Table of Contents

High Voltage DC Contactors
Quick Reference Guide
MAP Aerospace Military Contactors
MAP101 Series
MAP100 Series
MAP200 Series
MAP201 Series
CAP Aerospace Commercial
CAP202 Series
CAP200 Series
CAP100 Series
EV OEM/Commercial & Electric Vehicle
EV200A Series
EV200B Series
EV200P Series
EV100 Series
LEV Industrial Commercial
LEV100 Series
LEV200 Series
AC Contactors
FM200 Series
AC30 Series
Traditional 270 Mda Asysamaa Contactors
Traditional 270 Vdc Aerospace Contactors
AP90X Series
AP150X Series
AP350X Series
Traditional 28 Vdc to 1800 Vdc Contactors
EV250 Series
EV500 Series
PD350X Series
High Voltage Relays
Quick Reference Guide
270 Vdc Aerospace Relays
AP5A Series, AP5B Series, AP5C Series, AP5P Series, AP5R Series
AP10A Series, AP10B Series, AP10P Series, AP11A Series
AP44P Series

7-1

Table of Contents (Continued)

High Voltage Relays (continued)

7–2

Table of Contents (Continued)

20/25 kV Relays
H-19 and H-17 Series
25 kV Relays
K62A, K62B and K62C Series7-78
KC-20 Series
KC-30 Series
KC-22, KC-32 Series
KC-28, KC-38 Series
H-23 and H-24 Series
35 kV Relays
KP61 Series
K60C Series
K61A and K61B Series
K61C Series
50 kV Relays
K64C Series
H-25 Series
70 kV Relays
K70A and K70B Series
K70C Series
Mounting Methods
Special Connectors
Application Notes for EV/LEC Contactors
Application Notes for MAP/CAP Contactors
Application Notes on Coil Power Economizing using PWM Circuits

7–3

For additional support numbers please visit www.te.com

www.te.com

KILOVAC High Voltage DC Contactors Quick Reference Guide

International Product Series Product Series MAP101 MAP100 MAP200 Main Contact Data Continuous Current A 100 100 500 350 Contract Data genge Vdc 12-900 12-900 12-900 12-900 12-900 Electrical Life at Rated Current, Cycles 25,000 15,000 1,000 5,000 Continuous Current A 2,0002.000 560/1,500 650/2,000 2,0002.000 Contract Relistence Based Sol Vdc A 2,000 1,500 2,0002.000 Provinced (Make/Break) @ 350 Vdc A 2,0002.000 1,500 2,0002.000 Contact Relistence Based Current Illichms 0,75 0,5 0,2 0,3 Auxillary Contact Data Contact Relistance Based Current Illichms 0,75 0,2 0,3 Contact Relistance Based Current Illichms 0,75 0,2 0,3 Zurent Rating @ 30 Vdc (Ag/Au), Max. A 2,001.1 2,001.1 2,001.1 Contact Foria Vimm							
Product Series MAP101 MAP100 MAP200 MAP201 Main Contact Data		(MAP) Aerospace Military					
Continuous Ourrent A 100 100 500 350 Contact Voltage Range Vdc 12:900 12:900 12:900 12:900 Contact Voltage Range Vdc 12:900 12:900 12:900 12:900 270 Vdc, Resistive Load 5000 5001,500 5000 2,0002,000 20veload (Make/Break) @ 350 Vdc A 2,000 2,000 2,0000 2,0000 2,001 2,001 <th>Product Series</th> <th></th> <th>MAP101</th> <th></th> <th>MAP200</th> <th>MAP201</th> <th></th>	Product Series		MAP101		MAP200	MAP201	
Contact Voltage Range Vdc 12-900 12-900 12-900 12-900 Electrical Life at Rated Current, Cycles 25,000 15,000 1,000 5,000 270 Vdc, Resistive Load	Main Contact Data	-		-		-	
Electrical Life at Rated Current, Cycles 25,000 15,000 1,000 5,000 270 Vdc, Resistive Load	Continuous Current	A	100	100	500	350	
Cycles Z5,000 1,000 1,000 1,000 5,000 Overload (Make/Break) @ 350 Vdc A 2,000/2,000 5001,500 650/2,000 2,000/2,000 Rupture (Break only) @ 350 Vdc A 2,000 1,500 2,000 2,000 Contact Arangement SPST SPST SPST SPST Contact Arangement Latch X (NO) X (NO) X (NO) Contact Resistance @ Rated Current milliohms 0.75 0.5 0.2 0.3 Auxiliary Contact Data Contact Maint (Sets (Max.) Form A/1 Form A/1 Form A/1 Form A/1 2.00.1 2.00.1 2.00.1 Current Rating @ 30 Vdc (Ag/Au), Max. A 2.00.1 2.00.1 2.00.1 2.00.1 Current Rating @ 30 Vdc (Ag/Au), Max. A 2.00.1 2.00.1 2.00.1 2.00.1 Contacts for Oit b All Other Points Vrms 1,500 1,500 2.200 2.00 Insulation Resistance Insulation Resistance Insulation Resistance Insulation Resistance Insulation Res	Contact Voltage Range	Vdc	12-900	12-900	12-900	12-900	
Overload (Make/Break) @ 350 Vdc A 2,000/2,000 500/1,500 650/2,000 2,000/2,000 Rupture (Break only) @ 350 Vdc A 2,000 1,500 2,000 2,000 Contact Arrangement SPST SPST SPST SPST SPST Contact Form Latch X (NO) X (NO) X (NO) Contact FormQuantity of Sets (Max.) Form A/1 Form A/1 Form A/1 Form A/1 Current Rating @ 30 Vdc (Ag/Au), Max. A 2.00.1 2.00.1 2.00.1 Minimum Signal Level Vdc/mAdc Ag 6V/15mA Ag 6V/15mA Ag 6V/15mA Dielectric Withstanding Voltage U Vdc/mAdc Ag 6V/15mA Ag 6V/15mA Ag 6V/15mA Initally @ 500 Vdc megohms 1,500 1,500 2,200 2,200 Initally @ 500 Vdc megohms 100 100 100 100 At End of Life @ 500 Vdc megohms 50 50 50 50 Environmental Data C -55 to +85 -55 to +85 -55 to +85	,	Cycles	25,000	15,000	1,000	5,000	
Rupture (Break only) @ 350 Vdc A 2,000 1,500 2,000 2,000 Contact Arrangement SPST SPST SPST SPST SPST Contact Form Latch X (NO) or Latch X (NO) X (NO) X (NO) Contact Resistance @ Rated Current milliohms 0.75 0.5 0.2 0.3 Auxiliary Contact Data Contact Form/Quantity of Sets (Max.) Form A/1 Form A/1 Form A/1 Form A/1 Current Rating @ 30 Vdc (Ag/Au), Max. A 2.0/0.1 2.0/0.1 2.0/0.1 2.0/0.1 Minimum Signal Level Vdc/mAdc Ag 6V/15mA Au SV/5mA Ag 6V/15m							
Contact Arrangement SPST SPST SPST SPST SPST SPST Contact Form Latch or Latch or Latch X (NO) X (NO) Contact Resistance @ Rated Current milliohms 0.75 0.5 0.2 0.3 Auxiliary Contect Data Contact Form A/1 Form A/1 Form A/1 Form A/1 Form A/1 Contact (Ag/Au), Max. A 2.0/0.1	· · · · · ·		, ,	,		, ,	
Contact Form Latch X (NO) or Latch X (NO) X (NO) Contact Form Latch x (NO) or Latch X (NO) X (NO) Contact Form/Quantity of Sets (Max.) Form A/1 Form A/1 Form A/1 Form A/1 Current Rating @ 30 Vdc (Ag/Au), Max. A 2.0/0.1 2.0/0.1 2.0/0.1 2.0/0.1 Minimum Signal Level Vdc/mAdc Ag 6V/15mA Au 5V/5mA Dielectric Withstanding Voltage Trms 1,500 1,500 2.200 2,200 Instilation Resistance Trms 1,500 1,500 2.200 2,200 Instilation Resistance Trms 1,500 100 100 100 Intelligi @ 500 Vdc megohms 100 100 100 100 Alt End of Life @ 500 Vdc megohms 50 50 50 50 Environmental Data C -55 to +85 -55 to +85 -55 to +85 -55 to +125 -65 to +125 <td></td> <td>A</td> <td>,</td> <td>,</td> <td>,</td> <td>,</td> <td></td>		A	,	,	,	,	
Contact Point Latch or Latch or Latch or Latch Contact Resistance @ Rated Current milliohms 0.75 0.5 0.2 0.3 Auxiliary Contact Data Contact Form/Quantity of Sets (Max.) Form A/1 Form A/1 Form A/1 Form A/1 Contact Data Current Rating @ 30 Vdc (Ag/Au), Max. A 2.0/0.1 2.0/0.1 2.0/0.1 2.0/0.1 2.0/0.1 Minimum Signal Level Vdc/mAdc Ag 6V/15mA Au 5V/5mA Dielectric Withstanding Voltage Contacts to Coil to All Other Points Vrms 1,500 1,500 2,200 2,200 Insulation Resistance Initially @ 500 Vdc megohms 100 100 100 100 At End of Life @ 500 Vdc megohms 50 50 50 50 Environmental Data C -55 to +85 -55 to +85 -55 to +85 -55 to +85 Storage Temperature Range °C -55 to +85 -55 to +85 -55 to +85	Contact Arrangement		SPST				
Auxiliary Contact Data Contact Form/Quantity of Sets (Max.) Form A/1 Form A/1 Form A/1 Form A/1 Current Rating @ 30 Vdc (Ag/Au), Max. A 2.0/0.1 2.0/0.1 2.0/0.1 2.0/0.1 Minimum Signal Level Vdc/mAdc Åg 6V/15mA Au 5V/5mA Dielectric Withstanding Voltage Au 5V/5mA Åg 6V/15mA Au 5V/5mA Åg 6V/15mA Au 5V/5mA Åg 6V/15mA Au 5V/5mA Dielectric Withstanding Voltage 2.200 2.200 Contacts to Coil to All Other Points Vrms 1.500 1.500 2.200 2.200 Insulation Resistance 3.00 100 100 100 100 At End of Life @ 500 Vdc megohms 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 </td <td>Contact Form</td> <td></td> <td>Latch</td> <td></td> <td>· · · ·</td> <td>X (NO)</td> <td></td>	Contact Form		Latch		· · · ·	X (NO)	
Contact Form/Quantity of Sets (Max.) Form A/1 Contact Prime A/1 Colot I Contact Prime A/1 Contact		milliohms	0.75	0.5	0.2	0.3	
Current Rating @ 30 Vdc (Ag/Au), Max. A 2.0/0.1 2.0/0.1 2.0/0.1 2.0/0.1 2.0/0.1 Minimum Signal Level Vdc/mAdc Ag 6V/15mA Au 5V/5mA Dielectric Withstanding Voltage Contacts to Coil to All Other Points Vrms 1,500 1,500 2,200 2,200 2,200 Insulation Ag 6V/15mA Ag 6V/15mA	-						
Minimum Signal Level Vdc/mAdc Ag 6V/15mA Au 5V/5mA Dielectric Withstanding Voltage Contacts to Coil to All Other Points Vrms 1,500 1,500 2,200 2,200 Insulation Resistance Initially @ 500 Vdc megohms 100 100 100 100 At End of Life @ 500 Vdc megohms 50 50 50 50 Environmental Data C -55 to +85 -55 to +85 -55 to +85 -55 to +85 Storage Temperature Range °C -65 to +125 -65 to +125 -65 to +125 -65 to +125 Shock, 11ms, 1/2 Sine G's 20 20 20 20 Vibration, Sine (55-2,000 Hz) G's 20 20 20 20 Coil Transient Suppression No X, Yes/Latch, No Yes Yes Mechanical Data Uperate Time @ 25°C (Including Bounce), Max./Typ. ms 15 15 15 Operate Time, Max. ms 5 5	Contact Form/Quantity of Sets (Max.)				Form A/1	Form A/1	
Minimular Signal Even Vick Indic Au SV/SmA Au SV/SmA Au SV/SmA Au SV/SmA Delectric Withstanding Voltage Contacts to Coil to All Other Points Vrms 1,500 2,200 2,200 Insulation Resistance Initially @ 500 Vdc megohms 100 100 100 100 At End of Life @ 500 Vdc megohms 50 50 50 50 Environmental Data	Current Rating @ 30 Vdc (Ag/Au), Max.	A	2.0/0.1	2.0/0.1		2.0/0.1	
Contacts to Coil to All Other Points Vrms 1,500 1,500 2,200 2,200 Insulation Resistance Initially @ 500 Vdc megohms 100 100 100 100 At End of Life @ 500 Vdc megohms 50 50 50 50 Environmental Data Operating Temperature Range °C -55 to +85 -55 to +85 -55 to +85 -55 to +85 Storage Temperature Range °C -65 to +125 -66 to +125 -66 to +125 -66 to +125 -65 to +125	Minimum Signal Level	Vdc/mAdc	Ag 6V/15mA Au 5V/5mA	Ag 6V/15mA Au 5V/5mA	Ag 6V/15mA Au 5V/5mA	Ag 6V/15mA Au 5V/5mA	
Insulation Resistance Initially @ 500 Vdc megohms 100 100 100 At End of Life @ 500 Vdc megohms 50 50 50 50 Environmental Data 50 50 50 50 50 50 Environmental Data 50 50 50 50 50 Environmental Data	Dielectric Withstanding Voltage						
Initially @ 500 Vdc megohms 100 100 100 At End of Life @ 500 Vdc megohms 50 50 50 Environmental Data	Contacts to Coil to All Other Points	Vrms	1,500	1,500	2,200	2,200	
At End of Life @ 500 Vdc megohms 50 50 50 Environmental Data Operating Temperature Range °C -55 to +85 Storage Temperature Range °C -65 to +125 -60 to +125	Insulation Resistance						
Environmental Data °C -55 to +85 -55 to +85 -55 to +85 Storage Temperature Range °C -65 to +125 -65 to +125 -65 to +125 Shock, 11ms, 1/2 Sine G's 20 20 20 20 Vibration, Sine (55-2,000 Hz) G's 20 20 20 20 Coil Transient Suppression No X, Yes/Latch, No Yes Yes Mechanical Data 90/20 40/20 40/20 40/20 Operate Time @ 25°C (Including Bounce), Max./Typ. ms 15 15 15 Bounce Time, Max. ms 55 5 5 5 Mechanical Life, Min. Cycles 100,000 100,000 100,000 Weight (Nominal) lb. (kg) 0.79 (.35) 0.79 (.35) 0.95 (.43) 0.95 (.43)	Initially @ 500 Vdc	megohms	100	100	100	100	
Operating Temperature Range °C -55 to +85 -55 to +85 -55 to +85 Storage Temperature Range °C -65 to +125 -65 to +125 -65 to +125 -65 to +125 Shock, 11ms, 1/2 Sine G's 20 20 20 20 Vibration, Sine (55-2,000 Hz) G's 20 20 20 20 Coil Transient Suppression No X, Yes/Latch, No Yes Yes Mechanical Data	At End of Life @ 500 Vdc	megohms	50	50	50	50	
Storage Temperature Range °C -65 to +125 -65 to +125 -65 to +125 Shock, 11ms, 1/2 Sine G's 20							
Shock, 11ms, 1/2 Sine G's 20 20 20 20 Vibration, Sine (55-2,000 Hz) G's 20	Operating Temperature Range	C°	-55 to +85	-55 to +85	-55 to +85	-55 to +85	
Vibration, Sine (55-2,000 Hz) G's 20 20 20 20 Coil Transient Suppression No X, Yes/Latch, No Yes Yes Mechanical Data Operate Time @ 25°C (Including Bounce), Max./Typ. ms 40/20 40/20 40/20 40/20 Release Time, Max. ms 15 15 15 15 5 Bounce Time, Max. ms 5 5 5 5 5 Mechanical Life, Min. Cycles 100,000 100,000 100,000 100,000 Weight (Nominal) lb. (kg) 0.79 (.35) 0.79 (.35) 0.95 (.43) 0.95 (.43)	Storage Temperature Range	C°	-65 to +125	-65 to +125	-65 to +125	-65 to +125	
No X, Yes/Latch, No Yes Yes Mechanical Data Operate Time @ 25°C (Including Bounce), Max./Typ. ms 40/20 40/20 40/20 40/20 Release Time, Max. ms 15 15 15 15 Bounce Time, Max. ms 5 5 5 5 Mechanical Life, Min. Cycles 100,000 100,000 100,000 100,000 Weight (Nominal) lb. (kg) 0.79 (.35) 0.79 (.35) 0.95 (.43) 0.95 (.43)	Shock, 11ms, 1/2 Sine	G's	20	20	20	20	
Mechanical Data Operate Time @ 25°C (Including Bounce), Max./Typ. ms 40/20 40/20 40/20 Release Time, Max. ms 15 15 15 Bounce Time, Max. ms 5 5 5 Mechanical Life, Min. Cycles 100,000 100,000 100,000 Weight (Nominal) lb. (kg) 0.79 (.35) 0.79 (.35) 0.95 (.43) 0.95 (.43)	Vibration, Sine (55-2,000 Hz)	G's	20	20	20	20	
Operate Time @ 25°C (Including Bounce), Max./Typ. ms 40/20 40/20 40/20 40/20 Release Time, Max. ms 15 15 15 15 Bounce Time, Max. ms 5 5 5 5 Mechanical Life, Min. Cycles 100,000 100,000 100,000 100,000 Weight (Nominal) lb. (kg) 0.79 (.35) 0.79 (.35) 0.95 (.43) 0.95 (.43)	Coil Transient Suppression		No	X, Yes/Latch, No	Yes	Yes	
Ins 40/20 4	Mechanical Data						
Bounce Time, Max. ms 5 5 5 Mechanical Life, Min. Cycles 100,000 100,000 100,000 Weight (Nominal) Ib. (kg) 0.79 (.35) 0.79 (.35) 0.95 (.43) 0.95 (.43)		ms	40/20	40/20	40/20	40/20	
Mechanical Life, Min. Cycles 100,000 100,000 100,000 100,000 Weight (Nominal) Ib. (kg) 0.79 (.35) 0.79 (.35) 0.95 (.43) 0.95 (.43)	Release Time, Max.	ms	15	15	15	15	
Weight (Nominal) Ib. (kg) 0.79 (.35) 0.79 (.35) 0.95 (.43) 0.95 (.43)	Bounce Time, Max.	ms	5	5	5	5	
	Mechanical Life, Min.	Cycles	100,000	100,000	100,000	100,000	
Coil Voltage (Nominal) Vdc 28 28 28 28	Weight (Nominal)	lb. (kg)	0.79 (.35)	0.79 (.35)	0.95 (.43)	0.95 (.43)	
	Coil Voltage (Nominal)	Vdc	28	28	28	28	

Note: Consult TE Connectivity for complete specifications, detailed performance characteristics and additional models.

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or 805-220-2055.

7–4

Catalog 5-1773450-5 Revised 3-13

www.te.com

Dimensions are shown for reference purposes only. Specifications subject to change. Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666

KILOVAC High Voltage DC Contactors Quick Reference Guide (Continued)

(CAP) Aerospace Commercial			(CAP) (EV) Aerospace Commercial OEM/Commercial &Electric Vehicle Indust			(CAP) (EV) erospace Commercial OEM/Commercial & Electric Vehicle				EV) Commercial
CAP202	CAP200	CAP100	EV200A	EV200B	EV200P	EV100	LEV100	LEV200		
300	500	100	500	500	500	100	100	500		
12-900	12-900	12-900	12-900	12-900	12-900	12-900	900	12-900		
10,000	1,000	6,000	1,000	500	500	6,000	6,000	1,000		
650/2,000	650/2,000	600/1000	650/2000	650/1000	650/1000	600/1000	600/1000	650/2000		
2,000	2,000	1000	2000	1000	1000	1000	1000	1000		
DPST	SPST	SPST	SPST	SPST	SPST	SPST	SPST	SPST		
2X (NO)	X (NO)	X (NO)	X(NO)	Y(NC)	X (LATCH)	X(NO)	X(NO)	X(NO)		
 0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2		
Form C/4	Form A/2	Form C/1	Form A/1	Form A/1	Form A/1	None	Form X/1	Form X/1		
2.0/0.1	2.0/0.1	2.0/0.1	2.0/0.1	2.0/0.1	2.0/0.1	2.0/0.1	2.0/0.1	2.0/0.1		
Ag 6V/15mA Au 5V/5mA	Ag 6V/15mA Au 5V/5mA	Ag 6V/15mA Au 5V/5mA	Ag 6V/15mA Au 5V/5mA	Ag 6V/15mA Au 5V/5mA	Ag 6V/15mA Au 5V/5mA	—	—	Ag 6V/15m/ Au 5V/5mA		
2,200	2,200	2,200	2,200	2,200	2,200	2,200	2,000	2,200		
100	100	100	100	100	100	100	100	100		
50	50	50	50	50	50	50	50	50		
 -55 to +85	-55 to +85	-55 to +85	-40 to +85	-40 to +60	-40 to +85	-40 to +85	-40 to +85	-40 to +85		
-65 to +125	-65 to +125	-65 to +125	-65 to +125	-65 to +125	-65 to +125	-65 to +125	-65 to +125	-65 to +125		
30	20	20	20	30 (Closed)/ 10 (Open)	30	20	20	20		
20	20	20	20	10	20	20	20	20		
Yes	Yes	Yes	Yes	Yes	No	Yes	No	No		
40/20	40/20	25/15	25/15	25/15	25/15	25/15	25/15	25		
15	15	10	12	15	15	15	10	15		
5	5	5	7	5	5	5	5	5		
100,000	100,000	100,000	1,000,000	100,000	100,000	1,000,000	1,000,000	100,000		
 1.3 (.59)	0.95 (.43)	6.70 (190)	0.95 (.43)	0.95 (.43)	.99 (.53)	.28 (.130)	0.42 (.19)	1.3 (.60)		
28	28	28	9-36	12/24	12/24	9-36	12/24/48	12/24/48		

7–5

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or 805-220-2055.

Catalog 5-1773450-5 Revised 3-13

www.te.com

Dimensions are shown for reference purposes only. Specifications subject to change.

Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666

KILOVAC MAP101 Series Contactor with 1 Form A (SPST-NO) Contacts Rated up to 100 Amps, 12-900 Vdc Dual Contact Material (Cu/Mo)

Coil Data

28/ 32 Vdc

Coil Voltage, Nominal/ Max —

Coil Resistance @ 25°C —

Contacts Close Coil — 18 Ω

Contacts Open Coil — 13 Ω

16 Vdc (-55°C to +25°C)

18 Vdc (+25°C to +85°C)

-40°C — 4.0 À

Main Contacts

Pick Up/ Drop Out (Max) -

Coil Current (Max) @ 32Vdc/

Operate Time (Max) — 40 ms

Release Time — 25 ms

Operate Bounce (Max) - 5 ms

Auxiliary Contacts Operate/

Release — Within ± 5 ms of main

Coil Current On Time (Minimum Required to Latch) - 40 ms

Product Facts

- Dual contact material (copper/moly) designed for high current make and interrupt military aerospace, ground vehicle and naval applications
- Hermetically sealed, intrinsically safe, operates in explosive/harsh environments with no oxidation or contamination of coils or contacts, during long periods of nonoperation
- Comes standard with 1 SPST-NO Aux. contact
- Not position sensitive, can be mounted in any orientation
- RoHS versions available

Physical Data Contact Arrangement — Main Contacts SPST-Latching (form X) 1X Auxiliary Contact -SPST-NO (form A)

Dimensions — See drawing Weight, Nominal -0.35 Kg (12.35 oz)

Environmental Data Shock, 11ms 1/2 Sine (Operating) - 20 Gpeak Sine Vibration, 20 G_{peak} — 55-2000 Hz

Random Vibration, 14.06 Grms -15 Hz (.002 G²/Hz), 100 Hz (.002 G²/Hz), 450 Hz (.12 G2/Hz), 900 Hz (.12 G2/Hz), 2000 Hz (.083 G2/Hz) Operating Temperature Range —

-55°C to +85°C

Electrical Data

Voltage Rating -Main Contacts (max) — 400 Vdc Auxiliary Contacts — 30 Vdc

Current Rating, Continuous -Main Contacts 1 - 100 A Auxiliary Contacts — 3 A

Contact Resistance — Main Contacts - $100 \text{ m}\Omega \text{ max} @ 1 \text{ amp}$ $0.75 \text{ m}\Omega \text{ max} @ \text{rated current}$

Auxiliary Contacts ---- $200 \text{ m}\Omega$ max **Electric Life at Rated Current 270**

Vdc, Resistive Load -25,000 cycles

Mechanical Life — 1 million cycles **Dielectric Withstand Voltage** -Terminal to Terminal/ Terminals to Coil — 1mA max @ 1,300Vrms

Insulation Resistance —

 $100M\Omega$ min @ 500Vdc new $50M\Omega$ min @ 500Vdc end of life

Note:

¹ Continuous current rating is affected by conductors attached. Keep terminals below 150°C max continuous.

Ordering Information

Typical Part Number ► MAP101 R B A F E
Series:
Dual Contact Material
Contact Form: R - Latch with 1 SPST NO Aux.
Coil Voltage: B = 28 Vdc Coil
Lead Length: A = 15.3 in. (300 mm)
Coil Terminal Connector: N = None F = Plug on Flying Lead, 9 Pin Micro-D

Mounting & Power Terminals E = side mount with 2x#810-32 Female Power Terminals

For factory-direct application assistance. dial 800-253-4560, ext. 2055, or 805-220-2055.

7-6

Catalog 5-1773450-5 Revised 3-13

www.te.com

Dimensions are shown for reference purposes only. Specifications subject to change.

Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666

KILOVAC MAP101 Series Contactor (Continued)

Outline Dimensions

Connector Pin-Out

1	Not Connected
2	Aux. NO
3	Close Return
4	Close Return
5	+28Vdc
6	Aux. Com.
7	Open Return
8	Open Return
9	+28V

KILOVAC High Voltage DC Contactors

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or 805-220-2055.

Catalog 5-1773450-5 Revised 3-13

www.te.com

Dimensions are shown for reference purposes only. Specifications subject to change.

Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666

For additional support numbers please visit www.te.com

7–7

KILOVAC MAP100 Series Contactor with 1 Form A (SPST-NO) Contacts Rated up to 100 Amps, 12-900 Vdc

Product Facts

- Solid copper contacts designed for high current carry military aerospace, ground vehicle and naval applications
- Hermetically sealed, intrinsically safe, operates in explosive/harsh environments with no contact oxidation or contamination of coil or contacts, during long periods of non- operation
- Comes standard with 1 SPST-NO Aux. contact
- Not position sensitive, can be mounted in any orientation
- RoHS versions available

Physical Data Contact Arrangement — Main Contacts — SPST-Latching (or NO Form X) 1X Auxiliary Contact — SPST-NO (form A)

Dimensions — See drawing Weight, Nominal — 0.35 Kg (12.35 oz)

Environmental Data Shock, 11ms 1/2 Sine (Operating) — 20 G_{peak} Sine Vibration, 20 G_{peak} — 55-2000 Hz

Random Vibration, 14.06 Grms — 15 Hz (.002 G²/Hz), 100 Hz (.002 G²/Hz), 450 Hz (.12 G²/Hz), 900 Hz (.12 G²/Hz), 2000 Hz (.083 G²/Hz) Operating Temperature Range —

-55°C to +85°C

Electrical Data

Voltage Rating — Main Contacts (max) — 400 Vdc Auxiliary Contacts — 30 Vdc

Current Rating, Continuous — Main Contacts ¹ — 100 A Auxiliary Contacts — 3 A

Contact Resistance — Main Contacts — 100 m Ω max @ 1 amp

 $0.75 \text{ m}\Omega \text{ max} @ \text{rated current}$ Auxiliary Contacts — 200 m Ω max

Electrical Life at Rated Current, 270 Vdc, Resistive Load — 15.000 cycles

Mechanical Life — 1 million cycles Dielectric Withstand Voltage — Terminal to Terminal/ Terminals to Coil — 1mA max @ 1,300Vrms Insulation Resistance —

Terminal to Terminal/ Terminals to Coil — 100M Ω min @ 500V dc new 50M Ω min @ 500V dc end of life

Note:

¹ Continuous current rating is affected by conductors attached. Keep terminals below 150°C max continuous.

Coil Data

Coil Voltage, Nominal/ Max — 28/ 32 Vdc

 $\begin{array}{l} \mbox{Coil Resistance @ 25°C ---} \\ \mbox{Contacts Close Coil --- 18 } \Omega \\ \mbox{Contacts Open Coil --- 13 } \Omega \end{array}$

Pick Up/ Drop Out (Max) — 16 Vdc (-55°C to +25°C) 18 Vdc (+25°C to +85°C)

Coil Current (Max) @ 32Vdc/ -40°C — 4.0 A

Coil Current On Time (Minimum Required to Latch) — 40 ms Main Contacts — Operate Time (Max) — 40 ms Operate Bounce (Max) — 5 ms

Operate Bounce (Max) — 5 ms Release Time — 25 ms

Auxiliary Contacts Operate/ Release — Within ± 5 ms of main

MAP100 R B A F E

Ordering Information

Typical	Part	Number	
---------	------	--------	--

Series: _____

MAP100 = 100 Amp, 12-900VDC Contactor

Contact Form: ______ H = NO with 1 SPST NO Aux.

R - Latch with 1 SPST NO Aux.

Coil Voltage: B = 28 Vdc Coil

Lead Length:

A = 15.3 in. (300 mm)

Coil Terminal Connector: N = None F = Plug on Flying Lead, 9 Pin Micro-D

Mounting & Power Terminals E = side mount with 2x#8

10-32 Female Power Terminals

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or 805-220-2055.

7–8

Catalog 5-1773450-5 Revised 3-13

www.te.com

Dimensions are shown for reference purposes only. Specifications subject to change. Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666

KILOVAC MAP100 Series Contactor (Continued)

Outline Dimensions

Connector Pin-Out

1	Not Connected
2	Aux. NO
3	Close Return
4	Close Return
5	+28Vdc
6	Aux. Com.
7	Open Return
8	Open Return
9	+28V

KILOVAC High Voltage DC Contactors

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or 805-220-2055.

Catalog 5-1773450-5 Revised 3-13

www.te.com

Dimensions are shown for reference purposes only. Specifications subject to change.

Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666

For additional support numbers please visit www.te.com

7–9

KILOVAC MAP200 Series Contactor with 1 Form A (SPST-NO) Contacts Rated up to 500 Amps, 12-900 Vdc

Product Facts

- Designed to be the smallest, lightest weight, lowest cost sealed contactor in the industry with its current rating for military aerospace, ground vehicle and naval, high current applications
- Built-in coil economizer (models requiring external economizer also available)
- Optional auxiliary contact for easy monitoring of power contact position
- Hermetically sealed intrinsically safe, operates in explosive/harsh environments with no oxidation or contamination of coil or contacts, including long periods of nonoperation
- Versatile coil and power connections
- RoHS versions available

Aux. Contact Current, Max. -2A @ 30VDC / 3A @ 125VAC Aux. Contact Current, Min. ---100mA @ 8V Aux. Contact Resistance, Max. — 0.417 ohms @ 30VDC / .150 ohms @ 125VAC Dielectric Withstanding Voltage — 2,200 Vrms @ sea level Insulation Resistance @ 500VDC — 100 megohms 2 Shock, 11ms 1/2 Sine, Peak, Operating — 20 G Vibration, Sine, 50-2000Hz., Peak - 20 G Operating Temperature — -55°C to +85°C Weight, Nominal — .95 lb. (.43 kg)

Notes:

¹ Main power contacts ² 50 at end of life

Performance Data

12 - 900 VDC

conductors

for higher currents

2,000 A, 1 cycle

Contact Arrangement, Power

Contacts — 1 Form A (SPST-NO)

Rated Operating Voltage —

Continuous (Carry) Current,

Typical — 500 A @ 85°C, 400 mcm

Make/Break Current at Various Voltages 1 — See graph next page Break Current at 320VDC 1 —

Contact Resistance, Typ.

(@200A) — 0.2 mohms Load Life — See graph next page Mechanical Life — 1 million cycles Contact Arrangement, Auxiliary Contacts — 1 Form A (SPST-NO)

Consult Factory for required conductors

Coil Operating Voltage (Valid Over Temperature Range) Voltage (Will Operate) 18-32VDC Voltage (Max.) 32VDC Pickup (Close) Voltage Max. 18VDC Hold Voltage (Min.) 10VDC Dropout (Open) Voltage (Min.) 2VDC Inrush Current (Max.) 4.5A Holding Current (Avg.) 0.5A Inrush Time (Max.) 100ms

Ordering Information

Typical Part Number ► MAP200 A R D E A
Series: MAP200 = 500 Amp, 12-900VDC Contactor
Contact Form: A = Normally Open H = Normally Open with Aux. Contacts
Coil Voltage: R = 28 Vdc, Mechanical Economizer S = 28 Vdc, Electrical Cut-throat Economizer
Coil Wire Length: A = 15.3 in (390 mm) D = Coil connector on relay (requires option "E" or "X" in next step).
Coil Terminal Connector: N = No connector E = 9-pin subminiature "D" plug mounted on contactor housing X = Special configuration (consult factory)
Mounting & Power Terminals:

- $A = Bottom Mount \& Male M8 \times 1.25$ Thread Terminals
- B = Bottom Mount & Female 1/4-20 Thread Terminals
- D = Bottom Mount & Female M6 x 1 Thread Terminals

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or 805-220-2055.

7-10

Catalog 5-1773450-5 Revised 3-13

www.te.com

reference purposes only. Specifications subject to change.

Dimensions are shown for

Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666

KILOVAC MAP200 Series (Continued)

MAP200HR D-Sub

Pin Out Coil+ = Pin 2

Coil - = Pin 6 Aux. COM = Pin 8 Aux. NO = Pin 4

MAP200AR

Coil + = Pin 2Coil - = Pin 6

Estimated Make & Break Power Switching Ratings

NOTES:

1) For resistive loads with 300µH maximum inductance. Consult factory for inductive loads.

2) Estimates based on extrapolated data. User is encouraged to confirm performance in application.
3) End of life when dielectric strength between terminals falls below 50 megohms @ 500VDC.

4) The maximum make current is 650A to avoid contact welding.

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or 805-220-2055.

Catalog 5-1773450-5 Revised 3-13

www.te.com

Dimensions are shown for reference purposes only. Specifications subject to change. Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666 For additional support numbers please visit www.te.com

KILOVAC High Voltage DC Contactors

KILOVAC MAP201 Series Contactor with 2 Form A (SPST-NO) Contacts Rated up to 350 Amps, 12-900 Vdc Dual Contact Material (Cu/Mo)

Product Facts

- Designed to be the smallest, lightest weight, lowest cost sealed contactor in the industry with its current rating for military aerospace
- Built-in coil economizer (models requiring external economizer also available)
- Optional auxiliary contact for easy monitoring of power contact position
- Hermetically sealed intrinsically safe, operates in explosive/harsh environments with no oxidation or contamination of coil or contacts. including long periods of non-operation
- Versatile coil and power connections
- RoHS versions available

Physical Data

Contact Arrangement — Power Contacts SPST-NO (form X) 2X Auxiliary Contacts 1 ---SPST-NO (form A) **Dimensions** — See drawing Weight, Nominal — 0.45 Kg (0.99 lb)

Environmental Data

Shock, 11ms 1/2 Sine (Operating) - 20 G_{peak} Sine Vibration, 20 G_{peak} — 55-2000 Hz

Random Vibration, 14.06 Grms -15 Hz (.002 G²/Hz), 100 Hz (.002 G²/Hz), 450 Hz (.12 G2/Hz), 900 Hz (.12 G2/Hz), 2000 Hz (.083 G2/Hz)

Operating Temperature Range — -55°C to +85°C

Electrical Data

Voltage Rating -Main Contacts (max) — 400 Vdc

Auxiliary Contacts - 30 Vdc Current Rating, Continuous — Main Contacts 2 - 300 A

Auxiliary Contacts - 3 A

Contact Resistance -Main Contacts 3 -100 m Ω max @ 1 amp $0.3 \text{ m}\Omega \text{ max}$ @ rated current Auxiliary Contacts - $200 \text{ m}\Omega$ max

Hot Switching Performance

(Polarity Sensitive) 600A make/ 265A break @ ± 270Vdc — 11,000 cycles 550A make/ break @ ± 360Vdc ----100 cycles 2000Å capacitive make — 100 cycles 2000A make/ break @ +360Vdc -5 cycles 1000A make/ break @ -360Vdc ----2 cycles

Mechanical Life — 1 million cycles **Dielectric Withstand Voltage** -

For factory-direct application assistance. dial 800-253-4560, ext. 2055, or 805-220-2055. 1mA max @ 2,200Vrms

to change.

7-12

Catalog 5-1773450-5 Revised 3-13

reference purposes only. Specifications subject

Dimensions are shown for Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666 **Coil Data**

Coil Voltage, Nominal/ Max — 28/ 32 Vdc Pick Up (Max) - 16 Vdc Inrush Current @ 28Vdc (Max) — 3.5 A Inrush Time (Max) — 100 ms Hold Current (Max) - 0.32 A

Drop Out — 4 to 10 Vdc Main Contacts -Operate Time (Max) - 18 ms Operate Bounce (Max) — 5 ms

Release Time — 18 ms

Auxiliary Contacts Operate/ Release — Within ± 5 ms of main

MAP201 A R D E A

Insulation Resistance —

100MΩ min @ 500Vdc

Notes:

- 1 Two form A available with electronic coil economizer, 1 form A available with mechanical coil economizer
- ² Continuous current rating is affected by conductors attached. Keep terminals below 150°C max continuous, 175C for 1 hour max, and 200C for 1 minute max.
- 3 Initial contact resistance may be higher than $0.3m\Omega$, but will drop below within 30 minutes maximum

Ordering Information

Typical Part Number

Series: -

MAP201 = 350 Amp, 12-900VDC Contactor

Contact Form:

A = Normally Open H = Normally Open with Aux. Contacts

Coil Voltage:

- R = 28 Vdc, Mechanical Economizer
- S = 28 Vdc, Electrical Cut-throat Economizer

Coil Wire Length:

- A = 15.3 in (390 mm)
- D = Coil connector on relay (requires option "E" or "X" in next step).

Coil Terminal Connector: _

- N = No connector
- E = 9-pin subminiature "D" plug mounted on contactor housing
- X = Special configuration (consult factory)

Mounting & Power Terminals:

- A = Bottom Mount & Male M8 \times 1.25 Thread Terminals
- B = Bottom Mount & Female 1/4-20 Thread Terminals
- D = Bottom Mount & Female M6 x 1 Thread Terminals

For additional support numbers please visit www.te.com

www.te.com

KILOVAC MAP201 Series Contactor (Continued)

Outline Dimensions*

MAP200HR D-Sub

Pin Out Coil+ = Pin 2 Coil - = Pin 6 Aux. COM = Pin 8 Aux. NO = Pin 4

MAP200AR

Coil + = Pin 2Coil - = Pin 6

*Alternate coil and main terminal connections available, consult factory.

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or 805-220-2055.

Catalog 5-1773450-5 Revised 3-13

www.te.com

Dimensions are shown for reference purposes only. Specifications subject to change. Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666 For additional support numbers please visit www.te.com

KILOVAC High Voltage DC Contactors

KILOVAC CAP202 Series Aerospace Commercial Contactor with 2 Form X (DPST-NO), Contacts Rated up to 300 Amps, 12-600 Vdc

Physical or Other Properties

Weight: 0.79 Kg

environments

Hermetically sealed

periods on non-use

CAP202AS - None

CAP202MS - Two

CAP202FS — Four

Contact Arrangement —

Weight - 0.79 Kg (1.74 lb.)

Main Contacts — 12-900Vdc Auxiliary Catacts — 30VdC

Performance Data

Physical Data

Electrical Data Voltage Rating -

Current Rating -Main Contacts¹ — 350A/pole

Auxiliary Catacts - 3A

Main Contacts — (2)

 $100 \text{ m}\Omega \text{ max} @ 1 \text{ amp}$

 $0.3 \text{ m}\Omega$ max. @ 200A after 3 mins. Auxiliary Catacts — 200 m Ω max

Contact Resistance -

page

Safe for harsh/corrosive

No contacts oxidation over

Number of SPDT Auxiliary

Contacts per Contactor Type:

Power Contacts — DPST-NO (2 Form X)

Auxiliary Switches — SPDT (form C)

Dimensions — See drawings on next

Product Facts

- Hermetically sealed
- Up to 4X SPDT auxiliary switch outputs: 30 Vdc/2A max switching or 6V/5mA min. signal
- Integrated coil economizer with coil suppression
- EMC compliant no radiated coil emission
- Bidirectional switching main contacts not polarity sensitive
- Mount in any orientation not position sensitive

Description

2-pole single throw hermetically sealed DC contactor; 12-900 Vdc/350A per pole

Not position sensitive

Bi-directional switching

Applications

High Voltage DC Converter Systems (ref schematic below)

Test Equipment

Power Distribution

Power Motion Control

Electrical

cycles

Dimensions are shown for

Compact epoxy-sealed resin enclosure occupies only about 4 in³ (65.5 cm³)

Contact arrangement: DPST-No (2 form X)

Voltage rating: 12-900 Vdc (main contacts); 30 Vdc (auxiliary)

Mechanical life: 100,000

For factory-direct application assistance. dial 800-253-4560, ext. 2055, or 805-220-2055.

7-14

Catalog 5-1773450-5 Revised 3-13

reference purposes only. Specifications subject to change.

Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666

Hot Switching Performance @ ± 400 Vdc (3)

100A make/break — 10,000 cycles 250A make/break — 2,500 cycles 700A break only — 10 cycles Hot Switching Performance @

± 270 Vdc (4)

100A make/break — 40,000 cycles 250A make/break — 7,500 cycles 2000A break only @ ±370Vdc (5) — 2 cycles

Maximum Make Current - 700A **Dielectric Withstand Voltage over** Life — Terminal to Terminal/Terminals

to Coil — 1mA max @ 2,200Vrms

Insulation Resistance over Life - Terminal to Terminal/Terminals to Coil — $50m\Omega$ min @ 500Vdc

Mechanical Life — 100.000 cycles **Environmental Data**

Shock, 11ms 1/2 sine (operating) – 20G peak

Sine Vibration, 10G peak — 55-2,000 Hz.

Random Vibration, 14 Grms —

15 100 300 900 2000 Hz 01 01 2 2 .01 G2/Hz

Operating Temperature Range — -55°C to +85°C

Notes:

- ¹ Using 4/0 conductor. Current rating is affected by attached conductor size and design. Keep terminals below 150°C max. continuous, 175°C for 2 hours max. and 200°C for 1 minute max. For mounting large conductors, request terminal adapter PN 3-1618396-7.
- ² Operational contact resistance is measured by millivolt drop across contacts a > 100A current. Initial contact resistance may be higher than 0.3mΩ, but will drop below within 30 mins. max.
- ³ Voltage applied to each contact set separately.
- 4 Voltage applied across both contact sets in series.
- ⁵ May not pass 2,200 Vrms dielectric testing after second interrupt cycle.

KILOVAC CAP202 Series 12-900Vdc Contactors

Coil Data (-40 to +85°C temp range unless otherwise	noted)
Voltage/Nominal Max.	28-32VDC
Pickup Voltage Max.	16VDC
Inrush Current @ 28 Vdc nominal/@32V maximum	3.4/6.0A
Inrush Time (nominal/maximum)	75/150mS
Hold Current @28V nominal / @32V maximum	0.27/0.48A
Drop Out Voltage	3 to 8Vdc
Internal Coil Suppression (max.)	60Vdc
Main Contacts: Operate Time, nominal/maximum	13/20mS
Main Contacts: Operate Bounce, nominal/maximum	3/10mS
Main Contacts: Release Time, nominal/maximum	25mS
Main Contacts: Release Time, maximum including Maximum arc time	7/12mS

Ordering Information

Typical Part Number ► CAP202 M S
Series:
CAP202 = 2 form X, DPST-N0-DM Contactor
Auxiliary Contact Outputs (SPDT form C): A = None M = Two F = Four
Coil Voltage:
S = 28V (with built-in electronically switched dual coil economizer)
Coil and Aux. Wire Length:
A = 15.3 inches B = 6 inches

X = Customer Special

Coil and Aux. Connector: -

- N = None
- F = D Plug on flying leads (may affect wire length)

Mounting & Power Terminals: -

D = 2X M5 Bottom Mount with 4X, M6 x 1 Female thread terminals

Specifications are subject to change without notice.

7–15

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or 805-220-2055.

Catalog 5-1773450-5 Revised 3-13

www.te.com

Dimensions are shown for reference purposes only. Specifications subject to change.

Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666 For additional support numbers please visit www.te.com

BFD

KILOVAC CAP200 Series Contactor with 1 Form A (SPST-NO) Contacts Rated up to 500 Amps, 12-900 Vdc

Product Facts

- Designed to be the smallest, lightest weight, lowest cost sealed contactor in the industry with its current rating
- Built-in coil economizer only 1.7W hold power @ **12VDC** and it limits back EMF to OV. (models requiring external economizer also available)
- Optional auxiliary contact for easy monitoring of power contact position
- Hermetically sealed intrinsically safe, operates in explosive/harsh environments with no oxidation or contamination of coil or contacts, including long periods of nonoperation
- Versatile coil and power connections
- RoHS versions available

Coil Operating Voltage (Valid Over Temperature Range)						
Voltage (Will Operate) 9-36VDC 32-95VDC 48-95VDC						
Voltage (Max.)	36VDC	95VDC	95VDC			
Pickup (Close) Voltage Max.	9VDC	32VDC	48VDC			
Hold Voltage (Min.)	7.5VDC	22VDC	34VDC			
Dropout (Open) Voltage (Min.)	6VDC	18VDC	27VDC			
Inrush Current (Max.)	3.8A	1.3A	0.7A			
Holding Current (Avg.)	0.13A@12V, 0.07A@24V	0.03A@48V	0.02A@72V			
Inrush Time (Max.)	130ms	130ms	130ms			

Ordering Information

Typical Part Number

CAP200 A A A N A

Series:

CAP200 = 500 Amp, 12-900VDC Contactor

Contact Form:

- A = Normally Open
 - H = Normally Open with Aux. Contacts

Coil Voltage:

- A = 9-36VDC (1 = requires external coil economizer)
- D = 32-95VDC (2 = requires external coil economizer)
- J = 48-95VDC (3 = requires external coil economizer)
- R = 28 Vdc with mechanical economizer

Coil Wire Length:

A = 15.3 in (390 mm)

D = Coil connector on relay (requires option "E" or "X" in next step)

Coil Terminal Connector: -

- N = None
- E = 9-pin subminiature "D" plug mounted on contactor housing
- F = 9-pin subminiature "D" plug mounted on 15.3 in (390 mm) flying leads.
- X = Special configuration (consult factory)

Mounting & Power Terminals:-

A = Bottom Mount & Male 10mm x 8 Terminals

For factory-direct application assistance. dial 800-253-4560, ext. 2055, or 805-220-2055.

7-16

Catalog 5-1773450-5 Revised 3-13

www.te.com

reference purposes only. Specifications subject to change.

Dimensions are shown for

Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666 Performance Data

Contact Arrangement, Power Contacts — 1 Form A (SPST-NO) Rated Operating Voltage —

12 - 900 VDC Continuous (Carry) Current,

Typical — 500 A @ 85°C, 400 mcm conductors

Consult Factory for required conductors for higher currents

Make/Break Current at Various Voltages 1 — See graph next page Break Current at 320VDC 1 —

2,000 A, 1 cycle 3

Contact Resistance, Typ.

(@200A) - 0.2 mohms

Load Life — See graph next page

Mechanical Life — 1 million cycles

Contact Arrangement, Auxiliary Contacts — 1 Form A (SPST-NO)

Aux. Contact Current, Max. —

2A @ 30VDC / 3A @ 125VAC Aux. Contact Current, Min. —

100mA @ 8V

Aux. Contact Resistance, Max. — 0.417 ohms @ 30VDC / .150 ohms @ 125VAC

Dielectric Withstanding Voltage — 2,200 Vrms @ sea level

Insulation Resistance @ 500VDC — 100 meaohms 2

Shock, 11ms 1/2 Sine, Peak, Operating — 20 G

Vibration, Sine, 80-2000Hz., **Peak** — 20 G

Operating Temperature — -40°C to +85°C

Weight, Nominal — .95 lb. (.43 kg)

Notes:

¹ Main power contacts

² 50 at end of life

³ Does not meet dielectric & IB after test, 1700 amp for unit with Aux. Contacts

KILOVAC CAP200 Series (Continued)

Estimated Make & Break Power Switching Ratings

NOTES:

For resistive loads with 300μH maximum inductance. Consult factory for inductive loads.
Estimates based on extrapolated data. User is encouraged to confirm performance in application.
End of life when dielectric strength between terminals falls below 50 megohms @ 500VDC.

4) The maximum make current is 650A to avoid contact welding.

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or 805-220-2055.

Catalog 5-1773450-5 Revised 3-13

www.te.com

Dimensions are shown for reference purposes only. Specifications subject to change. Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666 For additional support numbers please visit www.te.com

KILOVAC High Voltage DC Contactors

KILOVAC CAP100 Series 900 Vdc Contactor

Product Facts

- Commercial aerospace product
- Hermetically sealed intrinsically safe.
 Operates in explosive/harsh environments without oxidation or contamination of contacts, during long periods of non-operation
- 8kV isolation between open contacts permits use for high voltage isolation and carry, optional auxiliary contacts
- 12, 24 and 48 Vdc coils
- Solid copper contacts
- Designed and built in accordance to AIAG QS9000
- RoHS versions available

Description

Lowest cost, 900 Vdc 100 amp, hermetically sealed DC contactor in the industry with coil suppression and 1 Form C Aux. contact

Compact package available in side- or bottom-mount reinforced configurations, not position sensitive

Applications

Power/motor control circuit isolation, circuit protection and power distribution

Commercial Aerospace

Mechanical

Compact epoxy-sealed resin enclosure occupies only about 4 in³ (65.5 cm³)

Robust integral mounting plate on either bottom or side of enclosure accepts two M4 screws

Inert gas filled contact chamber

Flying leads for coil connections

Load terminals threaded for M5 bolts (not included)

Performance Data

Physical Data Contact Arrangement, Main Contacts — SPST-NO-DM (1 Form X) Dimensions — See drawings on next page

Weight — 6.7 oz (190g)

Contact Data

Contact Arrangement, Main Contacts — SPST-NO-DM (1 Form X) Voltage Rating, Main Contacts Switching (Max) — 900VDC

Current Rating, Main Contacts Switching — Continuous 1 — 100A

Short Term, 3 Minutes ² — 200A

Hot Switching Performance (Polarity Sensitive) — 50A make/break @ +400Vdc — 50,000 cycles 100A make/break @ +400Vdc — 6,000

cycles 100A make/break @ -400Vdc — 1,000

cycles 200A make/break @ +400Vdc — 500

cycles

1,000A break only @ +400Vdc —10 cycles

600A make only — 25 cycles Maximum Short Circuit Current

(1/2 cycle, 60 Hz) — 1,250A (through closed contacts)

Dielectric Withstand Voltage ³ — Between Open Contacts — 5,600Vrms/8,000Vdc Contacts to Coil — 2,000Vrms/4,000Vdc

Insulation Resistance, Terminal to Terminal / Terminals to Coil —

When New — 100 megohms, min. @ 500Vdc At End of Life — 50 megohms, min. @ 500Vdc

Mechanical Life — 1 million cycles

Operate & Release Time Operate Time Max. — 25ms Operate Rounce Max. — 5ms

Operate Bounce Max. — 5ms Release Time — 10ms

Environmental Data

Shock, 11ms 1/2 sine (operating) — 20G peak Sine Vibration, 20G peak — 55-2,000 Hz.

Operating Temperature Range — -55°C to +85°C Noise Emission (at 100 mm distance) — 70dB(a)

Notes

- ¹ 8.4 mm² conductor. Current rating depends upon conductor size. Keep terminals below 175°C max continuous.
- ² 3 minutes at +40°C ambient with 8.4 mm² (#8 AWG) conductor.
- ³ 2,000Vrms minimum under all conditions, until end of life.

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or 805-220-2055.

7–18

Catalog 5-1773450-5 Revised 3-13

www.te.com

Dimensions are shown for reference purposes only. Specifications subject to change. Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666

KILOVAC CAP100 Series (Continued)

Coil Operating Voltage (Valid Over Temperature Range)				
Nominal Voltage	12Vdc	24Vdc	48Vdc	
Pick Up Voltage (20°C)	8Vdc	16Vdc	33Vdc	
Drop Out Voltage (20°C)	1.2Vdc	2.4Vdc	4.8Vdc	
Coil Current (Nominal at 20°C, 12vdc)	461mA	250mA	122mA	
Coil Power ¹ Nominal @ Vnom, +20°C	5.5W	6.0W	6.0W	
Pickup (Close) Voltage Max.@85°C	9.6Vdc	19.2Vdc	38.4Vdc	
Coil Resistance Nominal @ +20°C ± 5% (ohms)	26	96	392	

¹ Do not exceed 8.0W coil power for extended periods

Ordering Information

Typical Part Number 🕨	<u>CAP100 A 4 A N G</u>
Series:	
CAP100 = 100A Contactor	
A = 1 Form X (SPST-NO-DM) K = NO with 1 SPDT Aux.	
Coil Voltage: 4 = 12VDC 5 = 24VDC 6 = 48VDC	
Coil Wire Length: A = 15 inches [.4M]	
Coil Termination: N = None – Stripped Wires (Consult factory for connector o	ptions)
Mounting and Power Terminals G = Bottom Mount (2 x #8); M5 x	

H = Side Mount (2 x #8); M5 x 10

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or 805-220-2055.

Catalog 5-1773450-5 Revised 3-13

www.te.com

Dimensions are shown for reference purposes only. Specifications subject to change.

Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666 For additional support numbers please visit www.te.com

KILOVAC High Voltage DC Contactors

7-19

KILOVAC CAP100 Series (Continued)

Bottom Mount

Side Mount

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or 805-220-2055.

7-20

Catalog 5-1773450-5 Revised 3-13

www.te.com

Dimensions are shown for reference purposes only. Specifications subject to change. Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666

KILOVAC EV200 Series Contactor With 1 Form X (SPST-NO) Contacts Rated 500+ Amps, 12-900 Vdc

Product Facts

- Designed to be the smallest, lightest weight, lowest cost sealed contactor in the industry with its current rating (500+A carry, 2000A interrupt at 320VDC)
- Built-in coil economizer only 1.7W hold power @ 12VDC and it limits back EMF to OV. Models requiring external economizer also available
- Optional auxiliary contact for easy monitoring of power contact position
- Hermetically sealed intrinsically safe, operates in explosive/harsh environments with no oxidation or contamination of coil or contacts, during long periods of nonoperation
- Versatile coil/power connections
- UL Recognized c **FL**[°]us for the U.S. and Canada (File E208033) All contact ratings & coil versions may not be UL Recognized

CE

- CE marked for EC applications
- AIAG QS9000 designed, built and approved
- RoHS versions available

(CZONKA Relay, Type III)

EV200 A A A N A

Coil Operating Voltage (Valid Over Temperature Range)							
Voltage (Will Operate) 9-36VDC 32-95VDC 48-95VDC							
Voltage (Max.)	36VDC	95VDC	95VDC				
Pickup (Close) Voltage Max.	9VDC	32VDC	48VDC				
Hold Voltage (Min.)	7.5VDC	22VDC	34VDC				
Dropout (Open) Voltage (Min.)	6VDC	18VDC	27VDC				
Inrush Current (Max.)	3.8A	1.3A	0.7A				
Holding Current (Avg.)	0.13A@12V, 0.07A@24V	0.03A@48V	0.02A@72V				
Inrush Time (Max.)	130ms	130ms	130ms				

Ordering Information

Typical Part Number

EV200 = 500+ Amp, 12-900VDC Contactor

Contact Form:

Series:

A = Normally Open H = Normally Open with NO Aux. Contacts G = Normally Open with NC Aux. Contacts

Coil Voltage:

A = 9-36VDC (1 = requires external coil economizer) D = 32-95VDC (2 = requires external coil economizer) J = 48-95VDC (3 = requires external coil economizer) R = 28VDC with Mechanical Economizer

Coil Wire Length:

A = 15.3 in (390 mm)

Coil Terminal Connector:

- N = None
- C = Molex Mini-fit Jr, 2 Skt, Female 18-24, P/N 39-01-2020 & 39-00-0060 +red is pin 1 (A length only)

Mounting & Power Terminals: -

A = Bottom Mount & Male 10mm x M8 Terminals

For factory-direct application assistance. dial 800-253-4560, ext. 2055, or 805-220-2055.

Catalog 5-1773450-5 Revised 3-13

Dimensions are shown for reference purposes only. Specifications subject to change.

Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666

Performance Data

Contact Arrangement, Power Contacts — 1 Form A (SPST-NO) Rated Operating Voltage —

12 - 900 VDC Continuous (Carry) Current,

Typical — 500 A @ 85°C, 400 mcm conductors

Consult Factory for required conductors for higher (500+ A) currents

Make/Break Current at Various Voltages 1 — See graph next page Break Current at 320VDC 1 ----

2,000 A, 1 cycle 3

Contact Resistance, Typ.

(@200A) - 0.2 mohms

Load Life — See graph next page

Mechanical Life — 1 million cycles

Contact Arrangement, Auxiliary Contacts — 1 Form A (SPST-NO)

Aux. Contact Current, Max. —

2A @ 30VDC / 3A @ 125VAC

Aux. Contact Current, Min. — 100mA @ 8V

Aux. Contact Resistance, Max. — 0.417 ohms @ 30VDC / .150 ohms @ 125VAC

Operate Time @ 25°C -

Close (includes bounce), Typ. — 15 ms Bounce (after close only), Max. — 7 ms Release (includes arcing), Max @ 2000A - 12 ms

Dielectric Withstanding Voltage — 2,200 Vrms @ sea level (leakage <1mA) Insulation Resistance @ 500VDC -

100 megohms 2 Shock, 11ms 1/2 Sine, Peak,

Operating — 20 G

Vibration, Sine, 80-2000Hz., Peak — 20 G

Operating Ambient Temperature — -40°C to +85°C

Weight, Nominal - .95 lb. (.43 kg)

Notes:

¹ Main power contacts

- ² 50 at end of life
- ³ Does not meet dielectric & IR after test, 1700 amp for unit with Aux. Contacts

For additional support numbers please visit www.te.com

www.te.com

7-21

KILOVAC EV200 Series (CZONKA Relay, Type III) (Continued)

Estimated Make & Break Power Switching Ratings

NOTES:

For resistive loads with 300µH maximum inductance. Consult factory for inductive loads.
Estimates based on extrapolated data. User is encouraged to confirm performance in application.
End of life when dielectric strength between terminals falls below 50 megohms @ 500VDC.
The maximum make current is 650A to avoid contact welding.

Dimensions are shown for

reference purposes only.

Specifications subject

to change.

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or 805-220-2055.

