πn− qθ − fµ]

)

,

(A.53)
(

ei
∮
γ
(qAflat+fBflavor

flat ) = −1

)

⇒
(

(A.52) =
∏

n∈Z

∏

k≥0

(1− Ω)(2k + 2− ∆
2
)− i l

2π
[2πn− qθ − fµ]

(1− Ω)(2k + 1 + ∆
2
) + i l

2π
[2πn− qθ − fµ]

)

.

(A.54)

After substituting

(

ei
∮
γ
(qAflat+fBflavor

flat ) = +1

)

⇒







2zf(k) = i(qθ + fµ) + 2β2(2k + 1− ∆

2
),

2zb(k) = −i(qθ + fµ) + 2β2(2k +
∆

2
),






, (A.55)

(

ei
∮
γ
(qAflat+fBflavor

flat ) = −1

)

⇒







2zf(k) = i(qθ + fµ) + 2β2(2k + 2− ∆

2
),

2zb(k) = −i(qθ + fµ) + 2β2(2k + 1 +
∆

2
)






(A.56)

into (A.2) and regularizing the Casimir energies by using (B.4), we can get the results

(3.38) - (3.41).
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B Zeta function regularization

In general, an infinite product is not well defined and must be regulated by an appropriate

method. Here, we adopt the zeta function regularization given as [33]

∏

k≥0

f(k) = exp

(

d

ds

∑

k≥0

f(k)s

)∣

∣

∣

∣

∣

s=0

. (B.1)

We make use of (B.1) to regularize the Casimir energy of the vector multiplet and the

matter multiplet. Those forms shown explicitly in (A.2) are generally written as the

infinite product

∏

k≥0

(

x2k+C1
)r

(x2k+C2)r
, (B.2)

where C1, C2, and r are constants independent of k. Applying (B.1) to the above expres-

sion, we expand the numerator and the denominator around s = 0 so that

d

ds

∑

k≥0

(

x2k+C
)s

=
1

2s2 log x
+

−2 + 6C − 3C2

12
log x+O(s). (B.3)

Although this form is obliviously diverged at s = 0, unwanted terms can be canceled by

taking a ratio of such infinite products. Consequently, (B.2) with s→ 0 results in

∏

k≥0

(

x2k+C1
)r

(x2k+C2)r
= exp

(

r

(−2 + 6C1 − 3C2
1

12
− −2 + 6C2 − 3C2

2

12

)

log x

)

= x−
r
4
(C1−C2)(C1+C2−2). (B.4)

It is straightforward to apply this formula to each Casimir energy. Firstly, for the vector

multiplet, its k-dependent functions (A.30) correspond to setting

r = 1, C1 = 1, C2 = 2. (B.5)

Then, we can obtain the Casimir energy as

x+
1
4 . (B.6)

Secondly, for the matter multiplet in the even holonomy sector, its k-dependent functions

(A.55) correspond to setting

r = 1, C1 =
∆

2
+ Θ, C2 = 1− ∆

2
−Θ, xΘ := (e+iqθα+f)

1
2 . (B.7)
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Then, we can obtain the Casimir energy as

x+
∆−1
4 e+

i
4
qθα+ 1

4
f . (B.8)

Lastly, for the matter multiplet in the odd holonomy sector, its k-dependent functions

(A.56) correspond to setting

r = 1, C1 = 1 +
∆

2
+ Θ, C2 = 2− ∆

2
−Θ. (B.9)

Then, we can obtain the Casimir energy as

x−
∆−1
4 e−

i
4
qθα− 1

4
f . (B.10)

C Abelian duality

As recently discussed in [26] for the purely bosonic case, though Abelian duality looks

trivial on a flat space, its validity becomes nontrivial on the curved space because of topo-

logical obstructions. In this section, we utilize Abelian duality to justify our prescription

(mainly, of the integration contour in the index).

