

May 1991 Revised November 1999

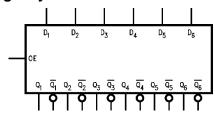
## 100319

# Low Power Hex Line Driver with Cut-Off

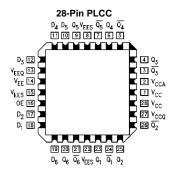
## **General Description**

The 100319 is a Hex Line Driver with output cut-off capability. The 100319 has single ended ECL inputs and differential ECL outputs, designed to drive a differential, doubly terminated 50 $\Omega$  transmission line (25 $\Omega$  equivalent impedance) in an ECL backplane. A LOW on the Output Enable (OE) will set both the true and complementary outputs, to a high impedance or cut-off state. The cut-off state is designed to be more negative than a normal ECL LOW state.

#### **Features**


- Differential outputs
- Output cut-off capability
- Drives a 25Ω ECL load
- 2000V ESD protection
- Voltage compensated range = -4.2V to -5.7V
- Available to industrial grade temperature range

## **Ordering Code:**


| Order Number | Package Number | Package Description                                                                                                |
|--------------|----------------|--------------------------------------------------------------------------------------------------------------------|
| 100319QC     | V28A           | 28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square                                               |
| 100319QI     |                | 28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square Industrial Temperature Range (–40°C to +85°C) |

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

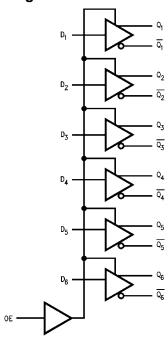
## **Logic Symbol**



## **Connection Diagram**



# **Pin Descriptions**


| Pin Names        | Description                |
|------------------|----------------------------|
| D <sub>n</sub>   | Data Inputs                |
| $Q_n$            | Data Outputs               |
| $\overline{Q}_n$ | Complementary Data Outputs |
| OE               | Output Enable              |

# **Truth Table**

| Inp            | uts | Outputs        |                  |  |  |  |
|----------------|-----|----------------|------------------|--|--|--|
| D <sub>n</sub> | OE  | Q <sub>n</sub> | $\overline{Q}_n$ |  |  |  |
| L              | Н   | L              | Н                |  |  |  |
| Н              | Н   | Н              | L                |  |  |  |
| Х              | L   | Cut-Off        | Cut-Off          |  |  |  |

H = HIGH Voltage Level
L = LOW Voltage Level
X = Don't Care
Cut-off = Lower-than-LOW State

# **Logic Diagram**



## **Absolute Maximum Ratings**(Note 1)

# Recommended Operating Conditions

Case Temperature (T<sub>C</sub>)

 $\begin{tabular}{lll} Commercial & 0 ^{\circ}C to +85 ^{\circ}C \\ Industrial & -40 ^{\circ}C to +85 ^{\circ}C \\ Supply Voltage (V_{EE}) & -5.7V to -4.2V \\ \end{tabular}$ 

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

#### **Commercial Version**

#### **DC Electrical Characteristics** (Note 3)

 $V_{EE} = -4.2 V$  to  $-5.7 V,~V_{CC} = V_{CCA} = GND,~T_{C} = 0 ^{\circ} C$  to  $+85 ^{\circ} C$ 

| Symbol           | Parameter                    | Min   | Тур   | Max   | Units | Conditions                            |                       |
|------------------|------------------------------|-------|-------|-------|-------|---------------------------------------|-----------------------|
| V <sub>OH</sub>  | Output HIGH Voltage          | -1025 | -955  | -870  | mV    | $V_{IN} = V_{IH(Max)}$                | Loading with          |
| V <sub>OL</sub>  | Output LOW Voltage           | -1830 | -1705 | -1620 | mV    | or V <sub>IL(Min)</sub>               | 25Ω to −2.0V          |
| V <sub>OHC</sub> | Output HIGH Voltage          | -1035 |       |       | mV    | $V_{IN} = V_{IH(Min)}$                | Loading with          |
| V <sub>OLC</sub> | Output LOW Voltage           |       |       | -1610 | mV    | or V <sub>IL(Max)</sub>               | $25\Omega$ to $-2.0V$ |
| V <sub>OLZ</sub> | Cut-Off LOW                  |       |       | -1950 | mV    | $V_{IN} = V_{IH(Min)}$                | OE = LOW              |
|                  | Voltage                      |       |       |       |       | or V <sub>IL(Max)</sub>               |                       |
| V <sub>IH</sub>  | Input HIGH Voltage           | -1110 |       | -870  | mV    | Guaranteed HIGH Signal for All Inputs |                       |
| V <sub>IL</sub>  | Input LOW Voltage            | -1830 |       | -1530 | mV    | Guaranteed LOW S                      | Signal for All Inputs |
| I <sub>IL</sub>  | Input LOW Current            |       |       | 100   | μΑ    | $V_{IN} = V_{IL(Min)}$                |                       |
| I <sub>IH</sub>  | Input HIGH Current           |       |       | 360   | μΑ    | $V_{IN} = V_{IH(Max)}$                |                       |
| I <sub>EE</sub>  | Power Supply Current, Normal | -119  |       | -30   | mA    |                                       |                       |
| I <sub>EEZ</sub> | Power Supply                 | -219  |       | -75   | mA    | Inputs Open,                          |                       |
|                  | Current, Cut-Off             |       |       |       |       | OE = LOW                              |                       |

