General Specifications X7R formulations are called "temperature stable" ceramics and fall into EIA Class II materials. X7R is the most popular of these intermediate dielectric constant materials. Its temperature variation of capacitance is within $\pm 15\%$ from -55°C to +125°C. This capacitance change is non-linear. Capacitance for X7R varies under the influence of electrical operating con-ditions such as voltage and frequency. X7R dielectric chip usage covers the broad spectrum of industrial applications where known changes in capacitance due to applied voltages are acceptable. #### PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION) | 0805 | <u>5</u> | <u>c</u> | 103 | <u>M</u> | <u>A</u> | <u>T</u> | <u>2</u> | <u>A</u> | |-----------|----------------------|------------|---------------------------------|---|------------------------|---|----------------------------|-------------------------| | Size | Voltage | Dielectric | Capacitance | Capacitance | Failure | Terminations | Packaging
2 = 7" Reel | Special | | (L" x W") | 4V = 4
6.3V = 6 | X7R = C | Code (In pF)
2 Sig. Digits + | Tolerance
J = ± 5%* | Rate
A = Not | T = Plated Ni and Sn
Z= FLEXITERM®** | 2 = 7 Reel
4 = 13" Reel | Code
A = Std. | | | 10V = Z
16V = Y | | Number of Zeros | K = ±10%
M = ± 20% | Applicable | *Optional termination | Contact | Product | | | 25V = 3 | | | IVI = ± 20 % | | **See FLEXITERM® | Factory For | | | | 50V = 5
100V = 1 | | | *≤1μF only, | | X7R section | Multiples | | | | 200V = 2
500V = 7 | | | contact factory fo
additional values | | | | | NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers. Contact factory for non-specified capacitance values. Variation of Impedance with Cap Value Impedance vs. Frequency 1,000 pF vs. 10,000 pF - X7R 0805 Variation of Impedance with Chip Size ## **Specifications and Test Methods** | Parame | ter/Test | X7R Specification Limits | Measuring Conditions | | | | | | | | |------------------------------|--------------------------|--|---|---|--|--|--|--|--|--| | Operating Tem | perature Range | -55°C to +125°C | Temperature (| Cycle Chamber | | | | | | | | Capac
Dissipati | itance
on Factor | Within specified tolerance ≤ 10% for ≥ 50V DC rating≤ 12.5% for 25V DC rating ≤ 12.5% for 25V and 16V DC rating ≤ 12.5% for ≤ 10V DC rating Contact Factory for DF by PN | Voltage: 1. | kHz ± 10%
0Vrms ± .2V
05Vrm @ 120Hz | | | | | | | | Insulation | Resistance | 100,000ΜΩ or 1000ΜΩ - μF,
whichever is less | Charge device with rated voltage for 120 ± 5 secs @ room temp/humidity | | | | | | | | | Dielectric | Strength | No breakdown or visual defects | seconds, w/charge and
to 50 m
Note: Charge device wi | % of rated voltage for 1-5
discharge current limited
IA (max)
th 150% of rated voltage
/ devices. | | | | | | | | | Appearance | No defects | | | | | | | | | | Resistance to | Capacitance
Variation | ≤ ±12% | Deflecti | on: 2mm | | | | | | | | Flexure
Stresses | Dissipation