Abelian duality in 3d between the free U(1) gauge theory and the free matter theory

[24, 25] can be realized by the equality of the action,
∫

d3x
√
g
(1

2
FµνF

µν
)

=

∫

d3x
√
g
(

∂µρ∂
µρ
)

(C.1)

via the equality in (4.1). We naturally can supersymmetrize this duality. For example, see

[41]. In our language, we can describe a (on-shell) matter multiplet (φ, φ̄, ψ, ψ̄) in terms

of a vector multiplet (Aµ(→ ρ), σ, λ, λ̄) as follows:

e2φ = σ + iρ, e2φ̄ = σ − iρ, (C.2)

e2ψ = λ, e2ψ̄ = −λ̄. (C.3)

Through those identifications, one can show the following relationship between the U(1)

vector multiplet action and the matter multiplet action6:

1

e2

∫

d3x
√
g

(

1

2
FµνF

µν + ∂µσ∂
µσ + ǫ3ρσ

σ

f
Fρσ + iλγµDµλ− i

2f
λγ3λ

)

= e2
∫

d3x
√
g

(

∂µφ∂
µφ+

1

f
φ∂3φ− iψγµDµψ +

i

2f
ψγ3ψ

)

. (C.4)

6Note that the duality equation (4.1) is valid on a Minkowski background. In order to make it Euclidean

one, we have to multiply (−i) by the third coordinate.
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The matter action above seems to be the on-shell part of Lmat with zero R-charge, ∆ = 0.

In fact, the dual matter fields under the identifications (C.2) and (C.3) can correctly

reproduce the boundary conditions along S1 (3.30) - (3.33) setting ∆ = 0. Moreover, the

consistent B-parity condition for the vector multiplet (2.27) takes the one for the dual

matter contents to be with negative sign in (2.31) representing the odd holonomy. Thus,

we conclude that the matter multiplet comprised by the vector multiplet7 belongs to the

odd holonomy sector with ∆ = 0.

While the dual prescription shown here holds on the on-shell fields, we could reconstruct

an off-shell action with ∆ = 0 and the supersymmetry for the dual matters by adding

auxiliary fields appropriately to on-shell quantities (as the Gaussian form in the action).

Actually, the action (C.4) is just the on-shell sector having ∆ = 0 of the off-shell action

Lmat + δǫδǫ

(

i
∆− 1

f
[φφ]

)

. (C.5)

As a result, because the matter action (C.5) is written by a SUSY-exact deformation, we

can perform the localization leading to the one-loop determinant for the corresponding

dual matter fields. Therefore, the expected identity for Abelian duality is

IU(1)(x) = I(∆=0)(−)
matter (x). (C.6)

The left-hand side can be computed by the formula (3.55). Since we have just one vector

multiplet, the contributions from the holonomies ei
∮
γ
A

(±)
flat = ±1 become the same ones:

Zvector
1-loop(x) = x

1
4
(x4; x4)∞
(x2; x4)∞

. (C.7)

This means that there is a residual symmetry of interchanging the flat connection for the

even holonomy and for the odd holonomy A
(+)
flat ↔ A

(−)
flat , and we must take (Sym) = 2 in

the formula (3.55):

IU(1)(x) =
Zvector

1-loop(x)

2

∮

C0

dz

2πiz

(

1 + 1
)

= x
1
4
(x4; x4)∞
(x2; x4)∞

. (C.8)

7Note that, as explained in [26], the invariance of the classical action (C.1) and the relation (4.1) under

scale transformations requires the coupling constant e to scale nontrivially such that e2 has a scaling

dimension one. This means that σ and ρ in (C.2) have effectively the same scaling dimension as that of

the square of the coupling constant.
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On the other hand, we can get the contribution from the dual matter multiplet via the

formula in (3.53) with ∆ = q = f = 0, N
(+)
f = N

(2)
f = 0, and N

(−)
f = 1:

I(∆=0)(−)
matter (x) = Z(∆=0)(−)

1-loop (1, x, 1)

= x
1
4
(x4; x4)∞
(x2; x4)∞

, (C.9)

and this is identical to the one in (C.8). Our new formulas to the index on RP
2
b × S1 can

precisely provide Abelian duality as well as 3d mirror symmetry.

