SCSI active terminator

BH9595FP-Y

These SCSI active terminators, developed as a substitute for conventional discrete terminators, maintain good consistency between VM level (2.85V) and GND level (0V) and between VM level and VDD level, and have extremely low power consumption, dropping to a maximum of 90 milliwatts at standby (compared to the maximum of 990 milliwatts used by conventional resistance terminators). These SCSI active terminators electrically control SCSI lines, connecting and disengaging the terminating resistor by electrically controlling the enable pin.

Application

PC and peripheral appliances, OA appliances, Disk drive appliances

Features

- 1) Internal 2.85V power supply and push-pull operation, for good consistency at all signal levels.
- 2) Enable pin for terminator enabling and disconnecting, facilitating SCSI network construction.
- 3) Low power consumption, ideal for energy-saving systems.

Power consumption (during standby) SCISI active Terminators: 90mW

Conventional resistor terminators: 990mW

Power consumption (25% duty) SCISI active Terminators: 614mW

Conventional resistor terminators: 15/190mW

Significant reductions in power consumption are possible by using this terminator.

4) Wide operating range.

TERM power: 4.0~5.5V (Transient: 6.0V)

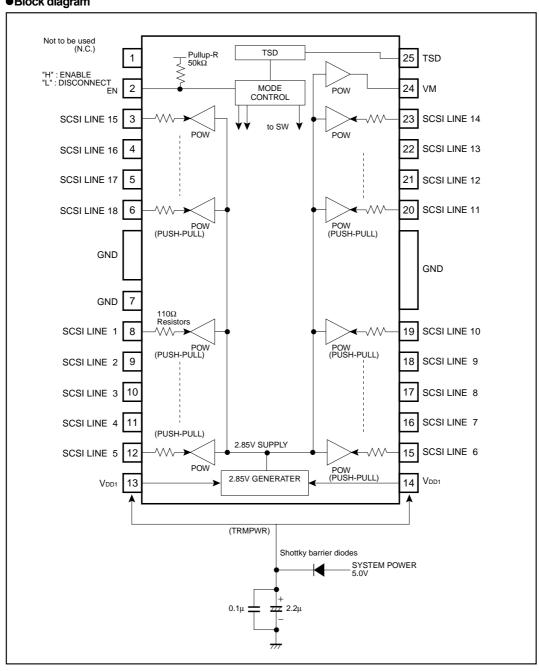
5) Thin, microminiature design, ideal for space-saving applications.

Package body size: 13.6×5.4×1.9mm 6) Active termination of 18-line SCSI. 7) Internal thermal shutdown circuit. 8) Compatibility with SCSI-I and SCSI-II.

● Absolute maximum ratings (Ta = 25°C)

Parameter	Symbol	Limits	Unit
Power supply voltage	V _{DD1}	-0.3~+7.0	V
DC output current *1	Isld	-30	mA
DC output current *2	Isls	35	mA
Input voltage	Vi	-0.3~(VDD1+0.3)	V
Power dissipation *3	Pd	1.45	W
Operating temperature	Topr	0~+75	°C
Operating temperature	Tstg	−55~+125	°C

^{*1} Drain current (from module to SCSI line) / line *2 Sick current (from SCSI line to module) / line

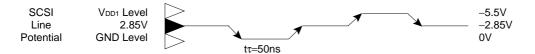

^{*3} When mounted to a 90mm×50mm×1.6mm galass epoxy board

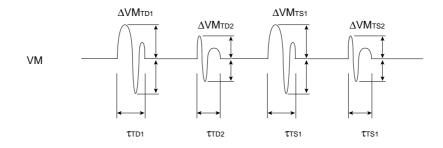
● Recommended operating conditions (Ta = 25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Power supply voltage	V _{DD1}	4.0	4.5	5.5*	V
Inout voltage (High)	ViH	V _{DD1} -0.6	-	VDD1+0.6	V
Inout voltage (Low)	VIL	-0.3	-	0.8	V
SCSI Line voltage	VsLx	-0.3	_	V _{DD1} +0.3	V

