Ensemble Methods in Machine Learning

Thomas G. Dietterich

Oregon State University, Corvallis, Oregon, USA,
tgd@cs.orst.edu,
WWW home page: http://www.cs.orst.edu/"tgd

Abstract. Ensemble methods are learning algorithms that construct a
set of classifiers and then classify new data points by taking a (weighted)
vote of their predictions. The original ensemble method is Bayesian aver-
aging, but more recent algorithms include error-correcting output coding,
Bagging, and boosting. This paper reviews these methods and explains
why ensembles can often perform better than any single classifier. Some
previous studies comparing ensemble methods are reviewed, and some
new experiments are presented to uncover the reasons that Adaboost
does not overfit rapidly.

1 Introduction

Consider the standard supervised learning problem. A learning program is given
training examples of the form {(x1,1),- .., (Xm,ym)} for some unknown func-
tion y = f(x). The x; values are typically vectors of the form (x;1,%;2,...,%in)
whose components are discrete- or real-valued such as height, weight, color, age,
and so on. These are also called the features of x;. Let us use the notation z;;
to refer to the j-th feature of x;. In some situations, we will drop the i subscript
when it is implied by the context.

The y values are typically drawn from a discrete set of classes {1,...,K}
in the case of classification or from the real line in the case of regression. In
this chapter, we will consider only classification. The training examples may be
corrupted by some random noise.

Given a set S of training examples, a learning algorithm outputs a classifier.
The classifier is an hypothesis about the true function f. Given new x values, it
predicts the corresponding y values. I will denote classifiers by hi,...,hr.

An ensemble of classifiers is a set of classifiers whose individual decisions are
combined in some way (typically by weighted or unweighted voting) to classify
new examples. One of the most active areas of research in supervised learning has
been to study methods for constructing good ensembles of classifiers. The main
discovery is that ensembles are often much more accurate than the individual
classifiers that make them up.

A necessary and sufficient condition for an ensemble of classifiers to be more
accurate than any of its individual members is if the classifiers are accurate and
diverse (Hansen & Salamon, 1990). An accurate classifier is one that has an
error rate of better than random guessing on new x values. Two classifiers are

diverse if they make different errors on new data points. To see why accuracy
and diversity are good, imagine that we have an ensemble of three classifiers:
{h1, h2, h3} and consider a new case x. If the three classifiers are identical (i.e.,
not diverse), then when h(x) is wrong, ha(x) and hg(x) will also be wrong.
However, if the errors made by the classifiers are uncorrelated, then when hy (x)
is wrong, ho(x) and h3(x) may be correct, so that a majority vote will correctly
classify x. More precisely, if the error rates of L hypotheses h, are all equal to
p < 1/2 and if the errors are independent, then the probability that the majority
vote will be wrong will be the area under the binomial distribution where more
than L/2 hypotheses are wrong. Figure 1 shows this for a simulated ensemble
of 21 hypotheses, each having an error rate of 0.3. The area under the curve for
11 or more hypotheses being simultaneously wrong is 0.026, which is much less
than the error rate of the individual hypotheses.

0.14 1
012 1

0.1 1

Probability

008 -]
006 | g

ol <

,,,,,
—

10 15 20
Number of classifiersin error

Fig. 1. The probability that exactly £ (of 21) hypotheses will make an error, assuming
each hypothesis has an error rate of 0.3 and makes its errors independently of the other
hypotheses.

Of course, if the individual hypotheses make uncorrelated errors at rates ex-
ceeding 0.5, then the error rate of the voted ensemble will increase as a result of
the voting. Hence, one key to successful ensemble methods is to construct indi-
vidual classifiers with error rates below 0.5 whose errors are at least somewhat
uncorrelated.

This formal characterization of the problem is intriguing, but it does not
address the question of whether it is possible in practice to construct good en-
sembles. Fortunately, it is often possible to construct very good ensembles. There
are three fundamental reasons for this.