D Mathematical generalizations of (4.23)

In this section, we consider mathematical generalizations of the relation (4.23). In Ap-

pendix D.1, we give (4.23) as the special case of the generalization via the q-binomial theo-

rem. In Appendix D.2, we also give (4.23) by using the connection formula of 1ϕ0(λ;−; q, z).

We remark that these formulas in each subsection are completely different, but we can de-

rive the relation (4.23) as their special case.

D.1 From the q-binomial theorem

First, we derive a more general form of (4.23) from the q-binomial theorem and its alter-

native representation. The q-binomial theorem is

(λz; q)∞
(z; q)∞

= 1ϕ0(λ;−; q, z), ∀|z| < 1, |q| < 1,

and 1ϕ0(λ;−; q, z) can be deformed from its definition as

1ϕ0(λ;−; q, z) =
∑

n≥0

(λ; q)n
(q; q)n

zn

=
∑

m≥0

(λ; q)2m
(q; q)2m

z2m +
∑

m≥0

(λ; q)2m+1

(q; q)2m+1
z2m+1

=
∑

m≥0

(λ, λq; q2)m
(q; q2)m(q2; q2)m

(z2)m +
1− λ

1− q
z
∑

m≥0

(λq, λq2; q2)m
(q3; q2)m(q2; q2)m

(z2)m

= 2ϕ1(λ, λq; q; q
2, z2) +

1− λ

1− q
z2ϕ1(λq, λq

2; q3; q2, z2)

= 2ϕ1(λ, λq; q; q
2, z2) +

(λ; q2)∞
(λq2; q2)∞

(q3; q2)∞
(q; q2)∞

z2ϕ1(λq, λq
2; q3; q2, z2)

=
(q2; q2)∞
(q; q2)∞

{

(q; q2)∞
(q2; q2)∞

2ϕ1(λ, λq; q; q
2, z2) +

(λ, q3; q2)∞
(λq2, q2; q2)∞

z2ϕ1(λq, λq
2; q3; q2, z2)

}

.
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Therefore, we acquire the alternative representation of the q-binomial theorem

1ϕ0(λ;−; q, z) =
(q2; q2)∞
(q; q2)∞

{

(q; q2)∞
(q2; q2)∞

2ϕ1(λ, λq; q; q
2, z2)

+
(λ, q3; q2)∞
(λq2, q2; q2)∞

z2ϕ1(λq, λq
2; q3; q2, z2)

}

. (D.1)

We now define the weight function

w(z, λ; q) := q+
1
8 z−

1
2
(z2; q2)∞
(λ; q2)∞

(D.2)

to make the generalization of the relation (4.23) clear. Multiplying the weight function

(D.2) by the alternative representation (D.1), we obtain

w(z, λ; q)
(λz; q)∞
(z; q)∞

= q+
1
8z−

1
2
(z2; q2)∞
(λ; q2)∞

(λz; q)∞
(z; q)∞

= q+
1
8z−

1
2
(z2; q2)∞
(λ; q2)∞

(q2; q2)∞
(q; q2)∞

{

(q; q2)∞
(q2; q2)∞

2ϕ1(λ, λq; q; q
2, z2)

+
(λ, q3; q2)∞
(λq2, q2; q2)∞

z2ϕ1(λq, λq
2; q3; q2, z2)

}

= q+
1
8
(q2; q2)∞
(q; q2)∞

{

z−
1
2
(z2, q; q2)∞
(λ, q2; q2)∞

2ϕ1(λ, λq; q; q
2, z2)

+ z+
1
2
(z2, q3; q2)∞
(λq2, q2; q2)∞

2ϕ1(λq, λq
2; q3; q2, z2)

}

,

namely,

w(z, λ; q)
(λz; q)∞
(z; q)∞

= q+
1
8
(q2; q2)∞
(q; q2)∞

{

z−
1
2
(z2, q; q2)∞
(λ, q2; q2)∞

2ϕ1(λ, λq; q; q
2, z2)

+ z+
1
2
(z2, q3; q2)∞
(λq2, q2; q2)∞

2ϕ1(λq, λq
2; q3; q2, z2)

}

. (D.3)

When we put z 7→ ã+
1
2 and λ 7→ ã−1q, i.e. λz 7→ ã−

1
2 q in (D.3), we obtain the relation

(4.23).

