C_ UMO0851
YI User manual

Linux support package (LSP) v2.3 for SPEAr

May 2010

Introduction

SPEAr is a family of highly customizable ARM-based embedded MPUs suitable for use in
many different kinds of application.

SPEAr Linux Support Package consists of a collection of all the Linux drivers that control the
specific hardware controllers embedded in SPEAr as well as the set of bootloaders for
performing the low level hardware configuration and loading of the Linux OS.

LSPv2.3 handles, in a single source tree, the following SPEAr devices: SPEAr600,
SPEAr300, SPEAr310 and SPEAr320.

LSPv2.3 is integrated into the STLinux 2.3 distribution, which is a full featured distro
consisting of more than 500 RPM packages.

Please refer to http://www.stlinux.com for more details.

Doc ID 16604 Rev 2 1/245

www.st.com

http://www.st.com

Contents UumMo851

Contents
1 Bootloaderoverviewc.iiii i 13
1.1 XLoader 13
1.1.1 Building XLoader 14
1.2 U-BOOt ... 14
1.21 U-BOOt OVEIVIEWo o e 15
1.2.2 Features 15
1.2.3 Building U-Boot 15
1.24 U-Bootcommands 16
1.25 Booting Linux with U-Boot 21
2 Linux OS and device driver general information 23
3 Platformsection it ittt 25
3.1 General purpose timer (GPT) driver 25
3.1.1 Hardware overview 26
3.1.2 Software overview 26
3.1.3 GPT driverusageot e 29
3.2 Vectorinterrupt controller (VIC) driver 31
3.2.1 Hardware overview 32
3.2.2 Software overview 33
3.23 VIC API : high level IRQ flow handlers in SPEAR 36
3.24 The internals of interrupt handlingin ARM 36
3.2.5 VI USAQE . oottt e e 37
3.3 Real time clock (RTC) driver e 38
3.3.1 Hardware overview 38
3.3.2 Software overview 39
3.3.3 RTC driverusageot e e e 42
3.34 References e 42
4 Communication devicedriversccciiiiiiiinnnnnns 43
4.1 GMAC Ethernetdriver 43
411 Hardware overview 43
41.2 Software overview 44
41.3 GMAC APl . 45

2/245 Doc ID 16604 Rev 2 KYI

UMO0851

Contents

4.2

4.3

4.4

4.5

41.4 Concept of socket buffers i 49
41.5 GMAC driVer USAGE v vttt et et et e e 50
4.1.6 GMAC driver performance ...t 52
MACB (MAC block) driver e 55
421 Hardware overview i 55
422 Software overview 57
4.2.3 MACB driverinterface e 57
424 Socket buffermanagement 59
4.2.5 Cache coherencyot 59
4.2.6 Packet reception 60
4.2.7 Packet transmission 60
4.2.8 MACB driver usagecoiiiii e 60
429 Kernel configuration options 60
USB HOSt e 61
4.31 Hardware overview i e 61
432 USB host APl 62
4.3.3 USBhOStUSAQeottt e 62
4.3.4 USB Host performance, 66
4.3.5 Kernel configurationoptions 67
USB DEVICE . ..ottt e e 69
441 Hardware overview i 69
442 Software overview 70
4.4.3 USBD driver interface with Linux gadgetlayer 71
444 Composite device interface L 72
4.4.5 USBD driver performanceot 76
4.4.6 Configuration options 77
4.4.7 References 78
20 AriVer . .. e 78
451 Hardware overview i 78
452 Software overview 79
453 [12C framework in linux e 80
454 Addinganew I12C clientdriver 81
455 [2C driver performance 84
4.5.6 Known issues or limitations 85
457 Configurationoptions 86
458 References 86

Doc ID 16604 Rev 2 3/245

Contents UMO0851
4.6 SPlAriVer .. e 86
4.6.1 Hardware overview e 86

4.6.2 Software overview 87

4.6.3 SPlframeworkin Linux i 88

4.6.4 Un-registeringthe driver 92

4.6.5 Known issues or limitations 92

4.6.6 SPIl device driver performance i 92

4.6.7 Configuration options 92

4.6.8 References 92

4.7 SDIO AriVEr . . o 93
4.71 Hardware overview e 93

4.7.2 Software overview 94

4.7.3 SDIO/SD/MMC usage inLinux 95

4.7.4 SDIO host controller driver performance 97

4.7.5 Configurationoptions 98

4.7.6 References 98

4.8 UART driver .. e 98
4.8.1 Hardware overview 98

4.8.2 Software overview 99

4.8.3 TTY framework in Linux e 100

4.8.4 Configurationoptions 104

4.9 CAN ANVl .. 105
4.9.1 Hardware overview 105

492 Software overview 106

4.9.3 Socket-CAN framework inLinux 107

494 SPEAr CANAIiVEr . ..o e e 108

4.9.5 User-land applications over the CANdriver 109

4.9.6 Netlink interface for the CANdriver 110

4.9.7 Kernel configurationoptions 110

4.9.8 References e 111

410 HDLC river e 111
4.10.1 Hardware OVEIVIEWt 111

4.10.2 Software OVerview e 113

4.10.3 SPEArHDLC driverinterface, 115

4.10.4 Driver parameters e 117

4.10.5 Assigning timeslots for TDM/E1 interface 118

4/245

Doc ID 16604 Rev 2 KYI

UMO0851 Contents
4.10.6 Applicationcode 119

4.10.7 Testutilities e 120

4.10.8 ListHDLCchannels 120

4109 Rawdatatest 121

4.10.10 Configuration options 122

4.10.11 References e e 122

5 Non-volatile memory device driverscc0viunnn. 123
5.1 NAND Flash driver s 123

511 Hardware overview 123

51.2 Software overview 124

51.3 NAND device driver OVerviewc.c.eenenennnnnen.. 125

51.4 NAND device usageottt e 132

51.5 NAND Flash file system image creation 135

51.6 NAND device driver performance 135

5.1.7 Configurationoptions 138

5.1.8 References 138

5.2 EMlinterface driver 139

5.2.1 Hardware overview 139

5.2.2 Software overview 140

5.3 Serial NOR Flash driver i 143

5.3.1 Hardware overview 143

5.3.2 Software overview 144

5.3.3 Serial NOR device driveroverviewc.couuue.n. 146

5.3.4 NOR Flash file system image creation 147

5.35 Serial NOR device usageo 147

5.3.6 Serial NOR device driver performance 149

5.3.7 Configurationoptions 150

5.3.8 References e 151

54 USB mass storage support e 151

5.5 12C and SPI memory device support 151

5.6 SD/MMC memory SUPPOItttt e i 151

6 Accelerator engine devicedrivers i i 152
6.1 JPEG driver e 152

6.1.1 Hardware overview 152

Ky_’ Doc ID 16604 Rev 2 5/245

Contents UMO0851
6.1.2 Software overview 153

6.1.3 JPEG device driverperformance 162

6.1.4 Referenceso 162

6.2 General purpose DMA (DMAC) driver 162

6.2.1 Hardware overview e 162

6.2.2 Software overview 164

6.2.3 DMA device driver performance 172

6.2.4 Configurationoptions 173

6.2.5 References e 173

7 Human interface device (HID)driverscciinat. 174
7.1 Touchscreen driver e 174

711 Hardware overview 174

71.2 Software overview 174

71.3 Touchscreen driver overview i 175

714 TouchsCreen Usage e 177

71.5 References e 178

7.2 Keypad driver 178

7.21 Hardware overview e 178

7.2.2 Software overview 179

7.2.3 Customizing the keypad driver i 181

724 Keypad usageoiuiiiii e 182

7.2.5 Configuration options 183

7.3 ADC AriVer ..o e 183

7.3.1 Hardware overview 183

7.3.2 Software overview e 184

7.3.3 ADC usage in LiNUXt 185

7.3.4 Known issues or limitations 190

7.3.5 ADC device driver performance i, 190

7.3.6 Configurationoptions 190

7.3.7 References e 190

7.3.8 LCD panel supportot e 190

7.3.9 USB HID Class Support e 190

8 Audio/video driverscciiiii it i e e 191
8.1 LCD controller (CLCD) drivert 191

8.1.1 Hardware overview 191

6/245 Doc ID 16604 Rev 2 Kﬁ

UumMo851 Contents

8.1.2 Software overview 192

8.1.3 CLCD device driver interface with framebuffer layer 192

8.1.4 How to supportanew CLCD panel 195

8.1.5 CLCD driver USAge . .. oottt e et e e e e 195

8.1.6 Kernel configurationoptions 197

8.1.7 References e 198

8.2 TDM AriVer . .. 198
8.2.1 Hardware overview 198

8.2.2 Software overview 199

8.2.3 TDM layerinterface 200

8.2.4 Configurationoptions 205

8.2.5 References 205

8.3 USB audio device class support 205
9 Miscellaneous devicedrivers iiiiiiinnnnnns 206
9.1 General purpose I/0 (GPIO) driver i 206
9.1.1 Hardware overview 206

9.1.2 Software overview 208

9.1.3 GPIO usageinusermodeouuiiiiiennnnnannnnn.. 209

9.1.4 GPIO usageinkernelmode i, 209

9.1.5 GPIO ininterruptmode 210

9.1.6 Configurationoptions 211

9.2 Watchdog (WDT) drivert 211
9.21 Hardware overview 211

9.2.2 Software overview 212

9.2.3 Watchdog device driver interface with misc device layer 213

9.24 Watchdog driverusage 213

9.25 Configurationoptions 215

9.2.6 References 215

9.3 Pulse width modulator (PWM) driver 215
9.3.1 Hardware overview i 215

9.3.2 Software overview 217

9.3.3 PWMusage in LiNUX e 217

9.34 Configurationoptions 218

9.35 References 219

10 Power managementsectioncciiiiiiiiiininaaas 220

IYI Doc ID 16604 Rev 2 7/245

Contents UMO0851
10.1 Hardware overview i 220

10.1.1 Power management techniques 220

10.2 Software overview e 222

10.2.1 Linux power management PM framework 223

10.2.2 Linuxclock framework i 223

10.2.3 CPU frequency framework 225

10.3 Powermanagement APl 227

10.3.1 PMframework APl 227

10.3.2 Clock framework APl 228

10.3.3 CPUfreqframework APl 231

10.4 Usageandperformance 233

10.4.1 Usage: Linux PM framework 233

10.4.2 Usage:clock framework i 233

10.4.3 Usage: CPUfrequserinterface 235

10.4.4 Performance i e 238

10.5 Configurationoptions e 240

10.5.1 Linux PMframework 240

10.5.2 Linuxclock framework i 240

10.5.3 Linux CPUfreqframework i .. 241

11 Flashing utility section s, 242
AppendiX A ACIrONYMSttt iiiinnnnnnnnsssssnnnnnnnnsnnnnsnnnns 243
Revision history i i it nnnnnnnnnnnnns 244
8/245 Doc ID 16604 Rev 2 Kﬁ

UMO0851

List of tables

List of tables

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.

Table 10.
Table 11.
Table 12.
Table 18.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 28.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 38.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 48.
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.

574

Informative U-Boot commands 17
Memory U-Bootcommands e 17
Persistent storage U-Boot commands (12C, NOR, NAND). 18
Network U-Boot commands e 19
Image booting U-Boot commands e 20
Environment variables U-Bootcommands 20
Serial i/f file loading U-Boot commandst 20
Miscellaneous U-Boot commands e 21
LSP v2.3 device driVErsSttt e e e 23
GPTs available on SPEAr. 26
Differences between SPEAr600 and SPEAr300t iiiiiininnn.. 32
Format of interrupt source list. e 38
RTC ioCt requests oo e e 41
RTC menuconfig kerneloptions 42
SPEAr600 Ethernet evaluationresults 52
Menuconfig OptioNS. e 54
Other OplioNs o e e 55
Menuconfig OptioNS. e e 60
USB host configuration in SPEATr 61
USB Host device performance results e 66
USB host configurations e 67
Linux gadget endpoint APIs e 74
USB device control APIS. e 75
USBD performance resultS oo e e 76
Linux kernel configuration. e 77
[2C atclock speed=100 o et e e e 85
[2C at clock speed=400ttt e e 85
12C configuration OptioNs e 86
Section of active CSx signal by GPIO7 andGPIO6 87
SPI driver configuration options e 92
SDIO configuration options. e 98
IOCTL requests for serial pors. e e 101
Control signal constants e 102
UART menuconfig kernel options. i 104
CAN menuconfig kerneloptions e 110
Menuconfig OptioNS. e 122
Results on SPEAIBO0o e 136
Results on SPEAIBO0o e 137
NAND Flash driver configurationoptions i 138
Supported transactions. e 139
Results on SPEAIBO0 e 149
Serial NOR menuconfig Options oo e 150
JPEG driver configurationoptions 162
DMA device performance results e 172
DMA configuration options e 173
Configuration options e 177
PLGPIO Keypad PiNS . . .o oo e e e e e e 179
Keypad configuration options e 183

Doc ID 16604 Rev 2 9/245

List of tables UumMo851

Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.

10/245

ADC configurations options 190
Framebuffer informationin sourcecode. i 195
CLCD configuration optionso i 197
Configuration Options e 205
GPIO pin mapping in SPEAIBXX« oottt it e e e e 207
GPIO pin mapping in SPEAIBOO0.o e 207
GPIO kernel configuration options 211
Watchdog IOCTLSot e e e e 214
Linux kernel configurations. e 215
SDIO menuconfig kerneloptions 218
Power states for synchronous DRAM systems. 221
Power states for asynchronous DRAM Systems 221
SPEAr600 modules with DCS feature 222
SPEAr300 modules with DCS feature 222
Clock dependency tree display format (example). 234
SPEAr600 power consumption measurementsu it 238
SPEAr300 power consumption measurementst 239
Linux PM framework configurationoptions. L. 240
Linux CPUfreq framework configuration options 241
List of acronyms used inthe document 243
Document revision history e 244

Doc ID 16604 Rev 2 KYI

UMO0851

List of figures

List of figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.

574

SPEAr booting stages.o e 13
GPT hardware interface e 26
GPT software architecture e e 27
VIC block diagram e 33
RTC functional block diagram. 39
RTC software system architecture 40
GMAC blocK diagram e e 44
GMAC Ethernet software architecture i 45
Ethernet performance evaluation results (Checksum offloading disabled). 53
Ethernet performance evaluation results (Checksum offloading enabled) 53
MACB diagramo e 56
MACB software layers e e 57
USB driVEr OVEIVIEW ottt e e e e e e e e e e e 62
USB Host performance at buffer length=4096 67
USBD interface. oo e e 70
USBD software architecture e e 71
Zero gadget deviCe e 72
USB Device performance at buffer length=4096 77
I12C hardware architecture e 79
I12C framework architecture. e 80
Master slave connectivity e 86
SPldriver architecture e e 88
SDIO block diagramo e 93
SD/SDIO/MMC Linux protocol stack. i 95
The interface between UART and RS-232 i e 99
UART software system architecture i 100
Block diagram of CAN [P e 106
Socket-CAN architecture e 107
HDLC software system architecture 114
Data structure layers. e 115
Interface between FSMC and NAND Flash it 124
NAND software system architecture. i i 124
OOB layout for various size NAND Flash. i ., 129
NAND memory performance (yaffs2type) i . 136
NAND memory performance (jfffs2type).o 137
EMI system software architecture. e 140
The interface between NOR Flash and SMil controller. 144
NOR Flash software system architecture 145
NOR memory performancCe. e e e 150
JPGC block diagram. e 153
JPEG driver framework. e 154
DMAC block diagram e e 163
DMA software architecture e 164
DMA speed at differentburstsize. e 173
Interfacing between CLCD paneland SPEAr. i i 174
Touchscreen software architecture. 175
State machine of touchscreendriver 176
Keypad driver architecture overview. 180

Doc ID 16604 Rev 2 11/245

List of figures UMO0851

Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.
Figure 65.
Figure 66.
Figure 67.
Figure 68.
Figure 69.
Figure 70.