EV200 Capacitive Make Test Curves for Pre-Charged Motor Controller 700 650 600 550 80% Minimum Pre Charge 500 450 **2**400 90% Nominal Pre Charge Current 350 300 250 200 150 100-50 0 ^{1.0} Time (ms) 0.0 0.5 1.5 2.0

7–22

Catalog 5-1773450-5 Revised 3-13

om

Dimensions are in millimeters unless otherwise specified. USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666

KILOVAC EV200B Series Contactor With 1 Form Y (SPST-NC) Contacts Rated 500+ Amps, 12-900 Vdc

Product Facts

- Normally closed version of popular EV200 series contactors
- Designed to be the smallest, lowest cost, lightest weight sealed contactor in the industry at its current rating
- Optional auxiliary contacts for monitoring position of power contacts
- Hermetically sealed operates in explosive/harsh environments with no oxidation or contamination of coil or contacts during long periods of nonoperation
- Not position sensitive, can be mounted in any orientation
- RoHS versions available

Physical Data Contact Arrangements — Main Contacts — SPST, Normally Closed

Dimensions — See drawing Weight, Nominal — .95 lb. (.43 kg)

Environmental Data

Shock, 11ms 1/2 Sine **(Operating)** — 30 G_{peak} (Closed) 10 G_{peak} (Open)

Sine Vibration, 10 G_{peak}— 55-2000 Hz

Random Vibration, 7.1 Grms -15 Hz (.001 G2/Hz), 100 Hz (.04 G2/Hz), 1000 Hz (.04 G2/Hz), 1500 Hz (.02 G2/Hz) **Operating Temperature Range** --40°C to +85°C

Electrical Data

Voltage Rating -Main Contacts (Max) - 750 Vdc Current Rating, Continuous -

Main Contacts 1 - 500A

Contact Resistance -Main Contacts 2 $0.2 \text{ m}\Omega$ max above 300A

 $0.3 \text{ m}\Omega$ max between 50 and 300A **Hot Switching Performance**

(Positive Polarity) 3 -200A make/ break @ 270Vdc — 10,000 cycles 600A make/ break @ 360Vdc ----100 cycles 800A break only @ 360Vdc ----15 cycles

1500A break only @ 360Vdc — 1 cycle Mechanical Life (Min) -

1 million cycles Dielectric Withstand Voltage —

Terminal to Terminal/ Terminals to Coil — 1mA max @ 2,200 Vrms

Insulation Resistance —

Terminal to Terminal/ Terminals to Coil - $100M\Omega$ min @ 500Vdc new $50M\Omega$ min @ 500Vdc end of life

Ordering Information

Typical Part Number

Series: EV200 = 500+ Amp, 12-900VDC Contactor

Contact Form:

B = Normally Closed

D = Normally Closed, 1 SPDT Aux.

Coil Voltage (with Economizer): -A = 12/24 Vdc

Coil Terminals:

A = 15.3 in. (300 mm)

Coil Terminal Connector: _ N = None

Mounting & Power Terminations:

A = Bottom Mount & Male 10 Max. M8 Threaded Terminals

Dropout (Min) — 4/9 Vdc Pickup Current, Peak 6 @ 25°C — 6 A

Operate Specs @ 25°C —

Operate Time (Typ) — 15 ms Operate Bounce (Max) - 5 ms Release Time (Typ) - 15 ms

Economizer Operating Frequency — 18 kHz

Hold Current — 0.9A/12 Vdc 0.3A/24 Vdc

Notes:

- ¹ Ambient conditions and conductor design affect rating. Terminal temperature rise should be 75°C max above ambient. Keep relay terminals below 150°C max continuous, 175°C max for two hours, and 200°C for 1 minute.
- ² Stabilized reading. Contact resist-ance may exceed spec in the first 10 minutes of current carry.
- ³ Units are polarity sensitive. Approximately 50% de-rating for reverse polarity switching. Consult factory for review of specific requirements.
- ⁴ Over temperature range unless noted.
- 5 Voltage ranged sensed by contactor 10 ms after application of source voltage.

EV200 B A A N A

⁶ Pickup duration 100 ms.

DC Contactors **KILOVAC** High Voltage

For factory-direct application assistance. dial 800-253-4560, ext. 2055, or 805-220-2055.

Catalog 5-1773450-5 Revised 3-13

www.te.com

Dimensions are shown for reference purposes only. Specifications subject to change.

Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666 For additional support numbers please visit www.te.com

Coil Data 4 Nominal Coil Voltage 5 — Low range — 9.6-14 Vdc High range — 19-28 Vdc Pick Up (Max) @ 25°C ----

9.6/18.5 Vdc Pick Up @ Max Coil Temperature -10.5/22 Vdc

Hold (Min) - 6/12 Vdc

KILOVAC EV200B Series Contactor (Continued)

Outline Dimensions

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or 805-220-2055.

7–24

www.te.com

Catalog 5-1773450-5

Revised 3-13 reference purposes only. Specifications subject to change.

Dimensions are shown for

Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666

KILOVAC EV200P Series Latching Contactor With 1 Form X (SPST Latch) Contacts Rated 500+ Amps, 12-900 Vdc

Product Facts

- Latching version of popular EV200 Series
- Designed to be the smallest, lowest cost, lightest weight sealed contactor in the industry at its current rating
- Optional auxiliary contacts for monitoring position of power contacts
- Hermetically sealed operates in explosive/harsh environments with no oxidation or contamination of coil or contacts during long periods of nonoperation
- Not position sensitive, can be mounted in any orientation
- RoHS versions available

Physical Data

Contact Arrangements — Main Contacts — SPST, Latching Auxiliary Contacts ¹ — Up to 2 Form A Dimensions — See drawing Weight, Nominal — .95 lb. (.43 kg)

Environmental Data

Shock, 11ms 1/2 Sine (Operating) — 30 G_{peak} Sine Vibration, 20 G_{peak}—

55-2000 Hz Random Vibration, 14.06 Grms — 15 Hz (.002 G²/Hz), 100 Hz (.002 G²/Hz),

450 Hz (.12 G²/Hz), 900 Hz (.12 G²/Hz), 2000 Hz (.083 G²/Hz) **Operating Temperature Range** —

-40°C to +85°C

Electrical Data

Voltage Rating — Main Contacts (Max) — 750 Vdc Current Rating, Continuous —

Main Contacts ² — 500A Contact Resistance —

Main Contacts ³ — 0.2 m Ω max above 300A 0.3 m Ω max between 50 and 300A

Hot Switching Performance

(Positive Polarity) 4 — 200A make/ break @ 270Vdc — 10,000 cycles 600A make/ break @ 360Vdc — 100 cycles 800A break only @ 360Vdc — 15 cycles 2000A break only @ 360Vdc — 1 cycle Mechanical Life (Min) — Dielectric Withstand Voltage -

Terminal to Terminal/ Terminals to Coil — 1mA max @ 2,200 Vrms

Coil Data 5

Nominal Coil Voltage ⁶ — 12 Vdc Pick Up/Latch (Max) @ 25°C — 9 Vdc

Ordering Information

Typical Part Number

Series: _______ EV200 = 500+ Amp, 12-900VDC Contactor

Contact Form: -P = Latching

F = LatchingF = Latching with 1 SPDT Aux.

Coil Voltage: -

4 = 12 Vdc5 = 24 Vdc

6 = 48 Vdc

Coil Terminations: – A = 15.3 in. (300 mm)

Coil Termination Connector:

N = None

Mounting & Power Terminals: —

A = Bottom Mount & Male 10mm x M8 Threaded Terminals

Hold (Min) — N/A Reset (Max)/Dropout (Min) — 9 Vdc

Duty Cycle, Max 7 — 20% Coil Resistance @ 25° C — 2.5 Ω Operate Specs @ 25° C — Operate Time (Typ) — 15 ms Operate Bounce (Max) — 7 ms Release Time (Max) — 15 ms

Notes:

- Product can be configured alternately with form B or C auxiliary switches if required. This changes the product part number, depending on specific auxiliary configuration. Consult TE for availability and part number
- ² Ambient conditions and conductor design affect rating. Terminal temperature rise should be 75°C max above ambient. Keep relay terminals below 150°C max continuous, 175°C max for two hours, and 200°C for 1 minute.
- ³ Stabilized reading. Contact resistance may exceed spec in the first 10 minutes of current carry.
- 4 Units are polarity sensitive. Approximately 50% de-rating for reverse polarity switching. Consult factory for review of specific requirements.
- ⁵ Over temperature range unless noted. Suggested coil pulse = 50-100 ms.
- ⁶ 24V and 48V coils available on request consult factory.
- 7 Intermittent Duty Coil. Coil overheating can occur if duty cycle is exceeded. Limit average coil power to 10W maximum.

EV200 P4 ANA

KILOVAC High Voltage

15 cycles 2000A break only @ 360Vdc — **Mechanical Life (Min)** — 1 million cycles For factory-direct application assistance.

dial 800-253-4560, ext. 2055, or 805-220-2055.

Catalog 5-1773450-5 Revised 3-13

www.te.com

Dimensions are shown for reference purposes only. Specifications subject to change. Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666

KILOVAC EV200P Series Latching Contactor (Continued)

Outline Dimensions

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or 805-220-2055.

7–26

Catalog 5-1773450-5 Revised 3-13

www.te.com

Dimensions are shown for reference purposes only. Specifications subject to change. Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666

KILOVAC EV100 Series Contactor With 1 Form X Contacts Rated 100 Amps Continuous, 600 Vdc

Product Facts

- Hermetically sealed
- Operates in explosive/ harsh environments without oxidation or contamination of contacts, during long periods of non-operation
- 8kV isolation between open contacts permits use for high voltage isolation and carry
- Coil economizer allows for operation between 9-36 VDC
- Designed and built in accordance with AS 9100

Description

Low cost, 600 Vdc, 100 amp, hermetically sealed DC contactor

Economized coil for low power consumption between 9-36 VDC

Bottom mount, not position sensitive

One million cycle mechanical life

Applications

Power/motor control circuit isolation, circuit protection and safety in industrial machinery

Automotive battery switching and backup

Solar inverter switching

Automotive pre-charge

Test Equipment

Power distribution

Electrical

Contact arrangement: SPST-NO (Form X., Double Make)

Voltage rating: 5-600 Vdc at 100 Amps

50K cycles Make/Break: 50 Amps at 400 Vdc

25K cycles Make/Break: 50 Amps at 600 Vdc

Holding current:

0.15 Amps at 24 Vdc Operate time: 30 ms max.

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or 805-220-2055.

Physical or Other Properties

Hermetically sealed Safe for harsh/corrosive environments

No contact oxidation over periods of non-use

Mechanical

Small size: 1.5" x 1.5" approximately Weight: 130 grams

Performance Data

Physical Data Contact Arrangement, Main Contacts — SPST-NO (Form X) Dimensions — See drawings on next page

Weight — 4.58 oz (130g)

Electrical Data Voltage Rating, Main Contacts Switching (Max) — 750VDC Current Rating, Main Contacts Switching -Continuous 1 — 100A

Short Term, 3 Minutes ² — 200A Contact Voltage Drop, Main Contacts — 0.05 max @ rated current

Resistive Load Performance (polarity sensitive)

50A make/break @ +400Vdc ---50,000 cycles 50A make/break @ +600Vdc ----25,000 cycles 100A make/break @ +400Vdc ----6,000 cycles 100A make/break @ +600Vdc — 5,000 cycles 100A make/break @ -400Vdc ----1,000 cycles 100A make/break @ -600Vdc ----25 cycles 200A make/break @ +400Vdc ----500 cycles 200A make/break @ +600Vdc ----200 cycles 1,000A break only @ +400Vdc ----5 cycles 600A break only @ +600Vdc — 5 cycles 600A make only — 10 cycles **Maximum Short Circuit Current** (1/2 cycle, 60 Hz) - 1,250A (through closed contacts)

Dielectric Withstand Voltage -Between Open Contacts — 2,2000Vrms Contacts to Coil - 1.500Vrms/4.000Vdc

Insulation Resistance, Terminal to Terminal / Terminals to Coil When New — 100 megohms, min. @ 500Vdc At End of Life — 50 megohms, min. @ 500Vdc

Mechanical Life — 106

Operate & Release Time Operate Time Max. — 30ms Operate Bounce Max. — 5ms Release Time — 10ms

Environmental Data

Shock, 11ms 1/2 sine (operating) 20G peak

Sine Vibration, 20G peak — 55-2,000 Hz.

Operating Temperature Range --40°C to +85°C

Noise Emission (at 100 mm distance) — 70dB(a)

Notes

1 8.4mm² conductor. Current rating is affected by conductor size. Keep terminals below 150°C max. continuous

² 3 minutes at +40°C ambient, 1 minute at -80°C ambient with 8.4mm² (#8 AWG) conductor.

Catalog 5-1773450-5 Revised 3-13

Dimensions are shown for reference purposes only. Specifications subject to change.

Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666

www.te.com

For additional support numbers please visit www.te.com

7-27

KILOVAC EV100 Series (Continued)

Outline Dimensions

Bottom Mount

9-32 Vdc
1.5A
0.25A@12Vdc/0.15A@24Vdc
≥ 9Vdc
≤ 8Vdc
100 ms
8.0 Ω
19.6 kHz
3-4W

Ordering Information

Typical Part Number 🕨	$\underline{EV100} \stackrel{A}{\to} \stackrel{A}{\to} \stackrel{A}{\to} \stackrel{N}{\to} \stackrel{A}{\to}$
Series: EV100 = 100A, 600 Vdc Contactor	
Contact Form: A = Normally Open	
Coil Voltage: 9-36 Vdc	
Coil Wire Length: A = 15 inches [.4M]	
Coil Termination: N = None – Stripped Wires	
Mounting: A = Bottom Mount 2X #8, M5X10 M	ains ———

Specifications are subject to change without notice.

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or 805-220-2055.

7-28

Catalog 5-1773450-5 Revised 3-13

www.te.com

Dimensions are shown for reference purposes only. Specifications subject to change. Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666

KILOVAC LEV100 Series 900 Vdc Contactor With 1 Form X Contacts Rated 100A Continuous

Product Facts

- Hermetically sealed intrinsically safe. **Operates in explosive/harsh** environments without oxidation or contamination of contacts, including long periods of non-operation
- 8kV isolation between open contacts permits use for high voltage isolation and carry
- 12, 24 and 48 Vdc coils
- Designed and built in accordance to AIAG QS9000
- Not position sensitive, can be mounted in any orientation
- Solid copper contacts

- UL Recognized for the U.S. and Canada (File E208033) All contact ratings & coil versions may not be UL Recognized
- RoHS versions available

Description

Lowest cost, 900 Vdc 100 amp, hermetically sealed DC contactor in the industry

Compact package available in side- or bottom-mount configurations, not position sensitive

Applications

Power/motor control circuit isolation, circuit protection and safety in industrial machinery

Automotive battery switching and backup

Mechanical

Compact epoxy-sealed resin enclosure occupies only about 4 in³ (65.5 cm³)

Robust integral mounting plate on either bottom or side of enclosure accepts two M4 screws

Inert gas filled contact chamber

Flying leads for coil connections

Load terminals threaded for M5 bolts (not included)

Performance Data

Physical Data

Contact Arrangement, Main Contacts — SPST-NO-DM (1 Form X) Dimensions — See drawings on next page

Weight — 6.7 oz (190g)

Contact Data

Contact Arrangement, Main Contacts — SPST-NO-DM (1 Form X) Voltage Rating, Main Contacts Switching (Max) - 900VDC

Current Rating, Main Contacts Switching Continuous¹ — 100A

Short Term, 3 Minutes 2 - 200A

Hot Switching Performance (Polarity Sensitive)

50A make/break @ +400Vdc — 50,000 cycles

100A make/break @ +400Vdc - 6,000 cycles

100A make/break @ -400Vdc - 1,000 cycles 200A make/break @ +400Vdc - 500

cycles

1,000A break only @ +400Vdc - 250 cycles

600A make only — 25 cycles Maximum Short Circuit Current

(1/2 cycle, 60 Hz) - 1,250A (through closed contacts) Dielectric Withstand Voltage 3 — Between Open Contacts -5,600Vrms/8,000Vdc Contacts to Coil -

2,000Vrms/4,000Vdc

Insulation Resistance, Terminal to Terminal / Terminals to Coil When New — 100 megohms, min. @

500Vdc At End of Life — 50 megohms, min. @ 500Vdc

Mechanical Life — 1 million cycles

Operate & Release Time Operate Time Max. — 25ms Operate Bounce Max. — 5ms

Release Time — 10ms

Environmental Data Shock, 11ms 1/2 sine

(operating) — 20G peak Sine Vibration, 20G peak -55-2,000 Hz.

Operating Temperature Range — -40°C to +85°C Noise Emission (at 100 mm distance) — 70dB(a)

Notes

- 1 8.4 mm² conductor. Current rating depends upon conductor size. Keep terminals below 175°C max continuous.
- ² 3 minutes at +40°C ambient with 8.4 mm² (#8 AWG) conductor.
- 3 2,000Vrms minimum under all conditions, until end of life.

KILOVAC High Voltage DC Contactors

For factory-direct application assistance. dial 800-253-4560, ext. 2055, or 805-220-2055.

Catalog 5-1773450-5 Revised 3-13

www.te.com

Dimensions are shown for reference purposes only. Specifications subject to change.

Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666

KILOVAC LEV100 Series 900 Vdc Contactor (Continued)

Coil Operating Voltage (Valid Over Temperature Range)					
Nominal Voltage	12Vdc	24Vdc	48Vdc		
Maximum Voltage	16Vdc	28Vdc	52Vdc		
Pick Up Voltage (20°C)	8Vdc	16Vdc	33Vdc		
Drop Out Voltage (20°C)	≤1.2Vdc	≤2.4Vdc	≤4.8Vdc		
Coil Current (Nominal at 20°C, 12vdc)	461mA	250mA	122mA		
Coil Power Nominal @ Vnom, +20°C	5.5W	6.0W	6.0W		
Pickup (Close) Voltage Max.@85°C	9.6Vdc	19.2Vdc	38.4Vdc		
Coil Resistance Nominal @ +20°C ± 5% (ohms)	26	96	392		

Ordering Information

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or 805-220-2055.

7–30

Catalog 5-1773450-5 Revised 3-13

www.te.com

3 reference purposes only. Specifications subject to change.

Dimensions are shown for

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666

KILOVAC LEV100 Series 900 Vdc Contactor (Continued)

Bottom Mount

Side Mount

Product Offering

Bottom Mount Models			
3-1618389-7	LEV100A4ANG	12Vdc coil	15" [.4m] leads
9-1618389-8	LEV100A5ANG	24Vdc coil	15" [.4m] leads
3-1618391-7	LEV100A6ANG	48Vdc coil	15" [.4m] leads
Side Mount Models			
4-1618391-0	LEV100A4ANH	12Vdc coil	15" [.4m] leads
4-1618391-1	LEV100A5ANH	24Vdc coil	15" [.4m] leads
4-1618391-2	LEV100A6ANH	48Vdc coil	15" [.4m] leads

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or 805-220-2055.

Catalog 5-1773450-5 Revised 3-13

www.te.com

Dimensions are shown for reference purposes only. Specifications subject to change. Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666 For additional support numbers please visit www.te.com

KILOVAC High Voltage DC Contactors

KILOVAC LEV200 Series Contactor With 1 Form X Contacts Rated 500+ Amps, 12-900Vdc

Product Facts

- Designed to be the lowest cost sealed contactor in the industry with its current rating (500+A carry, 2000A interrupt at 320Vdc)
- Available with bottom or side mounting — not position sensitive
- Optional auxiliary contact for easy monitoring of power contact position
- Hermetically sealed intrinsically safe, operates in explosive/harsh environments with no oxidation or contamination of coils or contacts, including long periods of non-operation
- Typical applications include battery switching and backup, DC voltage power control, circuit protection and safety
- Versatile coil/power connections
- Designed and built in accordance to AIAG OS9000
- RoHS compliant

Coil Data (Valid Over Temperature Range) 4						
Nominal Voltage	12Vdc	24Vdc	48Vdc	72Vdc		
Pickup Voltage (Will Operate)	9.0Vdc	19.0Vdc	38.0Vdc	57.0Vdc		
Voltage (Max.)	15Vdc	30Vdc	60Vdc	90Vdc		
Dropout Voltage	0.75 - 2.0Vdc	1.0 - 5.0Vdc	2.0 - 7.0Vdc	3.0 - 12.0Vdc		
Coil Resistance @ 25° (Typ.)	11 ohms	40 ohms	145 ohms	357 ohms		

Ordering Information

Typical Part Number LEV200 A 4 N A A Series: · LEV200 = 500+ Amp, 12-900Vdc Contactor Contact Form: A = Normally Open H = Normally Open with Aux. Contacts. (Option "H" requires option "A" in Coil Wire Length and option "N" in Coil Terminal Connector.) Note: Other auxiliary contact forms available. Consult factory. Coil Voltage: 4 = 12Vdc 5 = 24VdcB = 28Vdc6 = 48Vdc K = 72Vdc 8 = 96Vdc L = 110Vdc O = 115Vac 9 = 240Vac Notes: Consult factory for detailed specifications and availability of coils not listed in "Coil Data" table above. In coil voltage codes, 115Vac is designated by the letter "O" rather than the numeral "O." Coil Wire Length: A = 15.3 in (390 mm)N = None (Requires option "A" in next step.) **Coil Terminal Connector: -**N = None, stripped wires (Requires option "A" in previous step.) A = Studs, #10-32 Threaded (Electrical connection is made to the tab at the base of the stud.) Note: Specify option A, stripped wires, for coil voltages > 96Vdc Mounting & Power Terminals: A = Bottom Mount & Male 10mm x M8 Threaded Terminals F = Side Mount & Male 10mm x M8 Threaded Terminals

For factory-direct application assistance. dial 800-253-4560, ext. 2055, or 805-220-2055.

.150 ohms @ 125VAC Operate Time @ 25°C -

Close (includes bounce), Typ. — 25 ms Bounce (after close only), Max. — 7 ms Release (includes arcing), Max @ 2000A — 12 ms Dielectric Withstanding Voltage —

Aux. Contact Resistance, Max. —

Performance Data Contact Arrangement, Power

12 - 900 VDC

conductors

Contacts — 1 Form X (SPST-NO-DM)

Rated Operating Voltage —

Continuous (Carry) Current,

higher (500+ A) currents

2,000 A, 1 cycle 3

100mA @ 8V

Typical — 500 A @ 65°C, 400 mcm

Consult TE for required conductors for

Make/Break Current at Various

Voltages 1 — See graph next page

Break Current at 320VDC 1 ----

Load Life — See graph next page

Mechanical Life — 1 million cycles

Contact Arrangement, Auxiliary

Contacts — 1 Form A (SPST-NO)

Aux. Contact Current, Max. —

2A @ 30VDC / 3A @ 125VAC Aux. Contact Current, Min. —

0.417 ohms @ 30VDC /

Contact Resistance, Typ.

(@200A) - 0.2 mohms

2,200 Vrms @ sea level (leakage <1mA) Insulation Resistance @ 500VDC -100 megohms 2

Shock, 11ms 1/2 Sine, Peak, Operating — 20 G

Vibration, Sine, 80-2000Hz., Peak — 20 G

Operating Ambient Temperature — -40°C to +85°C

Weight, Typical — 1.3 lb. (.60 kg)

Notes:

- 1 Main power contacts
- ² 50 at end of life
- ³ Does not meet dielectric & IR after test, 1700 amp for unit with Aux. Contacts
- 4 Contacts will operate with 0.8Vnom $< V_{coil} < 1.1 V_{nom}$ over temperature range.

Invalid

Combinations/Reason LEV200H-NA No auxiliary function with coil studs

LEV200_ONA_

No coil studs with rectifier circuit LEV200 9NA No coil studs with rectifier circuit LEV200 O F No side mont with rectifier circuit LEV200_9_F No side mount with rectifier circuit

Catalog 5-1773450-5 Revised 3-13

7 - 32

Dimensions are shown for www.te.com

reference purposes only. Specifications subject to change.

Dimensions are in millimeters unless otherwise specified.

power terminals.

Consult factory regarding other available mountings and

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666

KILOVAC LEV200 Series (Continued)

Estimated Make & Break Power Switching Ratings

LEV200 Capacitive Make Test Curves for Pre-Charged Motor Controller

NOTES:

1) For resistive loads with 300µH maximum inductance. Consult factory for inductive loads 2) Estimates based on extrapolated data. User is encouraged to confirm performance in application. 3) End of life when dielectric strength between terminals falls below 50 megohms @ 500VDC.

4) The maximum make current is 650A to avoid contact welding.

KILOVAC High Voltage DC Contactors

dial 800-253-4560, ext. 2055, or 805-220-2055.

For factory-direct application assistance,

Catalog 5-1773450-5 Revised 3-13

www.te.com

Dimensions are shown for reference purposes only. Specifications subject to change.

Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666 For additional support numbers please visit www.te.com

7-33

FM200 ("Flatman III") Series Contactor 200 Amps, 480 VAC (50/60 Hz), or 48 Vdc, 1-, 2-, or 3-poles

Product Facts

- Multi-pole configurations
- Normally open, normally closed and mixed contact arrangements
- Optional quick connect tabs for sensing
- Small, lightweight & costeffective - designed to be the smallest, lowest cost contactor in the industry with its current rating
- Standard models available with 12VDC, 24VDC and 115 VAC coils. Consult factory for 240VAC coil models.
- 1 Form A auxiliary contacts

Product Specifications

c Sus File E208033

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or 805-220-2055.

Parameter	Units	Value for FM200 Series
Contact Arrangement		1, 2 or 3 poles
Contact Form (per pole)		Form X or Y (NO-DM or NC-DB)
Rated Operating Voltage	V	480Vrms (L-L) or 48VDC
Max. Contact Voltage (transient)	V	750Vrms or 60VDC
Continuous (Carry) Current	Arms or ADC	200/pole (Form X) 150/pole (Form Y)
Power Switching Form X (0.7-1.0 PF)	Cycles	2,000 @ 300Arms 10,000@ 200Arms 20,000 @ 100Arms 5,000 @ 200A/48VDC 2 million @ 50A/28VDC
Power Switching Form Y (0.7-1.0 PF)	Cycles	2,000 @ 225Arms 10,000@ 150Arms 20,000 @ 75Arms 5,000 @ 150A/48VDC 2 million @ 35A/28VDC
Mechanical Life	Cycles	>2 million
Contact Voltage Drop	mV	75 for Form X or Form Y
Auxiliary Contact Arrangement		1 Form A (SPST-NO)
Auxiliary Contact Rating	Arms or ADC	1 @ 30VDC, 3 @ 125VAC
Dielectric Withstanding Voltage	Vrms	2,200 @ sea level
Insulation Resistance @ 500VDC	Megohms	100
Shock, 11ms 1/2 sine, peak	G	10
Vibration, sine, 10-2000Hz.	G	5
Operating Temperature	°C	-20 to +60
Storage Temperature	°C	-40 to +85
Ambient Humidity	%RH	0 to 95
Weight See Outline Dimensions for model-spec	oz. / kg cific weight info	17.6 - 49.4 / 0.5 -1.4 rmation.

Available Pole Configurations and Applicable Coil Codes					
No. of NC Poles (across No. of NO Poles (down)		1	2	3	
0		Y Coil D	YY Coil D	YYY Coil D	
1	X Coil A/B/C/E	XY Coil A/B/C/E	YXY Coil D		
2	XX Coil A/B/C/E	XYX Coil A/B/C/E			
3	XXX Coil A/B/C/E				
X = Form X (NO-DM) Y	Y = Form Y (NC-DB)				

Coil Operating Voltage (valid over temperature range)					
Coil Designator	Units	А	В	С	D
Nominal Voltage	V	12 (DC)	24 (DC)	115 (AC)	24 (DC)
Voltage Range	V	9.6-13.2	19.2-26.4	92-126.5	19.2-26.4
Hold Voltage	V	$\geq 0.5 V_{\text{nom}}$	$\geq 0.5 V_{\text{nom}}$	$\geq 0.5 V_{\text{nom}}$	$\geq 0.5 V_{\text{nom}}$
Dropout Voltage	V	$\leq 0.1 V_{\text{nom}}$	$\leq 0.1 V_{\text{nom}}$	$\leq 0.1 V_{\text{nom}}$	$\leq 0.2 V_{\text{nom}}$

Coil Resistance Data for Pole Configurations (@25°C)						
Coil Designator	Units	А	В*	C*	D*	
Resistance ±10%	Ohms	X = 36 XX = 18 XXX = 12 XY = 13.2 XYX = 9.6	X = 36 XX = 18 XXX = 12 XY = 13.2 XYX = 9.6	X = 36 XX = 18 XXX = 12 XY = 13.2 XYX = 9.6	Y = 20.8 YY = 10.4 YYY = 6.9 YXY = 8.1	

*Coil resistance not measurable at terminals due to converter/economizer circuit.

Coil Current/Power Data for Pole Configurations (@25°C, V _{coil} =1.1V _{nom})						
Coil Designator	A		B**			
Current/Power	X = 0.37 ADC / 4.84W XX = 0.73ADC / 9.68W XXX = 1.1ADC / 14.5W XY = 1.0ADC / 13.2W XYX = 1.38ADC / 18.2W		X = 0.33ADC / 3.9W XX = 0.65ADC / 7.6W XXX = 0.97ADC / 11.3W XY = 0.98ADC / 12.7W XYX = 1.31ADC / 16.5W			
Coil Designator	С	D***		Pick-Up I / Duration		
Current/Power	X = 0.067 Arms / 6.8VA XX = 0.115Arms / 11.6VA XXX = 0.146Arms / 14.8VA XY = 0.074Arms / 7.5VA XYX = 0.161Arms / 16.3VA	YY = 0.1 YYY = 0	3ADC / 3.4W 23ADC / 6.1W .34ADC / 9.0W .28ADC / 7.4W			

Average coil current. *Economized.

Operate/Release	Time (25°C,	$0.8V_{nom} \le V$	/ < V _{nom}) Typ		
Coil Designator	Units	А	B****	C****	D****
Operate Time	ms	25-50	30-50	50-150	20-30
Release Time	ms	10-20	70-80	75-100	75-100
Bounce Time	ms	2-5	2-5	2-5	2-5

****Includes internal coil suppression.

7-34

Catalog 5-1773450-5 Revised 3-13

Dimensions are shown for reference purposes only. Specifications subject to change.

Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666

FM200 "Flatman III" Series Contactor (Continued)

Part Numbering System

Typical Part Number	FM200	A	в	хүх
Series: FM200 = Multipole, 200 Amp, 480VAC/48VDC Contactor				
Control Voltage: A = 12VDC Coil, No Suppression B = 24VDC Converter, with Suppression C = 115VAC Converter, with Suppression D = 24VDC Electronic Chopper, with Suppression E = 240VAC Converter, with Suppression - Consult Factory for Availability and Specifications		-		
Optional Termination: A = Optional Quick Connect Tabs B = No Optional Terminals			-	
Pole Configuration (All models have a 1 Form A (SPST-NO) auxiliary switch): X = 1 Form X (SPST-NO-DM), Available with control voltage codes A, B, C and E XX = 2 Form X (2PST-NO-DM), Available with control voltage codes A, B, C and E XX = 3 Form X (3PST-NO-DM), Available with control voltage codes A, B, C and E Y = 1 Form Y (SPST-NC-DB), Available only with control voltage code D YY = 2 Form Y (SPST-NC-DB), Available only with control voltage code D YY = 3 Form Y (3PST-NC-DB), Available only with control voltage code D YY = 3 Form Y (SPST-NC-DB), Available only with control voltage code D XY = 1 Form X (SPST-NC-DB), Available only with control voltage code D XY = 1 Form X (SPST-NO-DM) + 1 Form Y (SPST-NC-DB) + 1 Form X (SPST-NO-DM), Available with control voltage YY = 1 Form X (SPST-NO-DM) + 1 Form Y (SPST-NC-DB) + 1 Form X (SPST-NC-DB), Available only with control voltage code N YY = 1 Form Y (SPST-NC-DB) + 1 Form X (SPST-NO-DM) + 1 Form Y (SPST-NC-DB), Available only with control voltage code N YY = 1 Form Y (SPST-NC-DB) + 1 Form X (SPST-NO-DM) + 1 Form Y (SPST-NC-DB), Available only with control voltage code N YY = 1 Form Y (SPST-NC-DB) + 1 Form X (SPST-NO-DM) + 1 Form Y (SPST-NC-DB), Available only with control voltage code N YY = 1 Form Y (SPST-NC-DB) + 1 Form X (SPST-NO-DM) + 1 Form Y (SPST-NC-DB), Available only with control voltage code N YY = 1 Form Y (SPST-NC-DB) + 1 Form X (SPST-NO-DM) + 1 Form Y (SPST-NC-DB), Available only with control voltage code N YY = 1 Form Y (SPST-NC-DB) + 1 Form X (SPST-NO-DM) + 1 Form Y (SPST-NC-DB), Available only with control voltage code N YY = 1 Form Y (SPST-NC-DB) + 1 Form X (SPST-NO-DM) + 1 Form Y (SPST-NC-DB), Available only with control voltage code N YY = 1 Form Y (SPST-NC-DB) + 1 Form X (SPST-NO-DM) + 1 Form Y (SPST-NC-DB), Available only with control voltage code N YY = 1 Form Y (SPST-NC-DB) + 1 Form X (SPST-NO-DM) + 1 Form Y (SPST-NC-DB), Available only with control voltage code N YY = 1 Form Y (SPST-NC-DB) + 1 Form X (SPST-NO-DM) + 1 Form Y (and E		-

Outline Dimensions

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or 805-220-2055.

Catalog 5-1773450-5 Revised 3-13 Dimensions are shown for reference purposes only. Specifications subject to change. Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666 For additional support numbers please visit www.te.com

7-35

AC30 Series Contactor, 60 Amps, 600 VAC (50/60 Hz), 3 Form A (3PST-NO)

Product Facts

- Designed to be the smallest, lowest cost contactor in the industry with its current rating
- Built-in coil economizer only 1.7W hold power @ 12VDC and limits back EMF to zero volts
- Hermetically sealed intrinsically safe, operates in explosive & harsh environments with no oxidation or contamination of coils or contacts, including long periods of non-operation.

Performance Data

Submitted for UL and CE evaluation

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or 805-220-2055.

Parameter	Units	Value for AC30 Series
Contact Arrangement		3 poles
Contact Form (per pole)		Form A (NO)
Rated Operating Voltage	V	600Vrms (L-L)
Max. Contact Voltage (transient)	V	600Vrms (L-N)
Continuous (Carry) Current	Arms	60/pole
Power Switching (0.7-1.0 PF)	Cycles	50 @ 60Arms 500 @ 10Arms 500 @ 30Arms 10,000 @ 10Arms 50,000 @ 5Arms
Mechanical Life	Cycles	1 million
Contact Voltage Drop (Max., Per Pole)	mV	120 @ 60Arms
Dielectric Withstanding Voltage	Vrms	2,200 @ sea level
Insulation Resistance @ 500VDC	Megohms	100
Shock, 11ms 1/2 sine, peak, operating	G	20
Vibration, sine, 80-2000Hz.	G	20
Operating Temperature	°C	-40 to +85
Storage Temperature	°C	-55 to +125
Ambient Humidity	%RH	0 to 95
Weight	lb.(kg)	.83 (.38)

Operate/Release Time (25°C)

Operate Time (Includes bounce)	ms	16 nominal / 35 maximum	
Bounce Time (After Operate)	ms	4 nominal / 11 maximum	
Release Time (includes arcing)	ms	5 nominal / 8 maximum	

Coil Operating Voltage (valid over temperature range)						
Voltage (will operate)	9-36VDC	32-95VDC	48-95VDC			
Voltage (Max.)	36VDC	95VDC	95VDC			
Pickup (close) Voltage Max.	9VDC	32VDC	48VDC			
Hold Voltage (Min.)	7VDC	21VDC	33VDC			
Dropout (open) Voltage (Min.)	6VDC	18VDC	27VDC			
Inrush Current (Max.)	3.8A	1.3A	0.7A			
Holding Current (Avg.)	0.13A@12V, 0.07A@24V	0.03A@48V	0.02A@72V			
Inrush Time (Max.)	130ms	130ms	130ms			

Dimensions are shown for

Part Numbering System

Typical Part Number	AC30	A	A	A	N	A
Series: AC30 = Multipole, 60 Amp, 600VAC, 3-pole Contac	tor					
Contact Form: A = Normally Open		•				
Coil Voltage: A = 9-36VDC B = 32-95VDC J = 48-95VDC			•			
Coil Wire Length: A = 15.3 in (390 mm)						
Coil Terminal Connector: N = None						
Mounting & Power Terminals: A = Bottom Mount & #10-32 Pan Head Screws						•

Outline Dimensions

7–36

Catalog 5-1773450-5 Revised 3-13

13 reference purposes only. Specifications subject m to change. Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666 For additional support numbers please visit www.te.com

www.te.com

AP90X-05 - 90 Amps SPUD Contactor

Product Facts

- 90 A carry, 350 A overload
 @ 270 Vdc
- Same size and weight as AP50X
- Versatile power, voltage, and current operating range
- Ideal for circuit protection and control
- Bi-directional switching
- Fast operate and release time
- Low power consumption
- Vacuum-sealed contacts; can operate in harsh environments
- Space-rated version built in accordance with customers SCD
- Meets many requirements of MIL-PRF-32085

*Based on data extrapolated from qualification at 270 Vdc with resistive load. Since each application is unique, user is encouraged to verify rating in actual application.

Product Specifications Contact Arrangement — SPST-NO Contact Form — X Rated Resistive Load @ 270 Vdc — 90 A Continuous Current Carry, Max. — 65 A Overload @ 270 Vdc — 350 A Contact Resistance, Max. — 2 mohm **Dielectric at Sea Level** — Coil to Power Terminals — 1,800 Vrms All Other Points — 2,000 Vrms

Shock, 11ms, 1/2 Sine (Peak) — 30 g Vibration, Sinusoidal (55-2000 Hz, Peak) — 20 g Operating Ambient Temperature Range — -55°C to +90°C Load Life @ 270 Vdc, Min. — Operate Time, Excluding Bounce, Max. — 35 ms Release Time, Max. — 10 ms Bounce Time, Max. — 8 ms Insulation Resistance @ 500 Vdc, Min. — Initial — 100 mohm End of Life — 50 mohm

0

0

Weight, Nominal — 454 gram (16 oz.)

Coil Data

Volts, Nominal	12	28	120
Pickup, Max.	9.9 Vdc	23 Vdc	99 Vdc
Dropout, Min.	.4 Vdc	1.0 Vdc	4.0 Vdc
Coil Resistance (±10%)	19 Ω	103 Ω	1890 Ω
Energy, Magnetic, Max.	.05 J	.05 J	.05 J

25,000 cycles

Coil resistance rated at 25°C

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or 805-220-2055.

Catalog 5-1773450-5 Revised 3-13

www.te.com

Dimensions are shown for reference purposes only. Specifications subject to change. Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666 For additional support numbers please visit www.te.com

KILOVAC 270+ Vdc Traditiona Contactors

7-37

AP90X - 90 Amps SPUD Contactor

Product Facts

- 90 A carry, 350 A overload @ 270 Vdc
- Same size and weight as AP50X
- Versatile power, voltage, and current operating range
- Ideal for circuit protection and control
- Bi-directional switching
- Fast operate and release time
- Low power consumption
- Vacuum-sealed contacts; can operate in harsh environments
- Space-rated version built in accordance with customers SCD
- Meets many requirements of MIL-PRF-32085

Maximum continuous current carry = 90 Amps

*Based on data extrapolated from qualification at 270 Vdc with resistive load. Since each application is unique, user is encouraged to verify rating in actual application.

Product Specifications

Life Cycle

Contact Arrangement -SPST-NO Contact Form - X 90 A Continuous Current Carry, Max. — 90 A Overload @ 270 Vdc - 350 A

Contact Resistance, Max. -2 mohm

28

23 Vdc

1.0 Vdc

103 Ω

.05 J

120

99 Vdc 4.0 Vdc

1890 Ω

.05 J

12

9.9 Vdc

.4 Vdc

19 Ω

.05 J

Dielectric at Sea Level — Coil to Power Terminals - 1,800 Vrms All Other Points - 2.000 Vrms Shock, 11ms, 1/2 Sine (Peak) -30 g Vibration, Sinusoidal (55-2000 Hz, Peak) - 20 g **Operating Ambient Temperature Range** — -55°C to +85°C Load Life @ 270 Vdc, Min. — 25,000 cycles

Operate Time, Excluding Bounce, Max. — 27 ms Release Time, Max. — 10 ms Bounce Time, Max. - 8 ms Insulation Resistance @ 500 Vdc, Min. Initial — 100 mohm End of Life — 50 mohm Weight, Nominal -454 gram (16 oz.)

Ordering Information

Mounting:

7 = Panel Mount

7-38 Catalog 5-1773450-5

805-220-2055.

Coil Data

Volts, Nominal

Coil Resistance (±10%)

Energy, Magnetic, Max

Coil resistance rated at 25°C

For factory-direct application assistance,

to change.

dial 800-253-4560, ext. 2055, or

Pickup, Max.

Dropout, Min.

Revised 3-13

www.te.com

Dimensions are shown for Dimensions are in millimeters reference purposes only. unless otherwise specified. Specifications subject

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666 For additional support numbers please visit www.te.com

AP150X (Form X, Electrically Held)

CZONKA Contactor

Product Facts

- 150 A carry, 500 A overload
 @ 270 Vdc
- Suitable for circuit protection, control, and battery switching
- Versatile power, voltage, and current operating range
- Bi-directional switching
- Electrically held and latching coil versions
- Fast operate and release time
- Low power consumption
- Vacuum-sealed contacts; can operate in harsh environments
- Space-rated version built in accordance with customers SCD
- Meets many requirements of MIL-PRF-32085

Product Specifications

Rated Resistive Load @ 270 Vdc

Continuous Current Carry, Max. —

Overload Make & Break @

Contact Resistance, Max. -

Dielectric at Sea Level —

Power Terminals to Terminal -

Power Terminals to All Other Points -

Shock, 11ms, 1/2 Sine (Peak) -

Operate Time (28 Vdc, 25°C) — Close (Includes Bounce), Typ. –

Bounce (After Close Only), Max. —

Open (Includes Arcing), Max. -

Insulation Resistance @ 500 Vdc,

*500 = at beginning of life which is 0

to 5,000 cycles, 400 =at end of life which is 5,000 to 10,000 cycles.

Min. — Initial/End of Life — 100

270 Vdc - 400/500 A*

Vibration, Sinusoidal (55-2000 Hz, Peak) — 20 g Operating Ambient Temperature Range — -55°C to +85°C Load Life @ 270 Vdc, Min. —

Contact Arrangement -

AP150X — SPST-NO

Contact Form

AP150X — X

150 A

150 A

1 mohm

2,000 Vrms

1,800 Vrms

10,000 cycles

AP150X — 35 ms

AP150X - 8 ms

AP150X — 10 ms

mohm/50 mohm

Note:

Weight, Nominal — 1.66 lb (0.753 kg)

35 a

Contact Ratings*

Maximum continuous current carry = 150 Amps

*Based on data extrapolated from qualification at 270 Vdc with resistive load. Since each application is unique, user is encouraged to verify rating in actual application.

Coil Data

	AP150X	AP150P
Voltage, Nominal*	28 Vdc	28 Vdc
Pickup (Close), Max.	23 Vdc	20 Vdc
Dropout (Open), Max.	1.0 Vdc	20 Vdc
Coil Resistance @ 25°C (10%)	52 Ω	13 Ω**
Coil Duty, Recommended	Continuous	100 ms to Toggle
Coil Energy, Max.	0.10 J	0.10 J
Coil Clamping	2.5 x nom.	500W/ms TVS

*12, 120 Vdc, or other special coil voltages available upon request.
**2 coils are used, both are high common. Switch coil power from low side. High side coil power switch is a special order.

Ordering Information

Sample Part Number

Series: -

Contact Form:

X = SPST-NO Electrically Held

Coil Voltage:

A = 12 Vdc, Stud Terminals, .138-32 B = 28 Vdc, Stud Terminals, .138-32 C = 120 Vdc, Stud Terminals, .138-32

Power Terminals: -

5 = Stud Terminals, .375-24

Mounting: 7 = Panel Mount

KILOVAC 270+ Vdc Traditional Contactors

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or 805-220-2055.

Catalog 5-1773450-5 Revised 3-13

Dimensions are shown for reference purposes only. Specifications subject to change. Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666 7-39

AP150 X B 5

7

www.te.com

DIMENSIONS IN INCH (mm)

3.88 (99)

Product Specifications

AP265P

265 A

265 A

Max.

0.3 mohm

1,000 Vrms

1,000 Vrms

25 g

Bi-directional

Contact Arrangement Mains -

AP265X — Form X — SPST-NO Form A — 2 x SPST-NO

Polarity (Carry and Switching)

Rated Resistive Load @ 270 Vdc

Continuous Current Carry, Max. -

Overload Current @ 270 Vdc,

Contact Resistance, Max. —

Power Terminals to All Other Points -

Shock, 11ms, 1/2 Sine (Peak) -

Load Life @ 270 Vdc, Min. -

Operate Time (28 Vdc, 25°C) -Close (Includes Bounce), Typ. —

Bounce (After Close Only), Max. -

Open (Includes Arcing), Max. —

Insulation Resistance @ 500 Vdc,

Make and Break — 600 A

Dielectric at Sea Level

Vibration, Sinusoidal (55-2000 Hz. Peak) - 10 a **Operating Ambient Temperature** Range — -55°C to +85°C

See graph above

AP265X - 20 ms

AP265P — 10 ms

Weight, Nominal -

1.7 lb (0.77 kg)

5 ms

15 ms

Min. -

(< 1 mA leakage) -Power Terminals to Terminal —

Break Only - 1000 A

Form X — SPST

Form A — 2 x SPST

Kilovac

3.48 (88)

AP265 (Form X, Electrically Held) & AP265P (Form P, Latching) 265 Amps

CZONKA II Contactor

Product Facts

- 265 A carry, 1000 A overload @ 270 Vdc
- Bi-directional power switching
- Auxiliary Contacts
- Electrically held and latching coil versions
- Built-in coil drivers for electrically held (5W hold) and latching (coil pulser)
- Coil divers EMC qualified to most of the requirements of MIL-STD-461D
- Versatile power, voltage, and current operating range
- Excellent for safety disconnect and transfer switch applications
- Designed for main generator loads
- Suitable for circuit protection and control
- Remote Power Controller version with overload protection available contact factory for more information
- Hermetically-sealed contacts: can operate in harsh environments
- Space-rated version built in accordance with customers SCD
- Meets many requirements of MIL-PRF-32085

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or 805-220-2055.

7 - 40

Catalog 5-1773450-5 Revised 3-13

www.te.com

reference purposes only. Specifications subject to change.

Dimensions are shown for

Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666 For additional support numbers please visit www.te.com

.40 (10.2)

Electrical Life Cycles vs Power Switching

(Data from 270 Vdc testing @ 265A, 95% Weibull Reliability)

2.25 (57.2) MAX

1.125 800

(28.6 (20.3)

.502 (12.8)

1.380 (35.0)

.810 (46.0)

2.36 MAX (60.0)

2X .215 (5.46)

4X 8-32 SELF LOCKING HELICOIL INSERT

Power Switching (kW) Make and Break Resistive Load

Coil Data

	AP265X	AP265P
Type Driver	"PWM" Econ.	Pulser
Voltage, Nominal	28 Vdc	28 Vdc
Pickup (Close), Max.	20 Vdc	12 Vdc
Dropout (Open), Max.	11 Vdc	12 Vdc
Current @ 28 V, 25°C		
Inrush	1.8 A	2.6 A
Holding (Standby)	0.20 A	<0.05 A
Inrush Time, Max.	100 ms	100 ms

Ordering Information

Mounting:

7 = Panel Mount, Helcoil Locking

AP350X "BUBBA" Contactor 500 Amps

Product Specifications Contact Arrangement with

Rated Resistive Load @ 270 Vdc.

Continuous Current Carry, Max.,

Overload Current @ 270 Vdc,

Make (Closed Into) - 1200 A

Break (Open) - 3000 A Contact Resistance, Max. —

Dielectric at Sea Level (< 1mA leakage)

Points - 2,000 Vrms

Vibration, Sinusoidal (55-2000 Hz, Peak) - 10 g

See graph above

Max. — 5 ms

Weight, Nominal -3.35 lb (1.52 kg)

35 ms

20 ms

Min. -

Open Power Terminal to Terminal -

Closed Power Terminals to All Other

Shock, 11ms, 1/2 Sine (Peak) -

Operating Ambient Temperature Range — -55°C to +85°C

Close (Includes Bounce), Typ. —

Bounce (Occurs When Closing),

Open (Includes Arcing), Max. —

Insulation Resistance @ 500 Vdc,

Load Life @ 270 Vdc, Min. -

Operate Time @ 25°C -

Form X — SPST-NO Form A — SPST-NO

85°C — 350 A

25°C — 500 A

Max.

0.2 mohm

2,000 Vrms

25 g

Product Facts

- **500** A carry, 1200 A make, 3000 A break @ 270 Vdc
- Bi-directional power switching
- Auxiliary Contacts
- Built-in coil power economizing — 6 W holding
- Versatile power, voltage, and current operating range
- Excellent for safety disconnect and transfer switch applications
- Suited for circuit protection control
- Hermetically-sealed contacts; can operate in harsh environments
- Designed for main generator loads
- Space-rated version built in accordance with customers SCD
- Meets many requirements of MIL-PRF-32085

Coil Data

	AP350X
Type Driver	"PWM" Econ.
Voltage, Nominal	28 Vdc
Pickup (Close), Max.	20 Vdc
Dropout (Open), Max	. 11 Vdc
Current @ 28 V, 25°C	
Inrush	2.1 A
Holding (Standby)	0.21 A
Inrush Time, Max.	200 ms

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or 805-220-2055.

Electrical Life Cycles vs Power Switching

*Failure mode: Dielectric withstand voltage test @ 2000 Vdc, power terminal to terminal, leakage exceeds 1.0 A. Current Carry: 500 A @ 25°C. Derate 2.5 A/°C to 350 A @ 85°C for still air, no heat sink, AWG# 00 conductor.

Refer to EV500 Sales Drawing for complete specifications.

www.te.com

Dimensions are shown for reference purposes only. Specifications subject to change.

Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 For additional support numbers Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666 please visit www.te.com

7-41

KILOVAC 270+ Vdc Traditiona Contactors

Product Facts

- Hydrogen dielectric for power switching high current loads
- 400 A carry, 2,500 A interrupt @ 320 Vdc
- Suited for circuit protection. control, battery switching, and main power safety disconnect
- Versatile power, voltage, and current operating range: 28-1800 Vdc tested
- Low-cost compact version for volume production applications. Requires external coil economizer (PWM or lower hold voltage)
- "Hammer effect" mechanism breaks light contact welds
- "Super-sealed" environment chamber uniquely protects ALL moving parts
- Can operate in harsh environments
- Moving contact rotates to provide fresh contact surface for low contact resistance and low power consumption
- Sealed control connector. Mating connector with flying leads Part Number 2005 available, see page 7-95
- Logic control enabled by external economizer Part Number 9913
- High temperature (135°C) model with 10 inch flying leads available (-4A — Call TE for sales drawing)
- Bi-directional power switching
- Fast operate and release time

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or 805-220-2055.

7-42

Catalog 5-1773450-5 Revised 3-13

Product Specifications

400 A; 6.5 Minutes - 500 Å

Break Current @ 320 Vdc -

Contact Resistance, Max. -

Contact Resistance, Typ. —

(Leakage < 1mA) — 2,200 Vrms

Shock, 11ms, 1/2 Sine (Peak),

Operating Ambient Temperature

Load Life — See chart on next page

Close (Includes Bounce), Typ. —

Bounce (After Close Only), Max. ----

Open (Includes Arcing), Max. —

Insulation Resistance @ 500 Vdc,

(80-2000 Hz, Peak) - 20 g

Range — -40°C to +85°C

Operate Time, @ 25°C ----

0.0001 - 0.0002 ohm

Operating — 30 g Vibration, Sinusoidal

Dielectric at Sea Level

Contact Form — X

2 500 A

30 ms

15 ms

Min. — 100 mohm

1.54 lb (0.7 kg)

Weight, Nominal -

0.0003 ohm

Contact Arrangement — SPST-NO

Continuous Current Carry, Max. —

Note: Dimensions in inches. Multiply values by 25.4 for dimensions in mm.

Contact Ratings*

*For circuit conditions and actual data refer to the EV250 hot switch study. Since each application is unique, user is encouraged to verify rating in actual application.

Coil Data***

4 Vdc
6.6 Vdc
2/7.6 Vdc
- 6.6 Vdc
12 Ω
0.2 J
_

*Do not apply continuously. Requires external coil economizer. Other special coil voltages available upon request.

*At maximum continuous current and maximum ambient temperature. Hold voltage must be maintained within the limits specified to keep contacts closed and to prevent coil overheating.

***Do not use a free wheeling diode or capacitor across the coil.

Ordering Information

Sample Part Number

EV250-1 A

Coil Voltage:

Series:

A = 12 Vdc, Nominal

B = 24 Vdc. Nominal

For detailed specifications and recommendations, refer to the EV250-1A & B sales drawings.

reference purposes only. Specifications subject

Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666 For additional support numbers please visit www.te.com

www.te.com

Dimensions are shown for

to change.

EV250-1A & 1B 400 Amps CZONKA-II EVX Make & Break Load Switching (Continued)

Current vs Time

CONTACTS CLOSED INTO 70% AND 90% CAPACITOR PRE CHARGE

Life Ratings and Qualification Test Plan

	Normal Operations		Abnormal Operations	
Test #	1	2	3	4
Current	Reference G	raph and	-250 A	2500 A
Voltage	Test Circuit Diag	Test Circuit Diagram (Sht. 8)		320 V
Load Type	Capacitive	Capacitive	Resistive	Resistive
% Pre Charge	90%	70%	NA	N/A
Switch Mode	Make Only	Make Only	Make/Break	Break Only
Sequence				
1	10K cycles	10 cycles	2	2
2	10K	10	2	_
3	10K	10	2	_
4	10K	10	2	2
5	10K	10	2	_
Etc.		Continue Cyc	ling to Relay Failure	

The testing objective is to verify proper relay function for a given number of consecutive and cumulative cycles under both normal and abnormal conditions in a variety of load switching applications. The life rating of 40K cycles minimum was calculated with 95% Weibull reliability.

Electrical Data (Over Temperature Range — Max. Terminal Temp. = 200°C) Make/Break Life for Capacitive & Resistive Loads at 320 Vdc ^{1,2} — @ 90% Capacitive Pre-Charge —

50,000 cycles @ 70% Capacitive Pre-Charge — 50 cycles @ -250 A (2 Consecutive, Reverse Polarity) 1 — 10 cycles @ 3300 A (Break only, 2 Consecutive) 1 — 4 cycles Mechanical Life — 100,000 cycles

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or 805-220-2055.

Notes:

1 Resistive load includes inductance L = 25 µH. Load @ 2500 A tested @ 200 µH.
2 Conductor: 2 each of copper 54 mm² (AWG 0) required for > 250 A carry. 1 Copper (AWG 0)

conductor recommended for \leq 250 A

Catalog 5-1773450-5 Revised 3-13

www.te.com

Dimensions are shown for reference purposes only. Specifications subject to change. Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666 For additional support numbers please visit www.te.com 7-43

Product Facts

- Hydrogen dielectric for power switching high current loads
- 400 A carry, 2,500 A interrupt @ 320 Vdc
- Suited for circuit protection. control, battery switching, and main power safety disconnect
- Versatile power, voltage, and current operating range: 28-1800 Vdc tested
- Internal coil economizer provides:
 - 4W typical hold power independent of temperature & voltage range
 - EMI spectrum tested and approved
 - Built-in coil suppression
- "Hammer effect" mechanism breaks light contact welds
- Hermetically "Supersealed" environment chamber uniquely protects ALL moving parts
- Can operate in harsh environments
- Moving contact rotates to provide fresh contact surface for low contact resistance and low power consumption
- Sealed control connector. Mating connector with flying leads Part Number 2005 available
- Special versions available:
 - Economical (-8A/B) for light duty power switching (without arc blowout magnets)
 - 10 inch flying leads model (-7A)

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or 805-220-2055.

7-44

Catalog 5-1773450-5 Revised 3-13

Product Specifications Contact Arrangement — SPST-NO Contact Form — X Continuous Current Carry, Max. — 400 A; 6.5 Minutes - 500 Å Break Current @ 320 Vdc -2,500 A Contact Resistance, Max. ---0.0003 ohm Contact Resistance, Typ. — 0.0001 - 0.0002 ohm **Dielectric at Sea Level** (Leakage < 1mA) - 2,200 Vrms Shock, 11ms, 1/2 Sine (Peak), **Operating** — 30 g Vibration, Sinusoidal (80-2000 Hz, Peak) - 20 g **Operating Ambient Temperature** Range — -40°C to +85°C Load Life — See chart on next page Operate Time, @ 25°C -Close (Includes Bounce), Typ. — 18 ms Bounce (After Close Only), Max. — 5 ms Release Time (Includes Arcing), Max. — 15 ms Insulation Resistance @ 500 Vdc, **Min**. — 100 mohm Weight, Nominal — 1.76 lb (0.8 kg)

Note: Dimensions in inches. Multiply values by 25.4 for dimensions in mm.

Contact Ratings*

*For circuit conditions and actual data refer to the EV250 hot switch study. Since each application is unique, user is encouraged to verify rating in actual application.

Coil Data**

	EV250-2A	EV250-2B
Voltage, Nominal*	12 Vdc	24 Vdc
Pickup (Close), Max.	9 Vdc	18 Vdc
Hold, Min.	7 Vdc	14 Vdc
Dropout (Open), Min.	5 Vdc	10 Vdc
Current (@ VsNom / 25°C)		
Inrush	2.8 A	1.8 A
Holding, Standby	0.34 A	0.11 A
Inrush Time, Max.	200 ms	200 ms

*Other special coil voltages available upon request.

**Do not use a free wheeling diode or capacitor across the coil. Built in suppression limits back EMF to zero volts.

Ordering Information

Sample Part Number

EV250 -2

Series: Model:

- 2 = With Blowout Magnets
- 8 = Without Blowout Magnets
- $7 = 10^{\circ}$ Flying Leads (12 V, with Magnets Only)

Coil Voltage:

- A = 12 Vdc, Nominal
- B = 24 Vdc, Nominal

For detailed specifications and recommendations, refer to the EV250-2A & B or 7A sales drawings.

Specifications subject

Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666 For additional support numbers please visit www.te.com

www.te.com

to change.

Dimensions are shown for reference purposes only.

EV250-2A & 2B 400 Amps CZONKA II EVX Make & Break Load Switching (Continued)

CONTACTS CLOSED INTO 70% AND 90% CAPACITOR PRE CHARGE

Life Ratings and Qualification Test Plan

	Normal Operations		Abnormal Operations	
Test #	1	2	3	4
Current	Reference G	raph and	-250 A	2500 A
Voltage	Test Circuit Diag	ram (Sht. 8)	320 V	320 V
Load Type	Capacitive	Capacitive	Resistive	Resistive
% Pre Charge	90%	70%	NA	N/A
Switch Mode	Make Only	Make Only	Make/Break	Break Only
Sequence				
1	10K cycles	10 cycles	2	2
2	10K	10	2	
3	10K	10	2	
4	10K	10	2	2
5	10K	10	2	
Etc.		Continue Cyc	ling to Relay Failure	

The testing objective is to verify proper relay function for a given number of consecutive and cumulative cycles under both normal and abnormal conditions in a variety of load switching applications. The life rating of 40K cycles minimum was calculated with 95% Weibull reliability.

Electrical Data (Over Temperature Range — Max. Terminal Temp. = 200°C) Make/Break Life for Capacitive & Resistive Loads at 320 Vdc ^{1,2} — @ 90% Capacitive Pre-Charge —

50,000 cycles @ 70% Capacitive Pre-Charge — 50 cycles @ -250 A (2 Consecutive, Reverse Polarity) 1 — 10 cycles @ 3300 A (Break only, 2 Consecutive) 1 — 4 cycles Mechanical Life — 100,000 cycles

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or 805-220-2055.

Notes:

1 Resistive load includes inductance L = 25 µH. Load @ 2500 A tested @ 200 µH.
2 Conductor: 2 each of copper 54 mm² (AWG 0) required for > 250 A carry. 1 Copper (AWG 0)

conductor recommended for \leq 250 A

Catalog 5-1773450-5 Revised 3-13

www.te.com

Dimensions are shown for reference purposes only. Specifications subject to change. Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666 For additional support numbers please visit www.te.com

7–45

Product Specifications Contact Arrangement with

Rated Resistive Load @ 270 Vdc, 85°C (Continuous/10 sec) -

Continuous Current Carry, Max.,

Make (Closed Into) — 1,000 A Break (Open) - 3,300 A

Contact Resistance, Max. ---

Open Power Terminal to Terminal -

Closed Power Terminals to All Other

Shock, 11ms, 1/2 Sine (Peak),

Vibration, Sinusoidal (80-2000 Hz,

Operating Ambient Temperature

Bounce (After Close Only), Max. -

Release Time (Includes Arcing), Max. at 2500 A - 20 ms

Insulation Resistance @ 500 Vdc,

1. Current Carry: 750 A @ 25°C.

Derate 2.5 A/°C to 600 A @ 85°C

for still air, no heat sink. Reference

National Electric Code for specific

conductor size recommendation versus current. For > 600 A carry,

call TE and request the "EV500

2. See EV500 sales drawing for

Current Carry study" for additional

complete specifications, including normal capacitive pre-charge make, plus abnormal make and

Dielectric at Sea Level

(Leakage < 1mA)

Points - 2.000 Vrms

Operating — 30 g

Peak) — EV500-5 — 5 g EV500-4 — 10 g

Range — -40°C to +85°C

Load Life (Mechanical/

Operate Time @ 25°C -Close (Includes Bounce), Typ. —

Min. — 100 mohm

3.38 lb (1.53 kg)

Notes:

data.

