
RF/Microwave Multilayer Capacitors (MLC)

100B Series Porcelain Superchip® Multilayer Capacitors

GENERAL DESCRIPTION

AVX, the industry leader, offers new improved ESR/ESL performance for the 100 B Series RF/Microwave Capacitors. This Series is now available with extended operating temperatures up to 175°C. High Density porcelain construction provides a rugged, hermetic package.

FUNCTIONAL APPLICATIONS

- Bypass
- · Impedance Matching
- Coupling
- DC Blocking
- Tuning

CIRCUIT APPLICATIONS

- UHF/Microwave RF Power Amplifiers
- Power Amplifiers
 Oscillators
- · Low Noise Amplifiers
- Filter Networks
- · Timing Circuits

ENVIRONMENTAL CHARACTERISTICS

Thermal Shock	Mil-STD-202, Method 107, Condition A
Moisture Resistance	Mil-STD-202, Method 106
Low Voltage Humidity	Mil-STD-202, Method 103, condition A, with 1.5 VDC applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours
Life Test	MIL-STD-202, Method 108, for 2000 hours, at 125°C. Voltage applied. 200% of WVDC for capacitors rated at 500 volts DC or less. 120% of WVDC for capacitors rated at 1250 volts DC or less. 100% of WVDC for capacitors rated above 1250 volts DC
Termination Styles	Available in various surface mount and leaded styles. See Mechanical Configurations
Terminal Strength	Terminations for chips and pellets withstand a pull of 5 lbs. min., 15 lbs. typical, for 5 seconds in direction perpendicular to the termination surface of the capacitor.

FEATURES

- Case B Size (.110" x .110")
- Capacitance Range 0.1pF to 1000pF
- Extended WVDC up to 1500 VDC
- Low ESR/ESL
- · High Q
- · Low Noise
- · Ultra-Stable Performance
- · High Self-Resonance
- · Established Reliability (QPL)

PACKAGING OPTIONS

Tape & Reel

Orientation Tape & Reel

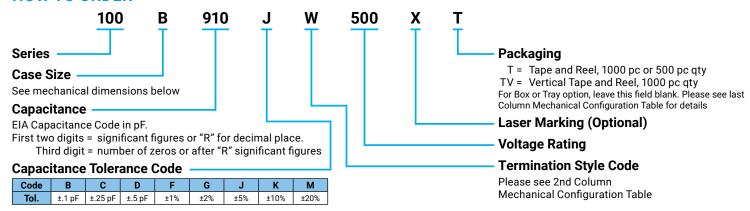
Cap Pac® (100 pcs)

ELECTRICAL SPECIFICATIONS

Temperature Coefficient (TCC)	+90 ±20 PPM/°C (-55°C to +125°C) +90 ±30 PPM/°C (+125°C to +175°C)
Capacitance Range	0.1pF to 1000pF
Operating Temperature	-55°C to +125°C*
Quality Factor	greater than 10,000 at 1 MHz
Insulation Resistance (IR)	0.1 pF to 470 pF: 10 ⁶ Megohms min. @ +25°C at rated WVDC. 10 ⁵ Megohms min. @ +125°C at rated WVDC. 510 pF to 1000 pF: 10 ⁵ Megohms min. @ +25°C at rated WVDC. 10 ⁴ Megohms min. @ +125°C at rated WVDC.
Working Voltage (WVDC)	See Capacitance Values table
Dielectric Withstanding Voltage (DWV)	250% of WVDC for capacitors rated at 500 volts DC or less for 5 seconds. 150% of WVDC for capacitors rated at 1250 volts DC or less for 5 seconds. 120% of WVDC for capacitors rated above 1250 Volts DC for 5 seconds
Aging Effects	None
Piezoelectric Effects	None
Capacitance Drift	± (0.02% or 0.02 pF), whichever is greater
Retrace	Less than ±(0.02% or 0.02 pF), whichever is greater.

