Automotive MLCC

Automotive

GENERAL DESCRIPTION

AVX Corporation has supported the Automotive Industry requirements for Multilayer Ceramic Capacitors consistently for more than 10 years. Products have been developed and tested specifically for automotive applications and all manufacturing facilities are QS9000 and VDA 6.4 approved.

As part of our sustained investment in capacity and state of the art technology, we are now transitioning from the established Pd/Ag electrode system to a Base Metal Electrode system (BME).

AVX is using AECQ200 as the qualification vehicle for this transition. A detailed qualification package is available on request and contains results on a range of part numbers including:

- X7R dielectric components containing BME electrode and copper terminations with a Ni/Sn plated overcoat.
- X7R dielectric components, BME electrode with epoxy finish for conductive glue mounting.
- X7R dielectric components BME electrode and soft terminations with a Ni/Sn plated overcoat.
- NP0 dielectric components containing Pd/Ag electrode and silver termination with a Ni/Sn plated overcoat.

HOW TO ORDER

*NPO only

Contact factory for availability of Tolerance Options for Specific Part Numbers.

NOTE: Contact factory for non-specified capacitance values. 0402 case size available in T termination only.

COMMERCIAL VS AUTOMOTIVE MLCC PROCESS COMPARISON

	Commercial	Automotive
Administrative	Standard Part Numbers. No restriction on who purchases these parts.	Specific Automotive Part Number. Used to control supply of product to Automotive customers.
Design	Minimum ceramic thickness of 0.020"	Minimum Ceramic thickness of 0.029" (0.74mm) on all X7R product.
Dicing	Side & End Margins = 0.003" min	Side & End Margins = 0.004" min Cover Layers = 0.005" min
Lot Qualification (Destructive Physical Analysis - DPA)	As per EIA RS469	Increased sample plan – stricter criteria.
Visual/Cosmetic Quality	Standard process and inspection	100% inspection
Application Robustness	Standard sampling for accelerated wave solder on X7R dielectrics	Increased sampling for accelerated wave solder on X7R and NP0 followed by lot by lot reliability testing.

Automotive MLCC

NP0/X7R Dielectric

FLEXITERM® FEATURES

a) Bend Test

The capacitor is soldered to the PC Board as shown:

Typical bend test results are shown below:

Style	Conventional Term	Soft Term
0603	>2mm	>5
0805	>2mm	>5
1206	>2mm	>5

 b) Temperature Cycle testing FLEXITERM[®] has the ability to withstand at least 1000 cycles between –55°C and +125°C

