

Analog Devices Welcomes Hittite Microwave Corporation

NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

www.hittite.com

www.analog.com

THIS PAGE INTENTIONALLY LEFT BLANK

ROHS

Typical Applications

The HMC755LP4E is Ideal for:

- Cellular/3G & LTE/4G
- WiMAX, WiBro & Fixed Wireless
- Military & SATCOM
- Test Equipment

Functional Diagram

GaAs MMIC 1 WATT POWER AMPLIFIER, 2.3 - 2.8 GHz

HMC755LP4E

Features

High Gain: 31 dB High PAE: 28% @ +33 dBm Pout Low EVM: 2.5% @ +25 dBm Pout with 54 Mbps OFDM Signal High Output IP3: +43 dBm Integrated Detector & Power Control 24 Lead 4x4mm QFN Package: 16mm²

General Description

The HMC755LP4E is a high gain, high linearity GaAs InGaP HBT MMIC Power amplifier covering 2.3 to 2.8 GHz. The amplifier provides 31 dB of gain and +33 dBm of saturated power from a single +5V supply. The power control pins (VEN1, 2, 3) can be used to reduce the RF output power/quiescent current, or for full power down of the PA. The integrated output power detector (VDET) is internally coupled and requires no external components. For +25 dBm OFDM output power (64 QAM, 54 Mbps), the HMC-755LP4E achieves an error vector magnitude (EVM) of only 2.5% making it ideal for WiMAX/LTE/4G Applications. The amplifier is packaged in a compact QFN SMT package and requires a minimum of external matching components.

Electrical Specifications, $T_A = +25$ °C, Vcc1, 2, 3 = +5V, VEN1, 2, 3 = +5V, Vcs = +5V

Parameter	Min.	Тур.	Max.	Units
Frequency Range	2.3 - 2.8			GHz
Gain	28	31		dB
Gain Variation Over Temperature		0.05		dB/ °C
Input Return Loss		10		dB
Output Return Loss		7		dB
Output Power for 1dB Compression (P1dB)	28	31		dBm
Saturated Output Power (Psat)		33		dBm
Output Third Order Intercept (IP3) [1]		43		dBm
Error Vector Magnitude @ 2.5 GHz (54 Mbps OFDM Signal @ +24.5 dBm Pout)		2.5		%
Supply Current (lcc1 + lcc2 + lcc3)	400	480	600	mA
Control Current (len1 + len2 + len3)		16		mA
Bias Current (Ics)		12		mA

[1] Two-tone output power of +25 dBm per tone, 1 MHz spacing.

GaAs MMIC 1 WATT

Broadband Gain & Return Loss

Input Return Loss vs. Temperature

Gain vs. Temperature

POWER AMPLIFIER, 2.3 - 2.8 GHz

Output Return Loss vs. Temperature

Reverse Isolation vs. Temperature

ROHSV EARTH PRIEND

GaAs MMIC 1 WATT POWER AMPLIFIER, 2.3 - 2.8 GHz

HMC755LP4E

P1dB vs. Temperature

Output IP3 vs. Temperature @ 26 dBm

VDET Output Voltage vs. Temperature

Psat vs. Temperature

Output IP3 vs. Temperature @ 2.4 GHz

Power Compression @ 2.5 GHz

Gain & Power vs. Supply Voltage

Power Dissipation

GaAs MMIC 1 WATT POWER AMPLIFIER, 2.3 - 2.8 GHz

EVM vs. Frequency (54 Mbps OFDM Signal)

AMPLIFIERS - LINEAR & POWER - SMT

Absolute Maximum Ratings

Collector Bias Voltage (Vcc1, Vcc2, Vcc3)	5.5V	
Control Voltage (VEN1, 2, 3)	Vcc +0.5	
RF Input Power (RFIN)(Vcc = +5V) +5 dBm		
Junction Temperature 150 °C		
Continuous Pdiss (T = 85 °C) (derate 80 mW/°C above 85 °C)	5.2 W	
Thermal Resistance (junction to ground paddle)	12.5 °C/W	
Storage Temperature	-65 to +150 °C	
Operating Temperature	ng Temperature -40 to +85 °C	
ESD Sensitivity (HBM)) Class 1B	

GaAs MMIC 1 WATT POWER AMPLIFIER, 2.3 - 2.8 GHz

Typical Supply Current vs. Supply Voltage

Vcc (V)	lcq (mA)		
4.5	430		
5.0	480		
5.5	530		

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Outline Drawing

LAND PATTERN.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ^[1]
HMC755LP4E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL3 ^[2]	<u>H755</u> XXXX

[1] 4-Digit lot number XXXX

[2] Max peak reflow temperature of 260 °C

GaAs MMIC 1 WATT POWER AMPLIFIER, 2.3 - 2.8 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 3, 5, 6, 12 - 14, 18, 19, 21, 22, 24	N/C	These pins are not connected internally. However, all data shown herein was measured with these pins connected to RF/DC ground.	
2	GND	Ground: Backside of package has exposed metal paddle that must be connected to ground thru a short path. Vias under the device are required.	
4	RFIN	This pin is DC coupled and matched to 50 Ohms.	
7	VCS	DC power supply pin for bias circuitry.	Vcs
8 - 10	VEN1 - 3	Power control pins. For max power these pins should be connected to 5V. This voltage can be reduced, or R1-R4 resistor values increased to reduce the quiescent current. For full power down, apply V <0.5V	VEN1-3
11	VDET	DC voltage output proportional to RFOUT signal.	
15, 16, 17	RFOUT	RF output and DC bias for the output stage. External RF matching, bypass capacitors, and pull up choke are required as shown in the application circuit.	
20	Vcc2	Power supply voltage for the second amplifier stage. External bypass capacitors and pull up choke are required as shown in the application schematic.	Vcc1 Vcc2
23	Vcc1	Power supply voltage for the first amplifier stage. External bypass capacitors are required as shown in the application schematic.	

ROHSV EARTH FRIENDLY

GaAs MMIC 1 WATT POWER AMPLIFIER, 2.3 - 2.8 GHz

Evaluation PCB

List of Materials for Evaluation PCB 123643 ^[1]

Item	Description
J1, J2	PCB Mount SMA Connector
J3, J4	2MM Molex Header
C1 - C10	100 pF Capacitor, 0402 Pkg.
C11	3 pF Capacitor Ultra Low ESD, 0603 Pkg.
C12	1.5 pF Capacitor Ultra Low ESD, 0603 Pkg.
C13 - C15	1000 pF Capacitor, 0603 Pkg.
C16	2.2 µF Capacitor, Tantalum
C17	4.7 µF Capacitor, Tantalum
C18 - C12	10000 pF Capacitor, 0402 Pkg.
L1	10 nH Inductor, 0603 Pkg.
R1	0 Ohm Resistor, 0402 Pkg.
R2	200 Ohm Resistor, 0402 Pkg.
R3	300 Ohm Resistor, 0402 Pkg.
R4	130 Ohm Resistor, 0402 Pkg.

Item	Description
U1	HMC755LP4E Power Amplifier
PCB [2]	123641 Eval Board

Reference this number when ordering complete evaluation PCB
Circuit Board Material: Rogers 4350 or Arlon 25FR

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes and the evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.

ROHS V

GaAs MMIC 1 WATT POWER AMPLIFIER, 2.3 - 2.8 GHz

PCB Material: 10 mil Rogers 4350 or Arlon 25FR