Automotive MLCC

Automotive

GENERAL DESCRIPTION

AVX Corporation has supported the Automotive Industry requirements for Multilayer Ceramic Capacitors consistently for more than 10 years. Products have been developed and tested specifically for automotive applications and all manufacturing facilities are QS9000 and VDA 6.4 approved.

As part of our sustained investment in capacity and state of the art technology, we are now transitioning from the established Pd/Ag electrode system to a Base Metal Electrode system (BME).

AVX is using AECQ200 as the qualification vehicle for this transition. A detailed qualification package is available on request and contains results on a range of part numbers including:

- X7R dielectric components containing BME electrode and copper terminations with a Ni/Sn plated overcoat.
- X7R dielectric components, BME electrode with epoxy finish for conductive glue mounting.
- X7R dielectric components BME electrode and soft terminations with a Ni/Sn plated overcoat.
- NP0 dielectric components containing Pd/Ag electrode and silver termination with a Ni/Sn plated overcoat.

HOW TO ORDER

*NPO only

Contact factory for availability of Tolerance Options for Specific Part Numbers.

NOTE: Contact factory for non-specified capacitance values. 0402 case size available in T termination only.

COMMERCIAL VS AUTOMOTIVE MLCC PROCESS COMPARISON

	Commercial	Automotive
Administrative	Standard Part Numbers. No restriction on who purchases these parts.	Specific Automotive Part Number. Used to control supply of product to Automotive customers.
Design	Minimum ceramic thickness of 0.020"	Minimum Ceramic thickness of 0.029" (0.74mm) on all X7R product.
Dicing	Side & End Margins = 0.003" min	Side & End Margins = 0.004" min Cover Layers = 0.003" min
Lot Qualification (Destructive Physical Analysis - DPA)	As per EIA RS469	Increased sample plan – stricter criteria.
Visual/Cosmetic Quality	Standard process and inspection	100% inspection
Application Robustness	Standard sampling for accelerated wave solder on X7R dielectrics	Increased sampling for accelerated wave solder on X7R and NP0 followed by lot by lot reliability testing.

All Tests have Accept/Reject Criteria 0/1

Automotive MLCC

NP0/X7R Dielectric

FLEXITERM® FEATURES

a) Bend Test

The capacitor is soldered to the PC Board as shown:

Typical bend test results are shown below:

oft Term
>5
>5
>5

 b) Temperature Cycle testing FLEXITERM[®] has the ability to withstand at least 1000 cycles between –55°C and +125°C

Automotive MLCC - NP0

Capacitance Range

			0603			0805				1206 1210										
Sold	ering	R	eflow/Wa	ave	F	Reflow/Wa	ive			Reflow/W	ave			Ref	low Only					
		25V	50V	100V	25V	50V	100V	25V	50V	100V	200V	500V	25V	50V	100V	200V				
100	10pF	G	G	G	J	J	J	J	J	J	J	J								
120	12	G	G	G	J	J	J	J	J	J	J	J								
150	15	G	G	G	J	J	J	J	J	J	J	J			_					
180	18	G	G	G	J	J	J	J	J	J	J				_					
220	22	G	G	G	J	J	J	J	J	J	J				_					
270 330	27 33	G	G	G	J	J	JJ	J	J	J	J				_					
330	33	G	G	G	J	J	J	J J	J		J				_					
470	39 47	G	G	G	J	J	J	J	J	J	J				_					
510	51	G	G	G	J	J	J	J	J	J	J			+						
560	56	G	G	G	J	J	J	J	J	J	J			-	-					
680	68	G	G	G	J	J	J	J	J	J	J			-						
820	82	G	G	G	J	J	J	J	J	J	J			1						
101	100	G	G	G	J	J	J	J	J	J	J									
121	120	G	G	G	J	J	J	J	J	J	J									
151	150	G	G	G	J	J	J	J	J	J	J									
181	180	G	G	G	J	J	J	J	J	J	J									
221	220	G	G	G	J	J	J	J	J	J	J									
271	270	G	G	G	J	J	J	J	J	J	J									
331	330	G	G	G	J	J	J	J	J	J	J									
391	390	G	G		J	J	J	J	J	J	J									
471	470	G	G		J	J	J	J	J	J	J									
561	560				J	J	J	J	J	J	J									
681	680				J	J	J	J	J	J	J			_						
821	820				J	J	J	J	J	J	J					<u> </u>				
102 122	1000 1200				J	J	J	J	J	J	J		J	J	J	J				
152	1200							J	J	J	J		J	J	M	M				
182	1800							J	M	M	M		J	J	M	M				
222	2200					+		J	M	M	M		J	J	M	M				
272	2700			-		+		J	M	IVI	IVI		J	J	M	IVI				
332	3300					+		J	M		+		J	J	P					
392	3900										1		J	J	P					
472	4700												J	J	P					
103	10nF								1											
		25V	50V	100V	25V	50V	100V	25V	50V	100V	200V	500V	25V	50V	100V	200V				
			0603			0805				1206					1210					
-						-								-						
Let		A	С		E	G	J		K	М	N	P	_	Q	Х	Y	Z			
Ma		0.33	0.5		0.71	0.90	0.94		.02	1.27	1.40	1.52		1.78	2.29	2.54	2.79			
Thick	ness	(0.013)	(0.02	22) (0	.028)	(0.035)	(0.037) (0.	040)	(0.050)	(0.055)	(0.06	0) (0	.070)	(0.090)	(0.100)	(0.110			
				PA	APER							EN	EMBOSSED							

