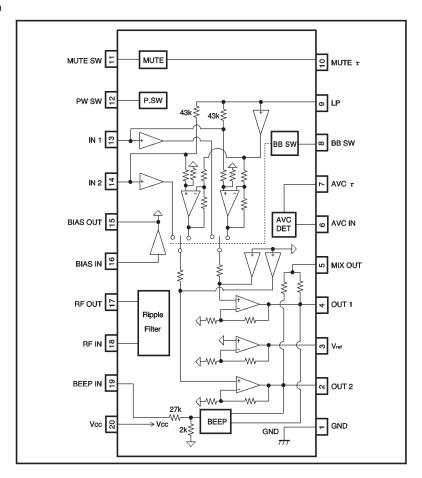
Audio ICs

Low-current audio headphone driver BA3574BFS

The BA3574BFS is a headphone driver with a fixed-gain bass boost circuit and an AVC circuit that keeps the output below a fixed level. It features low current dissipation, and low output noise, and is ideal for use in portable digital audio equipment.

Applications


Portable CD and MD players

Features

- 1) Low current dissipation (when Vcc = 2.4V, the quiescent current is 4.9mA).
- 2) Suitable for use in digital audio equipment (voltage gain: $G_V = 11.8 dB$, output noise voltage: $V_{NO} = -102 dBm$ typ.).
- 3) Bass boost circuit.
- 4) AVC (Auto Volume Control) circuit, for output limiting.
- 5) Standby switch.
- 6) Mute switch.
- 7) Ripple filter.
- 8) No output coupling capacitor required.
- 9) Beep circuit.
- 10) SSOP-A20 package.

●Block diagram

●Absolute maximum ratings (Ta = 25°C)

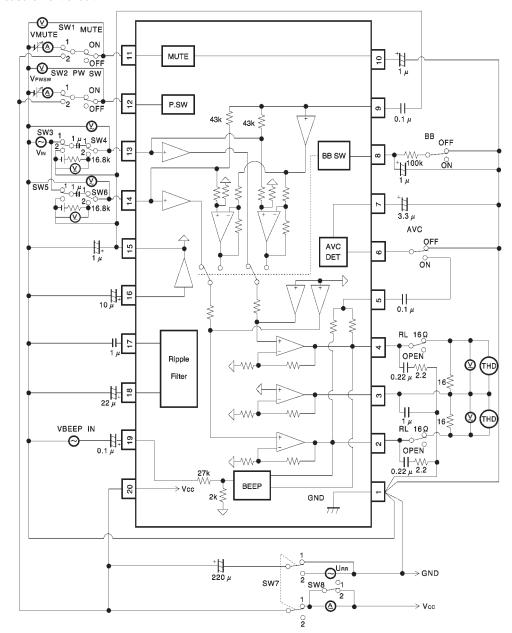
Parameter	Symbol	Limits	Unit
Power supply voltage	Vcc	9.0	٧
Power dissipation	Pd	600*	mW
Operating temperature	Topr	-25~ + 75	°C
Storage temperature	Tstg	−55∼+125	°C

 $^{\ \ \, \}mbox{\$ Reduced}$ by 6.0mW for each increase in Ta of 1°C over 25°C.

● Recommended operating conditions (Ta = 25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit	
Power supply voltage	Vcc	1.7	_	3.6	٧	

^{*} When $Vcc \ge 3.6V$, do not exceed the maximum allowable output power (see Fig. 5).