RF/Microwave Multilayer Capacitors (MLC)

100B Series Porcelain Superchip® Multilayer Capacitors



CAPACITANCE VALUES

Cap.	Cap.	Tol.	Rat WV		Cap.	Cap.	Tol.	Rat WV	ted 'DC	Cap.	Cap.	Tol.	Rated WVDC		CAP.	CAP. (pF)	TOL.	RATE) WVDC										
Code	(pF)		STD.	EXT.	Coue	(pF)		STD.	EXT.	Coue	(pF)		STD.	EXT.	CODE	(PF)		STD.	EXT.										
0R1	0.1	В			2R4	2.4				200	20				151	150			EXT.										
0R2	0.2	Ь		E	2R7	2.7			ш	220	22				161	160		300	1000										
0R3	0.3	B, C		AG	3R0	3.0			AG	240	24			'n	181	180		300	1000										
0R4	0.4	В, С)77	3R3	3.3			EXTENDED VOLTAGE	270	27			VOLTAGE	201	200			VOLT.										
0R5	0.5			×	3R6	3.6	ВС		>	300	30			170	221	220													
0R6	0.6			DEL	3R9	3.9	B, C, D		DEL	330	33			>	241	240			EXT.										
0R7	0.7			EN	4R3	4.3			EN	360	36				271	270													
0R8	0.8		500 1	500 1										X	4R7	4.7			X	390	39				301	300			600
0R9	0.9					"	5R1	5.1	.1		4	430	43		500	1500	331	330		200	000								
1R0	1.0					500					5R6	5.6				470	47	EC	300	1300	361	360	EC						
1R1	1.31						1500	6R2	6.2		500	1500	510	51	F, G, J, K,			391	390	F, G, J, K,		VOLT.							
1R2	1.2						300	1000	6R8	6.8	D 0		1000	560	56	M			431	430	о, к, М								
1R3	1.3	В, С,									7R5	7.5	В, С, Ј, К,			620	62				471	470							
1R4	1.4	D										Ę	8R2	8.2	M M		Ä	680	68			DE	511	510			EXT.		
1R5	1.5				EXTENDED VOLTAGE	9R1	9.1			AG	750	75			ĘN	561	560		100	LXI.									
1R6	1.6							07.1	100	10			EXTENDED VOLTAGE	820	82			EXTENDED	621	620									
1R7	1.7				Ň	110	11			Š	910	91			4	681	680			300									
1R8	1.8										DEI	120	12	F, G, J,		DEI	101	100				751	750			300			
1R9	1.9						EN	130	13	K, M		EN	111	110				821	820		50								
2R0	2.0			X	150	15			X	121	120		300		911	910			VOLT										
2R1	2.1			F	160	16			Ä	131	130			1000	102	1000			JOLI										
2R2	2.2				180	18																							

VRMS = 0.707 X WVDC

HOW TO ORDER

The above part number refers to a 100 B Series (case size B) 91 pF capacitor,

J tolerance (±5%), 500 WVDC, with W termination (Tin /Lead, Solder Plated over Nickel Barrier), laser marking and Tape and Reel packaging.

[•] SPECIAL VALUES, TOLERANCES, DIFFERENT WVDC AND MATCHING AVAILABLE. • ENCAPSULATION OPTION AVAILABLE. PLEASE CONSULT FACTORY.NOTE: EXTENDED WVDC DOES NOT APPLY TO CDR PRODUCTS.

RF/Microwave Multilayer Capacitors (MLC)

