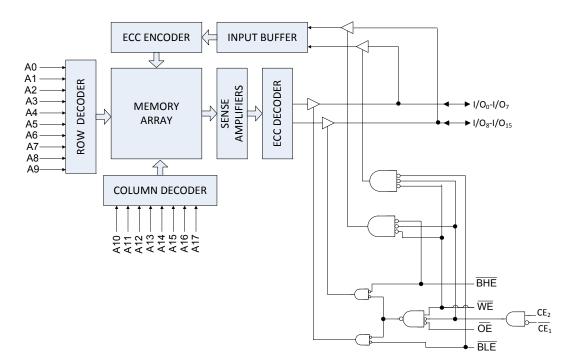


CY7C1041G Automotive

4-Mbit (256K words × 16 bit) Static RAM with Error-Correcting Code (ECC)

Features

- High speed □ t_{AA} = 10 ns
- Temperature range
 □ Automotive-E: -40 °C to 125 °C
 □ Automotive-A: -40 °C to 85 °C
- Embedded ECC for single-bit error correction^[1]
- Low active and standby currents
 Active current I_{CC} = 40-mA typical
 Standby current I_{SB2} = 6-mA typical
- Operating voltage range: 2.2 V to 3.6 V
- 1.0-V data retention
- TTL- compatible inputs and outputs
- Pb-free 48-ball VFBGA and 44-pin TSOP II packages


Functional Description

CY7C1041G is a high-performance CMOS fast static RAM automotive part with embedded ECC. This device has a single Chip Enable (\overline{CE}) input and is accessed by asserting it LOW.

Data writes are performed by asserting the Write Enable ($\overline{\text{WE}}$) input LOW, while providing the data on I/O₀ through I/O₁₅ and the address on A₀ through A₁₇ pins. The Byte High Enable (BHE) and Byte Low Enable ($\overline{\text{BLE}}$) inputs control write operations to the upper and lower bytes of the specified memory location. BHE controls I/O₈ through I/O₁₅ and BLE controls I/O₀ through I/O₇.

Data reads are performed by asserting the Output Enable ($\overline{\text{OE}}$) input and providing the required address on the address lines. Read data is accessible on the I/O lines (I/O₀ through I/O₁₅). Byte accesses can be performed by asserting the required byte enable signal (BHE or BLE) to read either the upper byte or the lower byte of data from the specified address location.

All I/Os (I/O₀ through $\underline{I/O}_{15}$) are placed in a HI-Z state when the device is deselected (CE LOW), or when the control signals are deasserted (OE, BLE, BHE). Refer to the following logic block diagram.

Logic Block Diagram – CY7C1041G

Note

1. This device does not support automatic write-back on error detection.

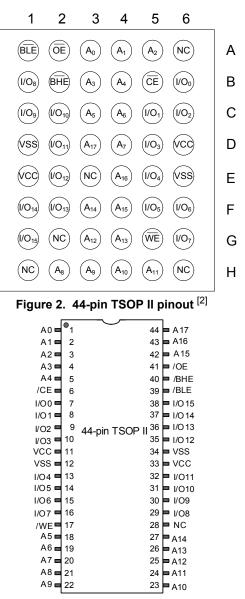
Cypress Semiconductor Corporation Document Number: 001-91255 Rev. *G 198 Champion Court

San Jose, CA 95134-1709 • 408-943-2600 Revised November 25, 2015

CY7C1041G Automotive

Contents

Pin Configurations	3
Product Portfolio	3
Maximum Ratings	4
Operating Range	
DC Electrical Characteristics	
Capacitance	5
Thermal Resistance	
AC Test Loads and Waveforms	
Data Retention Characteristics	
Data Retention Waveform	
AC Switching Characteristics	
Switching Waveforms	
Truth Table	


Ordering Information	13
Ordering Code Definitions	
Package Diagrams	14
Acronyms	16
Document Conventions	16
Units of Measure	16
Document History Page	17
Sales, Solutions, and Legal Information	18
Worldwide Sales and Design Support	18
Products	18
PSoC® Solutions	18
Cypress Developer Community	18
Technical Support	