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

## **AC Electrical Characteristics**

 $V_{EE} = -4.2V$  to -5.7V,  $V_{CC} = V_{CCA} = GND$ 

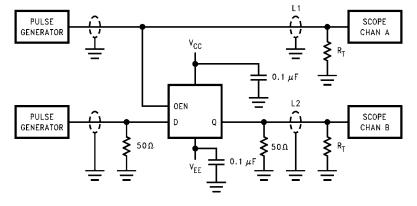
| Symbol           | Parameter              | T <sub>C</sub> = | $T_C = 0^{\circ}C$ |      | T <sub>C</sub> = +25°C |      | $T_C = +85^{\circ}C$ |       | Conditions   |
|------------------|------------------------|------------------|--------------------|------|------------------------|------|----------------------|-------|--------------|
|                  |                        | Min              | Max                | Min  | Max                    | Min  | Max                  | Units | Conditions   |
| t <sub>PLH</sub> | Propagation Delay      | 0.65             | 2.10               | 0.65 | 2.10                   | 0.65 | 2.10                 | ns    |              |
| t <sub>PHL</sub> | Data to Output         | 0.03             | 2.10               | 0.03 | 2.10                   | 0.03 | 2.10                 | 115   | Figures 1, 2 |
| t <sub>PZH</sub> | Propagation Delay      | 1.8              | 4.1                | 1.8  | 4.1                    | 1.8  | 4.1                  | ns    |              |
| $t_{PHZ}$        | OE to Output           | 1.2              | 2.9                | 1.2  | 2.9                    | 1.2  | 2.9                  |       |              |
| t <sub>TLH</sub> | Transition Time        | 0.45             | 1.30               | 0.45 | 1.30                   | 0.45 | 1.30                 | no    |              |
| t <sub>THL</sub> | 20% to 80%, 80% to 20% | 0.45             | 1.30               | 0.43 | 1.30                   | 0.43 | 1.30                 | ns    |              |

# **Industrial Version**

# **DC Electrical Characteristics** (Note 4)

 $V_{EE} = -4.2V$  to -5.7V,  $V_{CC} = V_{CCA} = GND$ 

| Symbol           | Parameter             | $T_C = -40^{\circ}C$ |       | $T_C = 0^{\circ}C \text{ to } +85^{\circ}C$ |       | Units | Conditions                 |                      |
|------------------|-----------------------|----------------------|-------|---------------------------------------------|-------|-------|----------------------------|----------------------|
| Зупівої          |                       | Min                  | Max   | Min                                         | Max   | Units | Conditions                 |                      |
| V <sub>OH</sub>  | Output HIGH Voltage   | -1085                | -870  | -1025                                       | -870  | mV    | $V_{IN} = V_{IH(Max)}$ Lo  | ading with           |
| V <sub>OL</sub>  | Output LOW Voltage    | -1830                | -1575 | -1830                                       | -1620 | mV    | or V <sub>IL(Min)</sub> 25 | $i\Omega$ to $-2.0V$ |
| V <sub>OHC</sub> | Output HIGH Voltage   | -1095                |       | -1035                                       |       | mV    | $V_{IN} = V_{IH(Min)}$ Lo  | ading with           |
| V <sub>OLC</sub> | Output LOW Voltage    |                      | -1565 |                                             | -1610 | mV    | or V <sub>IL(Max)</sub> 25 | $i\Omega$ to $-2.0V$ |
| V <sub>IH</sub>  | Input HIGH Voltage    | -1115                | -870  | -1110                                       | -870  | mV    | Guaranteed HIGH Signa      | al for All           |
|                  |                       |                      |       |                                             |       |       | Inputs                     |                      |
| V <sub>OLZ</sub> | Cut-Off LOW Voltage   |                      | -1900 |                                             | -1950 | mV    | $V_{IN} = V_{IH(Min)}$ OF  | E = LOW              |
|                  |                       |                      |       |                                             |       |       | or V <sub>IL(Max)</sub>    |                      |
| V <sub>IL</sub>  | Input LOW Voltage     | -1830                | -1535 | -1830                                       | -1530 | mV    | Guaranteed LOW Signal for  |                      |
|                  |                       |                      |       |                                             |       |       | All Inputs                 |                      |
| I <sub>IL</sub>  | Input LOW Current     |                      | 130   |                                             | 100   | μΑ    | $V_{IN} = V_{IL(Min)}$     |                      |
| I <sub>IH</sub>  | Input HIGH Current    |                      | 360   |                                             | 360   | μΑ    | $V_{IN} = V_{IH(Max)}$     |                      |
| I <sub>EE</sub>  | Power Supply Current, | -119                 | -30   | -119                                        | -30   | mA    |                            |                      |
|                  | Normal                |                      |       |                                             |       |       |                            |                      |
| I <sub>EEZ</sub> | Power Supply Current, | -219                 | -75   | -219                                        | -75   | mA    | Inputs Open                |                      |
|                  | Cut-Off               |                      |       |                                             |       |       | OE = LOW                   |                      |