Weight, Nominal -

40 ms

5 ms

Electrical)² — See next page

Overload Current @ 320 Vdc, Max. —

Auxiliary Contacts

Form X — SPST-NO Form A - SPST-NO

600 A/1,600 A

0.0002 ohm

2,000 Vrms

25°C 1 - 750 A

EV500 "BUBBA" Contactor 600 Amps, Make & Break Load Switching

Product Facts

- Very high power sealed contactor
- Hydrogen dielectric for power switching high current loads
- Excellent for safety disconnect and transfer switch applications
- Suited for circuit protection control
- Hermetically "Super-sealed" environment uniquely protects contacts and all moving parts; can operate in harsh environments
- 600-1000 A continuous carry, dependent on temperature and conductors used
- 3,300 A interrupt, 1,000 A make. @ 320 Vdc
- 12 and 24 volt coil control options. Call TE for custom options
- 360 kW power switch capable
- 200°C hot power terminals capable
- Bi-directional power switching
- Auxiliary contacts optional
- Built-in dual power coil economizer, 8W holding typical
- Versatile power, voltage, and current operating range: 28-1800 Vdc*

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or 805-220-2055.

Coil Data

Ty Vo Pic Но Dr Сι Inr

Electrical Life Cycles vs Power Switching

*Failure mode: Dielectric withstand voltage test @ 2000 Vdc, power terminal to terminal, leakage exceeds 1.0 A.

Ordering Information

Sample Part Number

EV500 4

Bata		
	12 V	24 V
/pe Driver	2 Coil E	lectronic
olts, Nominal*	12 Vdc	24 Vdc
ickup (Close), Max.	9.9 Vdc	19.7 Vdc
old, Min.	9 Vdc	18 Vdc
ropout (Open), Min.	2 Vdc	4 Vdc
urrent (@ VsNom / 25°C)		
Inrush	3.3 A	1.7 A
Holding, Standby	0.74 A	0.37 A
rush Time, Max.	300 ms	300 ms

break ratings.

s: iary Contacts: /ithout /ith

/oltage: 2 Vdc

4 Vdc

Refer to EV500 Sales Drawing for complete specifications.

7-46

Catalog 5-1773450-5 Revised 3-13

www.te.com

reference purposes only. Specifications subject to change.

Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666 For additional support numbers please visit www.te.com

Dimensions are shown for

EV500 "BUBBA" Contactor 600 Amps, Make & Break Load Switching (Continued)

Life Ratings and Qualification Test Plan

	Normal Operations		Abnormal Operations	
Test #	1	2	3	4
Current	Reference G	raph and	-250 A	3300 A
Voltage	Test Circuit Diagram (Sht. 8)		320 V	320 V
Load Type	Capacitive	Capacitive	Resistive	Resistive
% Pre Charge	90%	70%	NA	N/A
Switch Mode	Make Only	Make Only	Make/Break	Break Only
Sequence				
1	10K cycles	10 cycles	2	2
2	10K	10	2	—
3	10K	10	2	_
4	10K	10	2	2
5	10K	10	2	—
Etc.		Continue Cycl	ing to Relay Failure	

The testing objective is to verify proper relay function for a given number of consecutive and cumulative cycles under both normal and abnormal conditions in a variety of load switching applications. The life rating of 40K cycles minimum was calculated with 95% Weibull reliability.

Electrical Data (Over Temperature Range — Max. Terminal Temp. = 200°C) Make/Break Life for Capacitive & Resistive Loads at 320 Vdc 1,2 ----@ 90% Capacitive Pre-Charge ----50,000 cycles @ 70% Capacitive Pre-Charge — 50 cycles @ -250 A (2 Consecutive, Reverse Polarity) 1 — 10 cycles @ 3300 A (Break only, 2 Consecutive) 1 — 4 cycles Mechanical Life — 100,000 cycles

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or 805-220-2055.

Notes:

1 Resistive load includes inductance L = 25 µH.

2 Testing is limited at this time. Consult TE for official ratings.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666

Catalog 5-1773450-5 Revised 3-13

www.te.com

Dimensions are shown for reference purposes only. Specifications subject to change.

Dimensions are in millimeters unless otherwise specified.

For additional support numbers please visit www.te.com

PD350X - 500 Amps "BUBBA" Contactor, Make & Break Load Switching

Product Facts

- 500 A carry, 1300 A make overload, 3000 A break overload, @ 320 Vdc
- Hydrogen dielectric for power switching high current loads
- Auxiliary contacts
- Coil power economizing 8 W holding
- Versatile power, voltage, and current operating range
- Excellent for safety disconnect and transfer switch applications
- Suited for circuit protection and control
- Bi-directional power switching
- Hermetically-sealed contacts; can operate in harsh environments
- Fast operate and release time
- Low power consumption

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or 805-220-2055.

Contact Rating Notes:

- Maximum continuous current carry = 500A @ 25°C = T_A, derate 5A/°C for higher temp.
 Maximum interrupt power
- Maximum interrupt power (break only) = 1 MW @ 200mH inductance.

Coil Data

Volts, Nominal	12 V	24 V
Pickup, Max. @ 65°C	9.9 Vdc	19.7 Vdc
Hold, Max. @ 65°C	8.5 Vdc	17 Vdc
Dropout, Min. @ -35°C	1.2 Vdc	2.4 Vdc
Coil Power** 25°C		
During Pickup (300 ms)	43 W	43 W
While Holding	8 W	8 W
Energy, Magnetic, Max.***	.26 J	.26 J

**Two coils are employed for power economizing subsequent to pickup. During pickup both coils operate in parallel drawing 43 Watts momentarily. After pickup, the electronic economizing system leaves only the holding coil on, drawing 8 Watts @ 25°C. Economizing system includes transient voltage suppression.

***Coil energy absorbed internally -4x nominal voltage.

7–48

Catalog 5-1773450-5 Revised 3-13

www.te.com

Dimensions are shown for reference purposes only. Specifications subject to change. Dimensions are in millimeters unless otherwise specified.

meters USA: +1 800 522 6752 fied. Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666 For additional support numbers please visit www.te.com

Rated Resistive Load @ 320 Vdc — 300 Amps @85°C

Continuous Current Carry, Max. @ 50°C — 500 A Overload Current @ 320 Vdc —

Make — 1,300 A Break — 3,300 A

Load Life, @ 320 Vdc, Min. — See chart at right

Contact Resistance, Max. — End of Life — 0.0002 ohm Dielectric at Sea Level — Power Terminals to Coil and All Other Points — 1,800 Vrms Shock, 11ms, 1/2 Sine (Peak) — 30 g

Vibration, Sinusoidal (55-2000 Hz, Peak) — 5 g Operating Ambient Temperature Range — -40°C to +85°C Operate Time, Including Bounce, Max., 25°C — 40 ms Release Time, Max. — 20 ms Bounce Time, Max. — 5 ms Insulation Resistance @ 500 Vdc, Min. — Initial — 100 mohm End of Life — 50 mohm Weight, Nominal — 3.4 lb (1.52 kg)

Electrical Life Cycles vs Power Switching

*Failure Mode: Dielectric withstand voltage test @ 2000 Vdc, power terminal to terminal, leakage exceeds 1.0 mA. Current carry: 500 A @ 25°C. Derate 2.5 A/°C to 350 A @ 85°C for still air, no heat sink, AWG# 00 conductor.

Ordering Information

Sample Part Number 🕨	PD350 X B 5
Series:	
Contact Form: X = SPST-NO, Double Make	
Coil Voltage: A = 12 Vdc, Stud Terminals B = 24 Vdc, Stud Terminals	
Power Terminals: 5 = Stud Terminals	
Mounting: 7 = Panel Mount, Captive Bolts	

High Voltage Relays Quick Reference Guide

Contact Voltage Vdc	Isolation Voltage Vdc	Carry Current (Amps DC)	Power Switching	RF Ratings	Contact Form	Part Number Series
	2000	5	Yes	No	SPST-NO	AP5A
	2000	5	Yes	No	SPST-NC	AP5B
	2000	5	Yes	No	SPDT	AP5C
	2000	10	Yes	No	SPST-NO	AP10A
	2000	10	Yes	No	SPST-NC	AP10B
270 Vdc	2000	10	Yes	No	SPDT	AP10P
Aerospace	2000	15	Yes	No	SPST-Latch	AP44P
	1800	5	Yes	No	SPST-NO	PD5A
001/1 1 10001/1	1800	5	Yes	No	SPST-NC	PD5B
28 Vdc to 1800 Vdc	1800	10	Yes	No	SPST-NO	PD10A
	1800	10	Yes	No	SPST-NC	PD10B
	1800	10	Yes	No	SPST-Latch	PD10P
0.011/	2000	6	Carry Only	Yes	SPST-NO	S06CBA
2.0 kV	2000	15	Yes	Yes	SPDT	K45C
3.0 kV	3000	2	Carry Only	No	SPST-NO	S02DNA
	3500	8	Make Only	No	SPDT	HC-5
3.5 kV	3500	15	Yes	Yes	SPDT	HC-3*
	3500	25	Carry Only	Yes	SPDT	HC-1
	5000	8	Carry Only	No	SPST-NO	S06FNA218
	5000	30	Yes	Yes	SPST-NO	K41A
	5000	30	Yes	Yes	SPST-NC	K41B
	5000	30	Yes	Yes	SPDT	K41C
5.0 kV	5000	25	Yes	Yes	SPST-Latch	K41P
	5000	25	Yes	Yes	SPDT-Latch	K41R
	5000	35	Yes	Yes	SPST-Latch	K40P
7.0 kV	7000	6	Carry Only	Yes	SPST-NO	S06HBA
-	7500	10	Make Only	No	DPDT	KM-13
7.5 kV	7500	10	Make Only	No	DPDT	KM-17
	8000	6	Carry Only	No	SPST-NC	S06JNB
	8000	8	Make Only	No	SPDT	HC-6
	8000	10	Yes	Yes	DPDT	H-18
	8000	12	Yes	Yes	SPST-NO	K47A
8.0 kV	8000	12	Yes	Yes	SPST-NC	K47B
	8000	15	Yes	No	SPDT	HC-4
	8000	25	No	No	SPDT	HC-2
	8000	50	Yes	Yes	SPST-Latch	K44P

*Consult factory for load switching level.

KILOVAC High Voltage Relays

7–49

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or 805-220-2055.

Catalog 5-1773450-5 Revised 3-13

www.te.com

Dimensions are shown for reference purposes only. Specifications subject to change.

Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666

For additional support numbers please visit www.te.com

KILOVAC High Voltage Relays Quick Reference Guide (Continued)

Contact Voltage Vdc	Isolation Voltage Vdc	Carry Current (Amps DC)	Power Switching	RF Ratings	Contact Form	Part Numb Series
	10000	5	Yes	No	SPST-NO	S05LTA
10 kV	10000	5	Yes	No	SPST-NC	S05LTB
	10000	5-30	Special	No	SPST-NO	K81A
	10000	5-30	Special	No	SPST-NC	K81B
	10000	5-30	Special	No	SPDT	K81C
	10000	25	Special	Yes	SPST-NO	K43A
	10000	25	Special	Yes	SPST-NC	K43B
	10000	25	Special	Yes	SPDT	K43C
	10000	24	Special	Yes	SPDT-Latch	K43R
	10000	24	Special	Yes	SPST-Latch	K43P
1011/	12000	30	Yes	Yes	DPDT	H-14
12 kV	12000	30	Yes	Yes	DPDT	H-16
	15000	5	Yes	No	SPST-NO	S05MTA
	15000	12	Make Only	No	SPDT	KC-15
	15000	12	Make Only	No	SPDT	KC-16
	15000	15	Yes	Yes	SPDT	H-8
	15000	15	Yes	No	SPDT	KC-14
15 kV	15000	15	Yes	No	SPDT	KC-18
	15000	30	Yes	No	SPDT	KC-12
	15000	30	Carry Only	Yes	4PDT	H-26
	15000	30	Yes	No	SPDT	KC-8
	15000	50	Carry Only	Yes	SPDT	KC-2
	15000	50	Carry Only	Yes	SPDT	KC-11
20 kV	20000	30	Special	Yes	DPDT	H-19
	25000	15	Make Only	No	SPST-NC	KC-38
	25000	18	Special	No	SPST-NO	K62A
	25000	18	Special	No	SPST-NC	K62B
	25000	18	Special	No	SPDT	K62C
	25000	30	Special	Yes	SPDT	H-17
25 kV	25000	30	Make Only	No	SPST-NO	KC-28
	25000	45	Special	No	SPST-NC	KC-32
	25000	55	Carry Only	Yes	SPST-NC	KC-30
	25000	65	Special	No	SPST-NO	KC-22
	25000	110	Carry Only	Yes	SPST-NO	KC-20
	30000	30	Special	Yes	SPST-NC	H-23
30 kV	30000	30	Special	Yes	SPST-NO	H-24
	35000	10	Make Only	No	SPDT	K60C
	35000	10	Make Only	No	SPST-NO	K61A
35 kV	35000	10	Make Only	No	SPST-NC	K61B
	35000	10	Make Only	No	SPDT	K61C
	50000	10	Make Only	No	SPDT	K64C
50 kV	50000	30	Special	No	SPDT	H-25
	70000	10	Make Only	No	SPST-NO	K70A
70 kV	70000	10	Make Only	No	SPST-NC	K70B
	70000	10	Make Only	No	SPDT	K70C

*Consult factory for load switching level.

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or 805-220-2055.

7–50

Catalog 5-1773450-5 Revised 3-13

www.te.com

Dimensions are shown for reference purposes only. Specifications subject to change. Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666 For additional support numbers please visit www.te.com

AP5/AP10 Relays

Product Facts

- AP5 make and break 5 A: AP10 make and break 10 A @ 270 Vdc
- 20 A overload rating
- Latching actuator available for low power consumption
- Ideal for applications from 28 to 1000 Vdc
- Small size and weight
- Wide variety of mounting styles (see pages 54 and 55)
- No heat sinks required
- 2000 V isolation across open contacts
- Vacuum-sealed contacts; can operate in harsh environments
- Qualified to SAE ARD 50031
- Space-rated version built in accordance with customers SCD

Notes:

*The load terminals should always be connected as follows: Common Contact +: Other Contact -. **10 amps for PC board connection.

Coil Data

Volts, Nominal	12	28	28 ²	120
Pickup, Max. 1	10 Vdc	20 Vdc	16 Vdc	85 Vdc
Dropout, Min.	.3-6 Vdc	.7-12 Vdc	N/A	5-55 Vdc
Coil Resistance (±10%)	53 Ω	290 Ω	80 Ω	4700 Ω

Coil resistance rated at 25°C

Notes:

1. Value for AP5C is 24 for 28 Vdc coil & 100 for 120 Vdc coil 2. Latching

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or 805-220-2055.

AP5A, AP5B, & AP5C Relays — 5 Amps

Product Specifications Contact Arrangement -AP5A — SPST-NO AP5B - SPST-NC AP5C — SPDT Contact Form -AP5A — A AP5B — B AP5C — C Rated Resistive Load @ 270 Vdc --5 A*

Continuous Current Carry, Max. — AP5A, AP5B, AP5C - 25 A*

Product Specifications

Contact Arrangement

AP10P — SPST Latching

AP10A, AP10B - 25 A** AP10P - 30 A**

Overload @ 270 Vdc - 20 A Contact Resistance, Max. --

Dielectric at Sea Level —

All Other Points - 2,000 Vrms

Shock, 11ms, 1/2 Sine (Peak) -

Coil to Case - 500 Vrms

Continuous Current Carry, Max. —

AP10A — SPST-NO

AP10B - SPST-NC

Contact Form -

AP10A — A

AP10B — B

AP10P — P

10 A*

10 mohm

50 g

AP10A, AP10B, AP10P & AP11A Relays — 10 Amps

Overload @ 270 Vdc — AP5A, AP5B - 20 A AP5C-10 A Contact Resistance, Max. — 10 mohm Dielectric at Sea Level — Coil to Case — 500 Vrms All Other Points - 2,000 Vrms

Shock, 11ms, 1/2 Sine (Peak) — AP5A, AP5B, AP5C-50 g Vibration, Sinusoidal (55-2000 Hz, Peak) - 10 g **Operating Ambient Temperature** Range — -55°C to +85°C Load Life @ 270 Vdc, Min. -AP5A, AP5B — 50,000 cycles AP5C - 10,000 cycles

Vibration, Sinusoidal

Range — -55°C to +85°C

AP10A — 10,000 cycles

AP10A, AP10B - 7 ms

Operate Time,

AP10P - 4 ms

(55-2000 Hz, Peak) - 10 g

Load Life @ 270 Vdc, Min. -

AP10B, AP10P — 7,000 cycles

Excluding Bounce, Max. —

Operating Ambient Temperature

Operate Time, Excluding Bounce, Max. -AP5A, AP5B, AP5C — 7 ms Release Time, Max. AP5A, AP5B, AP5C - 10 ms Bounce Time, Max. -AP5A, AP5B, AP5C — 3 ms Insulation Resistance @ 500 Vdc, Min. -Initial — 100 mohm End of Life — 50 mohm Weight, Nominal -28 gram (1 oz.)

Release Time, Max. — AP10A, AP10B - 10 ms AP10P - N/A

Bounce Time, Max. -AP10A, AP10B - 3 ms AP10P — 2 ms

Insulation Resistance @ 500 Vdc, Min. -

AP5 C 3 4 5

Initial — 100 mohm End of Life — 50 mohm Weight, Nominal -28 gram (1 oz.)

Ordering Information

Sample Part Number

	Ť
Series:	
Contact Form:A = SPST-NOB = SPST-NCC = SPDTP = SPST Latching	
Coil Voltage: 2 = 12Vdc, Bus Wire/PC Board 3 = 28 Vdc, Bus Wire/PC Board 5 = 120 Vdc, Bus Wire/PC Board 7 = 12 Vdc, Turret Terminals 8 = 28 Vdc, Turret Terminals 9 = 120 Vdc, Turret Terminals A = 12 Vdc, Stud Terminals, Panel Mount B = 28 Vdc, Stud Terminals, Panel Mount C = 120 Vdc, Stud Terminals, Panel Mount	
Power Terminals:3 = Solder Connection/PC Board5 = Stud Terminals, Panel Mount	
Mounting:2 = Flanged Mount4 = Through Chassis Mount5 = PCB Mount7 = Panel Mount	

Catalog 5-1773450-5 Revised 3-13

www.te.com

Dimensions are shown for reference purposes only. Specifications subject to change.

Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 For additional support numbers Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666 please visit www.te.com

7-51

KILOVAC 270+ Vdc High Voltage Relays

AP5/AP10 Relays (Continued)

Revised 3-13 www.te.com

reference purposes only.

Specifications subject

to change.

Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666 For additional support numbers please visit www.te.com

AP5/AP10 Relays (Continued)

2.35 (59.7)

3.10 (78.7)

AP10AB47 Shown as Part Number Sample

AP10AB47

Kilovac

.88 (22.3)

1

23 (5.8)

ė

L 2X .44 (11.2)

.27 (6.8)

dial 800-253-4560, ext. 2055, or 805-220-2055.

Catalog 5-1773450-5 Revised 3-13

Dimensions are shown for reference purposes only. Specifications subject to change. Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666 For additional support numbers please visit www.te.com

www.te.com

7–53

AP44P — 15 Amps

Product Facts

- 15 A make and break @ 270 Vdc
- 45 A carry
- 60 A overload rating
- Ideal for high voltage applications from 28 to 270 Vdc
- Latching actuator for low power consumption
- 2000 V isolation across open contacts
- Small size and weight
- Space-rated version built in accordance with customers SCD
- Meets many requirements of MIL-PRF-32085

Product Specifications Contact Arrangement — SPST Latching Contact Form — P Rated Resistive Load @ 270 Vdc — 15 A* Continuous Current Carry, Max. — 45 A Overload @ 270 Vdc — 60 A Contact Resistance, Max. — 10 mohm Dielectric at Sea Level — Coil to Case — 500 Vrms All Other Points — 2,000 Vrms Shock, 11ms, 1/2 Sine (Peak) — 50 g Vibration, Sinusoidal (55-2000 Hz, Peak) — 15 g** Operating Ambient Temperature Range — -55°C to +85°C Load Life @ 270 Vdc, Min. — 5,000 cycles Operate Time, Excluding Bounce, Max. — 2 ms Release Time, Max. — N/A Bounce Time, Max. — 3 ms

Latch/Reset Time, Including Bounce, Max. — 5 ms Insulation Resistance @ 500 Vdc, Min. — Initial — 100 mohm End of Life — 50 mohm

Weight, Nominal — 43 gram (1.5 oz.)

Notes:

*The load terminals should always be connected as follows: Common Contact +; Other Contact –.

Coil Data

22 Vdc
22 Vdc
80 Ω

Coil resistance rated at 25°C

Ordering Information

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or 805-220-2055.

7–54

Catalog 5-1773450-5 Revised 3-13

www.te.com

reference purposes only. Specifications subject to change.

Dimensions are shown for

Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666 For additional support numbers please visit www.te.com

PD5 Make & Break Load Switching

Product Facts

- Vacuum dielectric for power switching
- Excellent for control applications
- PCB and panel mountings
- Rugged design for the most demanding applications, including seismic shock
- Small size and weight
- Low power consumption
- No heat sinks required
- Vacuum-sealed; can operate in explosive and harsh environments
- 2000 V isolation across open contacts

Product Specifications

Rated Resistive Load @ 320 Vdc

Continuous Current Carry, Max.

Life, (Mechanical/Rated Load) -

Contact Arrangement -

PD5A — SPST-NO

PD5B — SPST-NC

Contact Form

@ 85°C — 15 A Overload @ 320 Vdc.

(Make/Break) - 20 A

500k cycles/50k cycles

Contact Resistance, Max.,

End of Life — 0.010 ohm

Dielectric at Sea Level —

Power Terminals to Coil and All Other Points - 1,800 Vrms Shock, 11ms, 1/2 Sine (Peak) -

Vibration, Sinusoidal (55-2000 Hz, Peak) — 5 g **Operating Ambient Temperature** Range — -40°C to +85°C

Operate Time, Max., Including Bounce @ 25°C — 10 ms

Release Time, Max., Including

Bounce @ 25°C — 10 ms

PD5A — A**

PD5B — B**

5 A

25 g

Contact Ratings*

*Based on extrapolated data. Since each application is unique, user is encouraged to verify rating in actual application. The load terminals should always be connected as follows: Common Contact (A2) positive; Other Contact negative.

Coil Data

Nominal Volts DC	12 Vdc	24 Vdc	125 Vdc
Max. Coil Voltage	14 Vdc	28 Vdc	130 Vdc
Pickup, Max. @ 85°C	8 Vdc	16 Vdc	80 Vdc
Hold, Min. @ 85°C	3.3 Vdc	10 Vdc	33 Vdc
Dropout, Min. @ -40°C	.5 Vdc	1 Vdc	5 Vdc
Coil Resistance (±10%)	70 Ω	290 Ω	4700 Ω

Ratings listed are for 25°C, sea level conditions

Ordering Information

Sample Part Number

C = SPDT (PCB Only)Coil Voltage: -

Power Terminals: 3 = PCB Solder Connection 5 = Stud Terminal, Panel Mount

Mounting:

5 = PCB Mount

2 = 12 Vdc, PCB Version

5 = 125 Vdc, PCB Version

A = 12 Vdc, Panel Mount Version B = 24 Vdc, Panel Mount Version C = 125 Vdc, Panel Mount Version

Insulation Resistance @ 500 Vdc, Series: -Contact Form: Initial/End of Life — 100 mohm/50 mohm A = SPST-NO Weight, Nominal -B = SPST-NC

57 g (.125 lb)

Note:

Min. -

**Contact TE for availability of other contact forms

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or 805-220-2055.

Catalog 5-1773450-5 Revised 3-13

Dimensions are shown for reference purposes only. Specifications subject

Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666

PD5 A 2 3 5 3 = 24 Vdc, PCB Version

For additional support numbers please visit www.te.com

7 = Panel Mount

www.te.com

to change.

7-55

PD10 Make & Break Load Switching

Product Facts

- Excellent for control applications
- PCB and panel mountings
- Rugged design for the most demanding applications, including seismic shock
- Small size and weight
- Low power consumption
- No heat sinks required
- Vacuum-sealed; can operate in explosive and harsh environments
- 2000 V isolation across open contacts
- Vacuum dielectric for power switching

Panel mount version shown above is applicable to both PD5 and PD10. For PD10, the two power terminals are .064" (1.63) diameter. Refer to PD5 for PCB mount dimensions.

Product Specifications

Contact Arrangement — PD10A — SPST-NO PD10B — SPST-NC PD10P*** — SPST-Latching

(Make/Break) - 20 A

Contact Form — PD10A — A** PD10B — B** PD10P*** — P** Rated Resistive Load @ 320 Vdc — 10 A Continuous Current Carry, Max. @ 85°C — PD10A and PD10B — 25 A PD10P*** — 30 A Overload @ 320 Vdc,

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or 805-220-2055.

Contact Ratings*

*Based on extrapolated data. Since each application is unique, user is encouraged to verify rating in actual application. The load terminals should always be connected as follows: Common Contact (A2) positive; Other Contact negative.

Coil Data

Nominal Volts DC	12 Vdc	24 Vdc	125 Vdc
Max. Coil Voltage	14 Vdc	28 Vdc	130 Vdc
Pickup, Max. @ 85°C	8 Vdc	16 Vdc	80 Vdc
Hold, Min. @ 85°C	3.3 Vdc	10 Vdc	33 Vdc
Dropout, Min. @ -40°C	.5 Vdc	1 Vdc	5 Vdc
Coil Resistance (±10%)	70 Ω	290 Ω	4700 Ω

Ratings listed are for 25°C, sea level conditions

7-56

Catalog 5-1773450-5 Revised 3-13

www.te.com

Dimensions are shown for reference purposes only. Specifications subject to change. Dimensions are in millimeters unless otherwise specified.

Life, (Mechanical/Rated Load) — PD10A and PD10B — 500k cycles/10k cycles PD10P*** — 7,000 cycles

Contact Resistance, Max., End of Life — PD10A and PD10B — 0.030 ohm PD10P*** — 0.030 ohm

Dielectric at Sea Level — Power Terminals to Coil and All Other Points — PD10A and PD10B — 1,800 Vrms PD10P*** — 2,000 Vrms

Shock, 11ms, 1/2 Sine (Peak) — 25 g

Vibration, Sinusoidal (55-2000 Hz, Peak) — 5 g Operating Ambient Temperature

Range — PD10A and PD10B — -40°C to +85°C PD10P*** — -35°C to +65°C

Operate Time, Max., Including Bounce @ 25°C — PD10A and PD10B — 10 ms PD10P*** — 6 ms

Ordering Information

Sample Part Number

Series: ——— Contact Form:

A = SPST-NO

B = SPST-NC

P = SPST-Latching

Coil Voltage: -

- 2 = 12 Vdc, PCB Version 3 = 24 Vdc, PCB Version
- 5 = 125 Vdc, PCB Version
- A = 12 Vdc, Panel Mount Version
- B = 24 Vdc, Panel Mount Version
- C = 125 Vdc, Panel Mount Version

Power Terminals:

- 3 = PCB Solder Connection
- 5 = Stud Terminal, Panel Mount

Mounting: — 5 = PCB Mount

7 = Panel Mount

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666

For additional support numbers please visit www.te.com

Release Time, Max., Including

Insulation Resistance @ 500 Vdc,

Initial/End of Life — 100 mohm/50 mohm

**Contact TE for availability of other

***Not available in package shown,

package is the same as the K41P.

PD10 A A 5

7

PD10A and PD10B - 10 ms

Bounce @ 25°C

PD10P*** - 6 ms

Weight, Nominal -

71 g (.156 lb)

contact forms

Notes:

Min.

.

K45 Series Make & Break Load Switching — 1.5 - 2 kV Relays

K45C

- **Product Facts**
- Small, low profile 2 kV relay
- Vacuum dielectric for power switching low current loads
- Single pole, double throw contacts
- Widely used in H.F. communication equipment
- Meets requirements of MIL-R-83725
- Low power consumption

Product Specifications Contact Arrangement SPDT Contact Form — C Test Voltage, DC or 60 Hz (Peak) -4 kV Rated Operating Voltage (Peak) — DC or 60 Hz - 2 kV 2.5 MHz - 1.8 kV 16 MHz — 1.4 kV 32 MHz - 1.1 kV

Continuous Carry Current, Max. — DC or 60 Hz - 20 A 2.5 MHz - 16 A 16 MHz — 10 A 32 MHz — 6 A Coil Hi-Pot (Vrms, 60 Hz) - 500 A

Contact Capacitance -

Between Open Contacts - 1.6 pF Open Contacts to Ground — 2 pF Contact Resistance, Max. — 0.05 ohm Operate Time, Max. — 10 ms Release Time, Max. — 10 ms Shock, 11ms, 1/2 Sine (Peak) -30 g

Vibration — Peak — 10 g (10 to 2000 Hz) **Operating Ambient Temperature** Range — -55°C to +125°C **Mechanical Life** 2 million cycles Weight, Nominal —

Coil Data

Volts, Nominal DC	12 V	26.5 V
Pickup, Max.	8 Vdc	16 Vdc
Hold, Max. @ 65°C	8.5 Vdc	17 Vdc
Dropout	.5-5 Vdc	1-10 Vdc
Coil Resistance (±10%)	230 Ω	920 Ω

Ratings listed are for 25°C, sea level conditions.

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or 805-220-2055.

Catalog 5-1773450-5 Revised 3-13

www.te.com

Dimensions are shown for reference purposes only. Specifications subject to change.

Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666 21.26 g (0.75 oz.)