ELECTRODE AND TERMINATION OPTIONS

NP0 DIELECTRIC

NP0 Ag/Pd Electrode Nickel Barrier Termination PCB Application

Figure 1 Termination Code T

X7R DIELECTRIC

X7R Dielectric PCB Application

Figure 2 Termination Code T

X7R Nickel Electrode Soft Termination PCB Application

Figure 3 Termination Code Z

Conductive Epoxy Termination Hybrid Application

Figure 4 Termination Code U

Automotive MLCC - NP0

Capacitance Range

			0603			0805				1206					1210		18	312
		25V	50V	100V	25V	50V	100V	25V	50V	100V	200V	500V	25V	50V	100V	200V	50V	100V
100	10pF	G	G	G	J	J	J	J	J	J	J	J						
120	12	G	G	G	J	J	J	J	J	J	J	J						
150	15	G	G	G	J	J	J	J	J	J	J	J						
180	18	G	G	G	J	J	J	J	J	J	J							
220	22	G	G	G	J	J	J	J	J	J	J							
270	27	G	G	G	J	J	J	J	J	J	J							
330	33	G	G	G	J	J	J	J	J	J	J							
390	39	G	G	G	J	J	J	J	J	J	J							
470	47	G	G	G	J	J	J	J	J	J	J							
510	51	G	G	G	J	J	J	J	J	J	J							
560	56	G	G	G	J	J	J	J	J	J	J							
680	68	G	G	G	J	J	J	J	J	J	J		I	I				<u> </u>
820	82	G	G	G	J	J	J	J	J	J	J							<u> </u>
101	100	G	G	G	J	J	J	J	J	J	J				-			<u> </u>
121	120	G	G	G	J	J	J	J	J	J	J							<u> </u>
151	150	G	G	G	J	J	J	J	J	J	J							
181	180	G	G	G	J	J	J	J	J	J	J				_			<u> </u>
221	220	G G	G G	G G	J	J	J	J	J	J	J			<u> </u>				<u> </u>
271	270 330				J	J	J	J	J	J	J					├		
331 391	330	G G	G	G	J	J	J	J	J	J	J							<u> </u>
471	390 470	G	G		J J	J	J	J J	J	J	J							<u> </u>
561	560	G	G		J	J	J	J	J	J	J							<u> </u>
681	680				J	J	J	J	J	J	J							<u> </u>
821	820				J	J	J	J	J	J	J							
102	1000				J	J	J	J	J	J	J		J	J	J	J		
122	1200				0	0	0	J	J	J	J		J	J	M	M		
152	1500							J	M	M	M		J	J	M	M		-
182	1800							J	M	M	M		J	J	M	M		
222	2200				1			J	M	M	M		J	J	M	M		1
272	2700				1	1		J	M	Q			J	J	M			<u> </u>
332	3300				1	1		J	M	Q			J	J	P		K	К
392	3900				1	1							J	J	P		K	K
472	4700				1	1	l		1				J	J	Р		K	К
103	10nF				1	1												
		25V	50V	100V	25V	50V	100V	25V	50V	100V	200V	500V	25V	50V	100V	200V	50V	100V
			0603			0805				1206				1	210		18	312
Let	ter	A	C		E G		J		K	М	Ν	NP		Q	Х	Y	Z	
Ma		0.33	0.5		0.71	0.90	0.94		.02	1.27	1.40	1.5		.78	2.29	2.54	2.7	
Thick		(0.013)	(0.02).028)	(0.035)	(0.037		040)	(0.050)	(0.055)	(0.06		.070)	(0.090)	(0.100)	(0.1	
		(0.0.0)	(0.02	/	APER	(3.000)	(0.00)	, (0.	,	(5.000)	(0.000)		/BOSSE	'	(0.000)	(0.100)	(0.1)
	L			P	APER							EN	VIBOSSE	0				

= Under Development

Automotive MLCC - X7R

Capacitance Range

			0402 0603					0805							12	06				12	10		18	12	22	20			
			16V	25V	50V	16V	25V	50V	100V	2001/	16V	25V	50V	100V	2001/	16V	25V	50V	100V	200V	500V	16V	25V	50V	100V	50V	100V	25V	50V
221	Cap	.22	100	2.5 V	500	101	201	000	1001	2001	100	201	000	1001	2000	101	201	000	1000	2001	0000	101	201	001	1001	001	1001	201	001
271		.27																											
331		.33																											
391		.39																											
471		.47																											
561		.56																											
681		.68																											
821		.82																											
102		1				G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	Κ	Κ	K	Κ	Κ	Κ		
182		1.8				G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	Κ	K	K	K	K	K		
222		2.2				G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	Κ	K	K	Κ	Κ	Κ		
332		3.3				G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	Κ	K	K	K	K	Κ		
472		4.7				G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	Κ	K	K	K	Κ	Κ		
103		10				G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	K	K		
123		12				G	G	G			J	J	J	М		J	J	J	J	J		K	K	K	K	K	K		
153		15				G	G	G			J	J	J	М		J	J	J	J	J		Κ	Κ	K	K	Κ	Κ		
183		18				G	G	G			J	J	J	М		J	J	J	J	J		K	K	K	K	K	K		
223		22				G	G	G			J	J	J	М		J	J	J	J	J		K	K	K	K	K	Κ		
273		27				G	G	G			J	J	J	М		J	J	J	J	J		K	K	K	K	K	K		
333		33				G	G	G			J	J	J	М		J	J	J	J	J		K	K	K	K	Κ	K		
473		47				G	G	G			J	J	J	М		J	J	J	М	J		Κ	K	K	K	K	K		
563		56				G	G	G			J	J	J	М		J	J	J	М	J		Κ	K	K	М	K	K		
683		68				G	G	G			J	J	J	М		J	J	J	М	J		K	K	K	М	K	K		
823		82				G	G	G			J	J	J	М		J	J	J	М	J		Κ	K	K	М	K	K		
104		100				G	G	G			J	J	М	М		J	J	J	М	J		K	K	K	М	K	K		
124		120									J	J	М			J	J	М	М			K	K	K	P	K	K		
154		150									М	N	М			J	J	М	М			K	K	K	Р	K	K		
224		220									М	Ν	М			J	M	M	Q			М	М	M	Р	М	М		
334		330									N	N	М			J	М	P	Q			Р	Р	Р	Q	Х	Х		
474		470									N	N	М			М	М	Р	Q			Р	P	Р	Q	Х	Х		
684		680									N	N				M	Q	Q	Q			P	Р	Q	Х	Х	Х		
105	Cap	1									Ν	N				М	Q	Q	Q			P	Q	Q	Х	Х	Х		
155		1.5														Q	Q					P	Q	Z	Z	Х	Х		
225		2.2														Q	Q					Х	Z	Z	Z	Z	Z		
335		3.3																				Х	Z	Z		Z			
475		4.7																				Х	Z	Z		Z			
106		10																											Z
226		22																										Z	
			16V	25V	50V	16V		50V	100V	200V	16V			100V	200V	16V	25V			200V	500V	16V	25V		100V		100V	25V	
		0402 0603						0805							12	06				12	210		18	12	22	20			