The first reason is statistical. A learning algorithm can be viewed as search-
ing a space H of hypotheses to identify the best hypothesis in the space. The
statistical problem arises when the amount of training data available is too small
compared to the size of the hypothesis space. Without sufficient data, the learn-
ing algorithm can find many different hypotheses in 4 that all give the same
accuracy on the training data. By constructing an ensemble out of all of these
accurate classifiers, the algorithm can “average” their votes and reduce the risk
of choosing the wrong classifier. Figure 2(top left) depicts this situation. The
outer curve denotes the hypothesis space 7. The inner curve denotes the set of
hypotheses that all give good accuracy on the training data. The point labeled f
is the true hypothesis, and we can see that by averaging the accurate hypotheses,
we can find a good approximation to f.

Statistical Computational
H H

S S

Representational

Fig. 2. Three fundamental reasons why an ensemble may work better than a single
classifier

The second reason is computational. Many learning algorithms work by per-
forming some form of local search that may get stuck in local optima. For ex-
ample, neural network algorithms employ gradient descent to minimize an error
function over the training data, and decision tree algorithms employ a greedy
splitting rule to grow the decision tree. In cases where there is enough training
data (so that the statistical problem is absent), it may still be very difficult
computationally for the learning algorithm to find the best hypothesis. Indeed,
optimal training of both neural networks and decisions trees is NP-hard (Hyafil
& Rivest, 1976; Blum & Rivest, 1988). An ensemble constructed by running the
local search from many different starting points may provide a better approxi-
mation to the true unknown function than any of the individual classifiers, as
shown in Figure 2 (top right).

The third reason is representational. In most applications of machine learn-
ing, the true function f cannot be represented by any of the hypotheses in .
By forming weighted sums of hypotheses drawn from H, it may be possible
to expand the space of representable functions. Figure 2 (bottom) depicts this
situation.

The representational issue is somewhat subtle, because there are many learn-
ing algorithms for which H is, in principle, the space of all possible classifiers. For
example, neural networks and decision trees are both very flexible algorithms.
Given enough training data, they will explore the space of all possible classifiers,
and several people have proved asymptotic representation theorems for them
(Hornik, Stinchcombe, & White, 1990). Nonetheless, with a finite training sam-
ple, these algorithms will explore only a finite set of hypotheses and they will
stop searching when they find an hypothesis that fits the training data. Hence,
in Figure 2, we must consider the space # to be the effective space of hypotheses
searched by the learning algorithm for a given training data set.

These three fundamental issues are the three most important ways in which
existing learning algorithms fail. Hence, ensemble methods have the promise of
reducing (and perhaps even eliminating) these three key shortcomings of stan-
dard learning algorithms.

2 Methods for Constructing Ensembles

Many methods for constructing ensembles have been developed. Here we will
review general purpose methods that can be applied to many different learning
algorithms.

2.1 Bayesian Voting: Enumerating the Hypotheses

In a Bayesian probabilistic setting, each hypothesis h defines a conditional prob-
ability distribution: h(x) = P(f(x) = y|x, h). Given a new data point x and a
training sample S, the problem of predicting the value of f(x) can be viewed
as the problem of computing P(f(x) = y|S, x). We can rewrite this as weighted

sum over all hypotheses in H:

P(f(x) =y[S,x) = Y _ h(x)P(h|S).

heH

We can view this as an ensemble method in which the ensemble consists of all of
the hypotheses in #, each weighted by its posterior probability P(h|S). By Bayes
rule, the posterior probability is proportional to the likelihood of the training
data times the prior probability of A:

P(h|S) x P(S|h)P(h).

In some learning problems, it is possible to completely enumerate each h € H,
compute P(S|h) and P(h), and (after normalization), evaluate this Bayesian
“committee.” Furthermore, if the true function f is drawn from # according to
P(h), then the Bayesian voting scheme is optimal.

