DESIGN OBJECTIVES

The product described in this document has not been fully tested to insure conformance to the requirements outlined below. Therefore AMP Incorporated makes no representation or warranty, expressed or implied, that the product will comply with these requirements.

Further, AMP Incorporated may change these requirements based on the results of additional testing and evaluation.

Contact AMP Engineering for further details.

Il prodotto descritto in questa specifica non è stato ancora completamente provato per garantime la conformità ai requisiti indicati nel documento. Perciò l'AMP non può al momento fornire assicurazione sulla conformità del prodotto a questi requisiti.

L'AMP si riserva inoltre la facoltà di modificare i requisiti della specicifica sulla base dei risultati di addizionali prove e valutazioni.

Per ulteriori informazioni si prega di contattare l'Ufficio Tecnico.

PRODUCT SPECIFICATION

070 sr MULTILOCK *Connector For P.c.b.

* Tı	ademark of AMP Incorpora	ated	THAT	THIS INFORMATION IS CONFIDENTIAL AND IS DISCLOSED TO YOU ON CONDITION IN THAT NO FURTHER DISCLOSURE IS MADE BY YOU TO OTHER THAN AMP PERSONNEL WITHOUT WRITTEN AUTHORIZATION FROM AMP ITALIA S.p.A.							
					DR M. PALMA	24/02/95		Co	IP ITALIA : rso F.IIi Ce ilegno (TOI	rvi, 15	
	DEVICED ETOO 0404 07	Blu	- و	16 Dec-	APP.		LOC.	NUMBER 108-20150		rev. A	
<u>A</u>	REVISED ET00-0492-97 ADDED 8 Pos. 282770-1	272.2	C.T.	20 Dec 1995	SHEET	NAME 070 S	ERIE	S MULTILOCK *			
0	FIRST ISSUE	M.P.	C.T.	27 Feb 1 9 95	1 OF 9	COM	VECT(OR FOR P.C.B.			
REV LTR	REVISIÓN RECORD	DR	СНК	DATE	, 0,)						

TEC 034 Apr 93

1. <u>SCOPE</u>:

1.1 CONTENTS

This specification covers the requirements for product performance, test methods and quality assurance provisions of 070 sr. MULTILOCK Connector for Printed circuit board.

Part Number	Description
C-282627-1	3 Pos. Plug Housing
C-282366-1	8 Pos. Plug Housing
C-282367-1	12 Pos. Plug Housing
C-173852-1	14 Pos. Plug Housing
C-282368-1	18 Pos. Plug Housing
C-282369-1	20 Pos. Plug Housing
C-282268-1	8 Pos. P.C.B. Header (horizontal type)
C-282594-1	11 Pos. P.C.B. Header (horizontal type)
C-282629-1	12 Pos. P.C.B. Header (horizontal type)
C-282630-1	14 Pos.P.C.B. Header (horizontal type)
C-282631-1	18 Pos.P.C.B. Header (horizontal type)
C-282632-1	20 Pos. P.C.B. Header (horizontal type)
C-282633-1	24 Pos.P.C.B. Header (horizontal type)
C-282634-1	30 Pos. P.C.B. Header (horizontal type)
C-282770-1	8 Pos. P.C.B. Header (vertical type)
C-282525-5 to -8	12 Pos. P.C.B. Header (vertical type)
C-282526-5 to -8	20 Pos. P.C.B. Header (vertical type)

2. <u>APPLICABLE DOCUMENTS</u>:

The following documents form a part of this specification to the extent specified herein. In the event of conflict between the requirements of this specification and the product drawing, the product drawing shall take precedence. In the event of conflict between the requirements of this specification and the referenced documents, this specification shall take precedence.

2.1 AMP SPECIFICATIONS:

A. 109-5000 Test Specification, General Requirements for Test Methods
B. 114-20056 Application Specification for 070 sr. receptacle contact crimp version

2.2 COMMERCIAL STANDARD AND SPECIFICATIONS:

Low Voltage Stranded Cables for Automobiles acc. to FIAT Normation Table N° 91107/03

	AMP ITALIA S.p.A.	SHEET	LOC.	NUMBER	REV.
AMP	Corso F.Ili Cervi, 15 Collegno (TORINO)	2 of 9	I	108-20150	,ua

3. REQUIREMENTS:

3.1 DESIGN AND CONSTRUCTION:

Product shall be of the design, construction and physical dimensions specified in the applicable product drawing.