^{*} Transient 6V

●Block diagram




●Pin descriptions

Pin No.	Pin name	Pin description
1	(N.C.) Not to be used	
2	EN	Enable pin
3	SCSI Line 15	SCSI Terminator node
4	SCSI Line 16	SCSI Terminator node
5	SCSI Line 17	SCSI Terminator node
6	SCSI Line 18	SCSI Terminator node
	GND	GND
7	GND	GND
8	SCSI Line 1	SCSI Terminator node
9	SCSI Line 2	SCSI Terminator node
10	SCSI Line 3	SCSI Terminator node
11	SCSI Line 4	SCSI Terminator node
12	SCSI Line 5	SCSI Terminator node
13	V _{DD1}	Terminator power-supply pin (TO/FROM)
14	V _{DD1}	Terminator power-supply pin (TO/FROM)
15	SCSI Line 6	SCSI Terminator node
16	SCSI Line 7	SCSI Terminator node
17	SCSI Line 8	SCSI Terminator node
18	SCSI Line 9	SCSI Terminator node
19	SCSI Line 10	SCSI Terminator node
	GND	GND
20	SCSI Line 11	SCSI Terminator node
21	SCSI Line 12	SCSI Terminator node
22	SCSI Line 13	SCSI Terminator node
23	SCSI Line 14	SCSI Terminator node
24	VM	2.85V node
25	TSD	Thermal shutdown output

Pin Assignment Table (HSOP-25)

●Input / output circuits

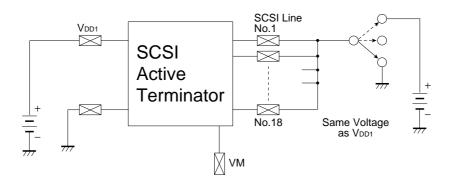


Fig.1

●Electrical characteristics (Ta = 25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
⟨⟨ DC characteristics ⟩⟩						
Input leakage current	lıL	50	110	200	μΑ	Vi=GND VDD1=5.5V
	Іін	-1	_	1	μΑ	Vi=Vdd1 Vdd1=5.5V
SCSI line leakage current	İsız	-1	_	1	μΑ	EN=GND VDD1=5.5V
SCSI line short current *1	Islss	15	25	30	mA	EN=V _{DD1} , SCSI Line=GND, 4.0 ≤ V _{DD1} ≤ 5.5V
SCSI line short current *2	Islsd	7	20	30	mA	EN=V _{DD1} , SCSI Line=V _{DD1} , 4.0 ≤ V _{DD1} ≤ 5.5V
VM voltage	VM	2.700	2.85	3.000	V	4.0 ≤ V _{DD1} ≤ 5.5V
Standby current *1	Iddstb	_	1.0	2.0	mA	EN=GND, 4.0 ≤ V _{DD1} ≤ 5.5V
SCSI total sink current	Isls	300	_	550	mA	EN=V _{DD1} , 18 SCSI Line=GND, 4.0 ≤ V _{DD1} ≤ 5.5V
SCSI total drain current	Isld	300	_	550	mA	EN=V _{DD1} , 18 SCSI Line=V _{DD1} , 4.0 ≤ V _{DD1} ≤ 5.5V
SCSI equivalent resistance	RsL	105	_	115	Ω	EN=V _{DD1} , SCSI Line : V _{DD1} =4.7V
Pin capacity *3	PC		5.0	6.0	pF	EN=GND
⟨⟨ Transient characteristics ⟩⟩						
Load transient voltage $2.85V \rightarrow \text{GND}$	ΔVM TD1	-100	_	+100	mV	EN=V _{DD1} 4.0 ≤ V _{DD1} ≤ 5.5V All SCSI Lines : 2.85V→GND Level
Load transient 1/10 decay time $2.85V \rightarrow GND$	TTD1	-	_	+100	μs	EN=V _{DD1} 4.0 ≤ V _{DD1} ≤ 5.5V All SCSI Lines : 2.85V→GND Level
Load transient voltage GND → 2.85V	ΔV M TD2	-100	-	+100	mV	EN=V _{DD1} 4.0 ≤ V _{DD1} ≤ 5.5V All SCSI Lines : GND→2.85V Level
Load transient 1/10 decay time GND \rightarrow 2.85V	TTD2	-	-	+100	μs	EN=V _{DD1} 4.0 ≤ V _{DD1} ≤ 5.5V All SCSI Lines : GND→2.85V Level
Load transient voltage 2.85V → V _{DD1}	ΔVMτs1	-100	-	+100	mV	EN=V _{DD1} 4.0 ≤ V _{DD1} ≤ 5.5V All SCSI Lines : 2.85V→V _{DD1} Level
Load transient 1/10 decay time 2.85V → V _{DD1}	TTS1	-	-	+100	μs	EN=V _{DD1} 4.0 ≤ V _{DD1} ≤ 5.5V All SCSI Lines : 2.85V→V _{DD1} Level
Load transient voltage V _{DD1} → 2.85V	ΔVMτs2	-100	-	+100	mV	EN=V _{DD1} 4.0 ≤ V _{DD1} ≤ 5.5V All SCSI Lines : V _{DD1} →2.85V Level
Load transient 1/10 decay time $V_{DD1} \rightarrow 2.85V$	TTS2	-	-	+100	μs	EN=V _{DD1} 4.0 ≤ V _{DD1} ≤ 5.5V All SCSI Lines : V _{DD1} →2.85V Level