12/245

ADC block diagram.t 184
ADC driver architecture e 185
Block diagram of CLCD controller e e 191
CLCD software architecturet e 192
Framebuffer layer of LiNUX e 193
TDM Cell. . oo 199
TDM WavelformMs e 199
TDM driver architecture e 200
GPIO block diagramo 206
GPIO driver architecture. 208
WD T interface.o 212
WDT software architecture e 213
PWM output with (a) 10%, (b) 50% and (c) 90% duty cycle 216
Duty and Period e 217
PWM driver architecture e 217
System control state machine. 220
SPEAr cclocK tree. e 224
CPU freq kernel architectural blocks i 225
Linux PM framework e 227
Clock framework architectureo 229
SPEAr600 current consumptionchart 239
SPEAr300 PM framework results i 240

Doc ID 16604 Rev 2 KYI

UMO0851

Boot loader overview

1.1

Boot loader overview

The SPEAr boot process is divided into four different stages. On power-on the BootROM
hard coded in the silicon (eROM) starts (first stage). Its role is to locate XLoader and
transfer the control to it. The BootROM is embedded in the silicon and is not part of the LSP.

The following sections describe the features offered by the components which are not
embedded in the silicon (XLoader and U-Boot) because they are usually board dependent
and need to be customized by the user. These components are part of LSP v2.3.

For a detailed description, please refer to the corresponding SPEAr datasheet and user
manual.

Figure 1. SPEAr booting stages

D2800000h NAND/NOR

Shadow
<:> BootROM

memory
eSRAM C X-Loader
ARM Reset)
U-Boot
FFFF0000h C
I BootROM Linux/OS
High vectors <:>

eROM DDR

Embedded in SPEAr
Part of LSP

XLoader

XLoader is a small firmware loaded during the second stage of the boot phase by the

BootROM.

The main steps performed by XLoader in LSP v2.3 are:

® |Initializing the DDR and PLLs at 333 MHz

® Passing of board information (DDR size etc.) to U-Boot

® Loading the U-Boot from NAND, NOR depending on boot type selection and
transferring the control to it.

The XLoader coming with the LSP v2.3 is licensed under GPLv2 and distributed in full
source code. This distributed XLoader version runs on the SPEAr hardware development
kits. You have to customize Xloader to run it on a different PCB, especially the MPMC

Doc ID 16604 Rev 2 13/245

Boot loader overview UumMo851

1.1.1

1.2

14/245

settings required for different DDR memory hardware and routing. Please refer to one of the
following application notes for more information on MPMC configuration:

® AN3100, Configuring the SPEAr3xx multi-port memory controller (MPMC) for external
DDR SDRAM

® AN3132, Configuring the SPEAr600 multi-port memory controller (MPMC) for external
DDR SDRAM.

Building XLoader
To build XLoader, you need to use the STLinux toolchain and run the following commands:

/* Build XLoader for SPEAré600 target with DDR@333MHz for size 128MB*/
make SOC=SPR600 DDRFREQ=333 DDRSIZE=128M

/* Build XLoader for SPEAr300 target with DDR@333MHz for size 128MB*/
make SOC=SPR300 DDRFREQ=333 DDRSIZE=128M

/* Build XLoader which could be used as a firmware for initializing
* DDR with USB Flashing utility

*/

make SOC=SPR600 DDRFREQ=166 DDRSIZE=128M CONSOLE=USB

/* Build XLoader for all platform and all types (normal XLoader
* and Flashing utility firmware

*/

./makeall

The XLoader source can be compiled with various options, which are listed below:

® make SOC=SPR300: This option generates XLoader for the requested platform. Other
platform options can be SPR600, SPR310 and SPR320.

e make DDRFREQ=333: This option generates XLoader binary image with DDR driver
that supports 333 MHz operation. To generate XLoader for DDR @166 MHZ pass
DDRFREQ=166. This option is available for SPEAr3XX and SPEAr600

o make DDRSIZE=128M: This option generates XLoader for DDR size of 128 MB. An
other possible parameter can be 64 M to generate 64 MB XLoader.

® make CONSOLE=USB: This option generates XLoader which is used as a firmware to
initialize DDR in USB flashing utility.

e make DDRFREQ=333 DDRCONF=ASYNC: This option generates XLoader to
configure DDR @333 MHz asynchronoulsy, for example the DDR is driven through the
clock from PLL2 rather than PLL1 (synchronous operation). This option only works for
DDR @333 MHz. This XLoader can be used with some features of Linux Power
Management (like CPU-Freq) which currently guarantees only the system stability with
asynchronous DDR operation.

U-Boot

Das U-Boot is an open source boot monitor available for a wide range of embedded
processors architectures. A boot monitor is a small piece of software that executes after
powering up an embedded system. It can be used to achieve the following objectives:

® Monitor the system for develop/debug purpose
® BootanOS

Doc ID 16604 Rev 2 KYI

UMO0851 Boot loader overview
Das U-Boot starts from the second sector of Serial NOR Flash, from where it is loaded in
RAM by XLoader.
Note: In case of NAND it starts from the fifth sector.
Das U-Boot coming with the LSP v2.3 is licensed under GPLv2 and it is distributed in full
source code. This distributed U-Boot version runs on the SPEAr hardware development kits.
1.2.1 U-Boot overview
The U-Boot bootloader is based on U-Boot-1.3.1 release. This U-Boot source supports the
complete SPEAr embedded MPU family (SPEAr600, SPEAr300, SPEAr310 and
SPEAr320). The U-Boot is loaded into DDR2 from NOR (parallel/serial) or NAND memory
device and executed from DDR2. It initializes the following IPs or has the drivers for the
following IPs.
e UART
e 12C
® Ethernet
® Serial NOR through SMI
® NAND device through FSMC
@ Parallel NOR (only in SPEAr310)
® USB Device
1.2.2 Features
U-Boot for SPEAr devices supports the following features:
® Provides a first level debug environment for on-board testing
® Supports erasing/writing to NAND/NOR memory devices
® Supports uploading binary images through Ethernet or Serial port
® Supports booting the OS (Linux, VxWorks etc)
® Acts as a firmware for flashing utilities. It supports USB TTY driver.
1.2.3 Building U-Boot

To build U-Boot for both serial NOR and NAND Flash, you need to use the STLinux
toolchain and run the following commands:

/* Build U-Boot for SPEAr600 target */
make spear600_config

Generating include/autoconf .mk
Configuring for spear600 board...

make

/* Build U-Boot for SPEAr300 target */
make spear300_config

Generating include/autoconf .mk
Configuring for spear300 board...

make

/* Build U-Boot for SPEAr310 target */
make spear310_config

Generating include/autoconf .mk
Configuring for spear310 board...

Doc ID 16604 Rev 2 15/245

Boot loader overview UumMo851

make

/* Build U-Boot for SPEAr320 target */
make spear320_config

Generating include/autoconf.mk
Configuring for spear320 board...

make

The U-Boot source can be compiled with various options, which are listed below:

e make CONSOLE=USB: This option generates firmware binary image (containing TTY
over USB driver) to be downloaded for the operation of the Flashing Utility (refer to the
Section 11: Flashing utility section).This option is available for SPEAr3xx and
SPEAr600.

e make ENV=NAND: This option generates U-Boot/firmware image which saves
environment variables in NAND device. This option is available for SPEAr3xx and
SPEAr600.

e make FLASH=PNOR: This option generates an image that supports parallel NOR in
place of serial NOR Flash drivers. It is applicable only for SPEAr310.

1.24 U-Boot commands

You can display the complete list of U-Boot commands using the ‘help’ command.

spear600> help

? - alias for 'help'

autoscr - run script from memory

base - print or set address offset

bdinfo - print Board Info structure

boot - boot default, for example, run 'bootcmd’

bootd - boot default, for example, run 'bootcmd'

bootm - boot application image from memory

bootp - boot image via network using BootP/TFTP protocol
cdp - Perform CDP network configuration

cmp - memory compare

coninfo - print console devices and information

cp - memory copy

crc32 - checksum calculation

dhcp - invoke DHCP client to obtain IP/boot params
echo - echo args to console

erase - erase FLASH memory

flinfo - print FLASH memory information

go - start application at address 'addr'

help - print online help

i2c - I2C sub-system

iminfo - print header information for application image
imls - list all images found in flash

itest - return true/false on integer compare

loadb - load binary file over serial line (kermit mode)
loads - load S-Record file over serial line

loady - load binary file over serial line (ymodem mode)
loop - infinite loop on address range

md - memory display

mm - memory modify (auto-incrementing)

mtest - simple RAM test

mw - memory write (fill)

nand - NAND sub-system

nboot - boot from NAND device

nfs - boot image via network using NFS protocol

nm - memory modify (constant address)

16/245 Doc ID 16604 Rev 2 [‘II

UMO0851

Boot loader overview

ping - send ICMP ECHO_REQUEST to network host
printenv- print environment variables

protect - enable or disable FLASH write protection
rarpboot- boot image via network using RARP/TFTP protocol

reset - Perform RESET of the CPU

run - run commands in an environment variable

saveenv - save environment variables to persistent storage
saves - save S-Record file over serial line

setenv - set environment variables

setfreq - change ddr/cpu frequency
sleep - delay execution for some time

tftpboot- boot image via network using TFTP protocol

version - print monitor version
writemac - write mac address in I2C memory

Commands can be grouped into the following categories, according to their function:

Informative commands

This group of commands is used to get runtime information concerning the system itself. For
example, using the 'bdinfo' command, you can retrieve the XLoader image revision.

Table 1. Informative U-Boot commands
Command Behavior Example
spear600> bdinfo
arch_number = 0x000008BC
] . env_t = 0x00000000
Print board info structure boot_params = 0x00000100
Along with other things, this structure | DRAM bank = 0x00000000
also contains -> start = 0x00000000
bdinfo . . . -> size = 0x08000000
— Frequency at which DDR is operating DDR Freg _ 333
— DDR type (DDR2/DDRMOBILE) DDR Type = DDR2
— XLoader revision ethaddr = 55:66:77:88:99:00
ip_addr = 192.168.1.10
baudrate = 115200 bps
XLoader Rev = XLoader-SPEAr600
help Print online help
version Print monitor version

Memory commands

U-Boot offers the possibility to interact with the memory subsystem (RAM, ROM, Flash, ...)
using a set of basic commands to move data to/from memory, compare memory locations,
change memory locations and test memory.

Table 2. Memory U-Boot commands
Command Behavior Example
base Print or set address offset for memory |base 0x1300000
commands
md Memory display md 0x1300000
Mm Memory modify (auto-incrementing) mm 0x1300000

Doc ID 16604 Rev 2

17/245

Boot loader overview

UMO0851

Table 2. Memory U-Boot commands (continued)
Command Behavior Example

mtest Simple RAM test mtest 0x1600000 0x1610000 Oxff

Mw Memory write fill mw.l 0x1600000 0x55aa55aa 0x100
nm 0x1600000

Nm Memory modify (constant address) 8128888& Zgzgzggg : ig;‘zz}gsg
01600000: 12345678 ? 87654321

cmp Memory compare 32561;0831300000 0x1600000

Cp Memory copy 82330833300000 0x1600000

Itest Return true/false on integer compare

loop Infinite loop on address range loop 0x1300000 0x10000

Persistent storage commands

This section describes the U-Boot commands used to access non-volatile storage.

Table 3. Persistent storage U-Boot commands (12C, NOR, NAND)
Command Behavior Example
erase 0xf8000000 +0x10000
erase Erase Flash memory
erase 1:0-3
flinfo Print Flash memory information
i2c md 0x50 0x0
. 0000: 14 15 16 17 18 19 la 1b 1c
i2c 12C subsystem commands 1d 1le 1f 20 21 22 23
............ [3
iminfo 0x£8000000
Checking Image at £8000000
Image Name: XLoader
i Print header information for application Image Type: ARM Linux
iminfo image Kernel Image (uncompressed)
g Data Size: 4472 Bytes =
4.4 kB
Load Address: d2800b00
Entry Point: d2800b00
Verifying Checksum ... OK
. List all images found in NAND/NOR
imls
Flash
d d.jffs2 0x1300000 0x0
nand NAND command subsystem nana read.jiise Ux x
0x10000
nboot.jffs2 0x1300000 0 0x60000
for the image to boot
nboot Boot from NAND device automatically, an environment
variable “autostart” is to be
set to “yes”

18/245

Doc ID 16604 Rev 2

574

UMO0851

Boot loader overview

Table 3. Persistent storage U-Boot commands (12C, NOR, NAND) (continued)
Command Behavior Example
cm Memory compare cmp.b 0x1300000 0x1600000
P y P 0x200000
cp.b 0x1300000 0x1600000

cp Memory copy 03300000
Write MAC address in 12C memory writemac 00:99:88:77:66:55
This command writes 0x55 and OxAA

writemac as magic number(to say that MAC id is
present here) at offset 0 and 1 in the
chip and stores the MAC address from
offset 2

protect Enable or disable Flash write protection | protect off 1:0-5

Network commands

Table 4. Network U-Boot commands
Command Behavior Example
boot Boot image via network using bootp 0x1600000 ulImage
P BootP/TFTP protocol
cdp Perform CDP network configuration
Invoke DHCP client to obtain IP/boot
dhcp
parameters
Nfs Boot image via network using NFS
protocol
. Send ICMP echo request to network ping 192.168.1.1
ping
host
ttpboot Boot image via network using TFTP tftpboot 0x1300000 ulmage
protocol
rarpboot Boot image via network using
P RARP/TFTP protocol
Write MAC address in 12C memory writemac 00:99:88:77:66:55
This command writes 0x55 and 0xAA
writemac as magic number(to say that MAC id is
present here) at offset 0 and 1 in the
chip and stores the MAC address from
offset 2

Doc ID 16604 Rev 2

19/245

Boot loader overview

UMO0851

Image booting commands

Table 5. Image booting U-Boot commands
Command Behavior Example
. autoscr 0x1600000

Autoscr Run script from memory
Executing script at 01300000

Boot Boot default, for example ‘run bootcmd’

Bootd Boot default, for example ‘run bootcmd’
go 0x1300000

Go Start application at address ‘addr’ ## Starting application at
0x01300000 ...

Bootm Boot application image from memory bootm 0x1600000

Environment variable commands

Table 6. Environment variables U-Boot commands
Command Behavior Example
echo abcd
abcd
echo Echo args to console ccho & (bootdelay)
1
printenv Print environment variables
Run commands in an environment echo § (bootcmd)
run . bootm 0x£8050000
variable
run bootcmd
Save environment variables to
saveenv ;
persistent storage
setenv Set environment variables

Serial i/f commands

Table 7. Serial i/f file loading U-Boot commands
Command Behavior Example
coninfo Print console devices ad information Coninfo
loads Load S-record file over serial line loads 0x1300000
Load binary file over serial line loady 0x1300000
loady
(ymodem mode)
Load binary file over serial line (kermit | loadb 0x1300000
loadb
mode)
saves Save S-Record file over serial line

Doc ID 16604 Rev 2

UMO0851

Boot loader overview

1.2.5

Miscellaneous commands

Table 8. Miscellaneous U-Boot commands

Command Behavior Example
reset Resets the CPU
crc32 Crc32 checksum calculation crc32 0x1300000 0x10000
echo abcd
abcd
echo Echo args to console echo $ (bootdelay)
1
setfreg cpu 300
Change ddr/cpu frequency CPU frequency changed to 300
. This ch the PLL1 £
This command actually assumes that éo ;zoc M";Z%es € redquency
setfreq CPU is running on PLL1 and DDR on setfreq ddr 300
PLL2. So, effectively, this command DDR frequency changed to 300
Changes PLL1/2frequenCy (This changes the PLL1 frequency
to 300 MHz)
sleep Delay execution for some time

Booting Linux with U-Boot

This section describes how to configure U-Boot in order to achieve different booting
schemes. For example, in some environments it might be required to have a completely
standalone board, while during development phase it is recommended to boot from network
and to mount RootFS through NFS.

The Linux kernel accepts a command line that can be used to pass arguments to the kernel
and to overwrite statically built-in values. In this way the you can change parameters without
the need to rebuild the kernel. Please refer to the Linux kernel source tree file
‘Linux/Documentation/kernel-parameters.ixt' for a complete listing of all the supported
kernel arguments.