Pin Configurations

Figure 1. 48-ball VFBGA pinout ^[2]

Product Portfolio

		- ·		Power Dis	Power Dissipation			
Product	Range	V _{CC} Range (V)	Speed (ns)	Operating I _{CC} , (mA), f = f _{max}		Standby,	I _{SB2} (mA)	
			()	Typ ^[3]	Max	Typ ^[3]	Max	
CY7C1041G	Automotive-E	2.2 V–3.6 V	10	40	50	6	14	
	Automotive-A			38	45	6	8	

Notes

2. NC pins are not connected internally to the die.

^{3.} Typical values are included for reference only and are not guaranteed or tested.

CY7C1041G Automotive

Maximum Ratings

Exceeding maximum ratings may impair the useful life of the device. These user guidelines are not tested.

Storage temperature65 °C to +150 °C	
Ambient temperature with power applied55 °C to +125 °C	
Supply voltage on V_{CC} relative to $\text{GND}^{[4]}$ –0.5 V to Vcc +0.3 V	
DC voltage applied to outputs in HI-Z State $^{[4]}$ 0.3 V to Vcc +0.3 V	

DC input voltage ^[4]	–0.3 V to V _{CC} + 0.3 V
Current into outputs (in low state)	
Static discharge voltage (MIL-STD-883, Method 3015)	>2001 V
Latch-up current	> 140 mA

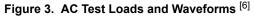
Operating Range

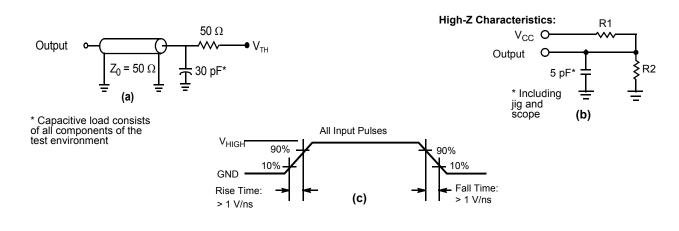
Grade	Ambient Temperature	V _{cc}
Automotive-E	–40 °C to +125 °C	2.2 V to 3.6 V
Automotive-A	–40 °C to +85 °C	2.2 V to 3.6 V

DC Electrical Characteristics

Over the Operating Range

Deremeter	Decer	intion	Test Conditions		10 ns	(Aut	omotive-E)	10 ns	(Aut	omotive-A)	Unit
Parameter	Description		Test Cond	illions	Min	Тур	Max	Min	Тур	Max	Unit
V _{OH}		2.2 V to 2.7 V	V _{CC} = Min, I _{OH}	= –1.0 mA	2	-	_	2	_	_	V
	voltage	2.7 V to 3.6 V	V _{CC} = Min, I _{OH}	= -4.0 mA	2.2	-	_	2.2	-	_	
V _{OL}	Output LOW	2.2 V to 2.7 V	V _{CC} = Min, I _{OL} :	= 2 mA	-	-	0.4	-	_	0.4	V
	voltage	2.7 V to 3.6 V	V _{CC} = Min, I _{OL} :	= 8 mA	-	-	0.4	-	-	0.4	
V _{IH}	Input HIGH	2.2 V to 2.7 V	_		2	-	V _{CC} + 0.3 ^[4]	2	_	$V_{\rm CC}$ + 0.3 ^[4]	V
	voltage	2.7 V to 3.6 V	_		2	-	V _{CC} + 0.3 ^[4]	2	_	$V_{\rm CC}$ + 0.3 ^[4]	
V _{IL}	Input LOW	2.2 V to 2.7 V	_		-0.3 ^[4]	-	0.6	-0.3 ^[4]	_	0.6	V
	voltage	2.7 V to 3.6 V	_		-0.3 ^[4]	-	0.8	-0.3 ^[4]	_	0.8	
I _{IX}	Input leakage	current	$GND \leq V_{IN} \leq V_{C}$	CC	-5	-	+5	-1	_	+1	μA
I _{OZ}	Output leakag	je current	$GND \leq V_{OUT} \leq V_{OUT}$	V _{CC} ,	-5	-	+5	-1	-	+1	μA
I _{CC}	Operating sup	oply current	V_{CC} = 3.6 V, I_{OUT} = 0 mA, CMOS levels	$f = f_{MAX} =$ 1/t _{RC}	-	40	50	-	38	45	mA
I _{SB1}	Automatic CE current – TTL		$V_{CC} = 3.6 \text{ V}, \overline{CE}$ $V_{IN} \ge V_{IH} \text{ or } V_{IN}$ $f = f_{MAX}$		_	_	24	_	_	15	mA
I _{SB2}	Automatic CE current – CM		$V_{CC} = 3.6 \text{ V},$ $\overline{CE} \ge V_{CC} - 0.2$ $V_{IN} \ge V_{CC} - 0.2$ $V_{IN} \le 0.2 \text{ V},$ f = 0		_	6	14	_	6	8	mA