Bayesian voting primarily addresses the statistical component of ensem-
bles. When the training sample is small, many hypotheses h will have signif-
icantly large posterior probabilities, and the voting process can average these to
“marginalize away” the remaining uncertainty about f. When the training sam-
ple is large, typically only one hypothesis has substantial posterior probability,
and the “ensemble” effectively shrinks to contain only a single hypothesis.

In complex problems where #H cannot be enumerated, it is sometimes possible
to approximate Bayesian voting by drawing a random sample of hypotheses
distributed according to P(h|S). Recent work on Markov chain Monte Carlo
methods (Neal, 1993) seeks to develop a set of tools for this task.

The most idealized aspect of the Bayesian analysis is the prior belief P(h). If
this prior completely captures all of the knowledge that we have about f before
we obtain S, then by definition we cannot do better. But in practice, it is often
difficult to construct a space H and assign a prior P(h) that captures our prior
knowledge adequately. Indeed, often H and P(h) are chosen for computational
convenience, and they are known to be inadequate. In such cases, the Bayesian
committee is not optimal, and other ensemble methods may produce better
results. In particular, the Bayesian approach does not address the computational
and representational problems in any significant way.

2.2 Manipulating the Training Examples

The second method for constructing ensembles manipulates the training exam-
ples to generate multiple hypotheses. The learning algorithm is run several times,
each time with a different subset of the training examples. This technique works
especially well for unstable learning algorithms—algorithms whose output clas-
sifier undergoes major changes in response to small changes in the training data.
Decision-tree, neural network, and rule learning algorithms are all unstable. Lin-
ear regression, nearest neighbor, and linear threshold algorithms are generally
very stable.

The most straightforward way of manipulating the training set is called Bag-
ging. On each run, Bagging presents the learning algorithm with a training set
that consists of a sample of m training examples drawn randomly with replace-
ment from the original training set of m items. Such a training set is called a
bootstrap replicate of the original training set, and the technique is called boot-
strap aggregation (from which the term Bagging is derived; Breiman, 1996). Each
bootstrap replicate contains, on the average, 63.2% of the original training set,
with several training examples appearing multiple times.

Another training set sampling method is to construct the training sets by
leaving out disjoint subsets of the training data. For example, the training set
can be randomly divided into 10 disjoint subsets. Then 10 overlapping training
sets can be constructed by dropping out a different one of these 10 subsets.
This same procedure is employed to construct training sets for 10-fold cross-
validation, so ensembles constructed in this way are sometimes called cross-
validated committees (Parmanto, Munro, & Doyle, 1996).

The third method for manipulating the training set is illustrated by the
ADABOOST algorithm, developed by Freund and Schapire (1995, 1996, 1997,
1998). Like Bagging, ADABOOST manipulates the training examples to generate
multiple hypotheses. ADABOOST maintains a set of weights over the training
examples. In each iteration ¢, the learning algorithm is invoked to minimize
the weighted error on the training set, and it returns an hypothesis h;,. The
weighted error of hy is computed and applied to update the weights on the
training examples. The effect of the change in weights is to place more weight
on training examples that were misclassified by hy and less weight on examples
that were correctly classified. In subsequent iterations, therefore, ADABOOST
constructs progressively more difficult learning problems.

The final classifier, hy(z) = >, wehe(x), is constructed by a weighted vote
of the individual classifiers. Each classifier is weighted (by w;) according to its
accuracy on the weighted training set that it was trained on.

Recent research (Schapire & Singer, 1998) has shown that ADABOOST can be
viewed as a stage-wise algorithm for minimizing a particular error function. To
define this error function, suppose that each training example is labeled as +1
or —1, corresponding to the positive and negative examples. Then the quantity
m; = y;h(x;) is positive if h correctly classifies z; and negative otherwise. This
quantity m; is called the margin of classifier A on the training data. ADABOOST
can be seen as trying to minimize

> eap (_yi > wehe(ﬂfz’)> ; (1)
i ¢

which is the negative exponential of the margin of the weighted voted classifier.
This can also be viewed as attempting to maximize the margin on the training
data.