Das U-Boot stores the argument list in the environment variable bootargs. The syntax is a
sequence of items in the form key=value, where key is a well known argument defined by
the kernel. The following list contains the most common arguments:

[] mem=nn

This argument forces the usage of a specific amount of memory. This can be the total size of
the available memory or just a subset of it. Linux will make use of this specific amount,
leaving the rest to different purposes (like a 2nd OS).

setenv bootargs "mem=128M .."

® console=

Output console device and options.

setenv bootargs "console=ttyS0 ..."

® initrd=

This argument specifies the location of the initial ramdisk (if a ramdisk is used).

Doc ID 16604 Rev 2 21/245

Boot loader overview UumMo851

setenv bootargs "initrd=0x00800040,7M ...°

® init=
This argument runs a specified binary (ex: /bin/sh) instead of /sbin/init as init process.

setenv bootargs "init=/bin/sh ..°

root=
rootdelay=
rootfstype=

°
°
°
® nfsroot=

These arguments provide information about how the root file system must be mounted.

/* NFS mount */
setenv bootargs "root=/dev/nfs nfsroot=192.168.1.1:/home/spear600/rootfs .."

/* MTD mount (NAND/NOR flash) */
"root=/dev/mtdblock3 rootfstype=jffs2 ..."

/* RAMDisk mount */
setenv bootargs "root=/dev/ram0 initrd=0x00800040,7M .."

/* USB flash mount */
setenv bootargs "root=/dev/sdal rootdelay=5 .."

® 'ip=<client-ip>:<server-ip>:<gw-ip>:<netmask>:<hostname>:<device>:<autoconf>
This argument shows how the IP address is determined.

setenv bootargs
"ip=192.168.1.13:192.168.1.1:192.168.1.1:255.255.255.0:spear600:eth0:0ff .."

® mtdparts=

This argument overwrites the default MTD Flash partitioning.

/* mtdparts=<mtddef>[;<mtddef]

* <mtddef> := <mtd-id>:<partdef>[,<partdef>]

* <partdef> := <size>[Q@offset] [<name>] [ro] [1k]

* <mtd-id> := unique name used in mapping driver/device (mtd->name)

* <size> := standard linux memsize OR "-" to denote all remaining space
* <name> := ' (' NAME ')'

*/

setenv bootargs "mtdparts=SMI-NORO:2M(PARTITION-1),3M(PARTITION-2)... "

22/245 Doc ID 16604 Rev 2 [‘II

UMO0851

Linux OS and device driver general information

2

Linux OS and device driver general information

Linux coming with the LSP v2.3, which is based on kernel version 2.6.27, is licensed under
GPLv2 and distributed in full source code.

LSP v2.3 supports the following features of Linux:

® Patch for YAFFS file system support over NAND

® Support for high resolution timer

® All drivers integrated into standard Linux device model

LSP v2.3 incorporates the following SPEAr specific set of drivers:

Table 9. LSP v2.3 device drivers
Section name Driver name SPEAr MPU
Platform section General purpose timer (GPT) driver All
Platform section Vector interrupt controller (VIC) driver All
Platform section Real time clock (RTC) driver All
Communication device drivers | GMAC Ethernet driver All

Communication device drivers

MACB (MAC block) driver

SP310, SP320

drivers

Communication device drivers | USB Host All
Communication device drivers | USB Device All
Communication device drivers | 12C driver All
Communication device drivers | SPI driver All
Communication device drivers | SDIO driver SP300, SP320
Communication device drivers | UART driver All
Communication device drivers | CAN driver SP320
Communication device drivers | HDLC driver SP310
Nqn-vo/atlle memory device NAND Flash driver All
drivers
Nqn-volat//e memory device EMI interface driver All
drivers
Nqn-volatlle memory device Serial NOR Flash driver Al
drivers
Nqn-vo/atlle memory device USB mass storage support All
drivers
Non-volatile memory device . All

. 12C and SPI memory device support
drivers
Non-volatile memory device SD/MMC memory support SP300
drivers
Accelerator engine device JPEG driver All

Doc ID 16604 Rev 2

23/245

Linux OS and device driver general information UMO0851
Table 9. LSP v2.3 device drivers (continued)

Section name Driver name SPEAr MPU
Agce/erator engine device General purpose DMA (DMAC) driver All
drivers
quan interface device (HID) Touchscreen driver All
drivers
quan interface device (HID) Keypad driver SP300
drivers
quan interface device (HID) ADC driver All
drivers
quan interface device (HID) LCD panel support Al
drivers
quan interface device (HID) USB HID Class Support Al
drivers
Audio/video drivers LCD controller (CLCD) driver SP600,SP300
Audio/video drivers TDM driver SP300
Miscellaneous device drivers General purpose I/0O (GPIO) driver All
Miscellaneous device drivers Watchdog (WDT) driver All
Miscellaneous device drivers Pulse width modulator (PWM) driver SP320

24/245

Doc ID 16604 Rev 2

UMO0851

Platform section

3

3.1

Platform section

This section describes the basic SPEAr platform code and driver. It consists of the following
directories:

® arch/arm/plat-spear

® arch/arm/mach-spear600

® arch/arm/mach-spear300

The platform code has been split in this way so that common code across SPEAr platforms
is kept in the plat-spear! directory and platform specific code is kept in the respective mach-
spear600/ (or mach-spear300/ directory for all SPEAr3xx).

The platform code is responsible for:

® Initializing VIC

Initializing the timer (clock source and clock event)

Initializing static memory mapping if required by the system

Defining IO_ADDRESS and related macros so that the static memory can be used

Providing platform specific code for power management, clock framework etc. and
initialization code for some specific controllers like fsmc and gpio

® Providing system specific header files like those describing irq lines and base
addresses of respective devices

Additionally, there are 3 variants for SPEAr300 platform.

® SPEAr300: Basic SPEAr300 with IPs for telecom applications

® SPEAr310: Basic SPEAr300 with IPs for communication applications

® SPEAr320: Basic SPEAr300 with IPs for industrial applications

Different architecture specific code for all the above variants (SPEAr3xx) are kept in mach-
spear300/ as all of these are basically SPEAr300 machines. Architecture specific code for

SPEAr600 is kept in mach-spear600/ and has no variant. They are distinguished with the
help of the following macros:

e MACH_SPEAR600 or ARCH_SPEARG00 for SPEAr600

® MACH_SPEAR300 or ARCH_SPEARBSO0O for all SPEAr300 platforms including variants
— BOARD_SPEARB3O00 specific for telecom version of SPEAr300
— BOARD_SPEARS310 specific for communication version of SPEAr300
— BOARD_SPEARS320 specific for industrial version of SPEAr300

General purpose timer (GPT) driver

This section describes the driver of the general purpose timer embedded in SPEAr devices.

A digital general purpose timer is a programmable device with a counter that increments or
decrements at a fixed frequency and generates interrupts after a specified time. An
embedded system makes wide use of timers for different purpose, like for generating the
system-tick, which is the basic temporization mechanism of any RTOS, or for other fine
granularity time measurement mechanisms.

Doc ID 16604 Rev 2 25/245

Platform section UumMo851

3.1.1

3.1.2

26/245

Hardware overview

SPEAr provides several GPTs acting as APB slaves. Each GPT consists of 2 independent
channels, each one made of a programmable 16-bit counter and a dedicated 8-bit timer
clock prescaler. The programmable 8-bit prescaler performs a clock division from 1 to 256.
Different input frequencies can be defined using SPEAr configuration registers.

The main features of the GPT module are listed below:

® Each timer module provides two independent channels with separate control, count,
clock prescaler and interrupt registers

® Each channel has 16-bit counter with a programmable timer interval
® Provides auto-reload or single-shot mode feature

The following table shows GPTs available on different SPEAr platforms:

Table 10. GPTs available on SPEAr

SPEAr600 SPEAr3xx

1 GPT in each CPU subsystem

. - 1 GPT in CPU subsystem
2 in application subsystem

2 in basic subsystem

1 in basic subsystem

The following figure describes the GPT hardware interface.

Figure 2. GPT hardware interface

PLL1+
synthesizer

> GPT Channel0 I » Match_Int0
—
PLL3
(48 MHz2)
PT Ch 1
APB interface |:|,> GPT Channe —— Match_Int1

The TIMER_CLK can be selected between a fixed 48 MHz source and PLL1, which is also
the source for the rest of the system. The PLL1 output also goes through a synthesizer
which can be programmed to derive the actual required operating GPT clock.

Software overview

SPEAr LSP provides proprietary software routines to allocate, program and use the general
purpose timer. This set of routines abstract the GPT hardware block and provide easy
kernel APIs to manage and control these timers. This layer does not provide any interface to
the user space.

The following figure explains the GPT framework as used by the kernel time keeping and
tick management subsystem. The GPT routines can also be directly used by user
modules/applications.

Doc ID 16604 Rev 2 KYI

UMO0851

Platform section

Figure 3. GPT software architecture

User space -
P | Date, sleep | | User applications
| Time management | | Time of day keeping |
Kernel
space
| Clock source | | Clock event | | User modules
GPT routines
Hardware General purpose timer

In the Linux source tree, the GPT layer is present in arch/arm/plat-spear/gpt.c

GPT layer interface

The GPT layer represents the timer as a structure with the following fields.

struct spear_timer {
unsigned long phys_base;
int irg;
struct clk *iclk; /* interface clk */
struct clk *fclk; /* functional clk */
void __iomem *io_base;
unsigned reserved:1;
unsigned enabled:1;
Y

The SPEAr LSP defines an array (of struct spear_timer) for the available timers on each
respective platform. The GPT layer provides a set of APIs which operate on this structure to
manage the set of available timers.

Allocating a timer

There are two ways of allocating a GPT. You can either ask for a free timer, in this case an
available timer on the list will be allocated to you, or, ask for a specific timer, so if it is
available, it will be allocated to you. Both the APIs return one of the available timers (or
NULL), which you can subsequently use to program and control the timer.

/* request for a free timer */
struct spear_timer *spear_timer_request (void) ;

/* request for a specific timer greater than or equal to 1 */
struct spear_timer *spear_timer_request_specific(int timer) ;

Doc ID 16604 Rev 2 27/245

Platform section UumMo851

Note:

28/245

1

Setting the source clock

There are two possible clock sources for each timer block. One source can be directly from
PLL3 (constant 48 MHz) and the other can be from PLL1 through synthesizer. Either of
these source clocks can be selected by the following API.

The selection of the source clock applies to the whole timer hardware block thus affecting
both channels.

When the PLL1 (system) clock is selected as the timer clock, any change in the system
clock for power saving, etc. has an impact on the frequency of the GPT. In such cases, you
must always get the current clock rate for programming next GPT interrupt. Please refer to
clock framework chapter for information on clock framework usage.

The use of 48 MHz (PLL3) is discouraged as it leads to unpredictable results in reading
counter value. Please refer to the GPT application note for details.

/* set the appropriate clock src
source can be:

SPEAR_TIMER_SRC_SYS_CLK, from PLL1
SPEAR_TIMER_SRC_PLL3_CLK, from PLL3
*/
void spear_timer_set_source(struct spear_timer *timer, int source);

Programming the prescaler

After configuring the appropriate clock source, you can program the prescaler. The
prescaler can be different for each timer channel (within a hardware block) and can range
from 1 to 256 in 8 levels.

/* set the appropriate prescaler

prescaler can be
GPT_CTRL_PRESCALER1 0x0
GPT_CTRL_PRESCALER2 0x1
GPT_CTRL_PRESCALER4 0x2
GPT_CTRL_PRESCALER8 0x3
GPT_CTRL_PRESCALER16 0x4
GPT_CTRL_PRESCALER32 0x5
GPT_CTRL_PRESCALER64 0x6
GPT_CTRL_PRESCALER128 0x7
GPT_CTRL_PRESCALER256 0x8
*/

spear_timer_set_prescaler(struct *spear_timer, int prescaler);

GPT interrupt management

Each timer channel of a hardware block of GPT has separate independent interrupt lines.
You can use the following API to know which interrupt line is associated with the timer. Then
using Linux calls, you can attach an interrupt handler to these irq lines. You can use
separate APIs to enable and clear the interrupts for a timer.

/* This shall return the irg associated with timer */
int spear_timer_get_irqg(struct spear_timer *timer) ;

/* Enable/Disable the timer match interrupt */
void spear_timer_set_match(struct spear_timer *timer, int enable);

Doc ID 16604 Rev 2 KYI

UMO0851 Platform section

/* Clear the match interrupt status
value must be GPT_STATUS_MATCH
*
/

void spear_timer_ write_status(struct spear_timer *timer, ulé value)
GPT operation
The following APIs can be used to start/stop the GPT timer in single-shot or auto-reload
mode.
/* This shall load the timer with "load" count value and start the timer */
void spear_timer_set_load_start(struct spear_timer *timer, int autoreload, ulé6
load) ;
/* These APIs separately load, start and stop the timer */
void spear_timer_set_load(struct spear_timer *timer, int autoreload, ul6 load);
void spear_timer_start (struct spear_timer *timer) ;
void spear_timer_stop(struct spear_timer *timer) ;
GPT counter value
The 16-bit GPT counter value can be read any time through the following API. Please note
that in case of an asynchronous operation, when the GPT runs on PLL3 and AHB is fed by
PLL1, due to different clock domains, the value reported by this APl may not be valid.
Please refer to the GPT application note for more details on this.
/* This shall return the count value of the timer */
unsigned int spear_timer_ read_counter (struct spear_timer *timer);

3.13 GPT driver usage

Two of these timers are used by the clock keeping and event generation framework of Linux
to maintain Linux time and generation of timer tick. They are defined using the GPT APIs to
configure, program and use the hardware timers. For details please refer to arch/arm/plat-
spear/time.c.

Clock source

One of the GPT timers acts as a free running timer used by Linux to maintain the time of
day. The clock source for Linux is a monotonic increasing timer used by the kernel to get
timer value at any time. For this, it needs to provide a callback to the kernel
(clocksource_read_cycles()) for reading the count value.

static cycle_t clocksource_read_cycles (void)

{
return (cycle_t)spear_timer_read_counter (clk_clksrc_tmr) ;

}

struct clocksource clocksource_gpt = {
.name = "clock source",
.rating = 200,
.read = clocksource_read_cycles,
.mask = OxFFFF, /* 16 bits */
.mult =0, /* to be computed */
.shift = 20,
.flags = CLOCK_SOURCE_IS_CONTINUOUS,

Y

void hrt_clocksource_init (void)
{

Doc ID 16604 Rev 2 29/245

Platform section UumMo851

30/245

static struct spear_timer *gpt;
u32 tick_rate;

gpt = spear_timer_request_specific(2);
BUG_ON (gpt == NULL) ;

spear_timer_set_source(gpt, SPEAR_TIMER_SRC_SYS_CLK) ;

/* initialize other fields ot clocksource structure */

/* load the counter, start timer */
spear_timer_set_load_start(gpt, 1, OxXFFFF);

/* register the clocksource */
clocksource_register (&clocksource_gpt);

}

Clock event

This entity is used by the kernel to program the next tick event. Normally this happens every
10 msec (CLOCK_EVT_MODE_PERIODIC). In tickless and high resolution timers, it can be
used by the kernel to program the tick at the next suitable interval (even if it is longer than
than 10 msec). For that it uses two callbacks, set_mode() and set_next_event().

static struct clock_event_device clockevent_gpt = {
.name = "clock_event",
. features = CLOCK_EVT_FEAT PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
.set_mode = clockevent_set_mode,
.set_next_event= clockevent_next_event,
.shift = 32,

}i

static void clockevent_set_mode (enum clock_event_mode mode,
struct clock_event_device* clk_event_dev)

u32 period;

spear_timer_stop(clk_event_tmr) ;
/* clear interrupt */
spear_timer_write_status(clk_event_tmr, GPT_STATUS_MATCH) ;

switch(mode) {
case CLOCK_EVT_MODE_PERIODIC:
/* calculate period for 10 msec timer */

/* program timer for 10 msec tic Enable interrupt */
spear_timer_set_match(clk_event_tmr, 1);
spear_timer_set_load_start(clk_event_tmr, 1, period);
break;

case CLOCK_EVT_MODE_ONESHOT :
/*
* timer to be programmed for one shot, the actual programming
* period to be passed in program next event function
*/
break;
case CLOCK_EVT_MODE_UNUSED:
case CLOCK_EVT_MODE_SHUTDOWN :
case CLOCK_EVT_MODE_RESUME:
break;

Doc ID 16604 Rev 2 [‘II

UMO0851

Platform section

3.2

default:
printk ("XXX: set_mode=Error!!!\n");
break;

}

static int clockevent_next_event (unsigned long cycles,
struct clock_event_device* clk_event_dev)
{

spear_timer_set_load_start(clk_event_tmr, 0, (ulé6)cycles);

return 0O;

}

static void __init hrt_clockevent_init (void)
{
u32 tick_rate;

clk_event_tmr = spear_timer_request_specific(l);
BUG_ON (clk_event_tmr == NULL) ;

/*

* program other parameters

* get clock source, program pre-scaler
*/

clockevent_gpt.mult = div_sc(tick_rate, NSEC_PER_SEC,
clockevent_gpt.shift);
clockevent_gpt.max_delta_ns =
clockevent_delta2ns (0xffff, &clockevent_gpt);
clockevent_gpt.min_delta_ns =
clockevent_delta2ns (1, &clockevent_gpt) ;

clockevent_gpt.cpumask = cpumask_of_cpu(0);
clockevents_register_device (&clockevent_gpt) ;

spear_timer_irqg.dev_id = (void *)clk_event_tmr;
setup_irg(spear_timer_get_irg(clk_event_tmr), &spear_timer_irqg);

spear_timer_set_match(clk_event_tmr, 1);

}

Configuration options

As mentioned above, the GPT hardware clock can be obtained from two sources (the
system clock PLL1 and PLL3). The system clock, if selected, goes through a synthesizer
before reaching GPT. This synthesizer can be programmed to obtain the desired operating
frequency for GPT. By default it is divided by 2. For more details, please refer to the SPEAr
user manual.