MECHANICAL CONFIGURATION

AVX Series	AVX Term.	MIL-PRF-	Case Size	Outline W/T is a Termination		Dimensions thes (mm)			ead and	Pkg		
& Case Size	Code	55681	& Type	Surface	Length (L)	Width (W)	Thickness (T)	Overlap (Y)		Materials		Туре
100B	W	CDR14BG	B Solder Plate	$\begin{array}{c c} Y \to & \downarrow & \downarrow \\ \hline & & \underline{w} \\ \to & \downarrow L & \uparrow \to \uparrow T & \downarrow \leftarrow \end{array}$.110+ .02001 (2.79 + 0.51-0.25)	.110 ±.015 (2.79 ±0.38)				Lead, Solder P kel Barrier Teri		T&R, 1000 or 500 pcs Vertical T&R, 1000 or 500 pcs Cap Pac, 100 pcs
100B	Р	CDR14BG	B Pellet	$\begin{array}{c c} Y \to & \downarrow & \downarrow \\ \hline & w & \downarrow \\ \to & \downarrow & \downarrow & \uparrow & \downarrow & \uparrow \\ \end{array}$.110+ .03501 (2.79 + 0.89-0.25)	.110 ±.015 (2.79 ±0.38)	N/A	.015 (0.38)	Heavy Tin/Lead Coated, over Nickel Barrier Termination			T&R, 1000 or 500 pcs Vertical T&R, 1000 or 500 pcs Cap Pac, 100 pcs
100B	Т	N/A	B Solderable Nickel	$\begin{array}{c c} Y \to & \downarrow & \downarrow \\ \hline & w & \downarrow \\ \to & \downarrow & \downarrow & \uparrow & \uparrow & \uparrow & \downarrow \\ \end{array}$.110+ .03501 (2.79 + 0.51-0.25)	.110 ±.015 (2.79 ±0.38)	N/A	±.010 (0.25)	Nic	RoHS Compl Tin Plated o kel Barrier Teri	ver	T&R, 1000 or 500 pcs Vertical T&R, 1000 or 500 pcs Cap Pac, 100 pcs
100B	CA	CDR13BG	B Gold Chip	$\begin{array}{c c} Y \to & \downarrow & \downarrow \\ \hline & w & \downarrow \\ \to & \downarrow & \downarrow & \uparrow & \uparrow & \uparrow & \downarrow \\ \end{array}$.110+.020010 (2.79 + 0.51-0.25)	.110 ±.015 (2.79 ±0.38)			RoHS Compliant Gold Plated over Nickel Barrier Termination			T&R, 1000 or 500 pcs Vertical T&R, 1000 or 500 pcs Cap Pac, 100 pcs
100B	MS	CDR21BG	B Microstrip	$\begin{array}{c c} & & & & \downarrow \\ \downarrow & & \rightarrow \mid L_{L} \mid \leftarrow & \downarrow & \rightarrow \mid \mid \leftarrow \\ \hline \underline{w_{L}} & & & & \underline{w} & \\ \uparrow & \rightarrow \mid L \mid \leftarrow & & \uparrow \rightarrow \mid \top \mid \leftarrow \\ \end{array}$.120 (3.05) max.	N/A	Length (L _L)	Width (W _L)	Thickness (T _L)	Cap Pac, 20 pcs
100B	AR	CDR22BG	B Axial Ribbon	$\begin{array}{c c} \downarrow & \rightarrow \mid L_{L} \mid \leftarrow & \downarrow \rightarrow \mid \leftarrow \\ \hline \underline{w_{L}} & \hline \downarrow & \downarrow & \hline \\ \uparrow & \rightarrow \mid L \mid \leftarrow & \uparrow \rightarrow \mid \top \mid \leftarrow \\ \end{array}$.135 ±.015 (3.43 ±0.38)	.110 ±.015 (2.79 ±0.38)			.250 (6.35) min.	.093±.005 (2.36 ±0.13)	.004 ± .001 (.102±.025)	Box, 20 or 100 pcs
100B	RR	CDR24BG	B Radial Ribbon	$\begin{array}{c c} & \xrightarrow{\downarrow} & \xrightarrow{\downarrow} \downarrow_L \mid \leftarrow_{\downarrow} \\ \hline \downarrow & & & \\ \hline \rightarrow \mid L \mid \leftarrow & \uparrow \rightarrow \mid \uparrow \mid \leftarrow & \uparrow \end{array} \psi_L$								Box, 20 or 100 pcs
100B	RW	CDR23BG	B Radial Wire	→ L ← → W ←					.500			Box, 20 or 100 pcs
100B	AW	CDR25BG	B Axial Wire	$\begin{array}{c c} \rightarrow & \downarrow_L & \leftarrow & \\ \hline & & \underline{&} \\ \hline & \rightarrow & \downarrow_L & \leftarrow & \uparrow \\ \hline & \rightarrow & \uparrow & \uparrow & \uparrow \\ \hline \end{array}$	(3.68 ±0.51)				(12.7)			Box, 20 or 100 pcs