3.2 MATERIALS:

A. Contact:

Stitched tab contact: Post-tinned brass

Crimped receptacle contact: Pre-tinned brass

B: Housing:

- PBT unfilled (plug hsgs and horizontal headers)
- PBT glassfiber filled (vertical headers)

3.3 RATINGS:

A. Current Rating: 14 A max. (with 1,5

14 A max. (with 1,5 mm² wire and max six adjacent contacts)

B. Temperature Rating:

-30°C to 105°C (including the temperature increasing due to

working current flow)

C. Maximum Operating Voltage: 24 V d.c.; for application at higher voltage please contact AMP.

3.4 QUALITY ASSURANCE PROVISION:

A. Sample preparation:

The test samples to be used for the tests shall be prepared by randomly selected from the current production, and the 070 sr. rec. contact crimped in accordance with the applic. spec. 114-20056.

No sample shall be reused, unless otherwise specified.

B. Test Condition:

All the tests shall be performed under any combination of the following test conditions, unless otherwise specified.

Room temperature: 23 ± 5 °C Relative Humidity: $45 \div 75$ %

Atmospheric Pressure: 860÷1060 mbar

	AMP ITALIA S.p.A.	SHEET	LOC.	NUMBER	REV.
AMP	Corso F.lli Cervi, 15 Collegno (TORINO)	3 _{OF} 9	I	108-20150	-

3.5 TEST REQUIREMENTS AND PROCEDURES SUMMARY:

Para.	Test Items	Requirements	Procedures				
3.5.1 Confirmation of product		- Product shall be confirming to the requirements of applicable product drawing and Application specifica- tion	Visually, dimensionally and functionally inspected per applicable quality inspection plan.				
		Electrical Requirements					
3.5.2	Voltage drop	- ≤ 3 mV/A on new contacts and after ten insertions/extractions	Between a point of the wire at 1 cm from the conn. edge and a point very closed to the header edge. (for test current see Fig. 1) (Termination resistance is obtained after deducing the mV drop of the cable length used for termination)				
3.5.3	Dielectric strength	- Neither creeping discharge nor flashover shall occur	≥ 1000 Vac for 1 minute. Test between adjacent circuits of mated connectors.				
3.5.4.	Insulation resistance	- 10 MΩ Min.	Impressed voltage 500 Vdc. Test between adjacent circuits of mated connectors.				
3.5.5	High temperature resist. with current load (example of 6 pos. conn.)	 Temperature increasing detected: ≤ 50°C (thermocouple placed on transition between contact body and wire barrel) Voltage drop within limits indicated for new contacts No damaging 	On all ways contemporarily: Not airy ambient with a test temp of 80 ± 2°C Test current on each way: 14A with a 1.5 mm² wire Duration: 5 hours (for the acceptable current currying capacity / position of conn. / wire section see Fig. 2)				
3.5.6	Current overload	Temperature increasing ≤ 60°C on transition between contact body and wire barrel - Voltage drop within limits indicated for new contacts - No damaging	On one way w/o housing: - Test current: 21 A (with a 1.5 mm² wire) - Duration: 500 cycles composed of: 45' current "ON" 15' current				

AMP	AMP ITALIA S.p.A. Corso F.lli Cervi, 15	SHEET	LOC.	NUMBER 108-20150	REV.	
	Collegno (TORINO)	4 OF 9	1			