Factor | Meets Initial Values (As Above) | Test Time: | 30 seconds | | | | | | | | | Insulation
Resistance | ≥ Initial Value x 0.3 | | | | | | | | | | Solder | ability | ≥ 95% of each terminal should be covered with fresh solder | | c solder at 230 ± 5°C
.5 seconds | | | | | | | | | Appearance | No defects, <25% leaching of either end terminal | | | | | | | | | | | Capacitance
Variation | ≤ ±7.5% | | | | | | | | | | Resistance to
Solder Heat | Dissipation
Factor | Meets Initial Values (As Above) | seconds. Store at roo | solder at 260°C for 60
m temperature for 24 ± | | | | | | | | Soluei rieat | Insulation
Resistance | Meets Initial Values (As Above) | 2hours before measuri | ng electrical properties. | | | | | | | | | Dielectric
Strength | Meets Initial Values (As Above) | | | | | | | | | | | Appearance | No visual defects | Step 1: -55°C ± 2° | 30 ± 3 minutes | | | | | | | | | Capacitance
Variation | ≤ ±7.5% | Step 2: Room Temp | ≤ 3 minutes | | | | | | | | Thermal Shock | Dissipation
Factor | Meets Initial Values (As Above) | Step 3: +125°C ± 2° | 30 ± 3 minutes | | | | | | | | | Insulation
Resistance | Meets Initial Values (As Above) | Step 4: Room Temp | ≤ 3 minutes | | | | | | | | | Dielectric
Strength | Meets Initial Values (As Above) | Repeat for 5 cycles and measure after 24 ± 2 hours at room temperature | | | | | | | | | | Appearance | No visual defects | _ | | | | | | | | | | Capacitance
Variation | ≤ ±12.5% | test chamber set at 125 | rated voltage (≤ 10V) in
5°C ± 2°C for 1000 hours | | | | | | | | | Dissipation
Factor | ≤ Initial Value x 2.0 (See Above) | , | 8, -0) | | | | | | | | Load Life | Insulation
Resistance | ≥ Initial Value x 0.3 (See Above) | but there are exceptions | est voltage will be 2xRV
s (please contact AVX for
on exceptions) | | | | | | | | | Dielectric
Strength | Meets Initial Values (As Above) | Remove from test cham | ber and stabilize at room
hours before measuring. | | | | | | | | | Appearance | No visual defects | | | | | | | | | | | Capacitance
Variation | ≤ ±12.5% | | set at 85°C ± 2°C/ 85% ± 1000 hours (+48, -0) with | | | | | | | | Load
Humidity | Dissipation
Factor | ≤ Initial Value x 2.0 (See Above) | rated volta | ge applied. | | | | | | | | riamunty | Insulation
Resistance | ≥ Initial Value x 0.3 (See Above) | Remove from chamber and stabilize at room temperature and humidity for 24 ± 2 hours before measuring. | | | | | | | | | | Dielectric
Strength | Meets Initial Values (As Above) | | | | | | | | | ## **Capacitance Range** ### **PREFERRED SIZES ARE SHADED** | SIZE | | | 0101* | | (| 20 | 1 | | 0402 | | | | | | | 0 | 603 | 3 | | | 0805 | | | | | | 1206 | | | | | | | | | | | | |----------------|--------|-------|------------------|-------------|-------|--------|-------|----|-----------------|-----------------|--------|------|-----------------|-----------------|-------------|-------|--------|--------|-----------------|-------------|-----------------|----------------|----|-------|-----------------|-------------|-----------------|-------------|----------------|-----|----|------|-------|-------|-------|-----|-----|--------| | Solde | ering | | Reflow Only | | Ref | low (| Only | | | Ref | low/W | /ave | | | | | Reflo | ow/W | ave | | | | | | Reflo | v/Wa | /e | | | | | | Re | flow/ | /Wave | | | | | Packa | aging | | Paper/Embossed | | Α | II Pap | er | | | А | II Pap | er | | | | | Al | Pape | er | | | Paper/Embossed | | | | | | | Paper/Embossed | | | | | | | | | | | (1) 1 | - | mm | 0.40 ± 0.02 | | 0.6 | 0 ± 0 | .09 | | | 1.0 | 00 ± 0 | .10 | | | 1.60 ± 0.15 | | | | | 2.01 ± 0.20 | | | | | | 3.20 ± 0.20 | | | | | | | | | | | | | | (L) Length | | (in.) | (0.016 ± 0.0008) | | (0.02 | 4 ± 0 | .004) | | | (0.040 ± 0.004) | | | | (0.063 ± 0.006) | | | | | | | (0.079 ± 0.008) | | | | | | (0.126 ± 0.008) | | | | | | | | | | | | | 14/) 14/: 441- | - | mm | 0.20 ± 0.02 | | 0.3 | 0 ± 0 | .09 | | | 0.5 | 50 ± 0 | .10 | | | 0.81 ± 0.15 | | | | | | 1.25 ± 0.20 | | | | | | | 1.60 ± 0.20 | | | | | | | | | | | | W) Width | | (in.) | (0.008 ± 0.0008) | | (0.01 | 1 ± 0 | .004) | | (0.020 ± 0.004) | | | | (0.032 ± 0.006) | | | | | | (0.049 ± 0.008) | | | | | | (0.063 ± 0.008) | | | | | | | | | | | | | | | (t) Terminal | | mm | 0.10± 0.04 | 0.15 ± 0.05 | | | | | | 0.2 | 25 ± 0 | .15 | | | | | 0.3 | 5 ± 0. | 15 | | | 0.50 ± 0.25 | | | | | | | 0.50 ± 0.25 | | | | | | | | | | | | | (in.) | (0.004 ± 0.0016) | | (0.00 | 16 ± 0 | .002) | | (0.010 ± 0.006) | | | | | | | (0.01 | 4 ± 0. | 006) | | | | | (| 0.020 | ± 0.0 | 10) | | | | | | (0.0 |)20 ± | 0.010 |)) | | | | | WV | | | 16 | 63 | 10 | 16 | 25 | 50 | 63 | 10 | 16 | 25 | 50 | 63 | 10 | 16 | 25 | 50 | 100 | 200 | 250 | 63 | 10 | 16 | 25 | 50 | 100 | 200 | 250 | 63 | 10 | 16 | 25 | 50 | 100 | 200 | 250 | 500 | | Сар | 100 1 | 101 | В | Α | Α | Α | Α | Α | | | С | С | С | | | | | G | G | G | (pF) | 150 1 | 151 | В | Α | Α | Α | Α | Α | | | С | С | С | | | | | G | G | G | | | | | | | | | | | | | | | | | | Ш | | | 220 2 | 221 | В | Α | Α | Α | Α | Α | | | С | С | С | | | | | G | G | G | | Е | Е | Ε | Ε | Е | Е | Е | | | | | | | | | | | | | 330 3 | 331 | В | Α | Α | Α | Α | Α | | | С | С | С | | | | | G | G | G | | | J | J | J | 7 | っ | J | | | | | | | | | | K | | | 470 4 | 171 | В | Α | Α | Α | Α | Α | | | С | С | С | | | | | G | G | G | | | J | J | J | J | J | J | | | | | | | | | | K | | | 680 6 | 581 | В | Α | Α | Α | Α | | | L | С | С | С | L | | | L | G | G | G | L | | J | J | J | J | J | J | | | | | | | | | | K | | | | 102 | В | Α | Α | Α | Α | | | С | С | С | С | | | | Ĺ | G | G | G | G | | J | J | J | J | J | J | J | | | | | | | | J | К | | 1 | 500 1 | 152 | В | Α | Α | Α | Α | | | С | С | С | С | | | | | G | G | J | G | | J | J | J | J | J | J | J | | J | J | J | J | J | J | J | М | | 2 | 2200 2 | 222 | В | Α | Α | Α | Α | | | С | С | С | С | | | | | G | G | J | G | | J | J | J | J | J | J | J | | J | J | J | J | J | J | J | М | | 3 | 300 3 | 332 | | Α | Α | Α | Α | | | С | С | С | С | | | | | G | G | J | G | | J | J | J | J | J | J | J | | J | J | J | J | J | J | J | М | | 4 | 1700 4 | 172 | | Α | Α | Α | Α | | | С | С | С | С | | | | | G | G | J | G | | J | J | J | J | J | J | J | | J | J | J | J | J | J | J | М | | 6 | 800 6 | 582 | | Α | Α | Α | Α | | | С | С | С | С | | | | | G | G | J | G | | J | J | J | J | J | J | J | | J | J | J | J | J | J | J | Р | | Cap (| 0.01 1 | 103 | | Α | Α | Α | Α | | | С | С | С | С | | | | G | G | G | J | G | | J | J | J | J | J | J | J | | J | J | J | J | J | J | J | Р | | (μF) 0. | .015 1 | 153 | | | | | | | | С | С | С | С | | | | G | G | G | J | | | J | J | J | J | J | J | N | | J | J | J | J | J | М | J | Q | | 0. | .022 2 | 223 | | | | | | | | С | С | С | С | | | | G | G | G | | | | J | J | J | J | J | N | N | | J | J | J | J | J | М | J | Q | | 0. | .033 3 | 333 | | | | | | | | С | С | С | С | | | | G | G | J | | | | J | J | J | J | N | N | N | | J | J | J | J | J | М | J | Q | | 0. | .047 4 | 173 | | | | | | | | С | С | С | С | | | G | G | G | J | | | | J | J | J | J | N | N | N | | J | J | J | J | J | М | М | | | 0. | .068 6 | 583 | | | | | | | | С | С | С | С | | | G | G | G | J | | İ | | J | J | J | J | N | N | | | J | J | J | J | J | Р | М | \Box | | | 0.1 1 | 104 | | | | | | | | С | С | С | С | | G | G | G | G | J | | | | J | J | J | J | N | N | | | J | J | J | J | Р | Р | Р | | | | 0.15 1 | 154 | | | | | | | | | | | | G | G | G | G | J | | | | | J | J | J | N | N | | | | J | J | J | J | Q | Q | Q | | | | 0.22 2 | 224 | | | | | | | | С | С | С | | G | G | J | J | J | | | | | J | J | N | N | N | | | | J | J | J | J | Q | Q | Q | | | | 0.33 3 | 334 | | | | | | | | | | | | J | J | J | J | J | | | | | N | N | N | N | N | | | | J | J | М | Р | Q | | | | | | 0.47 4 | 174 | | | | | | | С | С | | | | J | J | J | J | J | | | | | N | N | N | N | N | | | | М | М | М | Р | Q | | | | | | 0.68 6 | 584 | | | | | | | | | | | | J | J | J | | | | | | | N | N | N | | | | | | М | М | | | | | | | | | 1.0 1 | 105 | | | | | | | С | | | | | J | J | J | J | J | | | | | N | N | N | N | | | | | М | М | | | | | | | | | 2.2 2 | 225 | | | | | | | | | | | | J | J | J | | | | | | | Р | Р | Р | P** | | | | | Q | Q | Q | Q | Q** | | | | | | 4.7 | 175 | | | | | | | | | | | | J | | | | | | | | | Р | Р | Р | | | | | | Q | Q | Q | Z | | | | \Box | | | 10 1 | 106 | Р | Р | Р | | | | | | | Q | Q | Х | Х | | | | | | | 22 2 | 226 | Х | Q | Q | | | | | | | | | 47 4 | 176 | \Box | | | 100 1 | 107 | П | | WV | | | 16 | 6.3 | 10 | 16 | 25 | 50 | 6.3 | 10 | 16 | 25 | 50 | 6.3 | 10 | 16 | 25 | 50 | 100 | 200 | 250 | 6.3 | 10 | 16 | 25 | 50 | 100 | 200 | 250 | 6.3 | 10 | 16 | 25 | 50 | 100 | 200 | 250 | 500 | | SI | ZE | | 0101* | 0201 0402 | | | | | | 0603 | | | | | | | 08 | 305 | | | | 1206 | | | | | | | | | | | | | | | | | | Letter | А | В | С | Е | G | J | K | М | N | Р | Q | Х | Y | Z | | | | |-------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|--|--|--| | Max.