Note 4: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

## **AC Electrical Characteristics**

 $V_{EE} = -4.2V$  to -5.7V,  $V_{CC} = V_{CCA} = GND$ 

| Symbol           | Parameter              | T <sub>C</sub> = | $T_C = -40^{\circ}C$ |      | $T_C = +25^{\circ}C$ |      | $T_C = +85^{\circ}C$ |       | Conditions      |
|------------------|------------------------|------------------|----------------------|------|----------------------|------|----------------------|-------|-----------------|
|                  |                        | Min              | Max                  | Min  | Max                  | Min  | Max                  | Units | Conditions      |
| t <sub>PLH</sub> | Propagation Delay      | 0.65             | 2.10                 | 0.65 | 2.10                 | 0.65 | 2.10                 | ns    |                 |
| $t_{PHL}$        | Data to Output         | 0.03             | 2.10                 | 0.00 | 2.10                 | 0.03 | 2.10                 |       |                 |
| t <sub>PZH</sub> | Propagation Delay      | 1.8              | 4.1                  | 1.8  | 4.1                  | 1.8  | 4.1                  | no    | Figures 1Figure |
| $t_{PHZ}$        | OE to Output           | 1.2              | 2.9                  | 1.2  | 2.9                  | 1.2  | 2.9                  | ns    | 2               |
| t <sub>TLH</sub> | Transition Time        | 0.45             | 1.30                 | 0.45 | 1.30                 | 0.45 | 1.30                 | ns    |                 |
| t <sub>THL</sub> | 20% to 80%, 80% to 20% | 0.43             | 1.30                 | 0.43 | 1.30                 | 0.45 | 1.30                 | 115   |                 |

# **Test Circuitry**

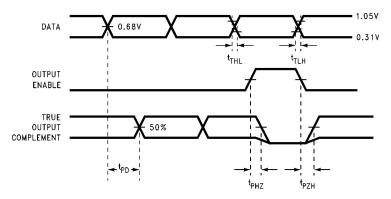


#### Notes:

 $\mathrm{V_{CC}},\,\mathrm{V_{CCA}}=+2\mathrm{V},\,\mathrm{V_{EE}}=-2.5\mathrm{V}$ 

L1 and L2 = equal length  $50\Omega$  impedance lines

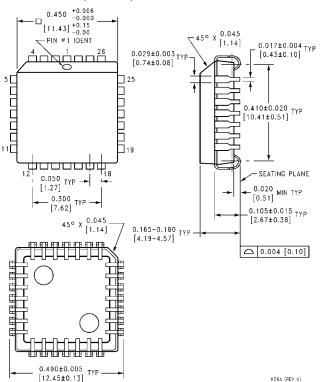
 $R_T = 50\Omega$  terminator internal to scope


Decoupling 0.1  $\mu\text{F}$  from GND to  $V_{\text{CC}}$  and  $V_{\text{EE}}$ 

All unused outputs are loaded with 25  $\!\Omega$  to GND

.  $C_L = Fixture and stray capacitance \le 3 pF$ 

FIGURE 1. AC Test Circuit


# **Switching Waveforms**



Note: The output AC measurement point for cut-off propagation delay testing = the 50% voltage point between active  $V_{OL}$  and  $V_{OH}$ .

FIGURE 2. Propagation Delay, Cut-Off and Transition Times

## Physical Dimensions inches (millimeters) unless otherwise noted



28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square Package Number V28A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

#### LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com