04	1	8	16

Automotive MLCC - X7R

PAPER

Capacitance Range

				0402				06						0805						206					210		-	512	-	2220	
Sc	olderin	g		ow/W					/Wave					low/W					Reflow						<i>w</i> Only			w Only		low O	,
			16V	25V	50V	10V	16V	25V	50V	100V	200V	16V	25V	50V	100V	200V	16V	25V	50V	100V	200V	500V	16V	25V	50V	100V	50V	100V	25V	50V	100V
221		220	С	С	С																										
271	W. 7	270	С	С	С																										
331		330	С	C	С																										L
391		390	С	С	С																										
471		470	С	С	С																										<u> </u>
561		560	С	С	С																										L
681		680	00	С	С																 										L
821 102		820 000	C C	C C	C C		G	G	<u> </u>	G	G										<u> </u>		К				IZ.				<u> </u>
182		800	C	C	C		G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	ĸ	K	K	K	K	K			
222		200	C	C	C		G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	K	K			<u> </u>
332		300	C	C	C		G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	K	K			<u> </u>
472		700	C	<u> </u>	C		G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	K	K			
103	Cap C		C	Ų	-		G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	K	K			<u> </u>
123	(µF) 0.0		C				G	G	G	<u> </u>		J	J	J	M	0	J	J	J	J	Ĵ	Ŭ	K	K	K	K	K	K			<u> </u>
153		015					G	G	G			J	J	J	М		J	J	J	J	J		К	K	K	K	К	K			
183	0.0	018					G	G	G			J	J	J	М		J	J	J	J	J		Κ	K	K	K	K	K			
223	0.0	022					G	G	G			J	J	J	М		J	J	J	J	J		K	K	K	K	K	К			
273	0.0	027					G	G	G			J	J	J	М		J	J	J	J	J		Κ	K	K	K	Κ	K			
333	0.0	033					G	G	G			J	J	J	М		J	J	J	J	J		Κ	K	K	K	Κ	K			
473		047					G	G	G			J	J	J	М		J	J	J	М	J		Κ	K	K	K	K	K			
563		056					G	G	G			J	J	J	М		J	J	J	М	J		Κ	K	K	М	Κ	K			
683		068					G	G	G			J	J	J	М		J	J	J	М	J		K	K	K	М	K	K			
823		082					G	G	G			J	J	J	М		J	J	J	М	J		Κ	K	K	М	K	K			
104		0.01					G	G	G			J	J	M	М		J	J	J	M	J		K	K	K	М	K	K			
124).12										J	J	M	N		J	J	M	М			K	K	K	P	K	K			
154).15										М	N	M	N		J	J	М	M			K	K	K	P	K	K			
224).22				G						M	N	M	N		J	M	M	Q			M	M	M	P	M	M			-
334).33).47										N	N	M	N		J	M	P P	Q			P	P P	P	Q	X	Х			L
474 684).47).68										N N	N	N	N		M	Q	Q	QQ	<u> </u>		P	P	Q	QX	X X	X			
105		1										N	N	N			M	Q	Q	Q	<u> </u>		P	Q	Q	X	X	X			<u> </u>
155		1.5										IN	IN	IN			Q	Q	Q	Q			P	Q	Z	Z	X	X			<u> </u>
225		2.2															Q	Q	Q				X	Z	Z	Z	Z	Z			<u> </u>
335		3.3															^a	Q	Q.				X	Z	Z	Z	Z	-			-
475		4.7																Q		<u> </u>	<u> </u>		X	Z	Z	Z	Z				Z
106		10																_		<u> </u>	<u> </u>		Z	Z	-					Ζ	Z
226		22																			1								Ζ	_	
			16V	25V	50V	10V	16V	25V	50V	100V	200V	16V	25V	50V	100V	200V	16V	25V	50V	100V	200V	500V	16V	25V	50V	100V	50V	100V	25V	50V	100V
				0402			•	06	03	-				0805					12	206				12	210		18	312		2220	
Le	tter		A		С		E		G		J		K		М		N		Р		Q		Х		Y		Z				
	lax.		0.33		0.56		0.71		0.90		0.94		1.02		1.27	-	1.40	-	1.52	-	1.78		2.29	1 2	2.54		.79	-			
	kness		0.00).013)		0.022)		0.7 I 0.028)		0.035)		0.04).037)	(0.040)).050)).055)).060)		0.070)		.090)		.100		110)				
	(0.013)		(0.022)	1	5.020)	(0.000)	1	5.007)	(0.040)	1		10		10		(0		10	.030)	0	. 100)	10.	110)					