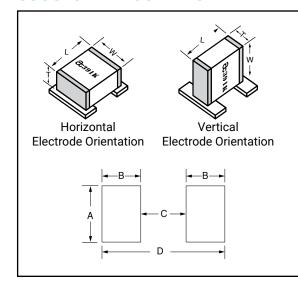
Additional lead styles available: Narrow Microstrip (NM), Narrow Axial Ribbon (NA) and Vertical Narrow Microstrip (H). Other lead lengths are available; consult factory. All leads are high purity silver attached with high temperature solder and are **RoHS** compliant.

RF/Microwave Multilayer Capacitors (MLC)

NON-MAGNETIC MECHANICAL CONFIGURATION

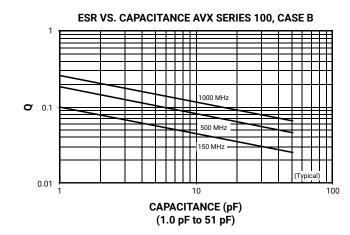
AVX Series	AVX	MIL-PRF-	Case Size	Outline	Body Dimensions inches (mm)				Lead and I	Pkg									
& Case Size	Term. Code	55681	& Type	W/T is a Termination Surface	Length (L)			Overlap (Y)		Materials	Туре								
100B	WN	Meets Requirements	B Non-Mag	$\begin{array}{c c} Y \to & \downarrow & \downarrow \\ \hline & w & \downarrow \\ \to & \downarrow & \downarrow & \uparrow \\ \end{array}$.110+ .02001 (2.79 + 0.51-0.25)	.110 ±.015 (2.79 ±0.38)				ead, Solder Pla el Barrier Termi	T&R, 1000 or 500 pcs Vertical T&R, 1000 or 500 pcs Cap Pac, 100 pcs								
100B	PN	Meets Requirements	B Solderable Nickel	$\begin{array}{c c} Y \to & \downarrow & \downarrow \\ \hline & w & \downarrow \\ \to & \downarrow & \downarrow & \uparrow \\ \end{array}$.110+ .03501 (2.79 + 0.51-0.25)	.110 ±.015 (2.79 ±0.38)	.102 (2.59) max.	.015 (0.38) ±.010 (0.25)	Heavy Tin / Lead, Coated over Non-Magnetic Barrier Termination			T&R, 1000 or 500 pcs Vertical T&R, 1000 or 500 pcs Cap Pac,100 pcs							
100B	TN	Meets Requirements	B Gold Chip	$\begin{array}{c c} Y \to & \downarrow & \downarrow \\ \hline & w & \downarrow \\ \to & \downarrow & \downarrow & \uparrow \\ \to & \downarrow & \downarrow & \uparrow & \uparrow & \uparrow & \uparrow \end{array}$.110+.020010 (2.79 + 0.51-0.25)	.110 ±.015 (2.79 ±0.38)			RoHS Compliant Tin Plated over Non-Magnetic Barrier Termination			T&R, 1000 or 500 pcs Vertical T&R, 1000 or 500 pcs Cap Pac, 100 pcs							
100B	MN	Meets Requirements	B Microstrip	$\begin{array}{c c} \downarrow & \rightarrow \mid L_{L} \mid \leftarrow & \downarrow & \rightarrow \mid \leftarrow \\ \hline \underline{w_{L}} & & \downarrow & \downarrow & \downarrow & \downarrow \\ \uparrow & \rightarrow \mid L \mid \leftarrow & \uparrow & \uparrow & \uparrow & \leftarrow \end{array}$.135 ±.015 (3.43 ±0.38)		.120 (3.05) max.		Length (L _L)	Width (W _L)	Thickness (T _L)	Cap Pac, 20 pcs							
100B	AN	Meets Requirements	B Axial Ribbon	$\begin{array}{c c} \downarrow & \rightarrow \mid L_{L} \mid \leftarrow & \downarrow \rightarrow \mid \leftarrow \\ \hline \underline{w_{L}} & \hline \downarrow & \rightarrow \mid L \mid \leftarrow & \frac{\downarrow}{\uparrow} \rightarrow \mid \top \mid \leftarrow \\ \hline \uparrow & \rightarrow \mid L \mid \leftarrow & \frac{\uparrow}{\uparrow} \rightarrow \mid \top \mid \leftarrow \\ \end{array}$.250 (6.35) .093±.009	.093±.005	.004 ± .001	Box, 20 or 100 pcs