2.3 Manipulating the Input Features

A third general technique for generating multiple classifiers is to manipulate
the set of input features available to the learning algorithm. For example, in a
project to identify volcanoes on Venus, Cherkauer (1996) trained an ensemble
of 32 neural networks. The 32 networks were based on 8 different subsets of
the 119 available input features and 4 different network sizes. The input feature
subsets were selected (by hand) to group together features that were based on
different image processing operations (such as principal component analysis and
the fast fourier transform). The resulting ensemble classifier was able to match
the performance of human experts in identifying volcanoes. Tumer and Ghosh
(1996) applied a similar technique to a sonar dataset with 25 input features.
However, they found that deleting even a few of the input features hurt the
performance of the individual classifiers so much that the voted ensemble did
not perform very well. Obviously, this technique only works when the input
features are highly redundant.

2.4 Manipulating the Output Targets

A fourth general technique for constructing a good ensemble of classifiers is to
manipulate the y values that are given to the learning algorithm. Dietterich &
Bakiri (1995) describe a technique called error-correcting output coding. Suppose
that the number of classes, K, is large. Then new learning problems can be
constructed by randomly partioning the K classes into two subsets A; and By.
The input data can then be re-labeled so that any of the original classes in set
Ay are given the derived label 0 and the original classes in set B, are given
the derived label 1. This relabeled data is then given to the learning algorithm,
which constructs a classifier hy. By repeating this process L times (generating
different subsets A; and By), we obtain an ensemble of L classifiers hq,...,hL.

Now given a new data point x, how should we classify it? The answer is to
have each hy classify x. If hy(x) = 0, then each class in A; receives a vote. If
he(x) = 1, then each class in B, receives a vote. After each of the L classifiers
has voted, the class with the highest number of votes is selected as the prediction
of the ensemble.

An equivalent way of thinking about this method is that each class j is
encoded as an L-bit codeword C, where bit £ is 1 if and only if j € B;. The
£-th learned classifier attempts to predict bit £ of these codewords. When the L
classifiers are applied to classify a new point x, their predictions are combined
into an L-bit string. We then choose the class j whose codeword Cj is closest (in
Hamming distance) to the L-bit output string. Methods for designing good error-
correcting codes can be applied to choose the codewords C; (or equivalently,
subsets Ay and By).

Dietterich and Bakiri report that this technique improves the performance of
both the C4.5 decision tree algorithm and the backpropagation neural network
algorithm on a variety of difficult classification problems. Recently, Schapire

(1997) has shown how ADABOOST can be combined with error-correcting out-
put coding to yield an excellent ensemble classification method that he calls AD-
AB00sT.OC. The performance of the method is superior to the ECOC method
(and to Bagging), but essentially the same as another (quite complex) algorithm,
called AbAB0oOST.M2. Hence, the main advantage of AbDAB00sT.OC is imple-
mentation simplicity: It can work with any learning algorithm for solving 2-class
problems.

Ricci and Aha (1997) applied a method that combines error-correcting out-
put coding with feature selection. When learning each classifier, hy, they apply
feature selection techniques to choose the best features for learning that classifier.
They obtained improvements in 7 out of 10 tasks with this approach.

2.5 Injecting Randomness

The last general purpose method for generating ensembles of classifiers is to
inject randomness into the learning algorithm. In the backpropagation algorithm
for training neural networks, the initial weights of the network are set randomly.
If the algorithm is applied to the same training examples but with different
initial weights, the resulting classifier can be quite different (Kolen & Pollack,
1991).

While this is perhaps the most common way of generating ensembles of neu-
ral networks, manipulating the training set may be more effective. A study by
Parmanto, Munro, and Doyle (1996) compared this technique to Bagging and to
10-fold cross-validated committees. They found that cross-validated committees
worked best, Bagging second best, and multiple random initial weights third
best on one synthetic data set and two medical diagnosis data sets.