Para. Test Items		Requirements	Procedures				
		Physical Requirements					
3.5.7	Vibration test	 Voltage drop within limits indicated for new contacts No electrical discontinuity greater than 1 μsec. shall occur 	2 hours for each axis: - Freq.: 10-500-10 Hz in 5 minutes - Displacement: 1.5 mmpp - Acceleration: 5 g				
3.5.8	Single contact engaging force	- Ist insertion ≤ 8 N	- Operation Speed: 50 mm/min. (Tab as shown on Fig. 3)				
3.5.9	Single contact separating force	- Ist extraction ≤ 8 N - Xth extraction ≥ 2 N	- Same as point 3.5.8				
3.5.10	Connector mating force	3 Pos: ≤ 40 N 6 Pos: ≤ 65 N 8 Pos: ≤ 70 N 10 Pos: ≤ 80 N 12 Pos: ≤ 95 N 14 Pos: ≤ 105 N 18 Pos: ≤ 125 N 20 Pos: ≤ 140 N 24 Pos: See 10 Pos & 14 Pos 30 Pos: See 12 Pos & 18 Pos	 In working condition with header counterpart Operation Speed: 50 mm/min. Direction equal to contact axis 				
3.5.11	Connector unmating force	Ist extract Xth extract. $3 \text{ Pos: } \le 40 \text{ N} \ge 10 \text{ N}$ $6 \text{ Pos: } \le 65 \text{ N} \ge 20 \text{ N}$ $8 \text{ Pos: } \le 70 \text{ N} \ge 25 \text{ N}$ $10 \text{ Pos: } \le 80 \text{ N} \ge 30 \text{ N}$ $12 \text{ Pos: } \le 95 \text{ N} \ge 35 \text{ N}$ $14 \text{ Pos: } \le 105 \text{ N} \ge 40 \text{ N}$ $18 \text{ Pos: } \le 125 \text{ N} \ge 55 \text{ N}$ $20 \text{ Pos: } \le 140 \text{ N} \ge 60 \text{ N}$ 24 Pos: See 10 Pos & 14 Pos 30 Pos: See 12 Pos & 18 Pos	- Same as point 3.5.10 but pressing on latching arm.				

Para.	Test Items	Requirements	Procedures
3.5.12	Connector locking strength	- 100 N Min.	- Operation Speed: 50 mm/min Apply an axial pull-off load to the cables bundle.
3.5.13	Rec. contact insertion force	- 15 N Max. per contact	- Measure the force required to insert rec. contact into housing
3.5.14	Rec. contact retention force (primary locking only)	- 80 N min.	- Apply an axial pull-off load to crimped wire Operation speed: 50 mm/min.
3.5.15	Rec. contact retention force (secondary locking included)	- 100 N min.	- Same as point 3.5.14
		Physical Requirements	
3.5.16	Crimp tensile strength	Wire Size Crimp tensile mm² N min. 0.35 50 0.5 70 1.0 115 1.5 155	 Apply an axial pull-off load to crimped wire of contact secured on the tester. Operation Speed: 25-50 mm/min.
3.5.17	Durability (Repeated Mating/Unmating)	-Single eng./separating force -Conn.mating/unmating force	- Operation Speed: 50 mm/min., no. of Cycles: 10
3.5.18	Solderability	Wet Solder Coverage: 95% Min.	 Solder Temperature: 230 ± 5°C Immersion Duration: 3 ± 0.5 seconds Flux: Alpha 100 (AMP Spec. 109-5203)

	AMP ITALIA S.p.A.	SHEET	LOC.	NUMBER	REV.	
AMP	Corso F.Ili Cervi, 15 Collegno (TORINO)	6 of 9	I	108-20150	-	

Para.	Test Items	Requirements	Procedures					
		Environmental Requireme	nts					
3.5.19	Thermal cycling resistance	 No deformation or cracking of the plastic parts Voltage drop ≤ 4.5 mV/A Insul. resist., dielectr.resist., mech.feature at point 3.5.15 within limits indicated for new contacts 	5 cycles composed of: - 2 hrs at +125 ± 2°C - 2 hrs at + 40 ± 2°C and 90-95% r.h 2 hrs at -30 ± 2°C (mated connector)					
3.5.20	Salt spray corrosion test	- Voltage drop ≤ 4.5 mV/A - Insulation resistance within indicated limits	- 150 hours of salt mist at 35 ± 2°C, 5% of NaCl, pH 6.5-7.2 class 2 (mated connector)					
3.5.21	Kesternich corrosion	- Voltage drop ≤ 4.5 mV/A - Insulation resistance within indicated limits	4 cycles composed of: - 8 hours of exposure to an atmosphere with 0.66% of So2 at 40± 2°C (method acc. to DIN 50118) - 16 hours in free air. (mated connector)					
3.5.22	Accelerated aging test	 No deformation or cracking of the plastic parts and plastic material discoloration are admitted Voltage drop ≤ 4.5 mV/A Dielectr. resist. and mech.feature at point 3.5.15 within limits indicated for new contacts 	- 120 hours at 120°C (mated connector)					