Capacitance


Parameter ^[5]	Description	Test Conditions	All Packages	Unit
C _{IN}	Input capacitance	$T_A = 25 \text{ °C}, f = 1 \text{ MHz}, V_{CC} = V_{CC(typ)}$	10	pF
C _{OUT}	I/O capacitance		10	pF

Thermal Resistance

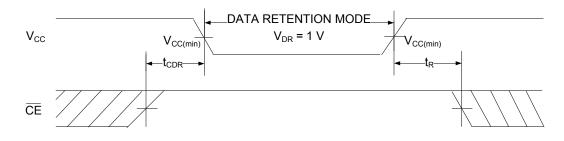
Parameter ^[5]	Description	Test Conditions	48-ball VFBGA	44-pin TSOPII	Unit
JA		Still air, soldered on a 3 × 4.5 inch, four layer printed circuit board	30.68	66.82	°C/W
- 30	Thermal resistance (junction to case)		14.83	15.97	°C/W

AC Test Loads and Waveforms

Parameters	3.0 V	Unit
R1	317	Ω
R2	351	Ω
V _{TH}	1.5	V
V _{HIGH}	3	V

Notes

- Tested initially and after any design or process change that may affect these parameters.
 Full-device AC operation assumes a 100-µs ramp time from 0 to V_{CC(min)} and a 100-µs wait time after V_{CC} stabilization.


Data Retention Characteristics

Over the Operating Range

Devenetor	Description	Description Conditions		otive-E	Autom	otive-A	Unit
Parameter	Description	Conditions	Min	Max	Min	Max	Unit
V _{DR}	V _{CC} for data retention	-	1	-	1	-	V
I _{CCDR}	Data retention current	V _{CC} = 1.2 V,	-	14	-	8	mA
		$\overline{CE} \ge V_{CC} - 0.2 V,$					
		$V_{\text{IN}} \ge V_{\text{CC}} - 0.2 \text{ V},$ $V_{\text{IN}} \ge V_{\text{CC}} - 0.2 \text{ V or}$ $V_{\text{IN}} \le 0.2 \text{ V}$					
t _{CDR} ^[7]	Chip deselect to data retention time	-	0	-	0	_	ns
t _R ^[7, 8]	Operation recovery time	V _{CC} ≥ 2.2 V	10	_	10	_	ns

Data Retention Waveform

Figure 4. Data Retention Waveform ^[8]

Notes

These parameters are guaranteed by design.
 Full-device operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min.)} ≥ 100 μs or stable at V_{CC(min.)} ≥ 100 μs.