100B	FN	Meets Requirements	B Radial Ribbon	$\begin{array}{c c} & \xrightarrow{\downarrow} & \xrightarrow{\downarrow} \downarrow_L \downarrow_{\downarrow} \\ \hline \downarrow & & & \\ \hline \downarrow \downarrow \downarrow \downarrow_{\downarrow} & & \\ \hline \downarrow \downarrow \downarrow \downarrow \downarrow_{\downarrow} & & \\ \hline \downarrow \downarrow \downarrow \downarrow \downarrow_{\downarrow} & & \\ \hline \downarrow \downarrow \downarrow \downarrow \downarrow_{\downarrow} & & \\ \hline \downarrow \downarrow \downarrow \downarrow \downarrow_{\downarrow} & & \\ \hline \downarrow \downarrow \downarrow \downarrow \downarrow_{\downarrow} & & \\ \downarrow \downarrow \downarrow \downarrow \downarrow_{\downarrow} & & \\ \hline \downarrow \downarrow \downarrow \downarrow \downarrow_{\downarrow} & & \\ \hline \downarrow \downarrow \downarrow \downarrow \downarrow_{\downarrow} & & \\ \downarrow \downarrow \downarrow \downarrow \downarrow_{\downarrow} & & \\ \hline \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow_{\downarrow} & & \\ \hline \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow_{\downarrow} & \\ \hline \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow_{\downarrow} & \\ \hline \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow_{\downarrow} & \\ \hline \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow_{\downarrow} & \\ \hline \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow_{\downarrow} & \\ \hline \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow_{\downarrow} & \\ \hline \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow_{\downarrow} & \\ \hline \downarrow \downarrow$.110 ±.015 (2.79 ±0.38)	.102 (2.59) max.	N/A	(6.35) min.	(2.36 ±0.13)	(.102±.025)	Box, 20 or 100 pcs							
100B	RN	Meets Requirements	B Radial Wire	$ \begin{array}{c c} & \xrightarrow{\downarrow} \downarrow_{L} \downarrow_{\leftarrow} \\ \hline \downarrow^{\frac{1}{T}} & \xrightarrow{\downarrow} \\ \rightarrow \mid L \mid \leftarrow & \xrightarrow{\uparrow} \mid W \mid \leftarrow \end{array} $.145 ±.020					#26 /		Box, 20 or 100 pcs							
100B	BN	Meets Requirements	B Axial Wire	$\begin{array}{c c} \rightarrow & \sqcup_L & \vdash \leftarrow & \\ \hline & & & \\ \hline & \rightarrow & \sqcup_L & \vdash \leftarrow & \hline \uparrow \rightarrow & \uparrow & \vdash \\ \hline \end{array}$	(3.68 ±0.51)				.500 (12./)	.016 (.406) nomina		Box, 20 or 100 pcs							

Additional lead styles available: Narrow Microstrip (NM), Narrow Axial Ribbon (NA) and Vertical Narrow Microstrip (H). Other lead lengths are available; consult factory. All leads are high purity silver attached with high temperature solder and are **RoHS** compliant.