	AMP ITALIA S.p.A.	SHEET	LOC.	NUMBER	REV.	
AMP	Corso F.lli Cervi, 15 Collegno (TORINO)	7 OF 9	I	108-20150	-	

3.6 PRODUCT QUALIFICATION TEST SEQUENCE

Test Items		Test group											
	A	В	C	D	E	F	G	Н	K	L	M	N	
	Test sequence												
Confirmation of Product	1,5	1,7	1,7	1,3	1,8	1,5	1,5	1,3	1,7	1,5	1,5	1,5	
Single contact engaging force	2	2											
Single contact separating force	3	4											
Connector mating force			2										
Connector unmating force			3										
Durability (10 cycles)	4	5	4										
Voltage drop		3,6			2,4	2,4	2,4		2,4	2,4	2,4	2,4	
Rec.cont. retention force (primary lock plus secon lock)			6		7			The second secon	6				
Connector locking strength		 	5		 	ļ	1		-			<u> </u>	
Dielectric strength		 			6	1		 	5	1			
Insulation resistance		-	 		5	-	 	 		 	 	·	
Crimp tensile strength			+	2		 		<u> </u>	 	1		 	
Thermal cycling resistance					3			1		1			
High temp. resist. (in oven)						3							
Current overload (on frée air)		1			<u> </u>		3						
Solderability								2					
Accelerated aging test									3				
Salt spray corrosion test										3			
Kesternich corrosion											3		
Vibration test												3	
					ļ								
							ļ						
										1			
									<u> </u>		<u> </u>		

	AMP ITALIA S.p.A. Corso F.III Cervi, 15 Collegno (TORINO)	SHEET	LOC.	NUMBER	REV.	
		8 of 9	I	108-20150	-	

FIG. 1

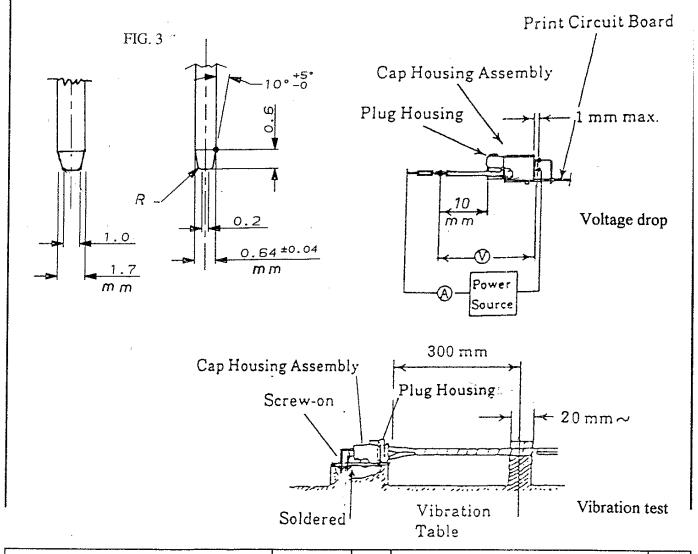

Wire Size (mm²)	Current Max. (A)
0.5 _{mm²}	DC 6. A
1.0 mm ²	DC 11 A
1.5 mm²	DC 14 A

FIG. 2

No. of Pos.	Reduction Coefficiency
2-6	1
7-10	0.7
11-14	0.6
-15-19	0.5
> 20	0.4

REV.

Note: The acceptable current carrying capacity is obtained by the specified maximum coefficiency obtained by the number of contacts above table.