3

4

С 3

For additional support numbers

please visit www.te.com

Ordering Information

Sample Part Number 🕨	K45
Series:	
Contact Form: C = SPDT	
Coil Voltage: 2 = 12 Vdc, Bus Wire 3 = 26.5 Vdc, Bus Wire	
High Voltage Connections:	
Mounting:	

2 = Flanged

4 = Standard

See page 7-87 for mounting methods.

KILOVAC High Voltage Relays

7-57

HC Series — 3.5 kV Relays

HC-1 No Load Switching HC-3 Make & Break Load Switching

Product Facts for HC-1

- Widely used for RF applications
- Vacuum dielectric for low leakage current applications
- Copper contacts for high current capability
- Not designed for power switching
- Meets requirements of MIL-R-83725
- QPL version available, M83725/5-001

HC-5 Make Only Load Switching

Product Facts for HC-5

- Gas-filled for "make only" power switching
- SF-6 gas-filled for capacitive discharge applications
- Tungsten contacts for long life when power switching

Product Specifications for HC-1, HC-3 and HC-5 **Contact Arrangement** — SPDT Contact Form — C Test Voltage, DC or 60 Hz (Peak) — 5 kV Rated Operating Voltage (Peak) -DC or 60 Hz - 3.5 kV 2.5 MHz - 2.5 kV 16 MHz - 2 kV 32 MHz - 1.5 kV Continuous Carry Current, Max. — DC or 60 Hz — HC-1 — 25 A HC-3 — 18 A HC-5 - 8 A 2.5 MHz - HC-1 - 14 A 16 MHz — HC-1 — 9 A 32 MHz — HC-1 — 7 A

Coil Hi-Pot (Vrms, 60 Hz) — 500 A **Contact Capacitance** — Between Open Contacts — HC-1 — 2 pF

Product Facts for HC-3

- Tungsten contacts for long life when power switching
- Vacuum dielectric for power switching low current loads

Open Contacts to Ground — HC-1 —2.5 pF

Contact Resistance, Max. — HC-1 — 0.01 ohm HC-3 — 0.02 ohm HC-5 — 0.50 ohm* Operate Time, Max. — 6 ms Release Time, Max. — 6 ms Shock, 11ms, 1/2 Sine (Peak) — 50 g Vibration — Peak — 10 g (55 to 2000 Hz)

Operating Ambient Temperature Range — -55°C to +125°C **Mechanical Life** — HC-1, HC-3 — 2 million cycles HC-5 — 1 million cycles

Weight, Nominal — 28.35 g (1.0 oz.)

Note: *Contact resistance for gas-filled relays is measured at 28 Vdc, 1 Amp

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or 805-220-2055.

Coil Data

Nominal Volts DC	12 Vdc	26.5 Vdc	115 Vdc
Pickup, Max.	8 Vdc	16 Vdc	80 Vdc
Dropout	.5-5 Vdc	1-10 Vdc	5-50 Vdc
Coil Resistance (±10%)	80 Ω	335 Ω	6000 Ω

Ratings listed are for 25°C, sea level conditions

Ordering Information

7–58

Catalog 5-1773450-5 Revised 3-13

www.te.com

reference purposes only. Specifications subject to change.

Dimensions are shown for

Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666 For additional support numbers please visit www.te.com

K41 Series Make & Break Load Switching - 5.0 kV Relays

K41A, K41B Product Facts

- High current carry rating
- Vacuum dielectric for power switching low current loads
- Glazed ceramics for low current leakage
- Compact, space-saving design
- Meets requirements of MIL-R-83725
- QPL versions available, M83725/21 & M83725/22

K41C

Product Facts

- Single pole, double throw version
- Vacuum dielectric for power switching low current loads
- RF ratings to 32 MHz
- Long life: 2 million cycles
- Meets requirements of MIL-R-83725
- QPL version available, M83725/23

Product Specifications for K41A, K41B and K41C

Contact Arrangement — K41A — SPST-NO K41B — SPST-NC K41C — SPDT **Contact Form** K41A — A K41B — B K41C — C Test Voltage, DC or 60 Hz (Peak) -6 kV Rated Operating Voltage (Peak) -DC or 60 Hz - 5 kV 2.5 MHz - 4.5 kV 16 MHz — 3.5 kV 32 MHz - 2.8 kV Continuous Carry Current, Max. — DC or 60 Hz - 30 A 2.5 MHz - 24 A 16 MHz — 16 A 32 MHz - 12 A Coil Hi-Pot (Vrms, 60 Hz) - 500 A

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or 805-220-2055.

Coil Data

Nominal Volts DC	12 Vdc	26.5 Vdc	115 Vdc
Pickup, Max.	8 Vdc	16 Vdc	80 Vdc
Dropout	.5-5 Vdc	1-10 Vdc	5-50 Vdc
Coil Resistance (±10%)	70 Ω	290 Ω	4700 Ω

Ratings listed are for 25°C, sea level conditions

Ordering Information

Sample Part Number K41 A 3 3 4 Series: **Contact Form:** A = SPST-NO B = SPST-NC C = SPDTCoil Voltage: -2 = 12 Vdc, Bus Wire 3 = 26.5 Vdc, Bus Wire 5 = 115 Vdc, Bus Wire 7 = 12 Vdc, Turret Terminal* 8 = 26.5 Vdc, Turret Terminal* 9 = 115 Vdc, Turret Terminal* High Voltage Connections: 3 = Solder Connection Mounting:

4 = Standard

For additional support numbers

please visit www.te.com

2 = Flanged

Catalog 5-1773450-5 Revised 3-13

www.te.com

Dimensions are shown for reference purposes only. Specifications subject to change.

Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666 7–59

*See page 7-87 for turret

mounting methods.

terminal dimensions and

K41 Series Make & Break Load Switching — 5.0 kV Relays

K41P

K41R

Product Facts

Product Facts

- Fast, 6 millisecond operate time
- Vacuum dielectric for power switching low current loads
- Latching actuator for low power consumption
- Ideal for frequency agile communication systems
- Meets requirements of MIL-R-83725
- QPL version available, M83725/24

Latching actuator for low

power consumption

Meets requirements of MIL-R-83725

Latching version of K41C

Ø.40 (10.2) 2X .40 (10.2) AI ł .32 (8.1) 2X .125 (3.18) A2 .72 (18.3) .65 (16.5) 1.86 (47.2) MAX 1 .36 (9.1) 2X Ø.060 (1.52) 1.08 (27.4) 4X .61 (15.5) ø.38 (9.7) 1 Ø.52 (13.2) 4X, Ø.025 (.64) COIL TERMINAL

Product Specifications for	
K41P and K41R	
Contact Arrangement —	

at One alfierations for

K41P — SPST-Latching K41R — SPDT-Latching Contact Form — K41P — P K41R — R Test Voltage, DC or 60 Hz (Peak) -6 kV Rated Operating Voltage (Peak) -DC or 60 Hz - 5 kV 2.5 MHz - K41P - 4.5 kV K41R — 4.0 kV 16 MHz — K41P — 3.5 kV K41R — 3.2 kV 32 MHz — K41P — 2.8 kV K41R - 2.5 kV

Continuous Carry Current, Max. -

DC or 60 Hz - 30 A 2.5 MHz - K41P - 20 A K41R — 16 A 16 MHz — K41P — 13 A K41R — 10 A 32 MHz — K41P — 10 A K41R — 6 A Coil Hi-Pot (Vrms, 60 Hz) - 500 A

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or 805-220-2055.

7 - 60

Catalog 5-1773450-5 Revised 3-13

www.te.com

Dimensions are shown for reference purposes only. Specifications subject to change.

Dimensions are in millimeters unless otherwise specified.

Contact Capacitance —

Between Open Contacts -

Open Contacts to Ground —

Contact Resistance, Max. —

Operate Time, Max. - 6 ms

Release Time, Max. --- N/A

Peak — 10 g (55 to 2000 Hz)

Range — -55°C to +125°C

Insulation Resistance —

Initial — 10 gigaohms

Weight, Nominal — 28.35 g (1.0 oz.)

Shock, 11ms, 1/2 Sine (Peak) -

Operating Ambient Temperature

Mechanical Life — 1 million cycles

K41P — 1.2 pF K41R — 1.6 pF

K41P — 1.2 pF

K41R — 1.6 pF

K41P — 50 g

K41R — 30 g

Vibration -

0.02 ohm

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666 For additional support numbers please visit www.te.com

Coil Data

Volts, Nominal	26.5 Vdc
Reset & Latch, Max.	16 Vdc
Dropout	N/A
Coil Resistance (±10%)	80 Ω
Ratings listed are for 25°	C, sea level

conditions.

Ordering Information

Sample Part Number	<u>K41 P 3 3 4</u>
Series:	
Contact Form: P = SPST-Latching	R = SPDT-Latching
Coil Voltage: 3 = 26.5 Vdc, Bus Wire	
High Voltage Connection 3 = Solder Connection	ns:
Mounting:* 2 = Flanged	4 = Standard

Standard

*See page 7-87 for mounting methods.

K40P Make & Break Load Switching — 5.0 kV Relays

Product Facts for K40P

- Vacuum dielectric for power switching low current loads
- Fast, 1 millisecond operate time
- Long life: 10 million cycles
- 35 Amps continuous current rating at DC; 8 Amps at 32 MHz
- Ideal for high power antenna couplers
- Meets requirements of MIL-R-83725

Product Facts for K40P364

- Double sided terminals for ease of connection to bus bar
- Vacuum dielectric for power switching low current loads
- Fast switching, high current capabilities
- Small and lightweight

Product Specifications

Contact Capacitance -

Between Open Contacts - 1.2 pF

Contact Arrangement — SPST-Latching Contact Form — P Test Voltage, DC or 60 Hz (Peak) — 6 kV Rated Operating Voltage (Peak) — DC or 60 Hz — 5 kV 2.5 MHz — 4.5 kV 16 MHz — 3.5 kV 32 MHz — 2.8 kV Continuous Carry Current, Max. — DC or 60 Hz — 35 A 2.5 MHz — 21 A 16 MHz — 14 A

Coil Hi-Pot (Vrms, 60 Hz) - 500 A

Open Contacts to Ground — 1.2 pF Contact Resistance, Max. — 0.02 ohm Operate Time, Max. — 1 ms Release Time, Max. — N/A Shock, 11ms, 1/2 Sine (Peak) — 50 g Vibration — Peak — 30 g (55 to 2000 Hz) Operating Ambient Temperature Range — -55°C to +125°C Mechanical Life —10 million cycles Weight, Nominal — 28.35 g (1.0 oz.)

Coil Data

Volts, Nominal	26.5 Vdc
Reset & Latch, Max.	16 Vdc
Dropout	N/A
Coil Resistance (±10%)	80 Ω
Ratings listed are for 25°0 conditions.	C, sea level

Ordering Information

Sample Part Number ►	<u>K40 P 3 3 2</u>
Series:	
Contact Form: P = SPST-Latching	
Coil Voltage: 3 = 26.5 Vdc, Bus Wire	
High Voltage Connections:3 = Solder Connection6 = Double Sided Solder Connection	

Mounting:* -----

- 2 = Flanged
- 4 = Standard

*See page 7-87 for mounting methods.

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or 805-220-2055.

Catalog 5-1773450-5 Revised 3-13

32 MHz — 8 A

Dimensions are shown for reference purposes only. Specifications subject to change. Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666

For additional support numbers please visit www.te.com

www.te.com

KM-17 Series Make Only Load Switching — 7.5 kV Relays

Product Facts

- Double pole, double throw contacts
- SF-6 gas-filled for ideal discharge waveform
- High voltage flying leads
- Tabs for easy mount
- Widely used in defibrillator applications

Product Specifications for

Contact Arrangement — DPDT

Test Voltage, DC or 60 Hz (Peak) —

Rated Operating Voltage (Peak) —

Continuous Carry Current, Max. -

Coil Hi-Pot (Vrms, 60 Hz) - 500 A

Open Contacts to Ground --- N/A

Contact Resistance, Max. —

Operate Time, Max. - 20 ms

Release Time, Max. - 20 ms

Shock, 11ms, 1/2 Sine (Peak) -

Contact Form - 2C

DC or 60 Hz - 7.5 kV

DC or 60 Hz - 10 A

Contact Capacitance -Between Open Contacts - N/A

KM-17

14 kV

0.5 ohm*

10 g

Vibration —

Peak - 10 g (55 to 500 Hz)

Range — -20°C to +65°C

Insulation Resistance —

Initial — 10 gigaohms

Weight, Nominal —

KM-17 — 311.8 g (11 oz.)

Mechanical Life

- 1010,000 cycle

Operating Ambient Temperature

Ordering Information

/26.5Vdc = 26.5 Vdc

Coil Data

Nominal Volts DC	12 Vdc	26 Vdc
Pickup, Max.	8 Vdc	16 Vdc
Dropout	.5-5 Vdc	1-10 Vdc
Coil Resistance (±10%)	12 Ω	48 Ω

Ratings listed are for 25°C, sea level conditions Coils are not for continuous duty.

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or 805-220-2055.

7-62

Catalog 5-1773450-5 Revised 3-13

www.te.com

Dimensions are shown for reference purposes only. Specifications subject to change.

Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666 For additional support numbers please visit www.te.com

17

Blank = 12 Vdc

K47 Series Make & Break Load Switching - 8 kV Relays

K47A

Product Facts for K47A

- Widely used in antenna coupler applications
- Short actuator, low profile, 8 kV relay
- Vacuum dielectric for power switching low current loads
- Normally open contacts
- Meets requirements of MIL-R-83725

-40 (10.2) --

K47B

Product Facts for K47B

- Normally closed version of K47
- Vacuum dielectric for power switching low current loads
- 707 Ohm coil for low power consumption
- Meets requirements of MIL-R-83725
- QPL version available, M83725/18-003

Product Specifications for K47A and K47B Contact Arrangement — K47A — SPST-NO K47B — SPST-NC Contact Form K47A — A K47B — B Test Voltage, DC or 60 Hz (Peak) -9 kV Rated Operating Voltage (Peak) -DC or 60 Hz - 8 kV 2.5 MHz — 7.5 kV 16 MHz — 7 kV 32 MHz — 5 kV Continuous Carry Current, Max. — DC or 60 Hz - 12 A 2.5 MHz — 10 A 16 MHz — 5 A 32 MHz — 3 A Coil Hi-Pot (Vrms, 60 Hz) - 500 A

Contact Capacitance — Between Open Contacts — 1.2 pF Open Contacts to Ground — 1.2 pF

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or 805-220-2055.

Contact Resistance, Max. — 0.03 ohm Operate Time, Max. — 10 ms Release Time, Max. — 10 ms Shock, 11ms, 1/2 Sine (Peak) — 30 g Vibration — Peak — 10 g (55 to 1000 Hz) Operating Ambient Temperature Range — -55°C to +125°C Mechanical Life — 2 million cycles Weight, Nominal —

25.5 g (0.9 oz.)

methods.

Coil Data

Nominal Volts DC	12 Vdc	26.5 Vdc
Pickup, Max.	8 Vdc	16 Vdc
Dropout	.5-5 Vdc	1-10 Vdc
Coil Resistance (±10%)	230 Ω	707 Ω

Ratings listed are for 25°C, sea level conditions

Ordering Information

Sample Part Number 🕨	<u>K47 A 3 3 4</u>
Series:	
Contact Form:A = SPST-NOB = SPST-NC	
Coil Voltage: 2 = 12 Vdc, Bus Wire 3 = 26.5 Vdc, Bus Wire	
High Voltage Connections:	

Mounting: · 2 = Flanged

4 = Standard

Catalog 5-1773450-5 Revised 3-13

Dimensions are shown for reference purposes only. Specifications subject to change. Dimensions are in millimeters unless otherwise specified.

*See page 7-87 for mounting

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666 7-63

www.te.com

HC Series — 8 kV Relays

HC-2 No Load Switching HC-4

Make & Break Load Switching

Product Facts for HC-2

- Vacuum dielectric and copper contacts for high current carry rating of 25 Amps
- Not designed for power switching
- Stable, low contact resistance
- Meets requirements of MIL-R-83725

HC-6

Make Only Load Switching Product Facts for HC-6

- Tungsten contacts for switching high in-rush loads
- SF-6 gas-filled for capacitive discharge applications
- Suitable for ESD testing applications
- Tungsten contacts for long life in power switching applications

Product Specifications for HC-2, HC-4 and HC-6 **Contact Arrangement** — SPDT **Contact Form** — C Test Voltage, DC or 60 Hz (Peak) — 10 kV Rated Operating Voltage (Peak) -DC or 60 Hz - 8 kV Continuous Carry Current, Max. — DC or 60 Hz — HC-2 — 25 Å RMS HC-4 - 15 A RMS HC-6 - 8 A RMS Coil Hi-Pot (Vrms, 60 Hz) - 500 A RMS Contact Capacitance -Between Open Contacts - N/A Open Contacts to Ground --- N/A

Contact Resistance, Max. —

HC-2 — 0.01 ohm HC-4 — 0.02 ohm HC-6 — 0.5 ohm* Operate Time, Max. — 6 ms Release Time, Max. — 6 ms

Product Facts for HC-4

- Tungsten contacts for long life in power switching applications
- Vacuum dielectric for arc suppression when making or breaking a load

Shock, 11ms, 1/2 Sine (Peak) — 50 g
Vibration — Peak — 10 g (55 to 2000 Hz)
Operating Ambient Temperature Range — -55°C to +125°C
Mechanical Life — HC-2 and HC-4 — 2 million cycles HC-6 — 1 million cycle
Weight, Nominal — 39.69 g (1.4 oz.)
*Contact resistance for gas-filled relays is measured at 28 Vdc, 1 Amp

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or 805-220-2055.

 Meets requirements of MIL-R-83725

Coil Data

Nominal Volts DC	12 Vdc	26.5 Vdc	115 Vdc
Pickup, Max.	8 Vdc	16 Vdc	80 Vdc
Dropout	.5-5 Vdc	1-10 Vdc	5-50 Vdc
Coil Resistance (±10%)	80 Ω	335 Ω	6000 Ω

Ratings listed are for 25°C, sea level conditions

Ordering Information

Sample Part Number 🕨		<u>HC- 6</u> /12Vdc	
Series: -			
Model: -			
2	4	6	
Coil Volta	de:		
Blank = 2			
/12Vdc =	12 Vdc		
/115Vdc =	= 115 Vdc		

7–64

Catalog 5-1773450-5 Revised 3-13

www.te.com

to change.

Dimensions are shown for reference purposes only. Specifications subject

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666 For additional support numbers please visit www.te.com

H-18 Series Make & Break Load Switching — 8 kV Relays

Product Facts

- Smallest DPDT high voltage relay
- Vacuum dielectric for power switching low current loads
- 8 kV rating; carries 2 Amps at 32 MHz
- Tungsten contacts for power switching low current loads
- Meets requirements of MIL-R-83725

Product Specifications
Contact Arrangement — DPDT
Contact Form — 2C
Test Voltage, DC or 60 Hz (Peak) 10 kV
Rated Operating Voltage (Peak) — DC or 60 Hz — 8 kV 2.5 MHz — 5 kV 16 MHz — 3 kV 32 MHz — 2 kV

Continuous Carry Current, Max. — DC or 60 Hz — 10 A 2.5 MHz — 7 A 16 MHz — 3 A 32 MHz — 2 A Coil Hi-Pot (Vrms, 60 Hz) — 500 A Contact Capacitance — Between Open Contacts — 0.8 pF Open Contacts to Ground — 1.5 pF Contact Resistance, Max. — 0.02 ohm Operate Time, Max. — 15 ms Release Time, Max. — 15 ms

Shock, 11ms, 1/2 Sine (Peak) — 30 g Vibration —

Peak — 10 g (55 to 500 Hz) **Operating Ambient Temperature Range** — -55°C to +125°C **Mechanical Life** — 1 million cycles **Weight, Nominal** — 70.87 g (2.5 oz.)

Coil Data

Volts, Nominal DC	12 V	26.5 V	115 V
Pickup, Max.	8 Vdc	16 Vdc	80 Vdc
Dropout	.5-5 Vdc	1-10 Vdc	5-50 Vdc
Coil Resistance (±10%)	60 Ω	250 Ω	3500 Ω

Ordering Information

Sample Part Number

Series: -Model:

H-18

Coil Voltage: Blank = 26.5 Vdc /12Vdc = 12 Vdc /115Vdc = 115 Vdc <u>H-18</u> /12Vdc

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or 805-220-2055.

Catalog 5-1773450-5 Revised 3-13

www.te.com

Dimensions are shown for reference purposes only. Specifications subject to change. Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666 For additional support numbers please visit www.te.com

7–65

K44P Make & Break Load Switching — 8 kV Relays

Product Facts

- Single pole, single throw contacts with latching actuator
- Vacuum dielectric for power switching low current loads
- 20 G vibration rating
- Carries 50 Amps at DC
- Space rated versions available
- Meets requirements of MIL-R-83725

Product Specifications Contact Arrangement — SPST-Latching Contact Form - P Test Voltage, DC or 60 Hz (Peak) -10 kV Rated Operating Voltage (Peak) -DC or 60 Hz - 8 kV 2.5 MHz — 7 kV 16 MHz — 6 kV 32 MHz — 4 kV Continuous Carry Current, Max. — DC or 60 Hz - 50 A 2.5 MHz - 40 A 16 MHz - 25 A 32 MHz - 20 A Coil Hi-Pot (Vrms, 60 Hz) - 500 A Contact Capacitance -Between Open Contacts - 2.5 pF Open Contacts to Ground — 2.8 pF Contact Resistance, Max. — 0.01 ohm Operate Time, Max. — 5 ms Release Time, Max. --- N/A Shock, 11ms, 1/2 Sine (Peak) -50 g Vibration — Peak — 20 g (55 to 2000 Hz) **Operating Ambient Temperature** Range — -55°C to +85°C Mechanical Life — 1 million cycles Weight, Nominal — 59.53 g (2.1 oz.)

Coil Data

Volts, Nominal	26.5 Vdc
Latch & Reset, Max.	23 Vdc
Dropout	N/A
Coil Resistance (±10%	ώ) 155 Ω

Ratings listed are for 25°C, sea level conditions

Ordering Information

Sample Part Number 🕨		<u>K44 P 3 3 4</u>
Series:		
Contact Form: P = SPST-Latching		
Coil Voltage: 3 = 26.5 Vdc, Bus Wire		
High Voltage Connection 3 = Solder Connection	ons:	
Mounting:	4 = Standard	

4 = Standard

*See page 7-87 for mounting methods.

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or 805-220-2055.

7-66

Catalog 5-1773450-5 Revised 3-13

www.te.com

Dimensions are shown for reference purposes only. Specifications subject to change.

Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666 For additional support numbers please visit www.te.com

K81 A/B Series Make & Break Load Switching — 10 kV Relays

Product Facts

- 10 kV PC board-mount relay
- Vacuum dielectric for power switching low current loads
- Flying leads or PCB mount for high voltage connections
- Meets requirements of MIL-R-83725
- Completely sealed; suitable for test equipment
- Panel mount available for ease of mounting

Operating Ambient Temperature

1. PC pin versions carry 5 or 20

Amps, see part number at right.

Flying lead and panel versions

*Power terminal on 20 Amp version

is a larger diameter than on the

5 Amp version (.025 = 5 Amp),

Range — -55°C to +85°C

Mechanical Life

56.7 g (2 oz.)

Notes:

2 million cycles

Weight, Nominal —

carry 30 Amp.

.064 = 20 Amp)

300 (7.62)

Kllovac

Product Specifications Contact Arrangement -K81A — SPST-NO K81B — SPST-NC Contact Form -K81A — A K81B — B

Test Voltage, DC or 60 Hz (Peak) -11 kV

Rated Operating Voltage (Peak) -DC or 60 Hz — 10 kV Continuous Carry Current, Max. -DC or 60 Hz - 5 Å, 20 A or 30 A 1 Coil Hi-Pot (Vrms, 60 Hz) - N/A

Contact Resistance, Max. —

0.03 ohm Operate Time, Max. — 10 ms

Release Time, Max. — 10 ms

Shock, 11ms, 1/2 Sine (Peak) 30 g

Vibration -Peak — 10 g (55 to 500 Hz)

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or 805-220-2055.

eak) —		

Coil Data

Volts, Nominal DC	12 V	26.5 V	115 V
Pickup, Max.	8 Vdc	16 Vdc	80 Vdc
Dropout	.5-5 Vdc	1-10 Vdc	5-50 Vdc
Coil Resistance (±10%)	70 Ω	290 Ω	4700 Ω

Ratings listed are for 25°C, sea level conditions

Ordering Information

Sample Part Number		<u>K81 A 3 3 5</u>
Series:		
Contact Form: A = SPST-NO B	= SPST-NC	
Coil Voltage: 2 = 12 Vdc, PC Board 5 = 115 Vdc, PC Board A = 12 Vdc, Stud Ter B = 26.5 Vdc, Stud Ter C = 115 Vdc, Stud Ter	ird minals, Panel Moun erminals, Panel Mou	t unt
High Voltage Conne A* = PCB Solder Cor 3 = PCB Solder Conr 4 = Flying Leads	nnection — 20 Amp nection — 5 Amp	
Mounting: 5 = PC Board	7 = Panel Mou	unt

Catalog 5-1773450-5 Revised 3-13

Dimensions are shown for reference purposes only. Specifications subject to change.

Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666

www.te.com

For additional support numbers

please visit www.te.com

7-67

K81C Series Make & Break Load Switching — 10 kV Relays

Product Facts

- SPDT version of K81
- Vacuum dielectric for power switching low current loads
- Flying lead version will carry 10 Amps continuous current
- PCB mount version will carry 5 Amps continuous current

Coil Data

Volts, Nominal DC	12 V	26.5 V	115 V
Pickup, Max.	8 Vdc	16 Vdc	80 Vdc
Dropout	.5-5 Vdc	1-10 Vdc	5-50 Vdc
Coil Resistance (±10%)	70 Ω	290 Ω	4700 Ω

reference purposes only.

Specifications subject

to change.

DC or 60 Hz - 10 kV

Ratings listed are for 25°C, sea level conditions

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or 805-220-2055.

7-68

Catalog 5-1773450-5 Revised 3-13

Dimensions are shown for Dimensions are in millimeters unless otherwise specified.

Weight, Nominal — 70.87 g (2.5 oz.)

Note: 1.5 Amp carry for PC pin versions. 30 Amp carry for flying lead versions.

Ordering Information

5 = PC Board

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666 For additional support numbers please visit www.te.com

K43 Series Make & Break Load Switching — 10 kV Relays

K43A and K43B **Product Facts for** K43A and K43B

- 10 kV. 25 Amps continuous current relav
- RF ratings to 32 MHz
- Vacuum dielectric for power switching low current loads
- 2 million cycle mechanical life
- QPL versions available. M83725/17 & M83725/10

K43C

- Product Facts for K43C
- SPDT version of K43
- Vacuum dielectric for power switching low current loads
- Flange mounting available
- Carries 10 Amps at 32 MHz
- Meets requirements of MIL-R-83725
- QPL version available, M83725/16

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or 805-220-2055.

Product Specifications for K43A. K43B and K43C

Contact Arrangement — K43A — SPST-NO K43B — SPST-NC K43C — SPDT **Contact Form** K43A — A K43B — B K43C — C

Test Voltage, DC or 60 Hz (Peak) -11 kV

Rated Operating Voltage (Peak) — DC or 60 Hz — 10 kV 2.5 MHz — 7 kV

16 MHz — 6 kV 32 MHz - 4 kV

Continuous Carry Current, Max. —

DC or 60 Hz - 25 A 2.5 MHz - 20 A 16 MHz — 13 A 32 MHz — 10 A Coil Hi-Pot (Vrms, 60 Hz) - 500 A

Contact Capacitance -

Between Open Contacts - 1.2 pF Open Contacts to Ground — 1.2 pF

Contact Resistance, Max. — 0.02 ohm
Operate Time, Max. — 10 ms
Release Time, Max. — 10 ms
Shock, 11ms, 1/2 Sine (Peak) — 50 g
Vibration —
Peak — 10 g (55 to 2000 Hz)
Operating Ambient Temperature Range — -55°C to +125°C
Mechanical Life — 2 million cycles
Weight, Nominal — 28.35 g (1 oz.)
*See page 7-87 for turret terminal dimensions and mounting methods.

Coil Data

Volts, Nominal DC	12 V	26.5 V	115 V
Pickup, Max.	8 Vdc	16 Vdc	80 Vdc
Dropout	.5-5 Vdc	1-10 Vdc	5-50 Vdc
Coil Resistance (±10%)	70 Ω	290 Ω	4700 Ω

Ratings listed are for 25°C, sea level conditions

Ordering Information

4 = Standard

For additional support numbers

please visit www.te.com

2 = Flanged

Catalog 5-1773450-5 Revised 3-13

Dimensions are shown for reference purposes only. Specifications subject to change.

Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666 7 - 69

www.te.com

K43 Series Make & Break Load Switching — 10 kV Relays (Continued)

.47 (11.9)

51 [13.0]

1.08 [27.4] 215 (23.85)

4X Ø.025 [.64] COIL TERMINALS EQ SP IN Ø.38 [9.7] BC

A2

.40 [10.2]

53 [1344] -

4X .61 [15.5]

KILOVAC K43P Make & Break Load Switching

Product Facts for K43P

- High power rating; 24 Amps DC continuous current carry
- Vacuum dielectric for power switching low current loads
- Low power consumption
- Fast operating: 5 millisecond operate time
- Meets requirements of MIL-R-83725

KILOVAC K43R Make & Break Load Switching

Product Facts for K43R

- Single pole, double throw contacts with latching actuator
- Vacuum dielectric for power switching low current loads
- Carries 6 Amps at 32 MHz
- Meets requirements of MIL-R-83725

Product Specifications for K43P and K43R Contact Arrangement — K43P — SPST-Latching K43R — SPDT-Latching **Contact Form** K43P — P K43R — R Test Voltage, DC or 60 Hz (Peak) -11 kV Rated Operating Voltage (Peak) -DC or 60 Hz - 10 kV 2.5 MHz - 7 kV 16 MHz — 6 kV 32 MHz — 4 kV Continuous Carry Current, Max. — DC or 60 Hz - 24 A 2.5 MHz - 16 A

16 MHz — 9 A 32 MHz — 6 A Coil Hi-Pot (Vrms, 60 Hz) - 500 A **Contact Capacitance** -

Between Open Contacts - 1.2 pF Open Contacts to Ground - 1.2 pF

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or 805-220-2055.