^{*1} Drain Current (from Module to SCSI Line) / Line *2 Sink Current (from SCSI Line to Module) / Line *3 The transient chracteristics are guaranteed design values.

Application example

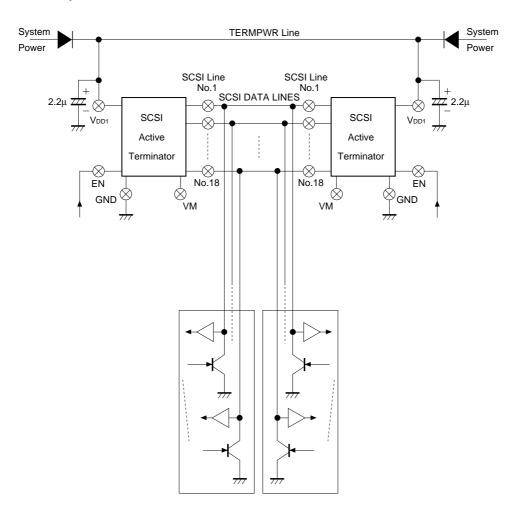
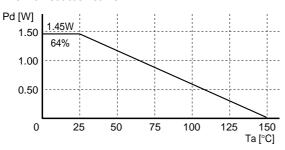
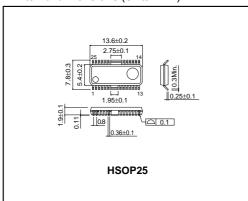



Fig.2

Operation notes

- 1. Requirement of mounting design
- (1) Thermal reduction curve



- * When mounted on a 90×50×1.6 (mm) glass epoxy board. * Reduced by 11.6mW for each increase in Ta OF 1°C over Ta=25°C.

Fig.3

- 1) Can withstand continuous use 64% duty, at 25°C.
- (2) Electrical characteristics
- 1) Please note to make grand impedance as low as possible because this terminator can operate in even highfrequency range.
- 2) Please connect the $2.2\mu F$ by-pass capacitor between V_{DD1} pin (TERMPWR) and GND.
- 3) Capacitor is not necessary for VM pin.
- 4) PULL UP-R (50k Ω) is incorporated in EN pin. Refer to the application circuit.
- 2. Protection circuit
- (1) Thermal shutdown
- 1) All outputs are opened at 175°C (Typically).
- 2) Temperature hysteresis is approximately 20°C.
- 3) Thermal shutdown output table.

●External dimensions (Units : mm)

Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any
 means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the
 product described in this document are for reference only. Upon actual use, therefore, please request
 that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard
 use and operation. Please pay careful attention to the peripheral conditions when designing circuits
 and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
 otherwise dispose of the same, no express or implied right or license to practice or commercially
 exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document use silicon as a basic material.
 Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

About Export Control Order in Japan

Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control Order in Japan.

In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause) on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.