References

® Refer to linux-2.6.27/Documentation/timers/, for new time keeping and tick generation
architecture of Linux.

Vector interrupt controller (VIC) driver

This section describes the VIC driver.

Doc ID 16604 Rev 2 31/245

Platform section UumMo851

3.2.1

32/245

Hardware overview

Each ARM subsystem of the SPEAR family has a Daisy-Chained ARM PrimeCell® vector
interrupt controller (PL190). The VIC provides a software interface to the interrupt system. In
a system with an interrupt controller, software must determine the source requesting service
and where its service routine is loaded. A VIC does both of these in hardware. It supplies
the starting address, or vector address of the service routine corresponding to the highest
priority requesting interrupt source.

The following table shows the differences between the hardware features for SPEAr600 and
SPEAr300.

Table 11. Differences between SPEAr600 and SPEAr300

SPEAr600 SPEAr300
— Two daisy chained ARM PrimeCells — One ARM PrimeCell
— A total of 64 interrupt lines are available for — A total of 32 interrupt lines are available for the
each CPU from its two daisy-chained ICs. CPU from the ARM PrimeCell.

The main features of the VIC are listed below:

® Generation of both fast interrupt request (FIQ) and interrupt request (IRQ), according to
ARM system operation. IRQ is used for general interrupts, whereas FIQ is intended for
fast, low-latency interrupt handling. In particular, using a single FIQ source at a time
provides interrupt latency reduction, because the ISR can be directly executed without
determining the source of the interrupt.

® Support for 16 vectored interrupts (IRQ only). Each vectored interrupt block receives
the IRQ from the interrupt request logic block and generates a vectored interrupt. Each
vectored interrupt is associated with the 32-bit address of the interrupt service routine
to be executed.

® Hardware interrupt priority, where FIQ interrupt has the highest priority, followed by
vectored IRQs (from vector 0 to vector 15), and then non-vectored IRQs with the lowest
priority.

® Interrupt masking

® Interrupt request status and raw interrupt status (prior to masking).

The interrupt inputs must be level sensitive, active high, and held asserted until the interrupt
service routine clears the interrupt. Edge-triggered interrupts are not compatible.

Doc ID 16604 Rev 2 KYI

UMO0851

Platform section

Figure 4.

VIC block diagram

— VICINTSOURCE[31:0] ==p! request

nVICIRQIN > IRQ
_>
—— VICVECTADDRIN ——— >)
VectAddrin ————»
<— VICVECTADDROUT
——nVICFIQIN > [€—\VectAddrOut
HCLK <l ()
HSELVIC . < HTRANS
HRESETn > < HADDR[11:2] —
HWRITE » AHB slave interface HRDATA[31:0] ==
HREADYIN > < HWDATA[31:0—
<«——HREADYOUT <% HSIZE[2:0] ——
~¢——— HRESPJ[1:0} < HPROT

~FIQSTATUS[31:0] =|Non-vectored FIQ nVICFIQ—»
interrupt logic

Non-vectored IRQ
=—|RQSTATUS[31:0] =»| interrupt logic

Interrupt L

— IRQ0 ——>
— VectAddrO —

— IRQ1 ——)
Vectored interrupt 1 |— \/ectAddr1 —)|

— IRQn ——)

| | — VectAddrn —| IRQ vector
address and nVICIRQ——
— IRQ15 —| priority logic
—VectAddr15 —

logic Vectored interrupt O

Mectored interrupt 15

T

Control logic

3.2.2

Software overview

Linux provides the generic interrupt handling layer which contributes to the complete
abstraction of interrupt handling for device drivers. It is able to handle all the different types
of interrupt controller hardware. Device drivers use generic API functions to request, enable,
disable and free interrupts. The drivers do not have to know anything about interrupt
hardware details, so they can be used on different platforms without code changes.

At Linux level there are three main levels of abstraction in the interrupt code:

e High level driver API

e High level IRQ flow handlers

® Chip level hardware encapsulation

Interrupt control flow

Each interrupt is described by an interrupt descriptor struct irq_desc. The interrupt is
referenced by an 'unsigned int' numeric value which selects the corresponding interrupt

Doc ID 16604 Rev 2 33/245

Platform section UumMo851

34/245

description structure in the descriptor structures array. The descriptor structure contains
status information and pointers to the interrupt flow method and the interrupt chip structure
which are assigned to this interrupt.

Whenever an interrupt triggers, the low level arch code calls into the generic interrupt code
by calling desc->handle_irg(). This high level IRQ handling function only uses desc->chip
primitives referenced by the assigned chip descriptor structure. The details of these
primitives are covered in later sections.

struct irg desc {

irg_flow_handler_t handle_irq;
struct irg chip *chip;
struct msi_desc *msi_desc;
void *handler_data;
void *chip_data;
struct irgaction *action;/* IRQ action list */
unsigned int status;/* IRQ status */
unsigned int depth; /* nested irqg disables */
unsigned int wake_depth; /* nested wake enables */
unsigned int irqg count;/* For detecting broken IRQs */
unsigned int irgs_unhandled;
unsigned long last_unhandled; /* Aging timer for unhandled count */
spinlock_t lock;
#ifdef CONFIG_SMP
cpumask_t affinity;
unsigned int cpu;
#endif
#if defined (CONFIG_GENERIC_PENDING_TIRQ) || defined (CONFIG_IRQBALANCE)
cpumask_t pending_mask;
#endif

#ifdef CONFIG_PROC_FS

struct proc_dir_entry*dir;
#endif

const char *name;

High level driver API

The high level driver APl normally used in device drivers consists of the following functions:
® request_irq()

e free_irq()

® disable_irq()

® enable_irq()

® disable_irq_nosync() (SMP only)
® synchronize_irq() (SMP only)
® set irg_type()

® set irg_wake()

® set irq_data()

® set_irqg_chip()

® set_irq_chip_data()

The details of some of the most important APIs described above are covered in
Section 3.2.5: VIC usage.

Doc ID 16604 Rev 2 K‘YI

UMO0851

Platform section

High level IRQ flow handlers

The generic layer provides a set of pre-defined IRQ-flow methods:
® handle_level_irq(): provides a generic implementation for level-triggered interrupts
® handle_edge_irq(): provides a generic implementation for edge-triggered interrupts

® handle_simple_irq(): provides a generic implementation for simple interrupts. The
simple flow handler does not call any handler/chip primitives

® handle_percpu_irq(): provides a generic implementation for per CPU interrupts. Per
CPU interrupts are only available on SMP and the handler provides a simplified version
without locking.

The interrupt flow handlers (either predefined or architecture-specific) are assigned to
specific interrupts by the architecture either during the boot up or during the device
initialization.

In the SPEAr architecture, at boot up time, the architecture specific code sets up the
handle_level_irqg flow method as the default for all the VIC interrupts. This is done in

<arch/arm/mach-spearxxx/irq.c>. Below is a part of the code captured from the SPEAr300
architecture-related initialization code for VIC.

void __init spear3xx_init_irg(void)
{
unsigned int 1i;
do_init_irqg(l);
for (i = IRQ_VIC_START; i <= IRQ VIC_END; i++) {
set_irqg chip(i, &vic_chip);
set_irg handler (i, handle_level_irq) ;
set_irqg flags(i, IRQF_VALID | IRQF_PROBE);
}
}

Chip level hardware encapsulation

The chip level hardware descriptor structure structs irq_chip contains all the direct chip
relevant functions, which can be utilized by the IRQ flow implementations.

ack()

mask_ack() - optional, recommended for performance

mask()

unmask()

retrigger() - optional

set_type() - optional

set_wake() - optional

These primitives mean exactly what their name says: ack means ACK, masking means
masking of an IRQ line, etc. It is up to the flow handler(s) to use these basic units of low-
level functionality.

struct irq_chip is a hardware interrupt chip descriptor described below:

struct irg _chip {
const char*name;
unsigned int (*startup) (unsigned int irq);

void (*shutdown) (unsigned int irq);
void (*enable) (unsigned int irq);
void (*disable) (unsigned int irq);
Doc ID 16604 Rev 2 35/245

Platform section UumMo851

3.2.3

3.2.4

36/245

void (*ack) (unsigned int irq);

void (*mask) (unsigned int irq);

void (*mask_ack) (unsigned int irq);

void (*unmask) (unsigned int irq);

void (*eoi) (unsigned int irq);

void (*end) (unsigned int irq);

void (*set_affinity) (unsigned int irqg, cpumask_t dest);

int (*retrigger) (unsigned int irq);

int (*set_type) (unsigned int irg, unsigned int flow_type);

int (*set_wake) (unsigned int irg, unsigned int on);
* Currently used only by UML, might disappear one day.*/
#ifdef CONFIG_IRQ_RELEASE_METHOD
void (*release) (unsigned int irqg, void *dev_id);
#endif
/ *
* For compatibility, ->typename is copied into-
>name.Will disappear.*/
sconst char*typename;

Y

VIC API : high level IRQ flow handlers in SPEAR

In the SPEAr architecture code, the setup for the chip level hardware encapsulation is done
at the boot up time. The basic primitives provided are ack/ mask/ unmask/ set_wake. You
can see the code at arch/arm/mach-spearxxx/irq.c.

For each interrupt triggered, these functions provide the interrupt handling at the VIC level,
and handle the VIC specific settings in the registers for the Acknowledgement/ Masking/ Un
Masking / Setting up the Wake up sources at the VIC level.

static struct irg chip vic_chip = {
.name "spear-vic",

.ack = vic_mask_irq,
.mask = vic_mask_irg,
.unmask = vic_unmask_irq,

.set_wake = vic_set_wake

The internals of interrupt handling in ARM

The function start_kernel() is the first 'C' function in Linux, executed when the kernel boots
up. It initializes various subsystems of the kernel, including the IRQ system.

The initialization of IRQ requires that a valid vector table and first level interrupt handlers are
in place, both of these are architecture-specific. start_kernel() calls a function called
__trap_init() to setup the exception vector table at location 0xffff0000. The vector table and
vector stub code for ARM resides in the <arch/arm/kernel/entry-armv.S> file. The
__trap_init() function copies the vector table at location 0xffff0000 and the exception
handlers at 0xffff0200. Keep in mind that the addresses mentioned here are virtual.

After setting up the vector tables start_kernel () calls init_IRQ() to set up the kernel IRQ
handling infrastructure. The function init_irq() calls init_arch_irg(), here the architecture-
specific code of SPEAR does the basic initializations for the VIC at kernel level. The
spearxxx_init_irq() function is defined in arch/arm/mach-spearxxx/irg.c.

When a IRQ is raised, ARM stops what it is processing (assuming it is not processing a
FIQ!), disables further IRQs, puts CPSR in SPSR, puts current PC to LR and switches to
IRQ mode. Then, it refers to the vector table and jumps to the exception handler, which in
our case is __irg_svc(). The function __irq_svc() saves r0-12 on the SVC mode stack (the

Doc ID 16604 Rev 2 KYI

UMO0851

Platform section

3.2.5

kernel stack of the process which was interrupted), reads LR and SPSR from a temporary
IRQ stack and saves them on the SVC mode stack. It increments the preempt count and
calls get_irgnr_and_base() to find out the IRQ line number.

The SPEAr architecture provides the get_irqnr_and_base (arch/arm/mach-
spearxxx/include/mach/entry-macro.S) function to query the interrupt controller to find out
which IRQ line raised this interrupt.

After this, __irq_svc() calls asm_do_IRQ() which in turn calls the IRQ handler (the interrupt
handler that you registered through request_irq ()) or a default IRQ handler registered by
default during boot time.

After the completion of these actions, the IRQ line for which the interrupt was raised is
unmasked and do_level_irq() returns. After this interrupt handling is complete __irq_svc ()
restores the state of the interrupted process.

So now the IRQ infrastructure is in place, and various modules can register their IRQ
handlers through request_irq(). When you call request_irq(), the kernel appends your IRQ
handler to the list of all the IRQ handlers registered for that particular IRQ line. It does not
change the exception vector table.

As described above, the Linux implementation for interrupt handling is not a vectored
approach, hence it does not utilize the vector interrupt capabilities provided by the VIC
hardware.

VIC usage

The current implementation in Linux does not allow the exploitation of the complete
capabilities of the VIC. Within the current capabilities that have been added in the Linux,
you can use the VIC in the following ways.

If a driver needs to register a specific interrupt handler, the following call is provided by
Linux:

/*The following functions declared in <linux/interrupt.h> implement the interrupt
registration interface and is use to register the interrupt handler.*/

int request_irg(unsigned int irqg, irgreturn_t (*handler)(), unsigned long flags,
const char *dev_name, void *dev_id);

/* The details of the above fields are as follow:

irg: interrupt number being requested

(*handler) () : pointer to the handler being installed in driver.

flags: Options related to interrupt management.

*dev_name: string passed here is used in /proc/interrupts to show the owner of
interrupts

*dev_id: Pointer used for shared interrupt lines
*/

/* The function below is use to unregister the interrupt handler. */
void free_irg(unsigned int irqg, void *dev_id);

To check for the interrupt sources being used in the system, type in the following command.

Scat /proc/interrupts

CPUO
16: 3903 spear-vic gp_timer
18: 0 spear-vic <NULL>
20: 0 spear-vic spear-jpeg

Doc ID 16604 Rev 2 37/245

Platform section

UMO0851

3.3

3.3.1

38/245

24: 244 spear-vic uart-pl011

26: 0 spear-vic spear-ssp.0

27 0 spear-vic spear-ssp.1l

28: 0 spear-vic spear-i2c

36: 0 spear-vic <NULL>

37: 0 spear-vic spear-ssp.2

42 1 spear-vic spear-dmac

44 : 29164 spear-vic spear-snor

50: 0 spear-vic rtcO

51: 0 spear-vic <NULL>

57: 0 spear-vic spear-udc

58: spear-vic ohci_hcd:usb3

59: 102 spear-vic ehci_hcd:usbl

60: 1 spear-vic ohci_hcd:usb4

61: 0 spear-vic ehci_hcd:usb2
Err: 0
Table 12. Format of interrupt source list

IRQ No No of interrupts Interrupt string passed in request_irq

44 29164 spear-snor

Real time clock (RTC) driver

Hardware overview

The Real-time clocks (RTC) is used to keep track of days, dates and time, including
century, year, month, hour, minutes and seconds. It supports the use of a battery switchover
circuit, enabling it to keep track of time even when power is off.