2X .40 (10.2)

2X .125 (3.18)

2X #.060 (1.52)

0.02 ohm Operate Time, Max. — K43P — 5 ms K43R — 6 ms Release Time, Max. — N/A Shock, 11ms, 1/2 Sine (Peak) -30 g

Vibration — Peak - 7 g (55 to 2000 Hz) **Operating Ambient Temperature Range** — -55°C to +125°C Mechanical Life — 1 million cycles 28.35 g (1 oz.)

*See page 7-87 for mounting

Contact Resistance, Max. —

Coil Data

Volts, Nominal	26.5 Vdc
Latch & Reset, Max.	16 Vdc
Dropout	N/A
Coil Resistance (±10%)	80 Ω
Ratings listed are for 25°	C, sea level

conditions

Ordering Information

2 = Flanged

4 = Standard

7-70

Catalog 5-1773450-5 Revised 3-13

to change.

Dimensions are shown for reference purposes only. Specifications subject

methods.

Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666 For additional support numbers please visit www.te.com

H-14/16 Series Make & Break Load Switching — 12 kV Relays

H-14

- Product Facts for H-14
- Double pole, double throw contacts
- Vacuum dielectric for power switching low current loads
- 30 Amps DC continuous current rating
- Corona shield high voltage terminals available
- Meets requirements of MIL-R-83725

¢1.50 (38.1) MAX

H-16

Product Facts for H-16

- 12 kV rating; isolates 5 kV at 32 MHz
- Vacuum dielectric for power switching low current loads
- Double pole, double throw contacts
- Widely used as a transmit/receive switch
- Meets requirements of MIL-R-83725

Product Specifications for

H-14 and H-16 Contact Arrangement — DPDT Contact Form - 2C Test Voltage, DC or 60 Hz (Peak) -15 kV Rated Operating Voltage (Peak) -DC or 60 Hz - 12 kV 2.5 MHz - 10 kV 16 MHz — 8 kV 32 MHz — 5 kV Continuous Carry Current, Max. — DC or 60 Hz - 30 A 2.5 MHz — H-14 — 15 A H-16 — 10 A — H-14 — 10 A 16 MHz -H-16 — 6 A 32 MHz — H-14 — 8 A H-16 — 4 A Coil Hi-Pot (Vrms, 60 Hz) - 500 A

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or 805-220-2055.

Contact Capacitance -Between Open Contacts — 1 pF Open Contacts to Ground — 2.5 pF Contact Resistance, Max. --H-14 — 0.015 ohm H-16 — 0.03 ohm Operate Time, Max. - 20 ms Release Time, Max. - 20 ms Shock, 11ms, 1/2 Sine (Peak) -20 g Vibration — Peak — 10 g (55 to 500 Hz) **Operating Ambient Temperature Range** — -55°C to +125°C **Mechanical Life** (Operations x 10⁶) -H-14 — 1 million cycles H-16 — 500,000 cycles Weight, Nominal — H-14 - 226.8 g (8 oz.) H-16 — 170.1 g (6 oz.)

Coil Data

12 Vdc	26.5 Vdc	115 Vdc
8 Vdc	16 Vdc	80 Vdc
.5-5 Vdc	1-10 Vdc	5-50 Vdc
24 Ω	120 Ω	2000 Ω
	8 Vdc .5-5 Vdc	8 Vdc 16 Vdc .5-5 Vdc 1-10 Vdc

Ratings listed are for 25°C, sea level conditions

Ordering Information

Sample Part Number 🕨		<u>H-</u>	<u>H- 14 /12Vdc</u>	
Series:				
Model: —				
14	16			
Coil Voltage:				
Blank = 26.5				
$/12Vdc = 12^{\circ}$	Vdc			

For additional support numbers

please visit www.te.com

/115Vdc = 115 Vdc

Catalog 5-1773450-5 Revised 3-13

Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666 KILOVAC High Voltage Relays

H-8 Make & Break Load Switching — 15 kV Relays

Product Facts

- Single pole, double throw contacts
- Vacuum dielectric for power switching low current loads
- 30 Amps DC continuous current rating
- Corona shield high voltage terminals available
- Meets requirements of MIL-R-83725

Product Specifications
Contact Arrangement — SPDT
Contact Form — C
Test Voltage, DC or 60 Hz (Peak) —
20 kV
Rated Operating Voltage (Peak) — DC or 60 Hz — 15 kV
2.5 MHz — 12 kV
16 MHz — 10 kV 32 MHz — 5 kV

Continuous Carry Current, Max. — DC or 60 Hz — 15 A RMS 2.5 MHz — 10 A RMS 16 MHz — 6 A RMS 32 MHz — 4 A RMS Coil Hi-Pot (Vrms, 60 Hz) — 500 A RMS Contact Capacitance — Between Open Contacts — 1 pF Open Contacts to Ground — 1.5 pF Contact Resistance, Max. — 0.015 ohm Operate Time, Max. — 15 ms Release Time, Max. — 15 ms Shock, 11ms, 1/2 Sine (Peak) — 30 g Vibration — Peak — 10 g (55 to 500 Hz) Operating Temperature Range — -55°C to +125°C Mechanical Life — 1 million cycles Weight, Nominal — 85 g (3 oz.)

Coil Data

Volts, Nominal DC	12 V	26.5 V	115 V
Pickup, Max.	8 Vdc	16 Vdc	80 Vdc
Dropout	.5-5 Vdc	1-10 Vdc	5-50 Vdc
Coil Resistance (±10%)	60 Ω	265 Ω	3500 Ω

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or 805-220-2055.

7-72

Catalog 5-1773450-5 Revised 3-13

www.te.com

Dimensions are shown for reference purposes only. Specifications subject to change. Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666 For additional support numbers please visit www.te.com

KC Series Make & Break Load Switching - 15 kV Relays

KC-14

GLAZED CERAMIC ENVELOPE a.75 (19.1) a.75 (19.1) a.75 (21.1) b.1.62 (41.1) c.1.62 (41.1) c.

KC-18

Product Facts for KC-14 and KC-18

- Specifically designed for load switching applications
- Can power switch and isolate loads
- Replaces KILOVAC KC-8 and KC-12
- Meets requirements of MIL-R-83725

Product Specifications for

Contact Arrangement — SPDT

Test Voltage, DC or 60 Hz (Peak) -

Rated Operating Voltage (Peak) -

Continuous Carry Current, Max. ---

Coil Hi-Pot (Vrms, 60 Hz) — 500 A Contact Capacitance —

Between Open Contacts — 0.5 pF Open Contacts to Ground — 1 pF

Contact Resistance, Max. —

Operate Time, Max. — 15 ms **Release Time, Max.** — 9 ms

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or

KC-14 and KC-18

Contact Form — C

DC or 60 Hz - 15 kV

DC or 60 Hz - 30 A

17 kV

Shock, 11ms, 1/2 Sine (Peak) -

Operating Ambient Temperature

Mechanical Life — 1 million cycles

Weight, Nominal — 85 g (3 oz.)

Peak — 10 g (55 to 500 Hz)

Range — -55°C to +125°C

50 g Vibration —

*Hot Switching, Resistive Load Life

Voltage	Current	Load Life Operations
330 Vdc	17 Amps	10,000
330 Vdc	5 Amps	100,000
5,000 Vdc	2 Amps	100,000
10,000 Vdc	1 Amps	50,000

*Ratings are for normally open contacts only. No testing has been performed on normally closed contacts.

Coil Data

Volts, Nominal DC	12 V	26.5 V	115 V
Pickup, Max.	8 Vdc	16 Vdc	80 Vdc
Dropout	.5-5 Vdc	1-10 Vdc	5-50 Vdc
Coil Resistance (±10%)	48 Ω	180 Ω	2900 Ω

Ratings listed are for 25°C, sea level conditions

Ordering Information

Sample Part Number ►
Series:
Model:
14
18

Blank = 26.5 Vdc /12Vdc = 12 Vdc /115Vdc = 115 Vdc

Catalog 5-1773450-5 Revised 3-13

805-220-2055.

Dimensions are shown for reference purposes only. Specifications subject to change. Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 For additional support numbers Asia Pacific: +86 0 400 820 6015 please visit www.te.com UK: +44 800 267 666 7–73

KC- 18 /12Vdc

0.025 ohm

UNA COMPTING

á

KC Series Make & Break Load Switching — 15 kV Relays (Continued)

KC-2

No Load Switching

Product Facts

- Vacuum dielectric for low and stable contact resistance
- Carries 50 Amps at DC; 10 Amps at 32 MHz
- Not designed for power switching

KC-8

Product Facts for KC-8

Not recommended for new design. See KC-14 on page 7-82 for replacement.

KC-11

No Load Switching

Product Facts

- Threaded base version of KC-2
- Vacuum dielectric for low leakage current applications

KC-12

Product Facts

- Not recommended for new design. See KC-18 on page 7-67 for replacement.
- Vacuum dielectric for power switching low current loads

Product Specifications for KC-2, KC-8, KC-11 and KC-12 Contact Arrangement — SPDT Contact Form — C Test Voltage, DC or 60 Hz (Peak) -

17 kV

Rated Operating Voltage (Peak) -DC or 60 Hz - 15 kV 2.5 MHz - KC-2 and KC-11 - 12 kV 16 MHz — KC-2 and KC-11 — 9 kV 32 MHz - KC-2 and KC-11 - 7 kV

Continuous Carry Current, Max. —

DC or 60 Hz - KC-2 and KC-11 - 50 A KC-8 and KC-12 - 30 A 2.5 MHz - KC-2 and KC-11 - 30 A 16 MHz — KC-2 and KC-11 — 17 A 32 MHz — KC-2 and KC-11 — 10 A Coil Hi-Pot (Vrms, 60 Hz) - 500 A

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or 805-220-2055.

reference purposes only.

Specifications subject

to change.

7-74

Catalog 5-1773450-5 Revised 3-13

Between Open Contacts - 0.5 pF Open Contacts to Ground - 1 pF Contact Resistance, Max. — KC-2 and KC-11 — 0.012 ohm KC-8 and KC-12 — 0.025 ohm Operate Time, Max. — 15 ms Release Time, Max. — 9 ms Shock, 11ms, 1/2 Sine (Peak) -50 g Vibration — Peak — 10 g (55 to 500 Hz) **Operating Ambient Temperature** Range — -55°C to +125°C Mechanical Life — 1 million cycles Weight, Nominal — 85 g (3 oz.)

Contact Capacitance -

Coil Data

.25 (6.4) MAX

Nominal Volts DC	12 Vdc	26.5 Vdc	115 Vdc
Pickup, Max.	8 Vdc	16 Vdc	80 Vdc
Dropout	.5-5 Vdc	1-10 Vdc	5-50 Vdc
Coil Resistance (±10%) KC-2 and KC-11 KC-8 and KC-12	60 Ω 48 Ω	250 Ω 180 Ω	3500 Ω 2900 Ω

1.61 (40.9) MAX

1.01 (25.7)

L- .42 (10.7)

#1.82 (46.2) MAX

8125-32 UNS-24

16 (4.1)

Ratings listed are for 25°C, sea level conditions

Ordering Information

Sample P	art Numbe	r 🕨	<u>KC- 2 /</u>	12Vdc
Series: -				
Model: - 2	8	11	12	
Coil Volt Blank = 2		/12Vdc = 12 Vdc	/115Vdc =	 115 Vdc

COM		
	3x e. 150 (3.81) 1.0.	
	CLAZED CEPANIC ENVELOPE	
		(46.2) AX . 14 (3.6)
9317	Ø.75 (19.1)	
1-1		ACED NC 2. 68' ±5'

1.00 (25.4)

www.te.com

Dimensions are in millimeters Dimensions are shown for unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666

KC Series Make Only Load Switching — 15 kV Relays (Continued)

KC-15

KC-16

Product Facts

■ 15 kV rating

MIL-R-83725

KC-15

- **Product Facts** SF-6 gas-filled for power switching on the "make"
- Long load life in capacitive discharge
- Recommended for ESD testing and safety interlock applications
- Meets requirements of MIL-R-83725

Threaded base version of

SF-6 gas-filled for power switching on the "make"

Meets requirements of

Product Specifications for KC-15 and KC-16 Contact Arrangement — SPDT Contact Form — C Test Voltage, DC or 60 Hz (Peak) -17 kV Rated Operating Voltage (Peak) -DC or 60 Hz - 15 kV Continuous Carry Current, Max. -DC or 60 Hz - 12 A Coil Hi-Pot (Vrms, 60 Hz) - 500 A Contact Capacitance -Between Open Contacts - N/A Open Contacts to Ground - N/A Contact Resistance, Max. — 1.0 ohm* Operate Time, Max. — 15 ms Release Time, Max. — 9 ms Shock, 11ms, 1/2 Sine (Peak) -50 g Vibration -Peak — 10 g (55 to 500 Hz)

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or 805-220-2055.

Operating Ambient Temperature Range — -55°C to +125°C Mechanical Life — 1 million cycles Weight, Nominal — 85 g (3 oz.)

Note:

*Contact resistance for gas-filled relays measured 28 Vdc, 1 Amp

Coil Data

on Data			
Volts, Nominal DC	12 V	26.5 V	115 V
Pickup, Max.	8 Vdc	16 Vdc	80 Vdc
Dropout	.5-5 Vdc	1-10 Vdc	5-50 Vdc
Coil Resistance (±10%)	48 Ω	180 Ω	2900 Ω

Ratings listed are for 25°C, sea level conditions

Ordering Information

KILOVAC High Voltage Relays

7-75

Catalog 5-1773450-5 Revised 3-13

www.te.com

Dimensions are shown for reference purposes only. Specifications subject to change.

Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666

H-26 Series Make & Break Load Switching — 15 kV Relays

Product Facts

- Highly reliable four pole double throw relay
- Used to switch multiple loads and for polarity reversal
- Vacuum dielectric for power switching low current loads
- Meets requirements of MIL-R-83725

Product Specifications	Cor
Contact Arrangement — 4PDT	Bet
Contact Form — 4C	Оре
Test Voltage, DC or 60 Hz (Peak) — 17 kV	Coi 0.02
Rated Operating Voltage (Peak) — DC or 60 Hz — 15 kV	Op Rel
2.5 MHz — 12 kV 16 MHz — 10 kV	Sho 30 g
32 MHz — 7 kV Continuous Carry Current, Max. —	Vib Pea
DC or 60 Hz — 30 A 2.5 MHz — 10 A 16 MHz — 6 A 32 MHz — 4 A Coil Hi-Pot (Vrms, 60 Hz) — 500 A	Ope Rai Me We

Contact Capacitance — Between Open Contacts — 1 pF Open Contacts to Ground — 2.5 pF Contact Resistance, Max. — 1.02 ohm Operate Time, Max. — 30 ms Release Time, Max. — 30 ms Shock, 11ms, 1/2 Sine (Peak) — 30 g //ibration — Peak — 10 g (55 to 500 Hz) Operating Ambient Temperature Range — -55°C to +125°C Mechanical Life — 100,000 cycles Weight, Nominal — 340 g (12 oz.)

Coil Data

Volts, Nominal DC	12 V	26.5 V	115 V
Pickup, Max.	8 Vdc	16 Vdc	80 Vdc
Dropout	.5-5 Vdc	1-10 Vdc	5-50 Vdc
Coil Resistance (±10%)	N/A	130 Ω	2100 Ω

Ratings listed are for 25°C, sea level conditions

Ordering Information

Sample Part Number	H-26 /12Vdc
Model:	
Coil Voltage: Blank = 26.5 Vdc /12Vdc = 12 Vdc /115Vdc = 115 Vdc	

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or 805-220-2055.

7-76

Catalog 5-1773450-5 Revised 3-13

www.te.com

Dimensions are shown for reference purposes only. Specifications subject to change. Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666

H-19/17 Series Make & Break Load Switching — 20/25 kV Relays

¢1.80 (45.7) MAX

4 4 **.**

2X .25 (6.4) MAX

1.375-32 UNS-2A

2.60 (66.0) MAX

3.07 (78.0)

MAX

6X 60

(57.9) MAX

6X .175

(44.5) MAX

H-19 **Product Facts**

- 20 kV operating voltage
- Vacuum dielectric and tungsten contacts for power switching low current loads
- Double pole, double throw contacts
- Available with corona shield connectors
- Meets requirements of MIL-R-83725

H-17

Product Facts

- Will isolate 12 kV at 32 MHz
- Tungsten contacts suitable for power switching low current loads
- Available with corona shield connectors
- Meets requirements of MIL-R-83725
- QPL version available, M83725/2

Product Specifications for

Contact Arrangement —

DC or 60 Hz — H-19 — 20 kV

2.5 MHz - H-19 - 15 kV

16 MHz — H-19 — 10 kV

32 MHz — H-19 — 7 kV

2.5 MHz — H-19 — 18 A

DC or 60 Hz - 30 A

H-17 - 25 kV

H-17 - 20 kV

H-17 — 15 kV

H-17 — 12 kV

H-17 — 16 A

dial 800-253-4560, ext. 2055, or

H-19 and H-17

Contact Form —

H-19 — DPDT H-17 — SPDT

H-19 — 2C

H-17 — C

H-19 — 25 kV

H-17 — 30 kV

H-17 — 10 A — H-19 — 6 A 32 MHz -H-17 — 8 A Coil Hi-Pot (Vrms, 60 Hz) - 500 A Contact Capacitance — Between Open Contacts — 1 pF Open Contacts to Ground - 2.5 pF Contact Resistance, Max. -Test Voltage, DC or 60 Hz (Peak) -0.015 ohm Operate Time, Max. — H-19 — 30 ms Rated Operating Voltage (Peak) -H-17 — 25 ms Release Time, Max. — H-19 - 20 ms H-17 - 25 ms Shock, 11ms, 1/2 Sine (Peak) -H-19 — 30 g H-17 — 20 g Vibration -Continuous Carry Current, Max. -Peak — 10 g (55 to 500 Hz) **Operating Ambient Temperature** Range — -55°C to +125°C Mechanical Life — 1 million cycles Weight, Nominal — For factory-direct application assistance,

16 MHz — H-19 — 9 A

H-19 - 241 g (8.5 oz.) H-17 — 198.4 g (7 oz.)

Coil Data

Nominal Volts DC	12 Vdc	26.5 Vdc	115 Vdc
Pickup, Max.	8 Vdc	16 Vdc	80 Vdc
Dropout	.5-5 Vdc	1-10 Vdc	5-50 Vdc
Coil Resistance (±10%) H-19 H-17	48 Ω 24 Ω	225 Ω 120 Ω	2100 Ω 2900 Ω

Ordering Information

17 /12Vdc Sample Part Number H-Series: -Model: H-19 H-17 Coil Voltage: Blank = 26.5 Vdc /12Vdc = 12Vdc/115Vdc = 115 Vdc

For additional support numbers

please visit www.te.com

Catalog 5-1773450-5 Revised 3-13

805-220-2055.

Dimensions are shown for reference purposes only. Specifications subject to change.

Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666

KILOVAC High Voltage Relays

7-77

Ratings listed are for 25°C, sea level conditions

K62 Series Make & Break Load Switching - 25 kV Relays

Coil Data

Volts, Nominal DC

Coil Resistance (±10%)

Ordering Information

Sample Part Number

7 = 12 Vdc, Turret Terminal

8 = 26.5 Vdc, Turret Terminal

9 = 115 Vdc, Turret Terminal

High Voltage Connections: 4 = Flying Leads, 12" 7 = Flying Leads, 72" 8 = Flying Leads, 36"

Ratings listed are for 25°C, sea level conditions

Pickup, Max.

Dropout

Series:

Contact Form:

Coil Voltage: -

A = SPST-NO

Mounting:

1 = Threaded

K62A and K62B Product Facts

- 25 kV relay with flying leads for ease of installation
- Vacuum dielectric and tungsten contacts for power switching low current loads
- Meets requirements of MIL-R-83725

K62C

Product Facts

- SPDT version of K62
- Vacuum dielectric for power switching low current loads
- Carries 18 Amps continuous current
- Meets requirements of MIL-R-83725

20 q

Vibration —

Shock, 11ms, 1/2 Sine (Peak) -

Operating Ambient Temperature

Mechanical Life — 1 million cycles

Weight, Nominal — 340 g (12 oz.)

Peak — 10 g (55 to 500 Hz)

Range — -55°C to +85°C

12 V

9 Vdc

.5-5 Vdc

30 Ω

B = SPST-NC

26.5 V

18 Vdc

1-10 Vdc

125 Ω

C = SPDT

115 V

90 Vdc

5-55 Vdc

2400 Ω

K62 A 7 4 1

Product Specifications for K62A, K62B and K62C

Contact Arrangement — K62A — SPST-NO K62B — STST-NC K62C — SPDT

Contact Form K62A — A

K62B — B K62C — C

Test Voltage, DC or 60 Hz (Peak) — 30 kV

Rated Operating Voltage (Peak) — DC or 60 Hz — 25 kV

Continuous Carry Current, Max. —

DC or 60 Hz — 18 A Coil Hi-Pot (Vrms, 60 Hz) — 500 A Contact Resistance, Max. — 0.50 ohm Operate Time, Max. — 15 ms

Release Time, Max. — 15 ms

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or 805-220-2055.

7–78

Catalog 5-1773450-5 Revised 3-13

Revised 3-13 reference purposes only. Specifications subject www.te.com to change.

Dimensions are shown for

Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666

KC-Series No Load Switching — 25 kV Relays

KC-20 **Product Facts**

- Rugged, high current carry ceramic relay
- Carries 30 Amps at 32 MHz
- Copper contacts; not designed for power switching
- Meets requirements of MIL-R-83725

KC-30 Product Facts

- Normally closed version of KC-20
- Carries 55 Amps DC
- Vacuum dielectric for low leakage current applications

Product Specifications for KC-20 and KC-30

Contact Arrangement -KC-20 — SPST-NO KC-30 — SPST-NC

Contact Form KC-20 — X

KC-30 — Y

Test Voltage, DC or 60 Hz (Peak) -KC-20 — 30 kV KC-30 — 28 kV

Rated Operating Voltage (Peak) -DC or 60 Hz - KC-20 - 28 kV

KC-30 - 25 kV 2.5 MHz - 22 kV 16 MHz - KC-20 — 12 kV KC-30 - 10 kV 32 MHz — KC-20 — 10 kV KC-30 — 9 kV Continuous Carry Current, Max. —

DC or 60 Hz — KC-20 — 110 A KC-30 — 55 A 2.5 MHz - KC-20 - 60 A KC-30 - 30 A

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or 805-220-2055.

16 MHz — KC-20 — 40 A KC-30 — 20 A KC-20 - 30 A 32 MHz KC-30 - 15 A Coil Hi-Pot (Vrms, 60 Hz) - 500 A Contact Capacitance -Between Open Contacts — 2.5 pF Open Contacts to Ground - 2.5 pF Contact Resistance, Max. ---KC-20 — 0.005 ohm KC-30 — 0.01 ohm Operate Time, Max. — 18 ms Release Time, Max. — KC-20 - 10 ms KC-30 - 20 ms Shock, 11ms, 1/2 Sine (Peak) -30 g Vibration — Peak — 10 g (55 to 500 Hz) **Operating Ambient Temperature Range** — -55°C to +125°C Mechanical Life — 2 million cycles Weight, Nominal — 340 g (12 oz.)

Coil Data

Volts, Nominal DC	12 V	26.5 V	115 V
Pickup, Max.	8 Vdc	16 Vdc	80 Vdc
Dropout	.5-5 Vdc	1-10 Vdc	5-50 Vdc
Coil Resistance (±10%)	24 Ω	120 Ω	2000 Ω

Ratings listed are for 25°C, sea level conditions

Ordering Information

KILOVAC High Voltage Relays

Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666

Revised 3-13 www.te.com

Catalog 5-1773450-5

Dimensions are shown for

For additional support numbers

please visit www.te.com

7-79

KC-Series — 25 kV Relays

KC-22, KC-32 Make & Break Load Switching

Product Facts for KC-22

Tungsten contacts for power switching

Product Facts for KC-32

- Normally closed version of KC-22
- Vacuum dielectric for power switching low current loads

KC-28, KC-38 Make Only Load Switching

Product Facts for KC-28

- SF-6 gas-filled for capacitive discharge and "make only" applications
- Capable of switching 2000 Amps peak capacitive discharge for 400 nanoseconds

Product Facts for KC-38

- Normally closed version of KC-28
- SF-6 gas-filled for capacitive discharge and "make only" applications

Product Specifications for KC-22, KC-32, KC-28 & KC-38 **Contact Arrangement -**KC-22 and KC-28 — SPST-NO KC-32 and KC-38 - SPST-NC

Contact Form -KC-22 and KC-28 - X KC-32 and KC-38 - Y Test Voltage, DC or 60 Hz (Peak) -

28 kV Rated Operating Voltage (Peak) -

DC or 60 Hz - 25 kV

Continuous Carry Current, Max. — DC or 60 Hz — KC-22 — 65 A KC-33 — 45 A KC-28 — 30 A KC-38 - 15 A Coil Hi-Pot (Vrms, 60 Hz) - 500 A

Contact Capacitance — Between Open Contacts -KC-22 and KC-32 - 2.5 pF Open Contacts to Ground -KC-22 and KC-32 — 2.5 pF

Ordering Information

Sample Part Number

Series:

Model:

Coil Voltage:

Blank = 26.5 Vdc

KC-22

Contact Resistance, Max. — KC-22 — 0.005 ohm KC-33 — 0.01 ohm KC-28 — 1.0 ohm* KC-38 - 1.0 ohm*

Operate Time, Max. — 18 ms Release Time, Max. — KC-22 and KC-28 — 10 ms KC32 and KC-38 - 20 ms Shock, 11ms, 1/2 Sine (Peak) -30 g Vibration -Peak — 10 g (55 to 500 Hz) **Operating Ambient Temperature** Range — -55°C to +125°C Mechanical Life — 2 million cycles

Weight, Nominal — 340 g (12 oz.)

KC- 22 /12Vdc

KC-38

/115Vdc = 115 Vdc

Coil Data

Volts, Nominal DC	12 V	26.5 V	115 V
Pickup, Max.	8 Vdc	16 Vdc	80 Vdc
Dropout	.5-5 Vdc	1-10 Vdc	5-50 Vdc
Coil Resistance (±10%)	24 Ω	120 Ω	2000 Ω

Dimensions are shown for

Ratings listed are for 25°C, sea level conditions

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or 805-220-2055.

7-80

Catalog 5-1773450-5 Revised 3-13

reference purposes only. Specifications subject to change.

Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666

KC-32

For additional support numbers please visit www.te.com

KC-28

/12Vdc = 12Vdc

H-23/24 Series Make & Break Load Switching — 30 kV Relay

(Not recommended for new designs)

Product Facts

- See K61 or K62 series for latest generation products
- Vacuum dielectric for power switching low current loads

Product Specifications Contact Arrangement — H-23 — SPST-NC H-24 — SPST-NO	0 E C
Contact Form — H-23 — B H-24 — A	0 0 F
Test Voltage, DC or 60 Hz (Peak) — 35 kV	S 2
Rated Operating Voltage (Peak) — DC or 60 Hz — 30 kV 2.5 MHz — 24 kV 16 MHz — 18 kV 32 MHz — 7 kV	V P C F
Continuous Carry Current, Max. — DC or 60 Hz — 30 A 2.5 MHz — 20 A 16 MHz — 12 A 32 MHz — 7 A Coil Hi-Pot (Vrms, 60 Hz) — 500 A	N

Contact Capacitance — Between Open Contacts — N/A Open Contacts to Ground - N/A Contact Resistance, Max. — 0.015 ohm Operate Time, Max. — 30 ms Release Time, Max. - 20 ms Shock, 11ms, 1/2 Sine (Peak) -20 g Vibration — Peak — 10 g (55 to 500 Hz) **Operating Ambient Temperature** Range — -55°C to +125°C Mechanical Life — 1 million cycles

Weight, Nominal — 198.4 g (7 oz.)

Coil Data

Volts, Nominal DC	12 V	26.5 V	115 V
Pickup, Max.	8 Vdc	16 Vdc	80 Vdc
Dropout	.5-5 Vdc	1-10 Vdc	5-50 Vdc
Coil Resistance (±10%)	24	120 Ω	2000 Ω

Ratings listed are for 25°C, sea level conditions

Ordering Information

/12Vdc = 12Vdc

/115Vdc = 115 Vdc

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or 805-220-2055.

Catalog 5-1773450-5 Revised 3-13

Specifications subject to change.

Dimensions are shown for Dimensions are in millimeters reference purposes only. unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666 For additional support numbers

7–81

please visit www.te.com

www.te.com

KP61 Series — 35 kV Relays

Product Facts

- SF-6 gas-filled relay is excellent for capacitive discharge applications
- Widely used in test equipment and medical instruments
- Fully operable in air and suitable for adverse environments
- Contact forms A, B & C
- 35 kV rating in compact, durable package
- Lower cost version of K61 series

Dimensions in Inches folerances Except as Noted $.xx = \pm .03$ $.xx = \pm .010$ $\angle x^{\circ} = \pm 5^{\circ}$ DO NOT SCALE DWG.

То

Product Specifications Contact Arrangement/Form — SPST-NO / A SPST-NC / B SPDT / C Test Voltage, DC or 60 Hz (Peak) — 40 kV Rated Operating Voltage (Peak) — DC or 60 Hz — 35 V Continuous Carry Current, Max. — DC or 60 Hz — 10 A Contact Resistance, Max. — 1.0Ω Shock, 11ms, 1/2 Sine (Peak) — 20 g Vibration — Peak — 10 g (55 to 500 Hz) Operating Ambient Temperature Range — -55°C to +85°C Mechanical Life — 1 million cycles Weight, Nominal — 297.7g (10.5 oz.)

Coil Data

Volts, Nominal DC	12 V	26.5 V	115 V
Pickup, Max.	30 Vdc	125 Vdc	2000 Vdc
Dropout	.5-5 Vdc	1-10 Vdc	5-50 Vdc
Coil Resistance (±10%)	24	120 Ω	2000 Ω

Ratings listed are for 25°C, sea level conditions

Ordering Information

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or 805-220-2055.