584

•Electrical characteristics (unless otherwise noted, Ta = 25° C, Vcc = 2.4V, RL = 16Ω , f = 1kHz, and BB = OFF)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Circuit current 1	lcc1	_	0.2	3.0	μΑ	V _{IN} =0, R _L =OPEN, PW SW=OFF
Circuit current 2	lcc2	_	3.1	4.7	mA	V _{IN} =0, R _L =OPEN, MUTE=ON
Circuit current 3	lcc3	_	4.9	7.5	mA	V _{IN} =0, R _L =OPEN
Circuit current 4	Icc4	_	5.0	7.8	mA	V _{IN} =0, R _L =OPEN, BB=ON
Circuit current variation	ΔΙοσ	_	0.3	2.0	mA	Icc4 (R _L =16Ω) -Icc4 (R _L =OPEN)
Voltage gain	Gv	9.8	11.8	13.8	dB	
Rated output power 1	Роит1	19	40	_	mW	THD=10%
Rated output power 2	Роит2	8	15	_	mW	THD=10%, Vcc=1.8V
Total harmonic distortion	THD	_	0.1	0.5	%	Vo=0.3V _{rms}
Output noise voltage 1	V _{NO} 1	_	-102	- 97	dBm	IHF-A, R ₉ =0
Output noise voltage 2	V _{NO} 2	_	-89	-84	dBm	IHF-A, R ₉ =0, BB=ON
Input resistance	Rin	11.5	16.8	22.0	kΩ	
Ripple rejection 1	RR1	73	79	_	dB	fnr=100Hz, Vnr=-20dBM, Rg=0
Ripple rejection 2	RR2	53	63	_	dB	R _g =0, V _{RR} =-20dBm, BB=ON f _{RR} =100Hz
Ripple rejection 3	RR3	66	79	_	dB	R _g =0, V _{RR} =-20dBm, V _{CC} =1.8V f _{RR} =100Hz
Ripple rejection 4	RR4	43	58	_	dB	f _{RR} =100Hz, V _{RR} =-20dBm, V _{CC} =1.8V BB=ON, R _g =0
Bass boost	BB	4.5	7.0	9.5	dB	f=100Hz, V _{IN} =-30dBV
AVC level	Vavc	-42.5	-40.5	-38.5	dBV	V _{IN} =-30dBV
Channel separation	cs	24	44	_	dB	Vo=-10dBV
Mute level	ML	80	90	_	dB	V _{IN} =-20dBV
Beep output voltage	VBEEP	1.1	3.0	5.8	mV _{rms}	VBEEP IN=OdBV
Power ON voltage	V _{PW} on	_	0.95	1.4	٧	
Power ON pin current	Ipw sw	-	105	150	μΑ	V _{PW SW} =3.0V
Mute ON voltage	V _{MUTE} ON	_	0.95	1.4	٧	
Mute ON pin current	Імите	_	105	150	μΑ	V _{MUTE} =3.0V

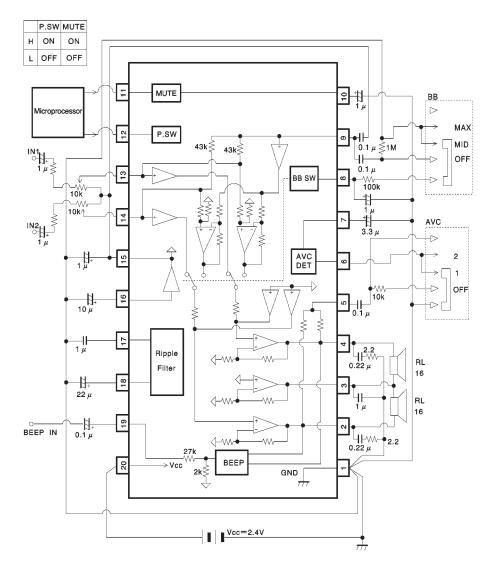
 \bigcirc Not designed for radiation resistance.

Measurement circuit

Units:

 $\begin{tabular}{lll} Resistance & : Ω $ (\pm 1\%) \\ Capacitance (film) & : F $ (\pm 1\%) \\ Capacitance (electrolytic) : F $ (\pm 5\%) \\ \end{tabular}$