Features:
Time-of-day clock in 24 hours mode

Calendar

Alarm capability
Self-isolation mode, which allows RTC to work even with no power supplied at the rest

of the device.

Doc ID 16604 Rev 2

UMO0851

Platform section

3.3.2

Figure 5.

RTC functional block diagram

CLK

C32K

TST_MODE_SCAN
TST_MODE_IDDQ
PSEL

PENABLE
RWRITE
PADDR (4:2)

PWDATA (31:0)

e
e

—»
—

—
RTC

—

—

—>

—» OSCI32B_EN

|y PCDATA (31:0)

— INTERRUPT

Software overview

RTC support in the kernel is architected into two layers: a hardware-independent top-layer
char driver that implements the kernel RTC API, and a hardware-dependent bottom-layer

driver that communicates with the underlying bus.

The SPEAr RTC driver is located in linux/drivers/rtc/spr_rtc_st.c

Doc ID 16604 Rev 2

39/245

Platform section UumMo851

Note:

40/245

Figure 6. RTC software system architecture

User space hwolock
/dev/rtc
Kernel space Linux RTC Class
RTC driver
Hardware RTC hardware

To get access to the real time clock, you need to create a character special file /dev/rtc with
major number 10 and minor number 135.

An "RTC Class" framework is defined to support several different RTCs. It offers three
different user space interfaces:

® /dev/ricN ... much the same as the older /dev/rtc interface.
® /sys/class/rtc/rtcN ... sysfs attributes support read-only access to some RTC attributes.
® /proc/driver/rtc ... the first RTC (rtc0) may expose itself using a proc-fs interface.

The kernel has a dedicated RTC subsystem providing the top-layer char driver and a core
infrastructure that bottom-layer RTC drivers can use to tie in with the top layer. The main
components of this infrastructure are the rtc_class_ops structure and the registration
functions, rtc_device_[registerlunregister](). Bottom-layer RTC drivers scattered under
different bus-specific directories are unified with this subsystem under drivers/rtc/.

Linux RTC class interface

struct rtc_class_ops {

struct module *owner;

int (*open) (struct device *);

void (*release) (struct device *);

int (*ioctl) (struct device *, unsigned int, unsigned long) ;
int (*read_time) (struct device *, struct rtc_time *);
int (*set_time) (struct device *, struct rtc_time *);

int (*read_alarm) (struct device *, struct rtc_wkalrm *);
int (*set_alarm) (struct device *, struct rtc_wkalrm *);
int (*proc) (struct device *, struct seq file *);

int (*set_mmss) (struct device *, unsigned long secs);

Y

rtc = rtc_device_register (pdev->name, &pdev->dev,

Doc ID 16604 Rev 2 K‘YI

UMO0851

Platform section

&spear_rtc_ops, THIS_MODULE) ;

The following system calls are supported by Linux RTC framework.

Opening the RTC device

The open function is used to establish the connection between the RTC device and a file
descriptor.

int f£d;
fd = open("/dev/rtc", O_RDONLY, 0);

IOCTL operations
The ioctl command is used to configure the RTC device.

int f£d;

struct rtc_time rtc_tm;

int ret;

fd = open("/dev/rtc", O_RDONLY, O0);

/* the ioctl command RTC_RD_TIME is used
* to read the current timer.

*/

ret = ioctl(rtc_fd, RTC_RD_TIME, &rtc_tm);

close(£fd) ;

Table 13. RTC ioctl requests

Request Description

This ioctl does not need an argument, and it can be used to disable the

RTC_AIE_OFF RTC alarm interrupt.

This ioctl does not need an argument, and it can be used to enable the

RTC_AIE_ON RTC alarm interrupt.

This ioctl needs one argument (struct rtc_time *), and it can be used to

RTC_ALM_READ get the current RTC alarm parameter.

This ioctl needs one argument (struct rtc_time *), and it can be used to

RTC_ALM_SET set the RTC alarm.

RTC_RD._TIME This ioctl needs one grgument (struct rtc_time *), and it can be used to
get the current RTC time.

RTC_SET_TIME This ioctl needs one argument (struct rtc_time *), and it can be used to

set the current RTC time.

Read from RTC device

This is the standard read function call. In the RTC driver, the read function is used to wait for
the RTC device interrupt. When the read function is called, the application is locked until an
interrupt is generated.

int fd;

int ret;

struct rtc_time rtc_tm;
unsigned long data;

Doc ID 16604 Rev 2 41/245

Platform section UumMo851

3.3.3

3.3.4

42/245

fd = open("/dev/rtc", O_RDONLY, O0);
ret = ioctl(fd, RTC_ALM_ SET, &rtc_tm);

/* call the read function to wait the Alarm interrupt */
ret = read(fd, &data, sizeof (unsigned long));

éiése(fd);
Closing the device

The close function is used to disconnect the RTC device with the relevant file descriptor.

int f£4;
fd = open("/dev/rtc", O_RDONLY, O0);

close(£fd) ;

RTC driver usage

e hwclock

hwclock is a shell utility for accessing the RTC clock. You can use it to display the
current time, set the hardware clock to a specified time, set the hardware clock to the
system time, and set the system time from the hardware clock. You can also run
hwclock periodically to insert or remove time from the hardware clock in order to
compensate for systematic drift (where the clock consistently gains or loses time at a
certain rate if left to run).

Example:

#hwclock --set --date="9/22/96 16:45:05"
® ricwake

rtcwakeup is a shell utility which can be used to program RTC for the next alarm
interrupt. It accepts an argument in seconds, which is the programmed alarm time.

Example:

#rtcwake -s 10

Configuration options

Table 14. RTC menuconfig kernel options

Configuration option Comment
CONFIG_RTC This option enables the RTC driver.
References

® Refer linux-2.6.27/Documentation/timers/, for the time keeping and tick generation
architecture of Linux.

Doc ID 16604 Rev 2 KYI

UMO0851

Communication device drivers

4

4.1

4.1.1

Communication device drivers

All the devices in the SPEAr embedded MPU family provide a rich set connectivity functions
and have embedded controllers for various low speed and high speed standard buses.

This section describes all the communication-oriented SPEAr drivers.

GMAC Ethernet driver

Ethernet is a family of standard technologies widely used in local area networks (LAN). All
SPEAr devices have an embedded GMAC Ethernet controller. While SPEAr600 supports
gigabit Ethernet operations, the SPEAr3xx family GMAC is hard-configured to support only
fast Ethernet. This section describes the GMAC Ethernet driver.

Hardware overview

Within its high-speed (HS) connection subsystem, SPEAr provides a Synopsys's DWC
Ether MAC 10/1000/1000 Univ. able to transmit and receive data over Ethernet in
compliance with the IEEE 802.3-2002 standard. The GMAC controller is equipped with a
AHB master interface (DMA), for transferring Ethernet frames to/from the system memory,
and a AHB 32-bit slave interface to access the GMAC subsystem's control & status
registers. It supports the following modes:

® MIl (media independent interface) for 10/100 Mbps operation.
® GMIll interface for gigabit (1000Mbps) operation (only in SPEAr600)

The transmit FIFO (TxFIFO) buffers the data read from the system memory by the DMA
before their transmission by the GMAC core. Similarly, the receive FIFO (RxFIFO) stores the
Ethernet frames received from the line until they are transferred to the system memory by
the DMA. These are asynchronous FIFOs, as they also transfer data between the
application clock and the GMAC line clocks. Both FIFOs are implemented in 35-bit wide
dual-ported RAM : TxFIFO is 2 Kbytes deep while RxFIFO is 4 Kbytes deep.

Doc ID 16604 Rev 2 43/245

Communication device drivers umMo851
Figure 7. GMAC block diagram
TX FIFO | RXFIFO
MEM MEM
PN N\
S S
AHB
MASTER DMA
(| mast T T x| e - -
\'_ \'_ MAC I/F
CSR SGMII
DMA OMR ZINR!
AHB CSR | REGS ¢j1> MUX V__>
SLAVE <
¢j> I/F
(G)MII
GMAC MTL
GMAC DMA

GMAC AHB

The GMAC-UNIV supports any one or a combination of the following PHY interfaces:

® Gigabit media independent interface (GMII)/media independent interface (MIl) [defauli]

e Serial GMII (SGMII)

Apart from the above, the following hardware features are available and supported by the

software:
® Promiscuous mode

® Check Sum offload for received IP and TCP/UDP packets

@ Dual buffer ring (implicit chaining) being used for handling DMA descriptors. This option
allows a maximum of 4 KB of packets to be handled by a single DMA descriptor for
SPEAr600 and 16 KB of packets handled by a single DMA descriptor for SPEAr300

® Magic packet detection support for waking up from sleep.

4.1.2 Software overview

The GMAC Ethernet driver sits on top of the GMAC controller and interfaces with the Linux

TCP/IP stack through the standard Linux network interface.

44/245

Doc ID 16604 Rev 2

UMO0851 Communication device drivers
Figure 8. GMAC Ethernet software architecture
User space
Application
Socket API
TCP/IP stack
Kernel space
Netif I/F
GMAC Ethernet driver
Hardware GMAC controller [| EthPhy
GMII/MII
41.3 GMAC API

The following sections describe the GMA API.

Device registration

The GMAC driver inserts a data structure for each newly detected interface into a global list
of network devices.

Each interface is described by a struct net_device item, which is defined in
<linux/netdevice.h>. The structure must be allocated dynamically. The kernel function
provided to perform this allocation is alloc_etherdev(), which has the following prototype:

struct net_device *alloc_etherdev(int sizeof_priv);

/* Here, sizeof_priv is the size of the SPEAr MAC driver's "private data" area. Once
the net_device structure has been initialized, the process of registration is
complete by passing the structure to register_netdev().The access to the SPEAr GMAC
private data is done via standard call provided by kernel */

struct spear_eth_priv priv = netdev_priv(dev) ;

The GMAC driver interacts with the kernel via the struct net_device data structure. The
structure fields are initialized to provide the necessary interface. The code below is a fairly
routine initialization of the struct net_device structure; it is mostly a matter of storing pointers
to the various functions of the driver.

struct net_device *dev;

dev->open = spear_eth_open;

dev->stop = spear_eth_stop;
dev->do_ioctl = spear_eth_ioctl;
dev->get_stats = spear_eth_get_stats;
dev->tx_timeout = spear_eth_tx_ timeout;

Doc ID 16604 Rev 2 45/245

Communication device drivers

UMO0851

dev->hard_start_xmit

= spear_eth_start_xmit;
dev->set_multicast_list = spear_eth_ set_multicast_list;

/* The private data structure use by the driver is */

dev->change_mtu = &spear_eth_change_mtu;
dev->dev_addr[0-5] = MAC ADDRESS;

struct spear_eth_priv {

struct dma_mac_descr *txd_table;

struct dma_mac_descr *rxd_table;
dma_addr_t dma_tx_descrp;

dma_addr_t dma_rx_descrp;

volatile unsigned int rx_curr_descr_num;
volatile unsigned int tx_curr_descr_num;
volatile unsigned int tx_prev_descr_num;

volatile signed int tx_mac_win_size;

int tx_ring count;
int rx_ring_ count;
spinlock_t eth_lock;

struct tasklet_struct rx_tasklet;
struct tasklet_struct tx_tasklet;
struct timer_list tmr_hotplug;
/* MII interface info */
struct mii_if info mii;

/* 0S defined structs */
struct net_device *dev;

struct platform_device *pdev;
struct net_device_stats stats;

uint32_t gotcl;
/* RX */
uint64_t hw_csum_err;

uint64_t hw_csum_good;

uint32_t gorcl;

struct spear_hw_stats hw_stats;

struct mii_phy phy;
u8 spr_dma_rx_abnorm;

struct clk *spear_eth_clk;

int rx_skb_size;

int rx_sync_size;

struct resource *res;
Y

PHY framework for SPEAr

The PHY abstraction layer in SPEAr provides a generic interface to support different PHYs.
The interface is defined as spear_mii_phy_probe(struct mii_phy *phy, u8 address). It is used
to probe for the PHY addresses from 0-31 across the set of known or generic PHY
interfaces maintained in the PHY table structure (struct mii_phy_def).

Below is a set of data structures used in the interface:

struct mii_phy_ def {
u32 phy_id;
u32 phy_id_mask;
u32 features;

int magic_aneg;
const char *name;

/*
/*
/*

/*

const struct mii_phy ops *ops;

Y

struct mii_phy_ops {

Concatenated ID1 << 16 | ID2 */
Significant bits */

Ethtool SUPPORTED_* defines or

0 for autodetect */

Autoneg does all speed test for us */

int (*init) (struct mii_phy * phy);

46/245

Doc ID 16604 Rev 2

UMO0851

Communication device drivers

int (*suspend) (struct mii_phy * phy, int wol_options) ;
int (*setup_aneg) (struct mii_phy * phy, u32 advertise);
int (*setup_forced) (struct mii_phy * phy, int speed, int fd4d);
int (*poll_1link) (struct mii_phy * phy);
int (*read_link) (struct mii_phy * phy);
}i

struct mii_phy {
struct mii_phy def *def;
u32 advertising; /* Ethtool ADVERTISED_* defines */

u32 features; /* Copied from mii_phy_def. features or determined

automatically */

u8 address; /* PHY address */
int mode; /* PHY mode */

/* 1: autoneg enabled, 0: disabled */
int autoneg;

/* forced speed & duplex (no autoneg) partner speed &

duplex & pause (autoneg)*/

int speed;
int duplex;
int pause;
int asym_pause;

/* Provided by host chip */
struct net_device *dev;
struct device *pdev;
int (*mdio_read) (struct net_device *dev, int addr, int reg);
void (*mdio_write) (struct net_device *dev, int addr, int reg, int val);

}i

In case you are not able to use the generic/existing phy interfaces, and want to add support

for a new phy interface(xxx_phy_def), you can add this in the phy table.

The current table provides support for National/ST and a Generic PHY interface.

static struct mii_phy def *mii_phy table[] = {
&st_phy_def,
&national_phy_def,
&genmii_phy_ def,
&xxx_phy_def,
NULL
Y
/* Similarly Define the details of the member function for example: */

static struct mii_phy def xxx_phy def = {

.phy_id = 0x00000000,
.phy_id_mask = 0x00000000,
.name = "XXX MII",
.ops = &XXX_phy_ops

Y

/* Make sure to provide in the proper PHY ID and the Mask as defined in the
configuration registers of the Phy to properly identify the Phy.*/

/* Define the Operations to be performed on PHY xxx */
static struct mii_phy ops xxx_phy ops = {

.setup_aneg = xxx_mii_setup_aneg,
.setup_forced = xxx_mii_setup_forced,
.poll_link = xxx_mii_poll_link,
.read_link = xxx_mii_read_link

Y

Doc ID 16604 Rev 2

PHY

47/245

Communication device drivers UMO0851

48/245

/*State the member functions as provided in the above structure as per your design
requirements.*/

GMAC interface to kernel

The key kernel interfaces that have been set up in the initialization routines are:

int (*open)(struct net_device *dev);

This is the function that opens the interface. The interface is opened whenever ifconfig
activates it. The open method registers any system resource it needs (I/O ports, IRQ,
DMA) and sets up the MAC hardware as well as the PHY in auto negotiation mode. The
open method also starts the interface transmit queue. The kernel provides a function to
start the queue:

void netif_start_queue(struct net_device *dev);

int (*stop)(struct net_device *dev);

This function stops the interface and powers down the PHY. This function should
reverse operations performed at open time.The close method also stops the interface's
transmit queue. The kernel provides a function to stop the queue:

void netif_stop_queue(struct net_device *dev);

int (*hard_start_xmit) (struct sk_buff *skb, struct net_device *dev);

Method called to initiate the transmission of a packet. The full packet (protocol headers
and all) is contained in a socket buffer (struct sk_buff) structure. The function basically
makes use of the chained DMA descriptors to transmit the packet sent by stack.

void (*tx_timeout)(struct net_device *dev);

Method called by the networking code when a packet transmission fails to complete
within a reasonable period, on the assumption that an interrupt has been missed or the
interface has locked up. It should handle the problem and resume packet transmission.
The current driver reinitializes the total DMA/MAC related hardware.

int (*do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);

Function that performs interface-specific ioctl commands (the implementation of these
commands is described in the "Custom ioctl commands" section.) The corresponding
field in struct net_device can be left as NULL if the interface does not need any
interface-specific commands.