= Under Development

Letter	А	С	E	G	J	K	М	Ν	Р	Q	Х	Y	Z			
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79			
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)			
			PAPER			EMBOSSED										

Automotive MLCC - X8R

Capacitance Range

SIZE					0603				08	05		1206				
		WVDC		25V		50V		2	5V	50V			25V	50	V	
271	C	ap 270		G		G										
331	q)	F) 330		G		G			J	J						
471	470			G		G			J	J						
681	680			G		G			J	J						
102		1000		G		G			J	J			J		J	
152		1500		G		G			J	J			J		J	
182		1800		G		G			J	J			J		J	
222		2200		G		G			J	J			J		J	
272		2700		G		G			J	J			J		J	
332		3300		G		G			J	J			J		J	
392		3900		G		G			J	J			J		J	
472		4700		G		G			J	J			J		J	
562		5600		G		G			J	J			J		J	
682		6800		G		G			J	J			J		J	
822		8200		G		G			J	J			J			
103		ap 0.01		G		G			J	J			J		J	
123	μ)			G		G			J	J		J				
153		0.015		G		G			J	J			J		J	
183		0.018		G		G			J	J			J	J		
223		0.022		G		G	_	J		J			J			
273		0.027		G G		G	_	J		J			J		J	
333		0.033		G		G			J	J			J		J	
393 473		0.039 0.047				G			J	J J		J		J J		
563		0.047		G		G	-		J N	J N		J M				
683		0.056		G					N N				M	M		
823		0.068		G			_			N N				M		
104		0.082		1			N			M			M			
124		0.12		-			-		N	N N			M	N		
154		0.12		-			-		N	N			M	N		
184		0.13					-		N	IN			M	- N		
224		0.18					-		N				M	N		
274		0.22					-		IN				M		Λ	
334		0.27					-+						M		Λ	
394		0.39					-						M			
474		0.00		1			-						M			
684	0.47		1			-						101				
824		0.82					-									
105		1					-									
		WVDC		25V		50V		2	5V	50V			25V	50	V	
-	SIZ			0603					05			1206				
Letter	А	С	G	J	K		Μ	Ν	P	Q	T	Х	Y	Z		
Max.	0.33	0.56	E 0.71	0.90	0.94	1.02		1.27	1.40	1.52	1.78	2	2.29	2.54	2.79	
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)			(0.055)	(0.060)			(0.090)	(0.100)	(0.110)	
THICKNESS	(0.013)	(0.022)		(0.055)	(0.037)											
l			PAPER							EMBC	SSED					

= AEC-Q200 Qualified