Fig. 1


586 ROHM

Measurement circuit switch table

Parameter	Symbol	MUTE	PwSw	BB	AVC	RL	SW1	SW2	SW3	SW4	SW5	SW6	SW7	SW8
Circuit current 1	lcc1	OFF	OFF	OFF	OFF	OPEN	2	2	2	1	2	1	1	1
Circuit current 2	lcc2	ON	ON	+	Ţ	Ţ	+	ţ	1	1	1	Ţ	1	1
Circuit current 3	lcc3	OFF	Ţ	1	ţ	ţ	1	ţ	1	Ţ	1	ţ	1	Ţ
Circuit current 4	Icc4	Ţ	Ţ	ON	ţ	ţ	1	ţ	1	1	1	Ţ	1	Ţ
Circuit current variation	Δlcc	1	Ţ	+	ļ	16Ω OPEN	+	ţ	Ţ	ţ	1	ţ	1	1
Voltage gain	Gv	Ţ	Ţ	OFF	ţ	16Ω	1	ţ	1	1	1	Ţ	Ţ	2
Rated output power 1	Роит1	Ţ	Ţ	+	ţ	ţ	1	Ţ	1	1	1	Ţ	1	1
Rated output power 2	Роит2	Ţ	Ţ	ţ	1	ţ	1	ţ	1	1	1	Ţ	1	1
Total harmonic distortion	THD	Ţ	Ţ	ţ	1	ţ	1	ţ	1	1	1	ţ	Ţ	1
Output noise voltage 1	V _{NO} 1	Ţ	Ţ	+	ļ	ţ	1	ţ	2	1	2	Ţ	1	1
Output noise voltage 2	V _{NO} 2	Ţ	1	ON	ļ	ţ	1	ţ	1	1	1	ţ	1	ţ
Input resistance	Rin	Ţ	1	OFF	ļ	ţ	1	ţ	1	2	1	2	1	1
Ripple rejection ratio 1	RR1	Ţ	Ţ	ţ	ţ	ţ	1	ţ	2	1	2	1	2	Ţ
Ripple rejection ratio 2	RR2	1	Ţ	ON	ļ	ţ	1	ţ	1	1	1	ţ	1	ţ
Ripple rejection ratio 3	RR3	Ţ	1	OFF	ļ	ţ	1	ţ	1	1	1	Ţ	1	1
Ripple rejection ratio 4	RR4	Ţ	1	ON	1	ţ	1	ţ	1	Ţ	1	ţ	1	1
Bass boost	BB	Ţ	1	ţ	1	ţ	1	ţ	1	1	1	ţ	1	1
AVC level	Vavc	Ţ	Ţ	OFF	ON	ţ	1	ţ	1	ţ	1	ţ	1	1
Channel separation	CS	1	1	ţ	OFF	ţ	1	ţ	1 2	ţ	2 1	ţ	1	1
Mute level	ML	ON	ţ	ţ	ţ	ţ	+	ţ	1	1	1	1	Ţ	1
Beep output voltage	VBEEP	Ţ	Ţ	ţ	ţ	ţ	Ţ	ţ	Ţ	Ţ	Ţ	Ţ	Ţ	1
Power ON voltage	V PW ON	OFF	Ţ	+	ţ	ţ	1	1	1	1	1	1	1	1
Power ON pin current	Ipw sw	ţ	Ţ	+	ţ	ţ	1	ţ	1	1	1	Ţ	1	1
Mute ON voltage	V _{MUTE} ON	ON	Ţ	+	Ţ	1	1	ţ	1	1	1	Ţ	Ţ	1
Mute pin current	Імите	Ţ	Ţ	+	1	ţ	+	ţ	1	1	1	Ţ	1	1

■Application example 1

(headphone stereo with bass boost and output limiting)

Units:

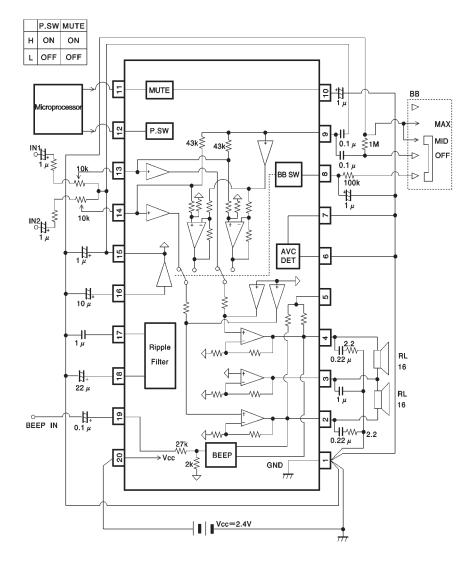
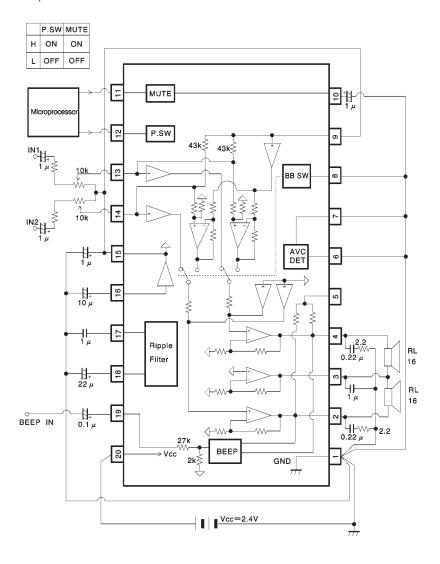

 $\begin{tabular}{lll} Resistance & : Ω ($\pm 5\%$) \\ Capacitance (film) & : F ($\pm 10\%$) \\ Capacitance (electrolytic) : F ($\pm 20\%$) \\ \end{tabular}$