The SPEAr driver routes the ioctls to the standard Mll interface provided by the kernel.
The commands are as follows:

SIOCGMIIPHY : get address of MIl PHY in use
SIOCGMIIREG : read MIl PHY register.

The usage of the above ioctls can be explored by using the <mii_tool> provided in the
user space.

int (*change_mtu)(struct net_device *dev, int new_mtu);

Function that takes action if there is a change in the maximum transfer unit (MTU) for
the interface.

Doc ID 16604 Rev 2 KYI

UMO0851 Communication device drivers
Note: The maximum MTU size for SPEAr600 is 4000 and for SPEAr300 is 9000.
® void (*set_multicast_list)(struct net_device *dev);
Method called when the multicast list for the device changes and when the flags
change.
41.4 Concept of socket buffers

Each packet handled by the kernel is contained in a socket buffer structure (struct sk_buff),
whose definition is found in <linux/skbuff.h>. The structure gets its name from the Unix
abstraction used to represent a network connection, the socket. Even if the interface has
nothing to do with sockets, each network packet belongs to a socket in the higher network
layers, and the input/output buffers of any socket are lists of struct sk_buff. The same struct
sk_buffis used to host network data throughout all the Linux network subsystems, but a
socket buffer is just a packet as far as the interface is concerned. A pointer to struct sk_buff
is usually called skb. This practice is used both in the sample code and in the text.

The skb buffers used for the reception or transmission must guarantee cache coherency.
These buffers are allocated in the cached memory regions and therefore there is a
possibility that the memory data is not in synch with cache. The driver uses the following
calls for cache coherency:

dma_addr_t dma_map_single(struct device *dev, void *ptr, size_t size,enum
dma_data_direction dir);

/* Depending upon the directions of the data transfer the above function either
invalidates or clean the cache contents.

If the argument dir in the above function is set as DMA_FROM_DEVICE, this argument
may do nothing in the above function but invalidates the cache when used in
dma_unmap_single. If the argument dir is set to DMA_TO_DEVICE, it cleans the cache.
Cleaning a cache reestablishes coherence between the cached memory and the main
memory */

void dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size, enum
dma_data_direction dir);

/* The call to the above function is made when the packet has been received, to see
if a mapped address was really a "safe" buffer and if so, copy the data from the safe
buffer back to the unsafe buffer and free up the safe buffer.

*/

Packet reception

Receiving data from the network is trickier than transmitting it, because a struct sk_buff
must be allocated and handed off to the upper layers within an atomic context. The mode of
packet reception that has been implemented is interrupt driven.

There is a common interrupt registered for both reception and transmission. When the
packet is received a tasklet is scheduled for handing the packet to the upper stacks, as the
packet has been fetched by DMA into the memory buffers. The scheduled tasklet executes
not later than the next timer tick. This scheduling allows to handle more packets in a more
efficient way.

One important thing to note over here is that since the packet handling to the stack is done
through tasklet, it keeps the DMA descriptor occupied till the packet is handed over to the
stack. In case of heavy Ethernet traffic at high speeds, the number of DMA descriptors

Doc ID 16604 Rev 2 49/245

Communication device drivers UMO0851

4.1.5

Note:

50/245

configured should be sufficient to handle the excess traffic, otherwise there is a possibility of
retransmissions or packet losses.

Packet transmission

Whenever the kernel needs to transmit a data packet, it calls the driver's hard_start_xmit()
method to put the data on an outgoing queue. The socket buffer passed to hard_start_xmit()
contains the physical packet as it should appear on the media, complete with the
transmission-level headers. The interface does not need to modify the data being
transmitted. skb->data points to the packet being transmitted, and skb->len is its length in
octets.

The transmission function in the SPEAr driver initializes DMA Descriptors to point to the
relevant socket buffer to be transmitted. As soon as the transmission is complete, the TX
completed interrupt is received, where a transmission tasklet is scheduled for freeing up the
socket buffers being used for transfers, and reinitializing some of the parameters of the DMA
descriptors.

GMAC driver usage

Usage of ifconfig command

The "ifconfig" command allows the operating system to setup the network interfaces and the
user to view information about the configured interfaces.

® To configure the network IP address:
#ifconfig ethO0 192.168.1.1 netmask 255.255.255.0

#ifconfig etho

eth0 Link encap:Ethernet HWaddr 08:00:17:0b:92:10
inet addr:192.168.1.1 Bcast:192.168.1.255 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txgqueuelen:32
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

® To configure the MTU size:
ifconfig eth0 mtu <size>
/* If the user sets the mtu size as 4000 and then gives following command */

#ifconfig etho

eth0 Link encap:Ethernet HWaddr 08:00:17:0b:92:10
inet addr:192.168.1.1 Bcast:192.168.1.255 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:4000 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:32
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

The maximum MTU size for SPEAr600 is 4000 and the for SPEAr300 is 9000

® To shutdown the interface and reactivate it:

Doc ID 16604 Rev 2 KYI

UMO0851

Communication device drivers

ifconfig eth0 down
Ifconfig eth0 up

Usage of Ethtool

The ethtool utility is used to display or change the Ethernet card settings.

To setup the auto negotiation:

ethtool -s eth0 autoneg on

To check the existing network configurations (result for SPEAr600):

ethtool ethO
Settings for ethO:

Supported ports: [MII]

Supported link modes: 10baseT/Half 10baseT/Full
100baseT/Half 100baseT/Full
1000baseT/Half 1000baseT/Full

Supports auto-negotiation: Yes

Advertised link modes: 10baseT/Half 10baseT/Full
100baseT/Half 100baseT/Full
1000baseT/Half 1000baseT/Full

Advertised auto-negotiation: Yes

Speed: 1000Mb/s

Duplex: Full

Port: MII

PHYAD: 1

Transceiver: external

Auto-negotiation: on

Link detected: yes

To setup the forced speed 100, full duplex mode:
ethtool -s eth0 autoneg off speed 100 duplex full
To setup the forced speed 100, half duplex mode:
ethtool -s eth0 autoneg off speed 100 duplex half
To setup the forced speed 10, full duplex mode:
ethtool -s eth0 autoneg off speed 10 duplex full

To setup the forced speed 10, half duplex mode:
ethtool -s eth0 autoneg off speed 10 duplex half:

Doc ID 16604 Rev 2

51/245

Communication device drivers UMO0851

4.1.6

52/245

GMAC driver performance

The driver performance was evaluated using the following setup:

Host PC

— Linux Fedora Core11

— Processor: 1 GHz AMD Athlon 64 bit dual core

— RAM: 1 GB DDR2 RAM (667 MHZz)

— Gigabit Ethernet

Target device: SPEAr600

— CPU: 332 MHz - AHB: 166 MHz - DDR: 333 MHz
Ethernet Traffic Sniffer: Ethereal On Linux PC

Benchmark: netperf/netserver (http://www.netperf.org/netperf/)
Test method

The target board is connected to the Linux PC via an Ethernet cross cable. A terminal
emulator running on the Windows PC (connected via the serial port) is used to run the
Linux image and execute test cases. The netserver is run on the Linux test PC and the
netperf is run on the target board (with the necessary options for different test cases) to
measure the transmission throughput and vice versa to measure the reception
throughput.

The test method covers the following combination of tests. The MTU size varied from
4000 to 1500 bytes and for each set of readings the various combinations for
Checksum offloading (On/Off) with CRC stripping(on/off) were tested.

Test type

Netperf is a benchmark that is used to measure the performance of Ethernet. It uses
TCP and UDP via BSD sockets. It provides tests for both unidirectional throughput and
end-to-end latency. The worksheet provides test results for TCP_STREAM
performance tests.

At giga speeds.

Table 15. SPEAr600 Ethernet evaluation results

MTU

Checksum offloading disabled Checksum offloading enabled
CRC strip off CRC strip on CRC strip off CRC strip on
RX RX RX

RX speed | Tx speed Tx speed Tx speed Tx speed

speed speed speed

4000 322.61 235.88 321.35 234.76 382.72 241 383.96 241.76

3500 | 293.98 228.06 289.91 226.32 352.91 233.95 354.58 232.56

3000 | 263.75 211.86 260.1 208.12 311.38 217.57 308.92 211.88

2500 223.37 205.03 220.51 203.47 261.86 207.65 257.47 206.32

2000 192.01 174.23 191.38 172.88 225.96 177.46 226.55 175.31

1500 168.3 143.6 170.12 142.41 201.64 146.95 204.48 144.82

Doc ID 16604 Rev 2 KYI

UMO0851 Communication device drivers
Table 15. SPEAr600 Ethernet evaluation results
. Throughput for the test case 30 seconds (./netperf -1 30 -H 192.168.1.10) at
Reception baud Linux PC (Reception baud)
Transmission Throughput for the test case run for 30 seconds
baud (./netperf -1 30 -H 192.168.1.1) at SPEAr (Transmission baud)
Note: For the tests conducted above the number of DMA descriptors used for Rx are 64, and for

Tx are 128. The speeds shown above are in Mbps.

Figure 9. Ethernet performance evaluation results (Checksum offloading disabled)
4500
4000 % »
3500 % / a— RX (ChkSumOff
/ / Disabled/CRC Strip
3000 X, ¢ Disabled)
8 2500 L / —&— TX (ChkSumOff
‘» Disabled/CRC Strip
=) ~ / Disabled)
P 2000 X
s z / RX (ChkSumOff
1500 % Disabled/CRC Strip
Enabled)
1000 TX (ChkSumOff
Disabled/CRC Strip
500 Enabled)
0 L] L] L]
0 100 200 300 400

Performance in Mbps

Figure 10. Ethernet performance evaluation results (Checksum offloading enabled)

4500

4000

3500

[

—&— RX (ChkSumOff
Enabled/CRC Strip

3000

Disabled)
—— TX (ChkSumOff

2500

MTU Size

[Z

Enabled/CRC Strip

2000

[[

T
77
L.

Disabled)
RX (ChkSumOft

1500
1000

Enabled/CRC Strip
Enabled)

500

TX (ChkSumOff
Enabled/CRC Strip

Enabled)

200 400

Performance in Mbps

600

Doc ID 16604 Rev 2

53/245

Communication device drivers UMO0851

54/245

The data shown above is a result of the following configuration features supported by the
driver.

Jumbo frames

Since its creation (around 1980), Ethernet has used 1500 byte frame sizes. To maintain
backward compatibility, 100 Mbps Ethernet used the same size, and today "standard"
gigabit Ethernet also uses 1500 byte frames. This is so a packet to/from any
combination of 10/100/1000 Mbps Ethernet devices can be handled without any layer
two fragmentation or reassembly.

"Jumbo frames" extends Ethernet to 9000 bytes.

For SPEAr600, the maximum MTU size has been limited to 4000, but for SPEAr300 the
maximum MTU size is kept at 9000. The advantage of using bigger MTU size can be
estimated from the fact that smaller frames usually mean more CPU interrupts and
more processing overhead for a given data transfer size. Often the per-packet
processing overhead sets the limit of TCP performance in the LAN environment. The
experiments results obtained above prove that the jumbo frames provided 50% more
throughput with 50% less CPU load than 1500 byte frames.

Checksum offloading during reception

Checksum offloading is used to relieve the kernel (and thus the CPU) from the burden
of calculating transport-PDU checksums (TCP and UDP checksums) when the SPEAr
MAC hardware can perform these calculations itself. As it can be seen in the results
above, when the checksum offloading is enabled the reception performance has
increased by almost 60 Mbps.

CRC stripping

This optionenables GMAC to stripthe PAD/FC S ontheincomingframes onlywhen

the length of the frame is less than or equal to 1500 bytes. The results show that
enabling this particular option does not impact the performance significantly, as the
execution time for the same option in the software is also on the lower side.

Kernel configuration options

Below is a list of the kernel configuration options supported by the driver using make
menuconfig.

Table 16. Menuconfig options

Configuration options Comment

CONFIG_NET_ETHERNET Kernel networking support

CONFIG_MII

Generic media independent interface provided by
kernel.

CONFIG_ETH_SPEAR_SYN

This option is used to enable the GMAC driver
support (CONFIG_ETH_SPEAR_SYN=Y).

Doc ID 16604 Rev 2 KYI

UMO0851 Communication device drivers
Other miscellaneous options:
Table 17. Other options
Configuration option Comment
JUMBO frame size Can be configured by setting ifconfig ethO mtu <size>.
Checksum offloading is used to relieve the kernel (and
thus the CPU) from the burden of calculating transport-
CRC_OFFLOAD PDU checksums (TCP and UDP checksums) when the
SPEAr MAC hardware can perform these calculations
itself.
Setup the number of DMA descriptors being used in
No of receive/ transmit descriptors reception and transmission. The default has been set to
32 for both reception and transmission.
This option enables the GMAC to strip the PAD/FCS on
ETH_SPEAR_CRC_STRIP the incoming frames only when the length of the frame
is less than or equal to 1500 bytes.
Ethtool is used for querying the settings of an Ethernet
Ethtool . .
device and changing them.
4.2 MACB (MAC block) driver
MACB is a 10M/100M Ethernet controller, with an SMII (Serial Mll) interface to an external
PHY. This section describes the driver for MACB Ethernet controller embedded in SPEAr.
The IP is provided by Cadence.
4.2.1 Hardware overview

The MACB module implements a 10/100 Ethernet MAC compatible with the IEEE 802.3
standard using an address checker, statistics and control registers, as well as receive and
transmit blocks and a DMA interface. The address checker recognizes four specific 48-bit
addresses and contains a 64-bit hash register for matching multicast and unicast addresses.
It can recognize the broadcast address of all ones, copy all frames, and act on an external

address match signal.

Doc ID 16604 Rev 2 55/245

Communication device drivers UMO0851

56/245

Figure 11. MACB diagram

Status &

/1 statistic /‘ﬁ
W registers K ™

Hegister

APE <:> interface

A

..> MDD

Control

:r-; registers

~

bt

MAC transmitter
AHE DMA iy
—/|interface > SMII

AHE or ASE
MAC receiver

= =
- Iyl
External

FIFO
interface

FIFO interface <

'U'

Frame filtering ‘

The statistics register block contains registers for counting various types of event associated
with transmit and receive operations. These registers, along with the status words stored in
the receive buffer list, enable software to generate network management statistics
compatible with IEEE 802.3 Clause 30.

The control registers drive the MDIO interface, setup up DMA activity, start frame
transmission and select modes of operation such as full or half duplex. The register interface
is compatible with the AMBA APB bus standard.

The receive block checks for valid preamble, FCS, alignment and length, and presents
received frames to the address checking block and DMA interface

The transmit block takes data from the DMA interface, adds preamble and, if necessary, pad
and FCS, and transmits data according to the CSMA/CD (carrier sense multiple access with
collision detect) protocol. The start of transmission is deferred if CRS (carrier sense) is
active. If COL (collision) becomes active during transmission, a jam sequence is asserted
and the transmission is retried after a random back off. CRS and COL have no effect in full
duplex mode.

The DMA block connects to external memory through its AMBA AHB or ASB bus interface. It
contains receive and transmit FIFOs for buffering frame data. It loads the transmit FIFO and
empties the receive FIFO using AHB or ASB bus master operations. Receive data is not
sent to memory until the address checking logic has determined that the frame should be
copied.

Receive or transmit frames are stored in one or more buffers. Receive buffers have a fixed
length of 128 bytes. Transmit buffers range in length between 0 and 2047 bytes, and up to
128 buffers are permitted per frame. The DMA block manages transmit and receive frame-
buffer queues. These queues can hold multiple frames.