For the C4.5 decision tree algorithm, it is also easy to inject randomness
(Kwok & Carter, 1990; Dietterich, 2000). The key decision of C4.5 is to choose a
feature to test at each internal node in the decision tree. At each internal node,
C4.5 applies a criterion known as the information gain ratio to rank-order the
various possible feature tests. It then chooses the top-ranked feature-value test.
For discrete-valued features with V' values, the decision tree splits the data into
V subsets, depending on the value of the chosen feature. For real-valued features,
the decision tree splits the data into 2 subsets, depending on whether the value
of the chosen feature is above or below a chosen threshold. Dietterich (2000)
implemented a variant of C4.5 that chooses randomly (with equal probability)
among the top 20 best tests. Figure 3 compares the performance of a single
run of C4.5 to ensembles of 200 classifiers over 33 different data sets. For each
data set, a point is plotted. If that point lies below the diagonal line, then the
ensemble has lower error rate than C4.5. We can see that nearly all of the points
lie below the line. A statistical analysis shows that the randomized trees do
statistically significantly better than a single decision tree on 14 of the data sets
and statistically the same in the remaining 19 data sets.

Ali & Pazzani (1996) injected randomness into the FOIL algorithm for learn-
ing Prolog-style rules. FOIL works somewhat like C4.5 in that it ranks possible
conditions to add to a rule using an information-gain criterion. Ali and Pazzani

60

4

= 50 g
S
[}
2
bl 40 - 1
2
0
3
3 30 1
N
IS 3
g R
é 20 o g
S L7
“? 0 @
o <
&

10 %% o b

<o o ©
0 L L L L L
0 10 20 30 40 50 60

C4.5 (percent error)

Fig. 3. Comparison of the error rate of C4.5 to an ensemble of 200 decision trees
constructed by injecting randomness into C4.5 and then taking a uniform vote.

computed all candidate conditions that scored within 80% of the top-ranked can-
didate, and then applied a weighted random choice algorithm to choose among
them. They compared ensembles of 11 classifiers to a single run of FOIL and
found statistically significant improvements in 15 out of 29 tasks and statistically
significant loss of performance in only one task. They obtained similar results
using 11-fold cross-validation to construct the training sets.

Raviv and Intrator (1996) combine bootstrap sampling of the training data
with injecting noise into the input features for the learning algorithm. To train
each member of an ensemble of neural networks, they draw training examples
with replacement from the original training data. The x values of each training
example are perturbed by adding Gaussian noise to the input features. They
report large improvements in a synthetic benchmark task and a medical diagnosis
task.

Finally, note that Markov chain Monte Carlo methods for constructing Bayesian
ensembles also work by injecting randomness into the learning process. However,
instead of taking a uniform vote, as we did with the randomized decision trees,
each hypothesis receives a vote proportional to its posterior probability.

3 Comparing Different Ensemble Methods

Several experimental studies have been performed to compare ensemble methods.
The largest of these are the studies by Bauer and Kohavi (1999) and by Dietterich
(2000). Table 1 summarizes the results of Dietterich’s study. The table shows
that ADABOOST often gives the best results. Bagging and randomized trees give

10

similar performance, although randomization is able to do better in some cases
than Bagging on very large data sets.

Table 1. All pairwise combinations of the four ensemble methods. Each cell contains
the number of wins, losses, and ties between the algorithm in that row and the algorithm
in that column.

C4.5 ADABOOST C4.5 Bagged C4.5

Random C4.5 14 -0-19 1-7-25 6-3-24]
Bagged C4.5| 11 -0-22 1-8-24
ApaBoost C4.5 17-0-16

Most of the data sets in this study had little or no noise. When 20% artificial
classification noise was added to the 9 domains where Bagging and ADABOOST
gave different performance, the results shifted radically as shown in Table 2.
Under these conditions, ADABOOST overfits the data badly while Bagging is
shown to work very well in the presence of noise. Randomized trees did not do
very well.

Table 2. All pairwise combinations of C4.5, ApaBoosTed C4.5, Bagged C4.5, and
Randomized C4.5 on 9 domains with 20% synthetic class label noise. Each cell contains
the number of wins, losses, and ties between the algorithm in that row and the algorithm
in that column.