Fig. 2

588 NOHM

Application example 2

(headphone stereo with bass boost)


Units:

Resistance : Ω (\pm 5%)
Capacitance (film) : F (\pm 10%)
Capacitance (electrolytic) : F (\pm 20%)

Fig. 3

●Application example 3

(headphone stereo)

Units:

 $\begin{tabular}{lll} Resistance & : \Omega \ (\pm 5\%) \\ Capacitance (film) & : F \ (\pm 10\%) \\ Capacitance \ (electrolytic) : F \ (\pm 20\%) \\ \end{tabular}$

Fig. 4

590 ROHM

Operation notes

(1) Application circuits

Provided the recommended circuit constants are used, the application circuits should function correctly. However, we recommend that you confirm the characteristics of the circuits in actual use. If you change the circuit constants, check both the static and transient characteristics of the circuit, and allow sufficient margin to accommodate variations between both ICs and external components.

In particular, the capacitors connected to the OUT 1, OUT 2, and Vref pins must have low impedance at high frequency.

(2) Wiring of PCB

The PCB pattern for the external components should be designed carefully to prevent oscillation and degradation of the circuit characteristics. Keep the wiring tracks as short as possible, and ensure that there is no impedance between the common connections.

(3) Recommended power supply voltage range The curves in Fig. 5 below show the maximum allowable power output ($P_{O(Max.)}/ch$) plotted against the supply voltage (Vcc) for different values of ambient temperature (Ta). When $Vcc \ge 3.6V$, operate the IC in the region below the dotted line, and do not exceed it.

If the maximum allowable power output for each channel ($P_{O\,(Max.)}/ch$) is exceed, the internal power consumption will exceed the power dissipation capacity of the package, and destroy the IC.

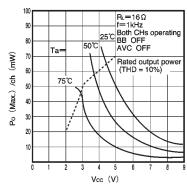
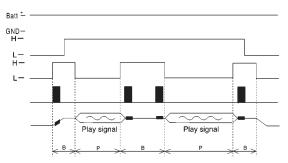



Fig. 5 Maximum allowable power output per channel (Po (Max.)/ch) vs. power supply voltage (Vcc).

(4) Switching noise prevention

Operate the BA3574BFS according to the timing diagram given in Fig. 6 below to prevent a "pop" sound from being output to the headphones.

V_{CC} (20pin)

PWSW (12pin)

MUTE (11pin)

BEEP IN (19pin)

OUT1, 2 (2, 4pin)

B: BEEP amplifier operates

	•	•
P: PWR	amplifier	operates

PWSW (12pin)	MUTE (11pin)	PWR AMP	BEEP AMP
L	L	OFF	OFF
L	Н	OFF	ON
Н	Н	OFF	ON
Н	L	ON	OFF

Fig. 6

(5) BIAS OUT (pin 15)

The internal operating point voltage of the BA3574BFS is supplied from BIAS OUT (pin 15). The current capacity is limited, so do not use this as the operating point for external circuits.

Electrical characteristics curves

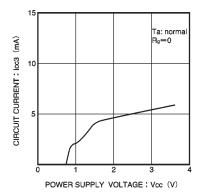


Fig. 7 Quiescent current vs. power supply voltage

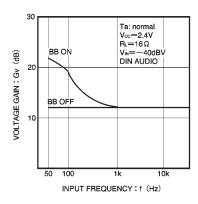


Fig. 8 Voltage gain vs. frequency

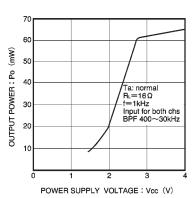


Fig. 9 Rated output power vs. power supply voltage

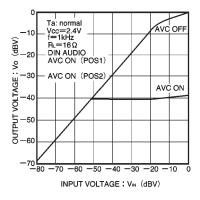


Fig. 10 AVC characteristics

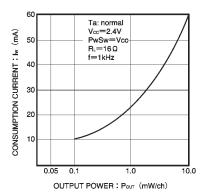
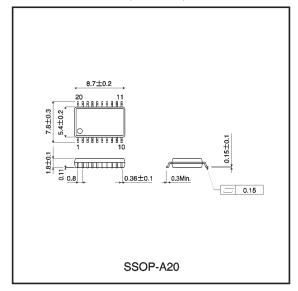



Fig. 11 Current dissipation vs. output power

External dimensions (Units: mm)