EMBOSSED

Automotive MLCC - X8R

Capacitance Range

	SIZ	Έ.			0603				08	05				1206			
	Solde	ering			Reflow/Wa	ave			Reflow	/Wave			Ret	low/Wave)		
		WVDC	:	25	V	50V			25V	50V			25V	Ę	50V		
271		Cap 270		G		G											
331	((pF) 330)	G		G			J	J							
471		470)	G		G			J	J							
681		680)	G		G			J	J							
102		1000)	G		G			J	J			J		J		
152		1500)	G		G			J	J			J		J		
182		1800)	G		G			J	J			J		J		
222		2200)	G		G			J	J			J		J		
272		2700)	G		G			J	J			J		J		
332		3300)	G		G			J	J			J		J		
392		3900)	G		G			J	J			J		J		
472		4700		G		G			J	J			J		J		
562		5600)	G		G			J	J			J		J		
682		6800)	G		G			J	J			J		J		
822		8200		G		G			J	J			J		J		
103		Cap 0.01		G		G			J	J			J		J		
123		(µF) 0.012		G		G			J	J			J		J		
153		0.015	5	G		G			J	J			J		J		
183		0.018	3	G		G		J		J			J		J		
223		0.022)	G		G		J		J			J		J		
273		0.027	,	G		G		J		J			J	J			
333		0.033	3	G		G		J		J			J		J		
393		0.039)	G		G		J		J			J	J			
473		0.047	,	G		G			J	J			J		J		
563		0.056	3	G					N	N			М		M		
683		0.068		G					N	N			М	M			
823		0.082)						N	N		M		M			
104		0.1							N	N			М		М		
124		0.12)						N	N			М		М		
154		0.15	5					N		N				M			
184		0.18	3					N			M			M			
224		0.22)						N				М		М		
274		0.27	,										М		М		
334		0.33	}										М		М		
394		0.39)										М				
474		0.47	,										М				
684		0.68	3	1													
824		0.82		1													
105		1															
		WVDC		25	V	50V			25V	50V			25V	Ę	50V		
	SIZ	2E			0603				08	805			1	206			
Letter	A	C	E	G	J	K		Μ	N	P	Q		Х	Y	Z		
Max.	0.33	0.56	0.71	0.90	0.94	1.02		1.27	1.40	1.52	1.78	3	2.29	2.54	2.79		
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)		.050)	(0.055)	(0.060)	(0.07		(0.090)	(0.100)	(0.110)		
THICKIESS	(0.013)	(0.022)	PAPER	(0.000)	(0.037)	(0.040)	10	.000)	(0.000)	EMBC	· · ·	0)	(0.090)	(0.100)	(0.110)		
l			TAFLIN							LIVIDU	00000						