Thickness | 0.33
(0.013) | 0.22
(0.009) | 0.56
(0.022) | 0.71
(0.028) | 0.90
(0.035) | 0.94
(0.037) | 1.02
(0.040) | 1.27
(0.050) | 1.40
(0.055) | 1.52
(0.060) | 1.78
(0.070) | 2.29
(0.090) | 2.54
(0.100) | 2.79
(0.110) | | | | | | | | PAF | PER | | | EMBOSSED | | | | | | | | | | | NOTE: Contact factory for non-specified capacitance values ^{*}EIA 01005 ^{**}Contact Factory for Specifications ## **Capacitance Range** ### **PREFERRED SIZES ARE SHADED** | | SIZE | | | | | 1210 |) | | | 1812 | | | | | | | 1825 | | | | 2220 | 2225 | | | | | | | |-------------|----------|-------------|-----------------|----|------|----------|-------|---------|--------|--------------------------------|----------|--|--------|----------|------|----------|----------|--------|--------------------------------|-----|---------|------|--------------------|--------------------------------|-----------------|----------|--|--| | s | oldering | | | | Re | flow (| Only | | | | | Reflo | w Only | , | | Re | flow O | nly | | Re | flow C | nly | | Re | flow O | nly | | | | P | ackaging | | | | Pape | r/Emb | ossec | <u></u> | | | | All Em | bosse | d | | All E | mbos | sed | All Embossed | | | | | | All Embossed | | | | | | | mm | | | | 3.30 ± 0 | | | | | | 4.50 | ± 0.30 | | | 4. | 50 ± 0. | 30 | 5.70 ± 0.40 | | | | | | 5.72 ± 0.25 | | | | | (L) Leng | tn | (in.) | | | | 130± 0. | | | | (0.177 ± 0.012) | | | | | | (0.1 | 77 ± 0. | 012) | (0.225 ± 0.016) | | | | | | (0.225 ± 0.010) | | | | | W) Widtl | h | mm | | | | .50 ± 0 | | | | 3.20 ± 0.20 | | | | | | ł | 40 ± 0.4 | | 5.00 ± 0.40 | | | | | | 6.35 ± 0.25 | | | | | | | (in.) | | | | 098 ± 0 | | | | (0.126 ± 0.008) | | | | | | <u> </u> | 52 ± 0. | | | | 97 ± 0. | | (0.250 ± 0.010) | | | | | | | (t) Termi | inal | mm | | | | .50 ± 0 | | | | 0.61 ± 0.36
(0.024 ± 0.014) | | | | | | ł | 61 ± 0.: | | 0.64 ± 0.39
(0.025 ± 0.015) | | | | | 0.64 ± 0.39
(0.025 ± 0.015) | | | | | | ., | | (in.) | (0.020 ± 0.010) | | | | | | | 1.0 | | ` | | <u> </u> | F00 | , | 24 ± 0.0 | | 0.5 | | | | 500 | , | | | | | | Con | 100 | WVDC
101 | 10 | 16 | 25 | 50 | 100 | 200 | 500 | 16 | 25 | 50 | 100 | 200 | 500 | 50 | 100 | 200 | 25 | 50 | 100 | 200 | 500 | 50 | 100 | 200 | | | | Cap
(pF) | 150 | 151 | | | | | | | | | | | | | | | | | | _ | | | - | - | _W_ | · - | | | | (pi) | 220 | 221 | | | | | | | | | | | | | | | | | | _ | * | كا- | _ | | ~;≥ | \leq - | | | | | 330 | 331 | | | | | | | | | | | | | | | | | | | (| | | | 1) | Ţ⊤ - | | | | | 470 | 471 | | | | | | | | | | | | | | | | | | | (| _ | | _ | | | | | | | 680 | 681 | $\mathbf{\hat{L}}$ | | | - | | | | | 1000 | 102 | t | | | _ | | | | | 1500 | 152 | J | J | J | J | J | J | М | | | | | | | | | | | | I | | | | 1 | Ι - | | | | | 2200 | 222 | J | J | J | J | J | J | М | 3300 | 332 | J | J | J | J | J | J | М | 4700 | 472 | J | J | J | J | J | J | М | 6800 | 682 | J | J | J | J | J | J | М | Сар | 0.01 | 103 | J | J | J | J | J | J | М | | K | K | K | K | K | М | М | М | | Х | Х | Х | Х | М | Р | Р | | | | (μF) | 0.015 | 153 | J | J | J | J | J | J | Р | | K | K | K | K | М | М | М | М | | Х | Х | Х | Х | М | Р | Р | | | | | 0.022 | 223 | J | J | J | J | J | J | Q | | K | K | K | K | P | M | M | М | | X | X | X | Х | М | Р | Р | | | | | 0.033 | 333 | J | J | J | J | J | J | Q | | K | K | K | K | X | M | M | M | | X | X | X | X | M | Р | Р | | | | | 0.047 | 473 | J | J | J | J | J | J | Q | | K | K | K | K | X | M | M | M | | X | X | X | X | M | P
P | P
P | | | | | 0.058 | 683
104 | J | J | J | J | J | M | Q
X | | K
K | K | K | K | X | M
M | M
M | M
M | | X | X | X | X | M
M | P | P | | | | | 0.15 | 154 | J | J | J | J | M | Z | ^ | | K | K | K | P | _ ^ | M | M | M | | X | X | X | X | M | P | X | | | | | 0.13 | 224 | J | J | J | J | P | Z | | | K | K | K | P | Z | M | M | M | | X | X | X | X | M | P | X | | | | | 0.33 | 334 | J | J | J | J | Q | _ | | | K | K | М | X | Z | M | M | | | X | X | X | Х | M | P | X | | | | | 0.47 | 474 | M | М | М | М | Q | | | | K | K | P | X | Z | М | М | | | Х | X | X | Х | М | P | Х | | | | | 0.68 | 684 | М | М | Р | Х | X | | | | M | М | Q | | | М | Р | | | X | X | | | М | P | X | | | | | 1.0 | 105 | N | N | Р | Х | Z | | | | М | М | Х | Z | | М | Р | | | Х | Х | | | М | Р | Х | | | | | 1.5 | 155 | N | N | Z | Z | Z | | | | Z | Z | Z | | | Q | | | | Х | Х | | | М | Х | Z | | | | | 2.2 | 225 | Х | Х | Z | Z | Z | | | | Z | Z | Z | | | | | | | Х | Х | | | М | Х | Z | | | | | 3.3 | 335 | Χ | Х | Z | Z | Z | | | | Z | Z | Z | | | | | | | Х | Z | | | | | | | | | | 4.7 | 475 | Z | Z | Z | Z | Z | | | | Z | Z | | | | | | | | Х | Z | | | | | | | | | | 10 | 106 | Z | Z | Z | Z | | | | Z | | | | | | | | | | Z | Z | | Ш | | | <u> </u> | | | | | 22 | 226 | Z | Z | Z | | - | | | | | | | | | | | | Z | | 1 | ļ | | | | <u> </u> | | | | | 47 | 476 | Z | | | - | - | | | <u> </u> | <u> </u> | <u> </u> | | <u> </u> | | | - | | | | | - | | | | <u> </u> | | | | | 100 | 107 | 10 | 10 | 0.5 | - 50 | 100 | 000 | F00 | 16 | 0.5 | | 100 | 000 | 500 | | 100 | 000 | 0.5 | F0. | 100 | 000 | 500 | F0. | 100 | 000 | | | | | WVDC | | 10 | 16 | 25 | 50 | 100 | 200 | 500 | 16 | 25 | 50 | 100 | 200 | 500 | 50 | 100 | 200 | 25 | 50 | 100 | 200 | 500 | 50 | 100 | 200 | | | | | SIZE | | 1210 | | | | | | 1812 | | | | | | 1825 | | 2220 | | | | | 2225 | | | | | | | | | | | | _ | | | | | | J K M N | Le | tter | Α | | В | l c | | E I | G | | .1 | K | | M I | N | l p | | 0 | l x | | Υ | l z | | | | | | | | | | Letter | Α | В | С | E | G | J | K | М | N | Р | Q | X | Υ | Z | | | | |---|-------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|--|--|--| | | Max.
Thickness | 0.33
(0.013) | 0.22
(0.009) | 0.56
(0.022) | 0.71
(0.028) | 0.90
(0.035) | 0.94
(0.037) | 1.02
(0.040) | 1.27
(0.050) | 1.40
(0.055) | 1.52
(0.060) | 1.78
(0.070) | 2.29
(0.090) | 2.54
(0.100) | 2.79
(0.110) | | | | | _ | | | | PAI | PER | | | EMBOSSED | | | | | | | | | | | NOTE: Contact factory for non-specified capacitance values