Doc ID 16604 Rev 2 K‘YI

UMO0851 Communication device drivers
In system applications where no DMA is required, the DMA interface can be replaced with a
FIFO interface using a compile option. In this configuration, the MACB may be used with a
larger external FIFO.
4.2.2 Software overview
The MACB Ethernet driver sits on top of the MACB controller and interfaces to the Linux
TCP/IP stack through the standard Linux Network interface.
The figure below shows the framework of the MACB Ethernet software.
Figure 12. MACB software layers
User space Application
Socket API
TCP/IP stack
Kernel space
Netif I/F
MACB Ethernet driver
Hardware MACB controller [> | EthPhy
SMil
The related Linux files are:
® drivers/net/arm/mach_top.c
® drivers/net/arm/spear_macb.c
4.2.3 MACB driver interface

Device registration

The MACB driver inserts a data structure for each newly detected interface into a global list
of network devices.

Each interface is described by a struct net_device item, which is defined in
<linux/netdevice.h>. The structure must be allocated dynamically. The kernel function
provided to perform this allocation is alloc_etherdev(), which has the following prototype:

struct net_device *alloc_etherdev (int sizeof_priv)

/*Here, sizeof_priv is the size of the SPEAr MACB driver's "private data" area.
Once the net_device structure has been initialized, the process of registration
is complete by passing the structure to register_netdev().

The access to the SPEAr MACB private data is done via standard call provided by
kernel */

Doc ID 16604 Rev 2 57/245

Communication device drivers UMO0851

struct macb* bp = netdev_priv(dev);

The MACB driver interfaces to the kernel via the struct net_device data structure. The
structure fields are initialized to provide the necessary interface. The below code is a fairly
routine initialization of the struct net_device structure; it is mostly a matter of storing pointers
to our various driver functions.

struct net_device *dev;

dev->open = macb_open;

dev->stop = macb_close;

dev->do_ioctl = macb_ioctl;

dev->get_stats = macb_get_stats;
dev->hard_start_xmit = macb_start_xmit;
dev->set_multicast_list = macb_set_rx mode;
dev->dev_addr[0-5] = MAC ADDRESS;

/*The private data structure use by the driver is */

58/245

struct macb {
void __iomem
unsigned int
struct dma_des
void
unsigned int
unsigned int
struct dma_desc
struct ring_info
spinlock_t
struct platform_device
struct net_device
struct net_device_stats
struct macb_stats

*regs;
rx_tail;
*rx_ring;
*rx_buffers;
tx_head, tx_tail;
lasttx_base;
*tx_ring;
*tx_skb;
lock;

*pdev;

*dev;

stats;
hw_stats;

dma_addr_t rx_ring_dma;

dma_addr_t tx_ring_dma;

dma_addr_t rx_buffers_dma;
unsigned int rx_pending, tx_pending;
struct mii_bus mii_bus;

struct mii_if_info mii;

struct phy_device *phy_dev;

unsigned int link;

unsigned int speed;

unsigned int duplex;

Y
PHY framework for SPEAr MACB

In the MACB driver, there is a top layer (drivers/net/arm/macb_top.c) whose function is to
scan all the PHY chips and to assign each of them to the corresponding MACB drivers.

After scanning and verifying all the PHY chips, the top layer driver creates four (or a different
number of) platform devices, which matches the MACB platform drivers. The platform
contains the struct phy_device and its corresponding MACB base register address.

The code below is in the top layer driver driver/net/arm/mach_top.c

/* register MDIO bus of MACB */

bp->mii_bus.name = "MACB_mii_bus";bp->mii_bus.read = &macb_mdio_read;bp-
>mii_bus.write = &macb_mdio_write;bp->mii_bus.reset = &macb_mdio_reset;bp-
>mii_bus.id = bp->pdev->id;

Doc ID 16604 Rev 2 [‘II

UMO0851 Communication device drivers
/* this function will register the mdio bus basic operation and scan all PHYs in this
bus */
mdiobus_register (&bp->mii_bus) ;

/* after this function, if there's a valid PHY at address “addr”,
“bp->mii_bus.phy_map[phy_addr]” will point to a phy_device structure,
otherwise it is NULL */
Through platform_device/driver, the MACB drivers will get the phy_device structure and the
MAC base register address from the top layer. The following code is in MACB driver
drivers/net/arm/spear_macb.c
/* to start the PHY */
phy_start (bp->phy_dev) ;
/* in the run time, the network environment may change. So the state of PHY
(link on/off, 100M/10M) may also change. At the same time, it is necessary
to change the MAC setting in software. This can be done through a callback
function "macb_handle_link_change */
phydev = phy_ connect (bp->dev, bp->phy_dev->dev.bus_id, &macb_handle_link_ change, 0);
General kernel interface
Please refer to the corresponding chapter of the GMAC section (GMAC interface to kernel)

424 Socket buffer management
Please refer to the corresponding chapter of the GMAC section (Section 4.1.4: Concept of
socket buffers).

4.2.5 Cache coherency

Working with the CPU cache results in increased performance, but introduces
cache/memory coherence problems as external DMAs can only access the external
memory.

There are two cache strategies in the MACB driver.

® FIFO descriptor memory is allocated as an uncached memory block. It uses the void*
dma_alloc_coherent(struct device”, size_t, dma_addr_t*, gfp_t) function to allocate the
uncached memory, which uses the pgprot_noncached macro to set the page table.
Since there is never a cached copy of this buffer, CPU access is slower but there are no
such coherency problems.

® The real data buffer whose address is stored in the FIFO descriptor is allocated as a
cached memory block. The driver allocates the RX buffers directly using kmalloc(),
while the TX buffers are allocated by network stack upper layers. In both cases the skb-
>data field is populated with a data buffer pointer. Since these RX/TX buffers are
cached, the driver must explicitly guarantee the coherence between memory and
cache. For this purpose, the Linux kernel provides the function dma_addr _t
dma_map_single(struct device *dev, void *ptr, size_t size,enum dma_data_direction
dir). The last parameter may be set to DMA_FROM_DEVICE or DMA_TO_DEVICE
according to whether the cache must be invalidated (to read incoming data) or flushed
(to send outcoming data). The dma_unmap_single() routine is not present in Linux for
ARM.

Doc ID 16604 Rev 2 59/245

Communication device drivers UMO0851

4.2.6

4.2.7

4.2.8

4.2.9

60/245

Packet reception

Receiving data from the network is trickier than transmitting it, because an sk_buff must be
allocated and handed off to the upper layers from within an atomic context. The mode of
packet reception that has been implemented is interrupt driven.

There is a common interrupt registered for both reception and transmission. When the
packet is received the interrupt handler queues the packet on to the upper stacks.

In a heavy traffic environment, it may receive thousands of packets per second. With that
sort of interrupt load, the overall performance of the system can suffer.

As a way of improving the performance, the MACB driver uses NAPI functions based on
polling. When the system has a high speed interface handling heavy traffic, there are always
more packets to process. There is no need to interrupt the processor in such situations. If
the poll method is able to process all of the available packets within the limits given to it, it
should re-enable receive interrupts, call netif_rx_complete() to turn off polling, and return 0.
Later when new data comes, the interrupt calls the netif _rx_schedule() to turn on the poll
again.

Packet transmission

Whenever the kernel needs to transmit a data packet, it calls the driver's hard_start_xmit()
method to put the data on an outgoing queue. The socket buffer passed to hard_start_xmit()
contains the physical packet as it should appear on the media, complete with the
transmission-level headers. The interface does not need to modify the data being
transmitted. skb->data points to the packet being transmitted, and skb->len is its length in
octets.

The transmission function in the MACB driver initializes DMA descriptors to point to the
relevant socket buffer to be transmitted, flushes the cache and then starts transmitting DMA.
As soon as the transmission is complete, the TX completed interrupt is received, which
frees up the socket buffers being used for transfers, reinitializing some of the parameters of
the DMA descriptors.

MACB driver usage

Please refer to the corresponding chapter of GMAC section (Section 4.1.5: GMAC driver
usage).

Kernel configuration options

Below is a list of kernel configuration options being supported by the SPEAr MACB driver.

Table 18. Menuconfig options

Configuration option Comment
CONFIG_NETDEVICES =y Kernel Network Device Support
CONFIG_NET_ETHERNET =y Kernel Ethernet Support
CONFIG_Mil =y Generic Media Independent Interface provided by

kernel.
CONFIG_PHYLIB =y the PHY management library provided by kernel
CONFIG_ETH_SPEAR_MACB =y SPEAr MACB driver Support
Doc ID 16604 Rev 2 17

UMO0851 Communication device drivers
4.3 USB Host
4.3.1 Hardware overview

Within its high-speed (HS) connection subsystem, SPEAr provides Synopsys's USB 2.0
Host fully compliant with the universal serial bus specification (version 2.0), and offering an

interface to the industry-standard AHB bus.

The high speed connection subsystem in SPEAr provides in the following numbers/features

of USB host controllers for SPEAr 600/300.

Table 19.

USB host configuration in SPEAr

SPEAr600

SPEAr300

Two USB hosts compatible with USB 2.0 high-
speed specification. They can work
simultaneously either in full-speed or in high-
speed mode.

One USB host controller compatible with USB 2.0
high-speed specification managing two ports.

The peripherals have dedicated channels to the
multi-port memory controller and four slave ports
for CPU programming.

The peripheral has dedicated channel to the
multi-port memory controller and two slave ports
for CPU programming.

The UHC supports the 480 Mbps high-speed
(HS) for USB 2.0 through an embedded EHCI
host controller, as well as the 12 Mbps full-speed
(FS) and the 1.5 Mbps low-speed (LS) for USB
1.1 through one integrated OHCI host controller.

The UHC supports the 480 Mbps high-speed
(HS) for USB 2.0 through an embedded EHCI
host controller, as well as the 12 Mbps full-speed
(FS) and the 1.5 Mbps low-speed (LS) for USB
1.1 through two integrated OHCI Host controllers.

The main features provided by each USB 2.0 Host are listed below:

® PHY interface implementing a USB 2.0 transceiver macro cell interface (UTMI) fully
compliant with UTMI specification (revision 1.05), to execute serialization and de-
serialization of transmissions over the USB line.

® 30 MHz clock for 16-bit interface, supported by the UTMI PHY interface.
® USB 2.0 Host controller (UHC) connected to the AHB bus that generates the

commands for the UTMI PHY.

® The UHC complies with both the enhanced host controller interface (EHCI)
specification (version 1.0) and the open host controller interface (OHCI) specification

(version 1.0a).

® All clock synchronization is handled within the UHC.
® An AHB slave for each controller (EHCI and OHCI), acting as a programming interface

for access to control and status registers.

® An AHB master for each controller (EHCI and OHCI) for data transfer to system
memory, supporting 8, 16, and 32-bit wide data transactions on the AHB bus.

Doc ID 16604 Rev 2

61/245

Communication device drivers UMO0851

4.3.2

4.3.3

62/245

Figure 13. USB driver overview

User space
Application

Other USB

Mass storage class drivers

Kernel space
USB core

Other controller

UHC driver drivers

Hardware UHCI/EHCI

A good number of online documents related to USB can be found at:
® The official USB website

® The USB FAQ

® Compag's OHCI standard
® Intel's UHCI standard

® Intel's EHCI standard.
USB host API

Linux provides two host control drivers (Linux EHCI & Linux OHCI). The architecture driver
plugs into the USB host stack and allocates the basic resources for the USB host controller.
The host-side drivers for USB devices talk to the "usbcore" APIs. There are standard details
of the API available.

The details of the USB Host APIs could be found online at the following address.

http://www.kernel.org/doc/htmldocs/usb.htmi

USB host usage

A USB device can either use a custom driver or use one already present in the system. This
is based on the concept of a device class and means that if a device belongs to a certain
class, then the other devices of the same class can make use of the same device driver.
Some of these classes are: the USB HID (human interface devices) class which covers input
devices like keyboards and mice, the USB Mass storage devices class which covers devices
like pen drives, digital cameras, audio players etc and the USB CDC (communication
devices class) which essentially covers USB modems and similar devices.

Doc ID 16604 Rev 2 KYI

UMO0851

Communication device drivers

USB mass storage class

The USB mass storage standard provides an interface to a variety of storage devices, like
hard disk drives and Flash memories.

Plug in Flash memory into available USB port and then type the following command. The
device is picked up as a USB 1.1 and allocates an address. It also indicated which HCD is
used.

$ dmesg | less
usb 1-1: new full speed USB device using spear-ehci and address 2
usb 1-1: configuration #1 chosen from 1 choice
(SCSI emulation automatically kicks in)
scsi0 : SCSI emulation for USB Mass Storage devices
usb-storage: device found at 2
(Now the device information including model number is retrieved)
usb-storage: waiting for device to settle before scanning
Vendor: JetFlash Model: TS2GJCV30
Type: Direct-Access
ANSI SCSI revision: 02
SCSI device sda: 4014078 512-byte hdwr sectors (2055 MB)
(The write-protect sense is EXPERIMENTAL code in the later kernels)
sda: Write Protect is off
sda: assuming drive cache: write through
SCSI device sda: 4014078 512-byte hdwr sectors (2055 MB)
sda: Write Protect is off
sda: assuming drive cache: write through
sda:sdal
usb-storage: Attached SCSI removable disk
(At this point, the device is generally accessible by mounting /dev/sdal)

(When the device is disconnected, the system acknowledges the same)

usb 1-1: USB disconnect, address 2

/* Once the device is connected and mounted, you can access it like a normal hard
disk. Usual operations like cp, mv, rm, etc work fine. You could also create a file
system on the USB stick/format it. */

mount /dev/sdal /mnt/

df -h

Filesystem Size Used Avail Use% Mounted on
/dev/root 4.9M 2.5M 2.5M 50% /

dev 61.8M 0 61.8M 0% /dev

tmpfs 1.9GM 453.0M 1.5G 23% /mnt
tmpfs 2.0M oM 2.0M 0% / tmp
/dev/sdal 1.9GM 453.0M 1.5G 23% /mnt/

/* Digital cameras can be accessed the same way as memory sticks. */

USB communication device class (CDC)
The USB CDC class supports a lot of communication devices, including Ethernet.

Compile and then boot up the kernel with the options relevant to the USB Ethernet adapters
enabled. The options are covered in the configuration section below. Plug in the USB
Ethernet adapter, you can then see console messages that are similar to the following:

Shub 1-0:1.0: over-current change on prot 1

usb 1-1:new high speed USB device using spear-ehci and address 2

usb-1.1: configuration #1 chosen from 1 choice

ethO:register 'asix' at usb-SPEAr EHCI-1, ASIX AX88772 USB2.0
Ethernet,00;89:c8:3a:4c:0b

/* Type in the following command and check if the device has been recognized */
S cat /proc/bus/usb/devices

Doc ID 16604 Rev 2 63/245

Communication device drivers UMO0851

Bus=01 Lev=01 Prnt=01 Port=00 Cnt=01 Dev#= 2 Spd=480 MxCh= 0
Ver= 2.00 Cls=ff (vendor)Sub=ff Prot=00 MxPS= 64 #Cfgs= 1
Vendor=2001 ProdID=3c05 Rev= 0.01

Manufacturer= D-Link Corporation

Product=DUB-E100

: Serial Number=000001

:* #Ifs= 1 Cfg#= 1 Atr=80 MxPwr=250mA

If#= 0 Alt= 0 #EPs= 3 Cls=ff(vendor specific) Sub=ff Prot=00 Driver=asix
Ad=82(I) Atr=03(Int.) MxPS= 8 Ivl=128ms

Ad=81(I) Atr=02(Bulk) MxPS= 512 Ivl=0ms

Ad=03(0) Atr=02(Bulk) MxPS= 512 Ivl=0ms

HEHEHHOQ®NVW®YUOAJ

/* The functionality could be checked by assigning the IP and then test a simple ping
operation. */

S ifconfig eth0 192.168.1.11

eth0: link up, 100Mbps, full duplex, lpa Oxcdel

eth0: linkup, 100Mbps, full-duplex, lpa Oxcdel

64/245 Doc ID 16604 Rev 2 K‘!I

UumMo851 Communication device drivers

USB human interface device (HID) class

The USB HID class describes human interface devices such as keyboard and mice.
® USB mouse

Compile and then boot up the kernel with the options relevant to the USB mouse
enabled. The options are covered in the configuration section below.