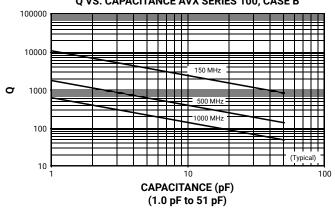

RF/Microwave Multilayer Capacitors (MLC)

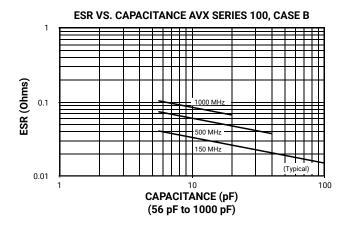
100B Series Porcelain Superchip® Multilayer Capacitors

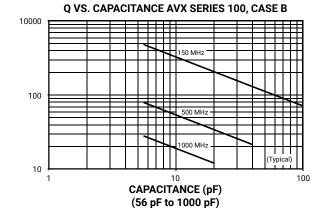
SUGGESTED MOUNTING PAD DIMENSIONS


Case B Vertical Mount

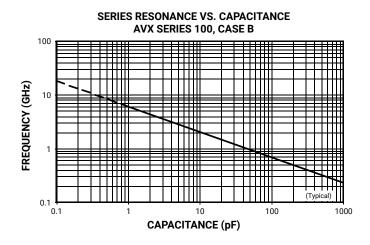
Cap Value	Pad Size	A Min.	B Min.	C Min.	D Min.
0.1 pF	Normal	.065	.050	.075	.175
0.1 pr	High Density	.045	.030	.075	.135
0.2 pF	Normal	.090	.050	.075	.175
0.2 pr	High Density	.070	.030	.075	.135
0.3 to	Normal	.110	.050	.075	.175
510 pF	High Density	.090	.030	.075	.135
> 510 pF	Normal	.120	.050	.075	.175
> 310 pr	High Density	.100	.030	.075	.135

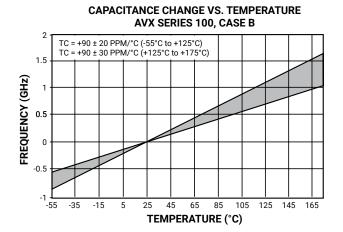

Case B Vertical Mount

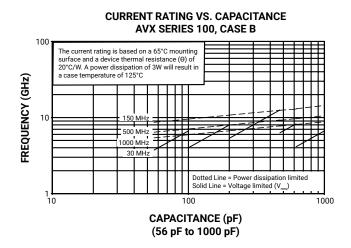

All	Normal	.130	.050	.075	.175
Values	High Density	.110	.030	.075	.135


PERFORMANCE DATA

Q VS. CAPACITANCE AVX SERIES 100, CASE B

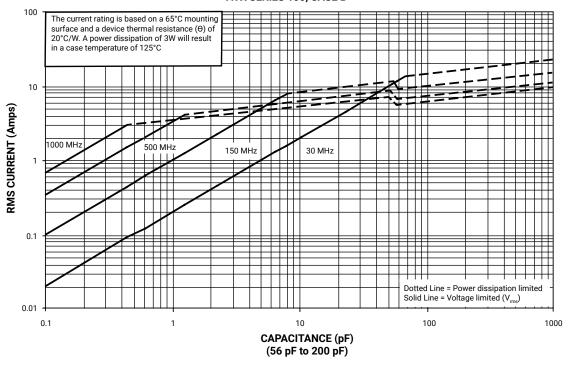

RF/Microwave Multilayer Capacitors (MLC)


100B Series Porcelain Superchip® Multilayer Capacitors



PERFORMANCE DATA

CURRENT RATING VS. CAPACITANCE AVX SERIES 100, CASE B 100 The current rating is based on a 65°C mounting surface and a device thermal resistance (e) of 20°C/W. A power dissipation of 3W will result in a case temperature of 125°C 10 Dotted Line = Power dissipation limited Solid Line = Voltage limited (V_m) 10 CAPACITANCE (pF) (0.1 pF to 51 pF)


RF/Microwave Capacitors RF/Microwave Multilayer Capacitors (MLC) 100B Series Porcelain Superchip® Multilayer Capacitors

PERFORMANCE DATA

CURRENT RATING VS. CAPACITANCE AVX SERIES 100, CASE B