D.2 From the triple product identity of the theta function of

Jacobi

Next, we prove the relation (4.23) in terms of the theta function of Jacobi. The idea of the

proof comes from the connection problems on linear q-difference equations [40]. The local

theory and irregularity for q-difference equations are studied by J.-P. Ramis, J. Sauloy, and

C. Zhang [39] by using the Newton polygon. Recently, C. Zhang and T. Morita provided
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some connection formulas with the irregular singular case. In the connection problems, we

study the elliptic functions associated with the relations between the local solutions around

the origin and around infinity. In this subsection, we deal with the first-order q-difference

equation (see Remark 1 for details). We begin with the review of the theta function [40].

The theta function is given by

θ(x) =
∑

n∈Z

q
n(n−1)

2 xn, ∀x ∈ C.

The theta function has the triple product identity

θ(x) =
(

q,−x,− q
x
; q
)

∞
. (D.4)

For any k ∈ Z, the theta function satisfies the q-difference equation

θ(qkx) = q−
k(k−1)

2 x−kθ(x). (D.5)

The theta function also has the inversion formula

θ(1/x) = θ(x)/x. (D.6)

The function 1ϕ0(λ;−; q, z) can be rewritten by using the theta function as

1ϕ0(λ;−; q, z) =
(λz; q)∞
(z; q)∞

=
θ(−λz)
θ(−z)

(q/z; q)∞
(q/λz; q)∞

=
θ(−λz)
θ(−z) 1ϕ0

(

λ;−; q,
q

λz

)

, (D.7)

provided that |z| < 1.

Remark 1 The function 1ϕ0(λ;−; q, z) satisfies the first-order q-difference equation

(1− λz)u(qz) + (z − 1)u(z) = 0. (D.8)

We can check that the equation (D.8) has the solution around infinity

u∞(z) :=
θ(λz)

θ(z)
1ϕ0

(

λ;−; q,
q

λz

)

. (D.9)

With this solution, the relation (D.7) can be rewritten as

1ϕ0 (λ;−; q, z) = Cq(z)u∞(z),

where

Cq(z) =
θ(−λz)
θ(−z)

θ(z)

θ(λz)
.

Here, the function Cq(z) is the elliptic function, namely, q-periodic and unique valued:

Cq(qz) = Cq(z), Cq(e
2πiz) = Cq(z).

Therefore, the function Cq(z) gives the “true” connection coefficient [40] between the func-

tion 1ϕ0(λ;−; q, z) and u∞(z).
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The function 1ϕ0(λ;−; q, q/λz) also has the alternative representation (D.1) as

1ϕ0

(

λ;−; q,
q

λz

)

= 2ϕ1

(

λ, λq; q; q2,
( q

λz

)2
)

+
(λ, q3; q2)∞
(λq2, q; q2)∞

q

λz
2ϕ1

(

λq, λq2; q3; q2,
( q

λz

)2
)

. (D.10)

Combining the relations (D.7), (D.10), and the weight function w(z, λ; q) defined in Ap-

pendix D.1, we also obtain the following relation:

w(z, λ; q)
(λz; q)∞
(z; q)∞

= q+
1
8 z−

1
2
(z2; q2)∞
(λ; q2)∞

(λz; q)∞
(z; q)∞

= q+
1
8
(q2; q2)∞
(q; q2)∞

θ
(

− q
λz

)

θ (−z)

{

z−
1
2
(z2, q; q2)∞
(λ, q2; q2)∞

2ϕ1

(

λ, λq; q; q2,
( q

λz

)2
)

+ z−
1
2
q

λz

(z2, q3; q2)∞
(λq2, q2; q2)∞

2ϕ1

(

λq, λq2; q3; q2,
( q

λz

)2
)}

.

(D.11)

Equation (D.11) gives the relation between the basic hypergeometric series 1ϕ0 around the

origin and the basic hypergeometric series 2ϕ1 around infinity.

If we set z 7→ ã+
1
2 and λ 7→ ã−1q, i.e. λz 7→ ã−

1
2 q, we again acquire the relation (4.23).
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