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Hillclimbing Higgs inflation
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We propose a realization of cosmic inflation with the Higgs field when the Higgs potential has
degenerate vacua by employing the recently proposed idea of hillclimbing inflation. The resultant
inflationary predictions exhibit a sizable deviation from those of the ordinary Higgs inflation.

I. INTRODUCTION

Inflation plays an essential role in modern cosmol-
ogy [1–3], not only by addressing the horizon and flatness
problems [3], but also by giving primordial seeds for late-
time structures [4]. The properties of primordial pertur-
bations have been strongly constrained by precision cos-
mology, especially by the cosmic microwave background
(CMB) observations [5], and such observations are ex-
pected to explore the inflationary physics much further
in the forthcoming decade. Nevertheless, the identity
of the inflaton, the scalar field causing inflation, is still
veiled in mystery.
The Higgs particle—the quantum fluctuation of the

Higgs field around its potential minimum—had long been
the last missing element of the Standard Model (SM),
and was finally discovered in 2012 [6, 7]. Ever since,
the Higgs field has been the only (possibly) elementary
scalar field observed by human beings. The possibility of
realizing inflation with this Higgs field has been studied
extensively, and it has turned out that the Higgs field
can indeed be identified as the inflaton with the help
of a large non-minimal coupling ξ ∼ 105 to the Ricci
scalar [8].a This scenario, now called the Higgs inflation,
has been found to fit in the most favored region by CMB
observations [5].
Regarding the mass of the Higgs particle mH =

125.09 ± 0.24GeV [19], there was an interesting predic-
tion based on the Multiple Point Principle (MPP) [20].b

The MPP requires that there exist another vacuum in
the Higgs potential around the Planck scale, in addi-
tion to the electroweak one. This means that the Higgs
quartic coupling and its beta function both vanish there,
λ ∼ βλ ∼ 0.c The observed Higgs mass has turned out to

a In earlier Ref. [9], the Higgs inflation with essentially the same

parameters ξ ∼ 104 and λ ∼
(

ξ/105
)2

∼ 10−2 has also been
sketched; see also Refs. [10–14]. It is noted that we may also cope
with a smaller ξ ∼ 10–102 under the SM criticality [15–17]. See
also Ref. [18] for the explosive production of longitudinal gauge
bosons and possible strong coupling issues under the presence of
the large non-minimal coupling.

b See Appendix D in Ref. [21] for a review, and Ref. [22] for possible
generalizations.

c See e.g. Refs. [23, 24] for more recent analyses. Especially, it is
intriguing that the bare Higgs mass can also vanish around the
Planck scale, and hence there can be a triple coincidence [23].

be almost within 1σ from the value mH = 135 ± 9GeV
predicted in this way [20].
Even though these two scenarios, the Higgs inflation

and the MPP, seem attractive, difficulties arise when it
comes to combining them. The MPP requires a degen-
erate vacuum around the Planck scale, which spoils the
monotonicity of the Higgs potential which is necessary
for a successful inflation [25]. On this regard, an inter-
esting proposal has recently been made by two of the
present authors: the hillclimbing inflation [26]. This is
a general framework which enables a successful inflation
with an inflaton potential with multiple vacua. This idea
opens up a new possibility of identifying the Higgs field as
the inflaton while having degenerate vacua in the Higgs
potential. The aim of this Letter is to pursue this possi-
bility.d

This Letter is organized as follows. In Sec. II we briefly
summarize inflationary behavior and predictions in the
hillclimbing inflation. Then in Sec. III we propose an
inflation model using the Higgs field as the inflaton. We
conclude in Sec. IV.

II. HILLCLIMBING INFLATION AND ITS

PREDICTIONS

In this section, we briefly summarize the inflaton be-
havior and inflationary predictions in the general hill-
climbing inflation. We start from the Jordan-frame ac-
tion that has a non-minimal coupling between the infla-
ton and gravity:

S =

∫

d4x
√
−gJ

[

1

2
ΩRJ −

1

2
gµνJ ∂µφJ∂νφJ − VJ

]

, (1)

where (and throughout the Letter) we work in the Planck

units MP = 1/
√
8πG = 1 unless otherwise stated; the

subscript J indicates that the quantity is given in the
Jordan frame; φJ, RJ and VJ(φJ) are the inflaton, the
Ricci scalar and the inflaton potential, respectively; and
we assume that the conformal factor Ω(φJ) is positive

d The gauge-Higgs unification models fit in the periodic potential
case in the general consideration of the hillclimbing inflation [26].
Such a possibility will be pursued in a separate publication.
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for the inflaton field values we consider. Under the Weyl
rescaling gµν = ΩgJµν , the Ricci scalar transforms as

RJ = Ω

[

R + 3� lnΩ− 3

2
(∂ lnΩ)

2

]

, (2)

and we obtain the Einstein-frame action that has a
canonically normalized Ricci scalar:

S =

∫

d4x
√
−g

[

1

2
R− K

2
(∂φJ)

2 − V

]

, (3)

where

K =
1

Ω
+

3

2

(

d lnΩ

dφJ

)2

, (4)