AC Switching Characteristics

Over the Operating Range

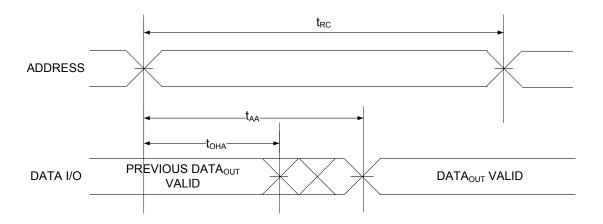
Parameter ^[9]	Description		omotive-A/ otive-E)	Unit
		Min	Max	
Read Cycle		· · · · · ·		
t _{RC}	Read cycle time	10	-	ns
t _{AA}	Address to data	-	10	ns
t _{OHA}	Data	3	-	ns
t _{ACE}	CE LOW to data ^[10]	-	10	ns
t _{DOE}	OE LOW to data	-	4.5	ns
t _{LZOE}	OE LOW to low impedance [11, 12]	0	-	ns
t _{HZOE}	OE HIGH to HI-Z ^[11, 12]	-	5	ns
t _{LZCE}	CE LOW to low impedance [10, 11, 12]	3	-	ns
t _{HZCE}	CE HIGH to HI-Z [10, 11, 12]	-	5	ns
t _{PU}	CE LOW to power up ^[10, 12]	0	-	ns
t _{PD}	CE HIGH to power down ^[10, 12]	-	10	ns
t _{DBE}	Byte enable to data valid	-	4.5	ns
t _{LZBE}	Byte enable to low impedance ^[12]	0	-	ns
t _{HZBE}	Byte disable to HI-Z ^[12]	-	6	ns
Write Cycle [1	3, 14]	· · · · ·		
t _{WC}	Write cycle time	10	-	ns
t _{SCE}	CE LOW to write end ^[9]	7	-	ns
t _{AW}	Address setup to write end	7	-	ns
t _{HA}	Address hold from write end	0	-	ns
t _{SA}	Address setup to write start	0	-	ns
t _{PWE}	WE pulse width	7	-	ns
t _{SD}	Data setup to write end	5	-	ns
t _{HD}	Data hold from write end	0	-	ns
t _{LZWE}	WE HIGH to low impedance [11, 12]	3	-	ns
t _{HZWE}	WE LOW to HI-Z ^[11, 12]	_	5	ns
t _{BW}	Byte Enable to write end	7	-	ns

Notes

11. t_{HZOE}, t_{HZZE}, t_{HZWE}, t_{HZBE}, t_{LZOE}, t_{LZOE},

12. These parameters are guaranteed by design and are not tested.

13. The internal write time of the memory is defined by the overlap of $\overline{WE} = V_{IL}$, $\overline{CE} = V_{IL}$ and \overline{BHE} or $\overline{BLE} = V_{IL}$. These signals must be LOW to initiate a write, and the HIGH transition of any of these signals can terminate the operation. The input data setup and hold timing should be referenced to the edge of the signal that terminates the write.


14. The minimum write cycle pulse width for Write Cycle No. 2 (WE Controlled, OE LOW) should be equal to sum of t_{SD} and t_{HZWE}.

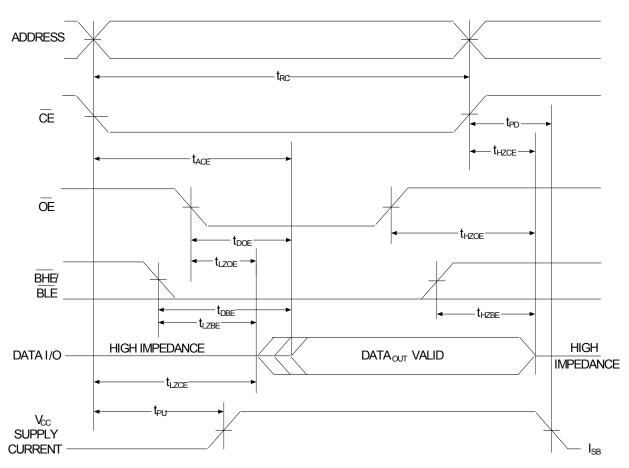
^{9.} Test conditions assume a signal transition time (rise/fall) of 3 ns or less, timing reference levels of 1.5 V (for $V_{CC} \ge 3$ V) and $V_{CC}/2$ (for $V_{CC} < 3$ V), and input pulse levels of 0 to 3 V (for $V_{CC} \ge 3$ V) and 0 to V_{CC} (for $V_{CC} < 3$ V). Test conditions for the read cycle use output loading shown in part (a) of Figure 3 on page 5, unless specified otherwise. 10. For all dual chip enable devices, CE is the logical combination of CE₁ and CE₂. When CE₁ is LOW and CE₂ is HIGH, CE is LOW; when CE₁ is HIGH or CE₂ is LOW, CE is HIGH.