C4.5 ApABooOsT C4.5 Bagged C4.5
Random C4.5 5 -2 -2 5-0-4 0-2-7]
Bagged C4.5| 7-0-2 6-0-3
ApaBoosT C4.5| 3-6-10

The key to understanding these results is to return again to the three short-
comings of existing learning algorithms: statistical support, computation, and
representation. For the decision-tree algorithm C4.5, all three of these prob-
lems can arise. Decision trees essentially partition the input feature space into
rectangular regions whose sides are perpendicular to the coordinate axes. Each
rectangular region corresponds to one leaf node of the tree.

If the true function f can be represented by a small decision tree, then
C4.5 will work well without any ensemble. If the true function can be correctly
represented by a large decision tree, then C4.5 will need a very large training
data set in order to find a good fit, and the statistical problem will arise.

The computational problem arises because finding the best (i.e., smallest)
decision tree consistent with the training data is computationally intractable, so
C4.5 makes a series of decisions greedily. If one of these decisions is made incor-
rectly, then the training data will be incorrectly partitioned, and all subsequent
decisions are likely to be affected. Hence, C4.5 is highly unstable, and small

11

changes in the training set can produce large changes in the resulting decision
tree.

The representational problem arises because of the use of rectangular parti-
tions of the input space. If the true decision boundaries are not orthogonal to
the coordinate axes, then C4.5 requires a tree of infinite size to represent those
boundaries correctly. Interestingly, a voted combination of small decision trees
is equivalent to a much larger single tree, and hence, an ensemble method can
construct a good approximation to a diagonal decision boundary using several
small trees. Figure 4 shows an example of this. On the left side of the figure
are plotted three decision boundaries constructed by three decision trees, each
of which uses 5 internal nodes. On the right is the boundary that results from
a simple majority vote of these trees. It is equivalent to a single tree with 13
internal nodes, and it is much more accurate than any one of the three individual
trees.

Class 1 P2 B Class1

: Class2 Class2

Fig. 4. The left figure shows the true diagonal decision boundary and three staircase
approximations to it (of the kind that are created by decision tree algorithms). The
right figure shows the voted decision boundary, which is a much better approximation
to the diagonal boundary.

Now let us consider the three algorithms: ADAB0OST, Bagging, and Ran-
domized trees. Bagging and Randomization both construct each decision tree
independently of the others. Bagging accomplishes this by manipulating the in-
put data, and Randomization directly alters the choices of C4.5. These methods
are acting somewhat like Bayesian voting; they are sampling from the space of
all possible hypotheses with a bias toward hypotheses that give good accuracy
on the training data. Consequently, their main effect will be to address the sta-
tistical problem and, to a lesser extent, the computational problem. But they do
not directly attempt to overcome the representational problem.

In contrast, ADABOOST constructs each new decision tree to eliminate “resid-
ual” errors that have not been properly handled by the weighted vote of the
previously-constructed trees. ADABOOST is directly trying to optimize the weighted
vote. Hence, it is making a direct assault on the representational problem. Di-

12

rectly optimizing an ensemble can increase the risk of overfitting, because the
space of ensembles is usually much larger than the hypothesis space of the orig-
inal algorithm.

This explanation is consistent with the experimental results given above. In
low-noise cases, ADABOOST gives good performance, because it is able to opti-
mize the ensemble without overfitting. However, in high-noise cases, ADABOOST
puts a large amount of weight on the mislabeled examples, and this leads it to
overfit very badly. Bagging and Randomization do well in both the noisy and
noise-free cases, because they are focusing on the statistical problem, and noise
increases this statistical problem.

Finally, we can understand that in very large datasets, Randomization can
be expected to do better than Bagging because bootstrap replicates of a large
training set are very similar to the training set itself, and hence, the learned
decision tree will not be very diverse. Randomization creates diversity under all
conditions, but at the risk of generating low-quality decision trees.