(∂φJ)
2
= gµν∂µφJ∂νφJ, and the Einstein-frame poten-

tial reads V = VJ/Ω
2. If the second term dominates in

Eq. (4), the kinetic term in the action (3) reduces to [27]

− K

2
(∂φJ)

2 ≃ −3

4
(∂ lnΩ)2. (5)

This means that φ ≃
√

3/2 lnΩ works as a canonically
normalized inflaton. If the potential can be expanded as
a series of Ω, it will become exponentially flat in terms
of lnΩ as we will see below.
In Ref. [26], it has been proposed that one may consider

a limit Ω ≪ 1 for this to happen, instead of Ω ≫ 1. In
this class of models, called the hillclimbing inflation, we
assume that the vanishing point of Ω coincides with a
local minimum of VJ, and then we may expand it as

VJ =

∞
∑

k=2

VJ,k Ω
k, (6)

where VJ,k are constants.e The corresponding Einstein-
frame potential V = VJ/Ω

2 reads

V = V0

(

1−
∞
∑

k=n

ηkΩ
k

)

= V0

(

1−
∞
∑

k=n

ηke
−k|ln Ω|

)

(7)

at Ω < 1, where we have written V0 := VJ,2 and
ηk := −VJ,k+2/VJ,2 and the leading exponent n ≥ 1 dom-
inantly determines the inflationary predictions.f The last

e We are implicitly assuming that Ω′(φJ) is non-zero at the van-
ishing point and that the cosmological constant VJ,0 is almost

zero. Then it follows that dVJ

dΩ
= dVJ

dφJ

/ dΩ
dφJ

= 0. On the contrary

if Ω′(φJ) is zero at the vanishing point, it becomes unnecessary
to assume VJ to take its local minimum at the vanishing point
of Ω, and then the form (6) itself becomes rather a starting as-
sumption of the model [26].

f Having n ≥ 2 means that we assume VJ,k = 0 for k = 3, . . . , n+
1.

expression in Eq. (7) tells that the potential is exponen-
tially flat for the canonical inflaton field. In Sec. III we
will see that the leading power depends on the explicit
form of the conformal factor we take.
It is remarkable that the Einstein-frame potential V =

VJ/Ω
2 has been lifted up by the small Ω and made

monotonic, even around a local minimum of VJ. As is
pointed out in Ref. [26], inflation at Ω ≪ 1 means that
the Jordan-frame potential VJ = Ω2V increases in time,
that is, the inflaton climbs up the Jordan-frame poten-
tial hill. This observation is crucial in making successful
inflation with inflaton potentials having multiple vacua,
as stressed in that paper. In Sec. III we propose taking
the SM Higgs field as the inflaton.
For the inflationary predictions, this class of models

show attractor behavior called η-attractor.g Following
the standard procedure, the slow-roll parameters with
the potential (7) are obtained as

ǫV ≡ 1

2

(

V ′

V

)2

≃ 3

4

1

n2N2
, ηV ≡ V ′′

V
≃ − 1

N
, (8)

where we used the following expression for the e-folding
number N :

N ≃ 3

2

1

n2ηn

1

Ωn
. (9)

The inflationary predictions at the leading order in N
become

ns ≃ 1− 2

N
, r ≃ 12

n2N2
, (10)

where ns and r are the spectral index and the tensor-to-
scalar ratio, respectively.

III. HILLCLIMBING HIGGS INFLATION

Now let us take the Higgs field as the inflaton. We
write its effective potential as

VJ(φJ) =
1

4
λeff(φJ)φ

4
J. (11)

Around φJ = M ∼ 1017–18 GeV, the effective coupling
can be approximated by [17]

λeff(φJ) = λmin + β2

(

ln
φJ

M

)2

+ β3

(

ln
φJ

M

)3

+ · · · ,

(12)

g It can be shown that these models share the inflationary pre-
dictions with some branch of α-attractor [28, 29] at the leading
order in the e-folding [26]. However, there are several reasons
to distinguish ξ- and η-attractors from α-attractor: First of all,
their actions generically differ even after the Weyl transforma-
tion. Second, the reheating and preheating processes depend on
the preferred frame in which the canonically normalized matter
fields are introduced; see Ref. [18] for example. Finally, such
a distinction is important in constructing inflation models with
particle-physics motivated potentials, as stressed in Ref. [26].
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FIG. 1. Illustration for the setup. The Jordan-frame po-
tential VJ, shown in the blue line, has multiple vacua at
the electroweak scale ∼ vEW and the high scale denoted by
M ≫ vEW. We assume that the conformal factor Ω, denoted
by the red or yellow lines for Model 1 and Model 2 in Eq. (13),
respectively, also vanishes at the point φJ = M . We also su-
perimpose the Einstein-frame potential V as a function of the
canonically normalized field φ. The difference in the poten-
tial shape arises because Model 1 corresponds to n = 1 while
Model 2 corresponds n = 2 in Eq. (7). In this figure the
vertical axes is arbitrary, and we take M = 0.1MP.