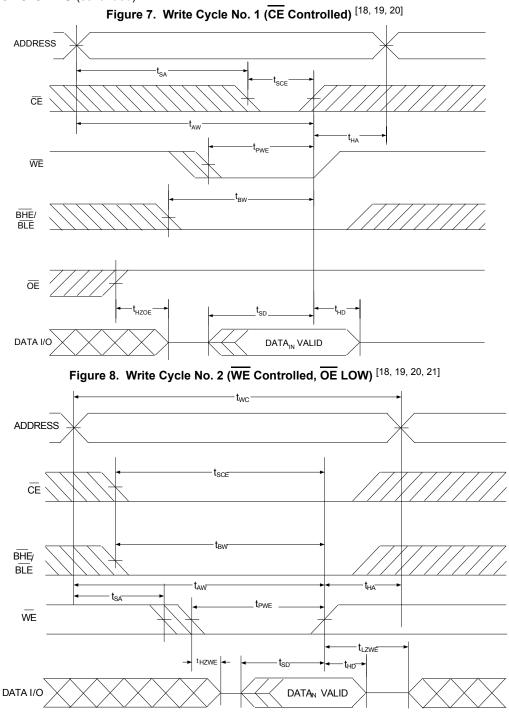
Switching Waveforms

Figure 5. Read Cycle No. 1 of CY7C1041G (Address Transition Controlled) ^[15, 16]

Notes 15. The device is continuously selected, $\overline{OE} = V_{IL}$, $\overline{CE} = V_{IL}$, \overline{BHE} or \overline{BLE} or both = V_{IL} . 16. WE is HIGH for read cycle.

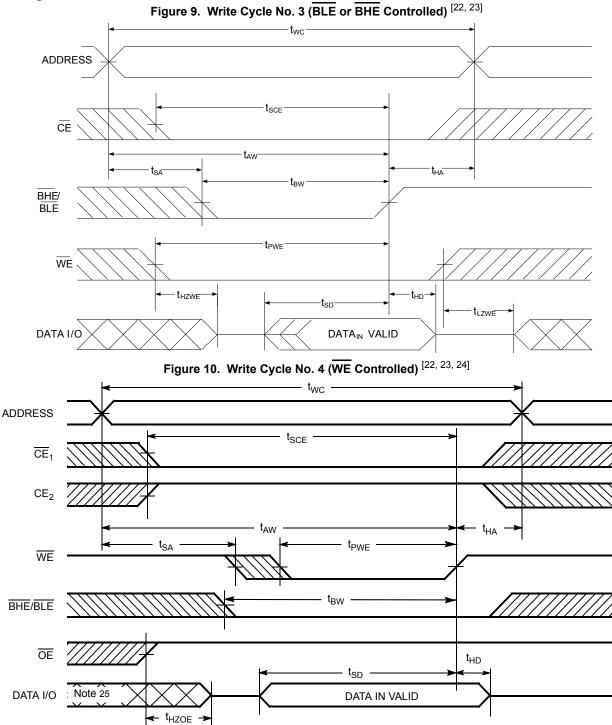
Switching Waveforms (continued)




Figure 6. Read Cycle No. 2 (OE Controlled) ^[17]

Note_____ 17. WE is HIGH for read cycle.