Despite the plausibility of this explanation, there is still one important open
question concerning ADABOOST. Given that ADABOOST aggressively attempts
to maximize the margins on the training set, why doesn’t it overfit more often?
Part of the explanation may lie in the “stage-wise” nature of ADABOOST. In
each iteration, it reweights the training examples, constructs a new hypothesis,
and chooses a weight w, for that hypothesis. It never “backs up” and modifies
the previous choices of hypotheses or weights that it has made to compensate
for this new hypothesis.

To test this explanation, I conducted a series of simple experiments on syn-
thetic data. Let the true classifier f be a simple decision rule that tests just one
feature (feature 0) and assigns the example to class +1 if the feature is 1, and
to class —1 if the feature is 0. Now construct training (and testing) examples by
generating feature vectors of length 100 at random as follows. Generate feature
0 (the important feature) at random. Then generate each of the other features
randomly to agree with feature 0 with probability 0.8 and to disagree otherwise.
Assign labels to each training example according to the true function f, but
with 10% random classification noise. This creates a difficult learning problem
for simple decision rules of this kind (decision stumps), because all 100 features
are correlated with the class. Still, a large ensemble should be able to do well on
this problem by voting separate decision stumps for each feature.

I constructed a version of ADABOOST that works more aggressively than stan-
dard ADABOOST. After every new hypothesis hy is constructed and its weight
assigned, my version performs a gradient descent search to minimize the negative
exponential margin (equation 1). Hence, this algorithm reconsiders the weights
of all of the learned hypotheses after each new hypothesis is added. Then it
reweights the training examples to reflect the revised hypothesis weights.

Figure 5 shows the results when training on a training set of size 20. The plot
confirms our explanation. The Aggressive ADABOOST initially has much higher
error rates on the test set than Standard ADABOOST. It then gradually im-
proves. Meanwhile, Standard ADABOOST initially obtains excellent performance

13

on the test set, but then it overfits as more and more classifiers are added to the
ensemble. In the limit, both ensembles should have the same representational
properties, because they are both minimizing the same function (equation 1).
But we can see that the exceptionally good performance of Standard ADABOOST
on this problem is due to the stage-wise optimization process, which is slow to
fit the data.

210

205 1
200]
195 "\v 1
190 ’;”‘ 1
185 | Aggressive Adaboost i
wl

175

Errors (out of 1000) on the test data set

170

165 Standard Adaboost

160 L -
1 10 100 1000
Iterations of Adaboost

Fig. 5. Aggressive ADABOOST exhibits much worse performance than Standard AD-
ABOOST on a challenging synthetic problem

4 Conclusions

Ensembles are well-established as a method for obtaining highly accurate classi-
fiers by combining less accurate ones. This paper has provided a brief survey of
methods for constructing ensembles and reviewed the three fundamental reasons
why ensemble methods are able to out-perform any single classifier within the
ensemble. The paper has also provided some experimental results to elucidate
one of the reasons why ADABOOST performs so well.

One open question not discussed in this paper concerns the interaction be-
tween ADABOOST and the properties of the underlying learning algorithm. Most
of the learning algorithms that have been combined with ADABOOST have been
algorithms of a global character (i.e., algorithms that learn a relatively low-
dimensional decision boundary). It would be interesting to see whether local
algorithms (such as radial basis functions and nearest neighbor methods) can be
profitably combined via ADABOOST to yield interesting new learning algorithms.

Bibliography

Ali, K. M., & Pazzani, M. J. (1996). Error reduction through learning multiple
descriptions. Machine Learning, 24(3), 173-202.

Bauer, E., & Kohavi, R. (1999). An empirical comparison of voting classification
algorithms: Bagging, boosting, and variants. Machine Learning, 36(1/2),
105-139.

Blum, A., & Rivest, R. L. (1988). Training a 3-node neural network is NP-
Complete (Extended abstract). In Proceedings of the 1988 Workshop on
Computational Learning Theory, pp. 9-18 San Francisco, CA. Morgan
Kaufmann.

Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123-140.

Cherkauer, K. J. (1996). Human expert-level performance on a scientific
image analysis task by a system using combined artificial neural net-
works. In Chan, P. (Ed.), Working Notes of the AAAI Workshop
on Integrating Multiple Learned Models, pp. 15-21. Available from
http://www.cs.fit.edu/ " imlm/.

Dietterich, T. G. (2000). An experimental comparison of three methods for
constructing ensembles of decision trees: Bagging, boosting, and random-
ization. Machine Learning.

Dietterich, T. G., & Bakiri, G. (1995). Solving multiclass learning problems via
error-correcting output codes. Journal of Artificial Intelligence Research,
2, 263-286.

Freund, Y., & Schapire, R. E. (1995). A decision-theoretic generalization of
on-line learning and an application to boosting. Tech. rep., AT&T Bell
Laboratories, Murray Hill, NJ.

Freund, Y., & Schapire, R. E. (1996). Experiments with a new boosting algo-
rithm. In Proc. 13th International Conference on Machine Learning, pp.
148-146. Morgan Kaufmann.

Hansen, L., & Salamon, P. (1990). Neural network ensembles. IEEE Trans.
Pattern Analysis and Machine Intell., 12, 993-1001.

Hornik, K., Stinchcombe, M., & White, H. (1990). Universal approximation
of an unknown mapping and its derivatives using multilayer feedforward
networks. Newural Networks, 3, 551-560.

Hyafil, L., & Rivest, R. L. (1976). Constructing optimal binary decision trees is
NP-Complete. Information Processing Letters, 5(1), 15-17.

Kolen, J. F., & Pollack, J. B. (1991). Back propagation is sensitive to initial
conditions. In Advances in Neural Information Processing Systems, Vol. 3,
pp- 860-867 San Francisco, CA. Morgan Kaufmann.

Kwok, S. W., & Carter, C. (1990). Multiple decision trees. In Schachter, R. D.,
Levitt, T. S., Kannal, L. N., & Lemmer, J. F. (Eds.), Uncertainty in Ar-
tificial Intelligence 4, pp. 327-335. Elsevier Science, Amsterdam.

15

Neal, R. (1993). Probabilistic inference using Markov chain Monte Carlo meth-
ods. Tech. rep. CRG-TR-93-1, Department of Computer Science, Univer-
sity of Toronto, Toronto, CA.

Parmanto, B., Munro, P. W., & Doyle, H. R. (1996). Improving committee
diagnosis with resampling techniques. In Touretzky, D. S., Mozer, M. C.,
& Hesselmo, M. E. (Eds.), Advances in Neural Information Processing
Systems, Vol. 8, pp. 882-888 Cambridge, MA. MIT Press.

Raviv, Y., & Intrator, N. (1996). Bootstrapping with noise: An effective regu-
larization technique. Connection Science, 8(3-4), 355-372.

Ricci, F., & Aha, D. W. (1997). Extending local learners with error-correcting
output codes. Tech. rep., Naval Center for Applied Research in Artificial
Intelligence, Washington, D.C.

Schapire, R. E. (1997). Using output codes to boost multiclass learning prob-
lems. In Proceedings of the Fourteenth International Conference on Ma-
chine Learning, pp. 313-321 San Francisco, CA. Morgan Kaufmann.

Schapire, R. E., Freund, Y., Bartlett, P., & Lee, W. S. (1997). Boosting the mar-
gin: A new explanation for the effectiveness of voting methods. In Fisher,
D. (Ed.), Machine Learning: Proceedings of the Fourteenth International
Conference. Morgan Kaufmann.

Schapire, R. E., & Singer, Y. (1998). Improved boosting algorithms using
confidence-rated predictions. In Proc. 11th Annu. Conf. on Comput. Learn-
ing Theory, pp. 80-91. ACM Press, New York, NY.

Tumer, K., & Ghosh, J. (1996). Error correlation and error reduction in ensemble
classifiers. Connection Science, 8(3—4), 385-404.