7-82

Catalog 5-1773450-5 Revised 3-13

www.te.com

Dimensions are shown for

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666

K60 Series Make Only Load Switching — 35 kV Relays

K60C (35 kV)* Product Facts

- 35 kV rating when operated in oil or potting
- Smallest 35 kV rated relay available
- *Customer must isolate high voltage terminals using suitable dielectric such as oil or potting

Product Specifications Contact Arrangement — SPDT Contact Form — C Test Voltage, DC or 60 Hz (Peak) — 37 kV** Rated Operating Voltage (Peak) — DC or 60 Hz — 35 kV** Continuous Carry Current, Max. — DC or 60 Hz — 10 A RMS Coil Hi-Pot (Vrms, 60 Hz) — 500 A RMS Contact Resistance, Max. — N/A Operate Time, Max. — 15 ms Release Time, Max. — 15 ms

Shock, 11ms, 1/2 Sine (Peak) — 20 g Vibration — Peak — 10 g (55 to 500 Hz) Operating Ambient Temperature Range — -55°C to +85°C Mechanical Life — 1 million cycles Weight, Nominal — 93.6 g (3.3 oz.)

Note:

*37 kV test voltage, 35 kV operate voltage when operated in oil.

Coil Data

Volts, Nominal DC	12 V	26.5 V	115 V
Pickup, Max.	9 Vdc	18 Vdc	90 Vdc
Coil Resistance (±10%)	30 Ω	125 Ω	2400 Ω

Ratings listed are for 20°C, sea level conditions

Catalog 5-1773450-5 Revised 3-13

www.te.com

Dimensions are shown for reference purposes only. Specifications subject to change. Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 For additional support n Asia Pacific: +86 0 400 820 6015 please visit www.te.com UK: +44 800 267 666

For additional support numbers

K61 Series Make Only Load Switching — 35 kV Relays

K61A and K61B **Product Facts for** K61A and K61B

- SF-6 gas-filled relay excellent for capacitive discharge applications
- Widely used in test equipment and medical instruments
- Fully operable in air and suitable for adverse environments

2X, HIGH VOLTAGE LEAD 12.00 (304.8) MIN 2.00 (50.8) (\circ) ¢2.00 (50.8) 88 (22.4) MAX HEX NUT (2) AND LOCKWASHER FILE .38 (9.7) 8125-32 UNS-2A Ŧ 2X .25 (6.4) MAX

K61C

- Product Facts for K61C
- 35 kV rating in compact, durable package
- SF-6 gas-filled relay excellent for capacitive discharge applications
- SPDT version of K61

Product Specifications for K61A, K61B and K61C

Contact Arrangement -K61A — SPST-NO K61B — STST-NC K61C — SPDT Contact Form

K61A — A K61B — B K61C — C

Test Voltage, DC or 60 Hz (Peak) -40 kV

Rated Operating Voltage (Peak) -DC or 60 Hz - 35 kV Continuous Carry Current, Max. ---DC or 60 Hz — 10 A

Coil Hi-Pot (Vrms, 60 Hz) - 500 A Contact Resistance, Max. ---

1.0 ohm*

Operate Time, Max. — 15 ms

Release Time, Max. — 15 ms Shock, 11ms, 1/2 Sine (Peak) -20 g

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or 805-220-2055.

7-84

Catalog 5-1773450-5 Revised 3-13

Vibration — Peak — 10 g (55 to 500 Hz) **Operating Ambient Temperature Range** — -55°C to +85°C Mechanical Life — 1 million cycles Weight, Nominal — 340 g (12 oz.)

Note:

*Contact resistance for gas-filled relays measured at 28 Vdc, 1 Amp

Coil Data

Volts, Nominal DC	12 V	26.5 V	115 V
Pickup, Max.	9 Vdc	18 Vdc	90 Vdc
Dropout	.5-5 Vdc	1-10 Vdc	5-50 Vdc
Coil Resistance (±10%)	30 Ω	125 Ω	2000 Ω

Ratings listed are for 25°C, sea level conditions

Ordering Information

Sample Part Num	ber 🕨	<u>K61 A 7 4 1</u>
Series: ———		
Contact Form: A = SPST-NO	B = SPST-NC	C = SPDT
Coil Voltage: — 7 = 12 Vdc, Turre 8 = 26.5 Vdc, Tu 9 = 115 Vdc, Tur	rret Terminal	
High Voltage Co 4 = Flying Leads 7 = Flying Leads 8 = Flying Leads	, 12" , 72"	
Mounting:		

1 = Threaded

Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666

For additional support numbers please visit www.te.com

www.te.com

Dimensions are shown for reference purposes only. Specifications subject to change.

Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752

K64 & H-25 Series — 50 kV Relays

K64C

Make Only Load Switching

- **Product Facts for K64C**
- SF-6 gas-filled relay ideal for high voltage isolation or "make only" power switching
- 50 kV rating in compact package
- High voltage leads and encapsulation allow full operation in air

H-25 Make & Break Load Switching

Product Facts for H-25

- Vacuum relay provides low contact resistance
- Vacuum dielectric for power switching low current loads

Product Specifications for K64C and H-25 Contact Arrangement — SPDT Contact Form — C Test Voltage, DC or 60 Hz (Peak) -K64C — 55 kV H-25 — 60 kV Rated Operating Voltage (Peak) -DC or 60 Hz - 50 kV Continuous Carry Current, Max. — DC or 60 Hz — K64C — 10 A H-25 — 30 A Coil Hi-Pot (Vrms, 60 Hz) - 500 A Contact Resistance, Max. -K64C - 1.0 ohm* H-25 - 0.015 ohm

Operate Time, Max. — K64C — 15 ms H-25 — 60 ms Release Time, Max. — K64C — 15 ms H-25 — 60 ms

For factory-direct application assistance. dial 800-253-4560, ext. 2055, or 805-220-2055.

Shock, 11ms, 1/2 Sine (Peak) -K64C — 10 g H-25 — 15 g Vibration -Peak — 10 g (55 to 500 Hz) **Operating Ambient Temperature** Range — -55°C to +85°C Mechanical Life -K64C — 1 million cycles H-25 —500,000 cycles Weight, Nominal -K64C — 340 g (12 oz.) H-25 — 850.5 g (30 oz.)

P/N H

Note:

*Contact resistance for gas-filled relays measured at 28 Vdc, 1 Amp

Coil Data

	K64C	H-25
Nominal Volts DC	26.5 Vdc	26.5 Vdc
Pickup, Max.	18 Vdc	16 Vdc
Dropout	1-10 Vdc	1-10 Vdc
Coil Resistance (±10%)	80 Ω	120 Ω

Ratings listed are for 25°C, sea level conditions

Ordering Information

1 = Threaded

Catalog 5-1773450-5 Revised 3-13

reference purposes only. Specifications subject to change.

Dimensions are shown for

Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666

www.te.com

please visit www.te.com

For additional support numbers

7-85

K70 Series Make Only Load Switching - 70 kV Relays

K70A and K70B Product Facts

- New, small, compact 70 kV relay package
- SF-6 gas-filled for capacitive discharge and high voltage isolation applications
- Suitable for charging and discharging of high voltage capacitors
- Safe for use in adverse environments

K70C Product Facts

- SPDT version of K70A
- SF-6 gas-filled for capacitive discharge and high voltage isolation applications
- Suitable for charging and discharging of high voltage capacitors

Product Specifications for K70A, K70B and K70C Contact Arrangement —

K70A — SPST-NO K70B — SPST-NC

K70C — SPDT

Contact Form K70A — A K70B — B

K70C — C

Test Voltage, DC or 60 Hz (Peak) — 75 kV Rated Operating Voltage (Peak) — DC — 70 kV

60 Hz RMS — 30 kV Continuous Carry Current, Max. — DC or 60 Hz — 10 A Coil Hi-Pot (Vrms, 60 Hz) — 500 A

Contact Capacitance —

Between Open Contacts — N/A Open Contacts to Ground — N/A **Contact Resistance, Max.** — 2.0 ohm*

2.0 0nm^{*} For factory-direct applicati

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or 805-220-2055.

7–86

Catalog 5-1773450-5 Revised 3-13 Operate Time, Max. — 20 ms Release Time, Max. — 15 ms Shock, 11ms, 1/2 Sine (Peak) — 20 g Vibration — Peak — 10 g (55 to 500 Hz) Operating Ambient Temperature Range — 0°C to +85°C Mechanical Life —500,000 cycles Weight, Nominal — 510.3 g (18 oz.)

Note:

*Contact resistance for gas-filled relays measured at 28 Vdc, 1 Amp

Coil Data

Volts, Nominal	26.5 Vdc
Pickup, Max.	22 Vdc
Dropout	1-10 Vdc
Coil Resistance (±10%)	75 Ω
Ratings listed are for 25°C	C, sea level

Ratings listed are for 25°C, sea leve conditions

Ordering Information

Sample Part Number Series: Contact Form: A = SPST-NO B = SPST-NC C = SPDTCoil Voltage: 8 = 26.5 Vdc, Turret Terminal High Voltage Connections: 4 = Flying Leads, 12" 7 = Flying Leads, 72" 8 = Flying Leads, 36"Mounting: A = SPST-NC

1 = Threaded

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666 For additional support numbers please visit www.te.com

www.te.com

reference purposes only. Specifications subject to change. Dimensions are in millimeters unless otherwise specified.

I = INFEADED

-

Dimensions are shown for

Mounting Methods

KILOVAC "stacked ceramic" series relays can be easily mounted in any of the several ways shown below. The relay base should be mounted to a ground

potential for high voltage applications. KILOVAC relays are not position sensitive and can be mounted in any orientation.

Optional Coil Turret Terminals for PD5, PD10; K41, K43 Types

Figure 1.

Standard Flange Mounting

Optional Flange Mounting for K44

Figure 2.

Spring Clip Mounting

Optional Flange Mounting for

Figure 5. Seastrom Manufacturing (800/447-3927 or 208/737-4300) Part Number 4502-53-50-2N or similar.

Strap Mounting

9320010 (stainless & silicone)

9320002 (carbon steel & neoprene)

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or 805-220-2055.

Catalog 5-1773450-5 Revised 3-13

to change.

Dimensions are shown for reference purposes only. Specifications subject

Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666 KILOVAC High Voltage Relays

7-87

For additional support numbers please visit www.te.com

www.te.com

Special Connectors

Optional High Voltage Connectors

A number of KILOVAC relays are available with special, anti-corona high voltage connectors. Refer to the chart to determine if high voltage connectors are available for your model relay. These connectors can be ordered separately, by part number, or at the same time you order your relays (for "H: relays only) by simply adding the letter "C" to the part number. For instance, if you wish to purchase an H-8 relay with special connectors, you should order an "H-8C" If you already have an H-8, you can order three Part Number 0510 connectors and install them yourself by removing the standard solder lugs and carefully installing the connectors so as not to damage the glassto-metal seals.

Connectors for EV250-1A, 1B, 2A & 2B

TE supplies a connector with 7 leads attached. Order Part Number 2005, Part Number 1618004-1.

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or 805-220-2055.

7-88

Catalog 5-1773450-5 Revised 3-13

www.te.com

Dimensions are shown for reference purposes only. Specifications subject to change. Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666

Special Connectors (Continued)

Standard Lug Connectors Relay Model **Connector Part Number** H-18 0575 H-17 1447 KM-13 6810 H-14 H-16 H-19 8488 H-26

AC Coil Operation

All TE KILOVAC relays are supplied with a DC coil. If you wish to operate the relay with AC, you may order a bridge rectifier as Part Number 0260.

Bus Bar Connector Option for EV, LEV, CAP and MAP Products

For factory-direct application assistance, dial 800-253-4560, ext. 2055, or 805-220-2055.

Catalog 5-1773450-5 Revised 3-13

Dimensions are shown for reference purposes only. Specifications subject to change.

Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666

For additional support numbers please visit www.te.com

7-89

KILOVAC High Voltage Relays

Application Notes for EV/LEV Contactors

Introduction - Product Capabilities and Typical Applications

TE KILOVAC EV and LEV contactors are designed to be the highest performance, smallest and lightest weight, sealed High Voltage contactors in the industry. With current carrying capability of up to 500A and power switching up to 200kW, they are used in a variety of industrial, marine, automotive, and commercial applications. Primarily designed to switch resistive loads,they can be used in a variety of circuit applications bearing in mind a few important considerations. This application note focuses on a few of the more common circuit configurations, and what to consider when selecting, installing and using the contactors.

1. Installation

EV/LEV contactors can be mounted in any orientation, and due to the nature of their hermetic seal and isolated enclosure, can be mounted in close proximity to other equipment. However, care must be taken with regard to the termination of the power cables to the main terminals. It is important that the main power connection lugs are mated directly to the terminal seats. Be sure that the hardware stackup is in the proper order, and that washers and other spacers are not placed between the lug and terminal seat. Extraneous connection resistance can cause considerable power dissipation and terminal heating at high current carry.

Refer to Figure 1 and Table I for the recommended hardware stackup and torque.

Main Terminal Hardware Installation

Table I								
THREAD ENGAGEMENT(turns)	TORQUE							
Less than 5	Use longer fastener							
5 TO 7	7.9 Nm (70 in-lb) MAX							
7 TO 8	9.0 Nm (80 in-lb) MAX							
8 TO 11	9.0 Nm (80 in-lb)							
	11 Nm (100 in-lb) MAX							
Mounting Feet (all)	1.7-3.3 Nm (30-35 in-lb)							

Table I

Use the same guidelines and torque maximum values for stud terminal contactors as well.

2. Coils, Drive Circuits and Coil Economizing

Since the power required to close the contacts is generally much greater than the required holding power, many KILOVAC contactors can be packaged with low-profile coils that utilize either an electronic economizer (switchmode PWM), or mechanical cut-throat economizer. The economizer lets-through the higher power required for contact closure, then reduces the power for holding, greatly reducing the coil power consumption and heating. These circuits are packaged with the contactor, and in most cases include coil suppression components as well. For customers who wish to provide their own circuitry, TE can provide suggestions for driving the coils of all versions of contactors. Single coil, uneconomized products are also available in the LEV product line. These coils are designed to operate at nominal power over all specified voltage and temperature ranges withouteconomizing circuitry. DC Coils up to 400Vdc and AC coils with integrated converters are available up to 240Vac.

3. Load Types and Power Switching Recommendations

In general, all EV/LEV contactors are designed primarily for connection and interruption of resistive loads and slightly inductive loads (L/R<1ms). High currents (up to 2000A) can be interrupted in case of circuit faults, and high continuous currents upwards of 500A can be maintained through closed contacts. Some important points to consider are:

- Closing into current spikes due to uncharged filter capacitors. Capacitors should be pre-charged whenever possible to avoid excessive contact erosion and nuisance welds. Keep inrush current spikes below 650A at all times. Care should also be taken when considering other high-inrush loads such as lamps or motors.
- **b**. Large current spikes through closed contacts. Large current spikes through closed contacts in excess of 3000A can sometimes cause spot welding or contact levitation.
- **c.** Circuit inductance. Contactor break-arcs generally last as long as it takes to dissipate the stored inductive energy of the load (t (arc) = 1.1*L/R).

Longer arcs due to circuit inductance can accelerate contact wear, and in extreme cases, can cause contactor failure. TE recommends that the time constant of the load be less than 1ms for safe operation and maximum life.

Contactor life is a function of the power level switched. Higher make/break currents erode contact materials faster and accelerate loss of dielectric withstanding between the open contacts. Figure 2 can be used as a guideline for estimating product life at a given load.

7-90

Catalog 5-1773450-5 Revised 3-13

www.te.com

Dimensions are shown for reference purposes only. Specifications subject to change. Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666

Application Notes for EV/LEV Contactors (Continued)

Figure 2 Life Cycles vs. Power Switched

4. Recommended Conductor Sizes for Continuous Current Carry

Many sources exist for recommending the proper conductor size for a given current carry. Many of these sources are concerned primarily with wire insulation safety issues. Cable bundling, conduit types, length of runs, etc., are all important considerations. With regard to a contactor placed in line with the conductors, it is important to make sure that the wire size is sufficient such that the contactor terminals themselves do not overheat, leading to a failure of the device. In most cases, the primary path for removal of heat from the contactor terminals is the conductors themselves. Convection to atmosphere and conduction via the base mountings play a lesser role in this type of contactor due to the nature of the construction. TE has performed basic characterization of many of the styles of contactors discussed herein, and the data is presented in Figure 3. The recommended maximum power terminal temperature for all EV/LEV contactors is 150° C continuous and 175° C for 1 hour.

For applications requiring larger conductors than can practically be installed with single 4/0 AWG cable and lugs, adapter buss extensions can be obtained from TE.

5. Auxiliary Circuits

Auxiliary contacts are available on most models. Configurations available are: SPST-NO, SPST-NC and SPDT. Auxiliary contacts are rated at 125Vac/ 1A or 30Vdc/3A. Contacts with gold plating for low level loads are also available. For circuit voltage below 10V/0.1A, gold contacts are recommended.

The auxiliary contact actuating method will indicate the true position of the main contacts. The auxiliary contact actuation is directly coupled to the main contact moving bridge, and will not indicate "open" unless both contact gaps of the double-make, Form X contact are fully disconnected. Keep in mind that the auxiliary contact is mainly a status indication, and should not be used to directly power other loads such as a relay coil or high power lamp load.

6. Environmental Considerations

All KILOVAC contactors are characterized for operation in thermal, vibration, moisture and fluid environments. Consult the appropriate data sheet for limits concerning shock, vibration, temperature range and altitude limits. In some cases, there may be variations in limits with regard to "specified operation" or "survival only".

7. Custom Configurations

Most parts can be ordered with a variety of combinations of main terminal and coil configurations, auxiliary contacts, interface connectors, coil voltages, etc. If you have a requirement for a particular configuration not shown on the data sheet, consult the factory for information regarding custom configurations.

8. Summary

This Application Note is meant to address some of the more common questions regarding the use of EV/LEV contactors. In all cases, please refer to the applicable product data sheet for specific information. Also, Product Application Engineers are available to answer questions regarding these products by calling 800-253-4560 x2055, or 805-220-2055.

7-91

Catalog 5-1773450-5 Revised 3-13

Dimensions are shown for reference purposes only. Specifications subject to change. Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666 For additional support numbers please visit www.te.com

www.te.com

Application Notes for MAP/CAP Contactors

Introduction - Product Capabilities And Typical Applications

TE KILOVAC MAP/CAP contactors are designed to be the highest performance, smallest and lightest weight, sealed High Voltage contactors in the industry. With current carrying capability of up to 500A and power switching up to 200kW, they are used in a variety of commercial aerospace and military applications. Primarily designed to switch resistive loads, they can be used in a variety of circuit applications bearing in mind a few important considerations. This application note focuses on a few of the more common circuit configurations, and what to consider when selecting, installing and using the contactors.

1. Installation

TE KILOVAC MAP/CAP contactors can be mounted in any orientation, and due to the nature of their hermetic seal and isolated enclosure, can be mounted in close proximity to other equipment. However, care must be taken with regard to the termination of the power cables to the main terminals. It is important that the main power connection lugs are mated directly to the terminal seats. Be sure that the hardware stackup is in the proper order, and that washers and other spacers are not placed between the lug and terminal seat. Extraneous connection resistance can cause considerable power dissipation and terminal heating at high current carry. Refer to Figure 1 and Table I for the recommended hardware stackup and torque.

THREAD ENGAGEMENT(turns)	TORQUE
Less than 5	Use longer fastener
5 TO 7	7.9 Nm (70 in-lb) MAX
7 TO 8	9.0 Nm (80 in-lb) MAX
8 TO 11	9.0 Nm (80 in-lb)
	11 Nm (100 in-lb) MAX
Mounting Feet (all)	1.7-3.3 Nm (30-35 in-lb)

Table I

Use the same guidelines and torque maximum values for stud terminal contactors as well.

2. Coils, Drive Circuits and Coil Economizing

Since the power required to close the contacts is generally much greater than the required holding power, many contactors can be packaged with low-profile coils that utilize either an electronic economizer (switchmode PWM, electronic cut-throat), or mechanical cutthroat economizer. The economizer lets-through the higher power required for contact closure, then reduces the power for holding, greatly reducing the coil power consumption and heating. These circuits are packaged with the contactor, and in most cases include coil suppression components as well. For customers who wish to provide their own circuitry, TE can provide suggestions for driving the coils of all versions of contactors. Four types of actuators are typically used:

- a. Single Coil requiring customer economizer circuit
- b. Single Coil with supplied electronic economizer
- c. Dual Coil with supplied mechanical "cut-throat" economizer
- d. Dual Coil with supplied electrical "cut-throat" economizer

The advantages of each type of coil circuit are shown in Table II.

Туре	Advantage
Electronic PWM	Operates over widest
	voltage range
Electronic CT	Simple, Robust, EMC
	Compliant
Mechanical CT	Simple, robust, fastest
	operate time
Single Coil -	Flexibility, lower initial cost
(customer economized)	

Table II Coil Configurations

3. Load Types and Power Switching Recommendations

In general, all MAP/CAP contactors are designed primarily for connection and interruption of resistive loads and slightly inductive loads (L/R<1ms). High currents (up to 2000A) can be interrupted in case of circuit faults, and high continuous currents upwards of 500A can be maintained through closed contacts. Some important pints to consider are:

a. Closing into current spikes due to uncharged filter capacitors. Capacitors should be pre-charged whenever possible to avoid excessive contact erosion and nuisance welds. Keep inrush current spikes below 650A at all times. Care should also be taken when considering other high-inrush loads such as lamps or motors.

7–92

Catalog 5-1773450-5 Revised 3-13

Dimensions are shown for reference purposes only. Specifications subject to change. Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666

Application Notes for MAP/CAP Contactors (Continued)

- **b.** Large current spikes through closed contacts. Large current spikes through closed contacts in excess of 3000A can sometimes cause spot welding or contact levitation. Consult with the factory if your application requires passing large current pulses. Many contactors can be ordered with "Dual Contact" arrangements (Arcing contacts of harder material in parallel with high current carry material).
- **c.** Circuit inductance. Contactor break-arcs generally last as long as it takes to dissipate the stored inductive energy of the load (t (arc) = 1.1*L/R).

Longer arcs due to circuit inductance can accelerate contact wear, and in extreme cases, can cause contactor failure. TE recommends that the time constant of the load be less than 1ms for safe operation and maximum life.

Contactor life is a function of the power level switched. Higher make/break currents erode contact materials faster and accelerate loss of dielectric withstanding between the open contacts. Figure 2 can be used as a guideline for estimating product life at a given load.

Longer arcs due to circuit inductance can accelerate contact wear, and in extreme cases, can cause contactor failure. TE recommends that the time constant of the load be less than 1ms for safe operation and maximum life.

Contactor life is a function of the power level switched. Higher make/break currents erode contact materials faster and accelerate loss of dielectric withstanding between the open contacts. Figure 2 can be used as a guideline for estimating product life at a given load.

Figure 2 Life Cycle vs. Power Switched

4. Recommended Conductor Sizes for Continuous Current Carry

Many sources exist for recommending the proper conductor size for a given current carry. Many of these sources are concerned primarily with wire insulation safety issues. Cable bundling, conduit types, length of runs, etc., are all important considerations. With regard to a contactor placed in line with the conductors, it is important to make sure that the wire size is sufficient such that the contactor terminals themselves do not overheat, leading to a failure of the device. In most cases, the primary path for removal of heat from the contactor terminals is the conductors themselves. Convection to atmosphere and conduction via the base mountings play a lesser role in this type of contactor due to the nature of the construction. TE has performed basic characterization of many of the styles of contactors discussed herein, and the data is presented in Figure 3.

The recommended maximum power terminal temperature for all MAP/CAP contactors is 150° C continuous and 175° C for 1 hour.

For applications requiring larger conductors than can practically be installed with single 4/0 AWG cable and lugs, adapter buss extensions can be obtained from TE.

5. Auxiliary Circuits

Auxiliary contacts are available on most models. Configurations available are: SPST-NO, SPST-NC and SPDT. Auxiliary contacts are rated at 125Vac/ 1A or 30Vdc/3A. Contacts with gold plating for low level loads are also available. For circuit voltage below 10V/0.1A, gold contacts are recommended. The auxiliary contact actuating method will indicate the true position of the main contacts. The auxiliary contact actuation is directly coupled to the main contact moving bridge, and will not indicate "open" unless both contact gaps of the double-make, Form X contact are fully disconnected. Keep in mind that the auxiliary contact is mainly a status indication, and should not be used to directly power other loads such as a relay coil or high power lamp load.

For additional support numbers

please visit www.te.com

7-93

Catalog 5-1773450-5 Revised 3-13

Dimensions are shown for reference purposes only. Specifications subject to change. Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666

Application Notes for MAP/CAP Contactors (Continued)

6. Environmental Considerations

All TE KILOVAC contactors are characterized for operation in thermal, vibration, moisture and fluid environments. Consult the appropriate data sheet for limits concerning shock, vibration, temperature range and altitude limits. In some cases, there may be variations in limits with regard to "specified operation" or "survival only".

7. Custom Configurations

Most parts can be ordered with a variety of combinations of main terminal and coil configurations, auxiliary contacts, interface connectors, coil voltages, etc. If you have a requirement for a particular configuration not shown on the data sheet, consult the factory for information regarding custom configurations.

8. Summary

This Application Note is meant to address some of the more common questions regarding the use of MAP/CAP contactors. In all cases, please refer to the applicable product data sheet for specific information.

Also, Product Application Engineers are available to answer questions regarding these products by calling 800-253-4560 x2055, or 805-220-2055.

Application Notes on Coil Power Economizing using PWM Circuits

Introduction - Reducing Coil Power Dissipation through the use of PWM Circuits

The coil power of most TE KILOVAC Relays and Contactors can be reduced after Pickup by using several economizing schemes. One of the most popular methods used in many of our standard products, and one that is suitable for implementation by customers, is the Pulse Width Modulated (PWM) coil driver.

1. Typical PWM Coil Drive Circuit

Figure 1 shows a typical PWM coil drive/economizer circuit.

In the circuit shown, the "Fast Dropout" (FDO) and PWM driver are energized simultaneously for a sufficient time to allow the contacts to fully close. The PWM driver is then modulated such that the stored coil energy is utilized during the PWM driver "OFF" time to circulate holding current through the FDO driver and freewheeling diode. Since the holding current is much lower than the current required for pickup, the holding power for the contacts is greatly reduced.

The Fast Dropout circuit allows for the switching in/out of the "free-wheeling" diode. When power is removed, the FDO and PWM drivers will turn off, causing the stored energy of the coil to be rapidly dissipated in the body diodes. This minimizes the decay time of the coil current and facilitates a fast opening of the relay contacts.

Figure 1

Coil Drive Circuit

Catalog 5-1773450-5

Dimensions are shown for Revised 3-13 reference purposes only. Specifications subject to change.

Dimensions are in millimeters unless otherwise specified.

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666 For additional support numbers please visit www.te.com

7-94

Application Notes on Coil Power Economizing using PWM Circuits (Continued)

This fast opening is useful for circuit interruption, and it allows the over travel mechanism of the contact actuator to work effectively in breaking minor contact welds that may occur when closing the contacts.

Allowing the free-wheeling diode to remain across the coil would significantly increase the contact opening time and opening speed, and possibly result in nuisance contact welds and/or reduced capability to interrupt circuit currents.

If additional diodes are required to protect the FET body diodes, select a Transient Voltage Suppressor (TVS) diode with a breakdown rating lower than that of the driver FET body diode. In general, a higher voltage TVS diode will result in faster contact opening and higher clamping voltage, while a lower voltage TVS diode will result in slower contact opening and lower clamping voltage. For more detailed information regarding TVS diode selection, contact TE and request the report titled <u>DC Relay Magnetic Energy</u> <u>Determination and Transient Voltage suppressor Diode</u> <u>Selection</u>.

1.1 Recommended Operating Frequency and Duty Cycle

The frequency at which the PWM circuit is operated should be high enough such that the oscillation of the coil current does not lead to audible noise being generated by the magnetic components and coil winding. For most KILOVAC contactors, a coil drive frequency > 15 kHz is usually sufficient to ensure that nuisance audible noise is not generated. The PWM duty cycle required for economizing power while maintaining sufficient holding force can be calculated from the required holding current as follows:

Duty Cycle(%) = (Ihold*R(T)Coil/Vsource)*100 (1)

Where: R(T) = Coil Resistance at Temperature $I_{hold} = Required Holding Current$ $V_{source} = Source Voltage$ Contact TE regarding the minimum required hold current needed for a particular Part Number. In general, divide the specified dropout voltage by the coil resistance at 20° C, and add 25% above that to get an estimate of the value to use in equation (1) for I_{hold}.

2.0 Summary

This Application Note is meant to address some of the more common questions regarding the use of PWM circuits for coil power economization. In all cases, please refer to the applicable product data sheet for specific information.

TE can also recommend alternative solutions for mechanical dual-coil economizers, as well as "Electronic Cut-Throat" economizers. Product Application Engineers are available to answer questions regarding this subject by calling 800-253-4560 x2055, or 805-220-2055.

7-95

Catalog 5-1773450-5 Revised 3-13

USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666 For additional support numbers please visit www.te.com

www.te.com

Engineering Notes

					_											
											 				 	 _
																_
													 			 -
						_					 		 		 	 _
						_					 		 		 	 _
					+-+		\rightarrow		+	+ $+$ $+$					+ $+$ $+$	
					++				+							-
$\left - \right $			++	+			+		+	+ $+$ $+$		\vdash	 +	\vdash	+ + + +	
																_
									+							
					++		\rightarrow		+	+ $+$ $+$			 +	\vdash	+ + + +	
														\square		
					T											
		 + + +			+-+					 + + +		 	 + + -		 + + +	
					+		\rightarrow	+	+	+ $+$ $+$			+	\square	+	_
					+-+			+ +-	+					\vdash	+ + +	
					+-+									\square	+ $+$ $+$	
					+	\rightarrow								\square		
					++											-
- -		 + + +			++	+			+	+ $+$ $+$		 	 + + -	\vdash	 + + +	
			\rightarrow		+		\rightarrow		+					\square	+	_
	T					- I T										
$\left - \right $																
											Image: Sector					

7–96

Catalog 5-1773450-5 Revised 3-13 Dimensions are shown for reference purposes only. Specifications subject to change. USA: +1 800 522 6752 Asia Pacific: +86 0 400 820 6015 UK: +44 800 267 666