Switching Waveforms (continued)



Notes

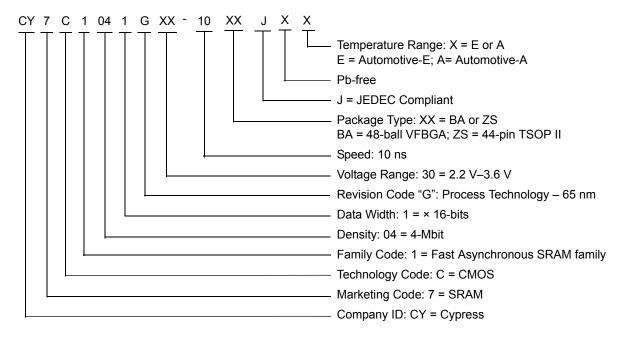
- 18. Address valid prior to or coincident with CE LOW transition.
 19. The internal write time of the memory is defined by the overlap of WE = V_{IL}, CE = V_{IL} and BHE or BLE = V_{IL}. These signals must be LOW to initiate a write, and the HIGH transition of any of these signals can terminate the operation. The input data setup and hold timing should be referenced to the edge of the signal that terminates the write.
- 20. Data I/O is in HI-Z state if $\overline{CE} = V_{IH}$, or $\overline{OE} = V_{IH}$ or \overline{BHE} , and/or $\overline{BLE} = V_{IH}$. 21. The minimum write cycle pulse width should be equal to sum of t_{SD} and t_{HZWE} .

Switching Waveforms (continued)

Notes

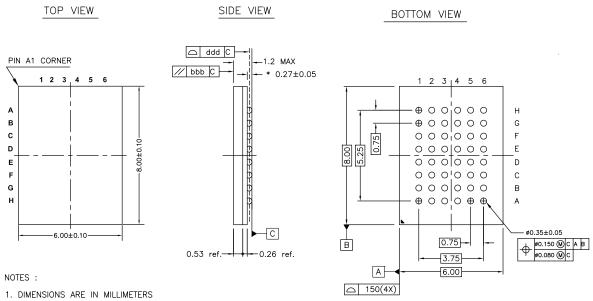
- 22. The internal write time of the memory is defined by the overlap of $\overline{WE} = V_{IL}$, $\overline{CE} = V_{IL}$ and \overline{BHE} or $\overline{BLE} = V_{IL}$. These signals must be LOW to initiate a write, and the HIGH transition of any of these signals can terminate the operation. The input data setup and hold timing should be referenced to the edge of the signal that terminates the write.
- 23. Data I/O is in HI-Z state if $\overline{CE} = V_{IH}$, or $\overline{OE} = V_{IH}$ or \overline{BHE} , and/or $\overline{BLE} = V_{IH}$. 24. Data I/O is high impedance if $\overline{OE} = V_{IH}$.
- 25. During this period the I/Os are in output state. Do not apply input signals.

Truth Table


CE	OE	WE	BLE	BHE	I/O ₀ –I/O ₇	I/O ₈ –I/O ₁₅	Mode	Power
Н	Х	Х	Х	Х	HI-Z	HI-Z	Power down	Standby (I _{SB})
L	L	Н	L	L	Data out	Data out	Read all bits	Active (I _{CC})
L	L	Н	L	Н	Data out	HI-Z	Read lower bits only	Active (I _{CC})
L	L	Н	Н	L	HI-Z	Data out	Read upper bits only	Active (I _{CC})
L	Х	L	L	L	Data in	Data in	Write all bits	Active (I _{CC})
L	Х	L	L	Н	Data in	HI-Z	Write lower bits only	Active (I _{CC})
L	Х	L	Н	L	HI-Z	Data in	Write upper bits only	Active (I _{CC})
L	Н	Н	Х	Х	HI-Z	HI-Z	Selected, outputs disabled	Active (I _{CC})