where β2 ≃ 2 × 10−5 =: βSM
2 in the SM [25]. The cubic

and higher order terms are loop-suppressed, β3, · · · ≪ β2,
and will be neglected hereafter.
In the following we set λmin = 0 so that the poten-

tial becomes zero at φJ = M by assuming the MPP.
In the SM, this is realized with the top quark mass
mt ≃ 171.4GeV for the strong coupling αs ≃ 0.1185,
leading to M ≃ 4 × 1018GeV [17]. However, the precise
values of the β2 and M that realize λmin = 0 are altered
by extra particles such as the heavy right-handed neutri-
nos and the Higgs-portal dark matter; see e.g. Refs. [30–
34]. Therefore we take them as free parameters hereafter.
Also, we consider the following forms for the conformal

factor in this Letter:

Ω =















1−
(

φJ

M

)2

(Model 1),

1−
(

φJ

M

)4

(Model 2).

(13)

We summarize the setup in Fig. 1. Given this setup, the
Einstein-frame potential is expanded as

V =















β2M
4

16
(1− Ω− · · · ) (Model 1),

β2M
4

64

(

1− 1

12
Ω2 − · · ·

)

(Model 2).
(14)

Therefore, the leading exponent is given by n = 1 and 2
for Model 1 and 2, respectively, and the potential height

FIG. 2. Parameter region which realizes the observed curva-
ture perturbation As ≃ 2.2×10−9. The two bands correspond
to Model 1 and Model 2 in Eq. (13), and the upper and lower
lines for each band correspond to N = 50 and 60, respectively.
See also Table I.

in the Einstein frame is given by V0 ∼ β2M
4. Taking

Eq. (8) and the curvature perturbation As ∼ V0/ǫV into
account, one sees that the observed value As ≃ 2.2×10−9

constrains the model parameters along M ∝ β
−1/4
2 . Fig-

ure 2 shows such a constraint for each of Model 1 and 2.
The two bands correspond to Model 1 and 2, and the up-
per and lower lines for each band correspond to N = 50
and 60, respectively. In making this figure we numerically
solved for the e-folding N under the slow-roll assump-
tion, defining the end of inflation by max(ǫV , ηV ) = 1. It
should be mentioned that while we have investigated only
two simple models, there are various possible choices of
Ω which gives different viable parameter spaces. In ad-
dition, as mentioned above, the values of β2 and M may
easily change in models beyond the SM by the existence
of additional particles and associated intermediate scales;
see e.g. Refs. [30–34].

Figure 3 shows the inflationary predictions in the hill-
climbing Higgs inflation. It is seen that the prediction of
the tensor-to-scalar ratio differs between Model 1 and 2
because of the difference in the leading exponent. See also
Table I. Note that the prediction for r differs from the
rough estimate (10) by O(10)%. This is because Eq. (10)
is derived by taking only the leading term in Eq. (14) into
account, while higher order terms can contribute to the
inflaton dynamics as the conformal factor grows towards
the end of inflation. Such a contribution is larger if the
coefficient of the leading term is smaller, and this is why
Model 2 shows a larger deviation from Eq. (10) compared
to Model 1.

In Table I we summarize the allowed value for M and
corresponding inflationary predictions for β2 = 2× 10−5.
One sees that M ∼ 0.1MP is favored for this value of
β2 and also that φJ at the CMB scale corresponds to
∼ 0.01M away from the potential minimum at φJ = M .
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FIG. 3. Inflationary predictions in the hillclimbing Higgs in-
flation. The two lines correspond to Model 1 and Model 2
in Eq. (13), and the left and right endpoints correspond to
N = 50 and 60, respectively.

Ω Model 1 Model 2

M/MP [0.1005, 0.0923] [0.0907, 0.0837]

φJ,end/MP [0.0635, 0.0583] [0.0562, 0.0519]

φJ,CMB/MP [0.0991, 0.0912] [0.0854, 0.0791]

ns [0.9628, 0.9688] [0.9647, 0.9703]

r [0.00381, 0.00272] [0.000646, 0.000468]

TABLE I. Allowed region and inflationary predictions for
β2 = 2 × 10−5. The left and right values correspond to
N = 50 and 60, respectively. Model 1 and Model 2 are given
in Eq. (13). Note that the allowed region of M scales as

β
−1/4
2 (see the main text). Also, the values of ns and r do

not depend on β2 significantly.

IV. CONCLUSION

In this Letter we have proposed a realization of cos-
mic inflation using the Higgs field with degenerate vacua.
This realization utilizes the recently proposed idea of hill-
climbing inflation [26], which is a general framework to
enable a successful inflation using an inflaton potential
with multiple vacua. It has been shown that a successful
inflation occurs while the inflaton is climbing up the po-
tential hill from the high-scale vacuum around the Planck
scale to the electroweak vacuum, and that the resulting
inflationary predictions come well within the region fa-
vored by the CMB observations, while showing a sizable
deviation from those of the ordinary Higgs inflation.
Though in this Letter we have considered only the case

where the Higgs field has degenerate vacua, the original
proposal in Ref. [26] can work also when the Higgs po-
tential becomes negative at some scale. Such a study will
be presented in a separate publication.
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