Ordering Information

Speed (ns)	Voltage Range	Ordering Code	Package Diagram	Package Type (all Pb-free)	Operating Range
10	2.2 V–3.6 V	CY7C1041G30-10BAJXE	001-85259	48-ball VFBGA	Automotive-E
	2.2 V–3.6 V	CY7C1041G30-10ZSXE	51-85087	44-pin TSOP II	
	2.2 V–3.6 V	CY7C1041G30-10ZSXA	51-85087	44-pin TSOP II	Automotive-A


Ordering Code Definitions

Package Diagrams

Figure 11. 48-ball VFBGA (6 × 8 × 1.2 mm) BA48M/BK48M (0.35 mm Ball Diameter) Package Outline, 001-85259

2. REFERENCE JEDEC STD : MO-216

3. * 0.32±0.05 FOR RAMTRON DEVICES

001-85259 *A

Package Diagrams (continued)

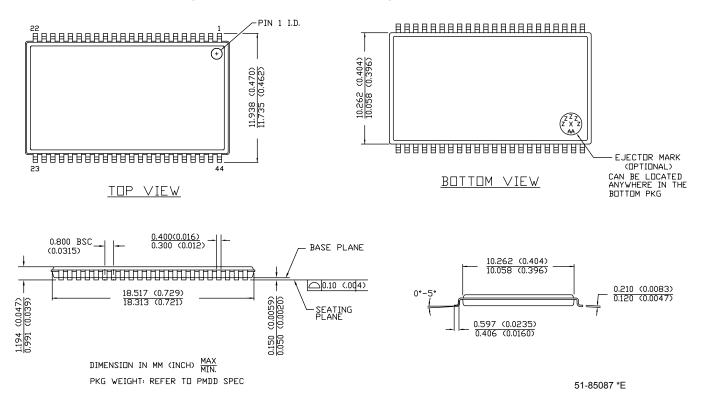


Figure 12. 44-pin TSOP Z44-II Package Outline, 51-85087

Acronyms

Acronym	Description
BHE	Byte High Enable
BLE	Byte Low Enable
CE	Chip Enable
CMOS	Complementary Metal Oxide Semiconductor
I/O	Input/Output
OE	Output Enable
SRAM	Static Random Access Memory
TSOP	Thin Small Outline Package
TTL	Transistor-Transistor Logic
VFBGA	Very Fine-Pitch Ball Grid Array
WE	Write Enable

Document Conventions

Units of Measure

Symbol	Unit of Measure
°C	degree Celsius
MHz	megahertz
μA	microampere
μS	microsecond
mA	milliampere
mm	millimeter
ns	nanosecond
Ω	ohm
%	percent
pF	picofarad
V	volt
W	watt

Document History Page

Document Number: 001-91255	Document Title: CY7C1041G Automotive, 4-Mbit (256K words × 16 bit) Static RAM with Error-Correcting Code (ECC) Document Number: 001-91255	
----------------------------	---	--

Rev.	ECN No.	Orig. of Change	Submission Date	Description of Change
*F	4996293	NILE	10/30/2015	Changed status from Preliminary to Final.
*G	5026902	NILE	11/25/2015	Added Automotive-A Temperature Range related information in all instances across the document. Updated Ordering Information: Updated part numbers.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive	cypress.com/go/automotive
Clocks & Buffers	cypress.com/go/clocks
Interface	cypress.com/go/interface
Lighting & Power Control	cypress.com/go/powerpsoc
Memory	cypress.com/go/memory
PSoC	cypress.com/go/psoc
Touch Sensing	cypress.com/go/touch
USB Controllers	cypress.com/go/USB
Wireless/RF	cypress.com/go/wireless

PSoC[®] Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Community | Forums | Blogs | Video | Training

Technical Support cypress.com/go/support

© Cypress Semiconductor Corporation, 2014-2015. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document Number: 001-91255 Rev. *G

Revised November 25, 2015

All products and company names mentioned in this document may be the trademarks of their respective holders.