Plug in the USB mouse. You can then see print output messages that are similar to the
following:

$ hub 1-0:1.0: over-current change on prot 1

usb 3-1l:new low speed USB device using spear-ohci and address 3
usb-3.1: configuration #1 chosen from 1 choice

input: USB Optical Mouse as /class/input/input2

input: USB HID v1.11l Mouse[USB Optical Mouse] on usb-spear-ohci.0-1

/* Type in the following command to check if device has been recognized.*/

$ cat /proc/bus/usb/devices

T: Bus=03 Lev=01 Prnt=01 Port=00 Cnt=01 Dev#= 3 Spd=1.5 MxCh= 0

D: Ver= 2.00 Cls=00(>ifc) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1

P: Vendor=0461 ProdID=4dl5 Rev= 2.00

S: Product=USB Optical Mouse

C:* #Ifs= 1 Cfg#= 1 Atr=a0 MxPwr=100mA

I:* If#= 0 Alt= 0 #EPs= 1 Cls=03(HID) Sub=01 Prot=02 Driver=usbhid
E: Ad=81(I) Atr=03(Int.) MxPS= 4 Iv1l=10ms

® USB keyboard

Compile and then boot up the kernel with the options relevant to the USB keyboard
enabled. The options are covered in the configuration section below.

Plug in the USB keyboard. You can then see print output messages that are similar to
the following:

$ hub 1-0:1.0: over-current change on prot 1

usb 3-1l:new full speed USB device using spear-ohci and address 4
usb-3.1: configuration #1 chosen from 1 choice

input: Dell Dell Smart Card Reader Keyboard as /class/input/input3

input: USB HID v1l.11l Keyboard [Dell Dell Smart Card Reader Keyoard] on usb-
spear-ohci.0-1

Scat /proc/bus/usb/devices

Bus=03 Lev=01 Prnt=01 Port=00 Cnt=01 Dev#= 4 Spd=12 MxCh= 0
Ver= 2.00 Cls=00(>ifc) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1
Vendor=413c ProdID=2101 Rev= 1.00

Manufacturer=Dell

Product=Dell Smart Card Reader Keyboard

#Ifs= 2 Cfg#= 1 Atr=a0 MxPwr=100mA

:* If#= 0 Alt= 0 #EPs= 1 Cls=03(HID) Sub=01 Prot=01 Driver=usbhid
Ad=81(I) Atr=03(Int.) MxPS= 8 Ivl=24ms

:* If#= 1 Alt= 0 #EPs= 3 Cls=0b(scard) Sub=00 Prot=00 Driver=(none)
Ad=02(0) Atr=02(Bulk) MxPS= 64 Iv1l=0ms

Ad=82(I) Atr=02(Bulk) MxPS= 64 Iv1l=0ms

H H H H H Q n n g g 43
*

IYI Doc ID 16604 Rev 2 65/245

Communication device drivers

UMO0851

E: Ad=83(I) Atr=03(Int.) MxPS= 8 Ivl=24ms

4.3.4 USB Host performance
The driver performace was evaluated using the following setup:
e HostPC:
— Linux Fedora Core11
— Processor: 1 GHz AMD Athlon 64 bit dual core
- RAM: 1 GB DDR2 RAM (667 MHz)
— Gigabit Ethernet
® Target device: SPEAr600
— CPU: 332 MHz - AHB: 166 MHz - DDR: 333 MHz
® Benchmark: testusb (www.linux-usb.org/usbtest/testusb.c)
® Test method
The target board is connected to the Linux PC via an USB standard A/B cable.
On host side run testusb using the following command:
/testusb -D /proc/bus/usb/bus No/dev No. -t 1 -s 4096 -c¢ 10
D = It used to pass the gadget zero bus id and device id
t = It used to pass the test type (1 is BulkOUT, 2 is BulkIN)
s = block size (4096,8192,16384,32768,65024)
¢ = test loop count
On target side run gadget zero as a module using make menuconfig to declare it as a
module and make modules to build it. Then insert the module passing the size of the
buffer as a parameter: insmod g_zero.ko buflen=4096.
® Test result
The following are the results using following commands:
Target: insmod g_zero.ko buflen=4096
HOST: ./testusb -D /proc/bus/usb/bus No/dev No. -t 1 -s <BlkSize> -¢ 100
HOST: ./testusb -D /proc/bus/usb/bus No/dev No. -t 2 -s <BlkSize> -¢ 100
Table 20. USB Host device performance results
BIkSize Data Size BuIkOUT time | BYIKOUT BulkiN time | BUIKIN
(KB) (KB) (s) III\';Irgughput (s) throughput
ps) (Mbps)
4 400 0.03125 104.8576 0.03125 104.8576
8 800 0.044016 148.8913123 |0.034125 192.0468864
16 1600 0.064312 203.8064436 | 0.057234 229.0107279
32 3200 0.107938 242.8653486 |0.10739 244.1046652
40 4000 0.13325 245.9136961 0.132797 246.7525622
80 8000 0.24764 264.6422226 | 0.24686 265.4784088
160 16000 0.489281 267.8869607 |0.4757 275.5350011
66/245 Doc ID 16604 Rev 2 Kﬁ

UMO0851 Communication device drivers
Table 20. USB Host device performance results (continued)
BlkSize Data Size BulkOUT time | BUlKOUT BulkiN time | BU/KIN
throughput throughput
(KB) (KB) (s) (Mbps)) (Mbps)
320 32000 0.959063 273.3334515 | 0.933094 280.9406126
400 40000 1.160719 282.3077765 |1.160719 282.3077765
Figure 14. USB Host performance at buffer length=4096
200
w 200
= /_r/ —o— Bk out
= 150 —=— Bulk in
g
Z 100
a0
I:I T T T T T T T T T T T
2 2 2
 f PP LSS
Data Size in KB
4.3.5 Kernel configuration options

To ensure proper USB support for your devices, you need to enable some of the options in

the kernel.

The following table shows the configuration options.

Table 21. USB host configurations

Configuration option

Comment

CONFIG_USB_SUPPORT

This option adds core support for USB bus.

CONFIG_ USB

Enable this option if your system has the host side bus and you
want to use USB devices and also see your USB devices in
/proc/bus/usb. This is recommended.

CONFIG_ USB_DEVICES

If you enable this option, you will get a file
/proc/bus/usb/devices which lists the devices currently
connected to your USB bus or buses, and a file named
"/proc/bus/usb/xxx/yyy" for every connected device, where xxx
is the bus number and yyy the device number.

CONFIG_ USB_EHCI_HCD

Since the USB Host controller supports USB2.0, enable this
option to configure the Host controller driver. EHCI is standard
for USB 2.0 high-speed host control hardware.

Doc ID 16604 Rev 2 67/245

Communication device drivers UMO0851

Note:

68/245

Table 21. USB host configurations (continued)

The OHCI is the standard for accessing USB 1.1 Host
CONFIG_ USB_OHCI_HCD controller hardware. Since the USB Host controller hardware
for SPEAr follows the OHCI Specification, enable this option.

Enable this option to connect a USB mass storage device to
CONFIG_ USB_STORAGE the host USB port. The option depends on SCSI support being
enabled.

Enable this option to use a SCSI hard disk, a SCSI tape drive,
a SCSI CD-ROM or any other SCSI device under Linux. USB

CONFIG_SCSI mass storage devices follow SCSI protocol, and hence this
option should be enabled over USB mass storage devices.
This driver supports USB modems and ISDN adapters which

CONFIG_USB_ACM support thecommunication device class abstract control model
interface.

CONFIG_NET Required for enabling USB modem support

CONFIG_USB_USBNET Multi-purpose USB networking framework

This option supports devices conforming to the communication

CONFIG_USB_NET_CDCETHER device class (CDC) Ethernet control model

CONFIG_HID_SUPPORT Options for various computer-human interface device drivers.

This option compiles into kernel the generic HID layer code
CONFIG_HID (parser, usages, etc.), which can then be used by transport-

specific HID implementation (like USB or Bluetooth).

Examples in this document show configuration options for basic USB support as well as the
commonly needed options, for example a USB mass storage device (most cameras and
USB pen drives).

make menuconfig options

Device Drivers--->

SCSI device support--->

(Although SCSI will be enabled automatically when selecting USB Mass Storage,we need
to enable disk support.)

- SCSI support type (disk, tape, CD-ROM)

<*> SCSI disk support

(Then Move a Level Back and Go into USB Support)

USB support--->

(This is the root hub and is required for USB support. If you'd like to compile this
as a module, it will be called usbcore.)

<*> Support for Host-side USB
(Enable this option if your system has the host side bus and wants to use USB devices
and also to see your USB devices in /proc/bus/usb. This is recommended.)

[*] USB device filesystem
(Select at least one of the HCDs. If you are unsure, picking all is fine.)
--- USB Host Controller Drivers
<*> EHCI HCD (USB 2.0) support
<*> QOHCI HCD support
(Moving a little further down, we come to CDC and mass storage.)
<*> USB Modem (CDC ACM) support
<> USB Printer support
<*> USB Mass Storage support

Doc ID 16604 Rev 2 [‘II

UMO0851 Communication device drivers
If you have a USB keyboard, mouse, joystick, or any other input device, you need to
enable HID support. Go back one level to "Device drivers" and enable HID support as
shown:

Device Drivers --->
[*] HID Devices --->
<*> USB Human Interface Device (full HID) support
If you have a USB modem, you need to enable USB Modem(CDC ACM) support as shown above
along with the following supports:
Device Drivers ---->
[*] Network device support--->
USB Network Adapters--->
<*> Multi-Purpose USB Networking Framework
4.4 USB Device
4.4.1 Hardware overview

SPEAr600 provides a Synopsys®'s USB 2.0 Device controller which is fully compliant with
the universal serial bus specification (version 2.0), and offers an interface to the industry-
standard AHB bus.

The main features provided by the USB 2.0 Device are listed below:

® USB plug detect (UPD) which detects the connection/disconnection of a device

e UDC-AHB supports 480 Mbps high-speed (HS) for USB 2.0, as well as 12 Mbps full-
speed (FS) for USB 1.1

e UDC-AHB supports 16 physical unidirectional endpoints and proper configurations to
achieve logical endpoints

® Both DMA mode and slave-only mode supported

e In DMA mode, the UDC-AHB supports descriptor-based memory structures in
application memory

® Multiple RxFIFO controllers supported for each OUT endpoint. This gives flexibility in
configuring different FIFO sizes for each endpoint.

Doc ID 16604 Rev 2 69/245

Communication device drivers UMO0851

Figure 15. USBD interface

A
External RAM {IN Endpoints)
I G
| READPort | | WRTEPort |
L FS‘
an EPFIFO_b EP FIFO_b EP FIFO D
CNTRL1 CNTRL2 CNTRLNV AHB System
% i Slave -Only » Meme
My J Interface © viemory
SOF s
<
ULPI |4 -- *: Tracker ‘_/ . E
i)
or v v i
P UDC20 |e— g
usB 2.0 | ! Uil £
utmi (€ L 5
b 2
» upcvel V| T
USB 1.1 " Control & Status DMA +——> g
Trans. ! | J —* Registers = | AHB Master
rans - [* egiste T |e— .
ceiver Interrupt | 4 (ARM)
Manager I CSR Slave |
Access - b
Recsive FIFO
Controller (s) P
B L, M, Interrupt
WRITE Port READ Port
External RAM {(OUT Endpoints)
~—
4.4.2 Software overview

70/245

There is wide variety of USB Devices available in the market. General examples of these
devices are USB Ethernet adapters, USB audio devices, USB mass storage devices, USB
printers etc. In the Linux USB world, these functions are called gadgets. You can use SPEAr
USBD to build any of these functions. You can also build a device with multiple functions.
Multi-functional printers, USB Ethernet plus mass storage are such examples. These
devices are generally known as composite devices.

The USB Device controller driver in SPEAr LSP supports Linux USB gadget framework.
This framework provides a flexible and easy interface for adding different USB slave
devices. It also offers the facility to easily add multi-function USB composite devices.

The following figure explains the USB gadget framework.

Doc ID 16604 Rev 2 I‘!I

UMO0851

Communication device drivers

Figure 16. USBD software architecture

User space ifconfig mount Ip
A A A
Y Y Y

Ethernet (usb0) File storage Printer

Kernel space

Hardware

\/

Composite device

i

USB gadget framework

i

USBD driver

USBD device controller

Note:

4.4.3

As shown in the figure above, the gadget drivers can access the USB Device driver either
directly through the gadget framework or through the composite layer. The composite layer
provides an interface where multi-functional devices (like audio and video) can be easily
supported. It is preferable that USB gadget drivers who do not have composite features also
interact through the composite layer.

Please note that only one gadget driver at a time can exist in this framework using gadget
framework. Also remember that composite layer is in itself a gadget drive. Therefore
according to the figure, the printer and the composite layer cannot exist at the same time.
One possibility is to build the printer gadget over the composite layer.

The remaining part of this document describes the composite layer interface. For detailed
documentation on the gadget framework please refer to:

http://www.linux-usb.org/gadget/

In the Linux source tree, the USBD controller driver is present in:
drivers/usb/gadget/spr_udc_syn.c

USBD driver interface with Linux gadget layer

As mentioned above, the USB Device controller driver supports Linux gadget framework.
For this, it exports certain device and endpoint specific routines and exports two functions
for registering and un-registering to the framework.

/* device specific operations exported by usbd driver */
static const struct usb_gadget_ops spear_udc_dev_ops = {
.get_frame = spear_dev_get_frame,
.wakeup = spear_dev_wakeup,
.set_selfpowered = spear_set_selfpowered,

Doc ID 16604 Rev 2 71/245

Communication device drivers UMO0851

4.4.4

72/245

.ioctl = spear_ioctl,
}i
/* endpoint specific operations exported by usbd driver */
static struct usb_ep_ops spear_udc_ep_ops = {

.enable = spear_ep_enable,

.disable = spear_ep_disable,

.alloc_request = spear_ep_alloc_request,

.free_request = spear_ep_free_request,

.queue = spear_ep_gueue,

.dequeue = spear_ep_dequeue,

.set_halt = spear_ep_set_halt,

.fifo_status = spear_ep_fifo_status,

.fifo_flush = spear_ep_fifo_flush,
Yi
/* routine exported by usbd driver for gadgets to register */
int usb_gadget_register_driver (struct usb_gadget_driver *driver);

/* routine exported by usbd driver for gadgets to un-register */
int usb_gadget_unregister_driver (struct usb_gadget_driver *driver) ;

The composite device layer registers to the gadget framework by calling the above APIs and
exposes an interface which can be used by different functions (gadgets) to represent a
composite device.

Composite device interface

The composite device is designed in such way that, the driver should first register to the
composite layer. During registration, it passes some of the device related details (device,
string descriptor) to the composite layer. After that, the composite device needs to add
configuration (multiple is also possible) and then individual functions can add their
interfaces.

The following figure shows a simple gadget driver ("zero gadget") available with SPEAr LSP.
This gadget driver is build over a composite layer (although it is not a composite device) and
is mainly used for testing the USB Device controller. It provides two configurations: in the
first one, a source/sink function generating/consuming USB packets, and in the second one,
loop back feature.

We refer to this example gadget driver in the explanations given throughout this part of the
document. This driver can be found in linux/drivers/usb/gadget/zero.c.

Figure 17. Zero gadget device

Zero gadget device]
Source/Sink Config Loop back Config
I
Function 1
Function 1
Interface O Interface 0
| |
OUT Endpoint IN Endpoint OUT Endpoint IN Endpoint
Doc ID 16604 Rev 2 Lys

UMO0851

Communication device drivers

Registering to composite device

/* usb composite gadget need to fill following structure */
static struct usb_composite_driver zero_driver = {

.name = "zero";

.dev = &device_desc;

.strings = dev_strings;

.bind = zero_bind; /* callback called on successful registration */
Y
/* Following are the APIs for register/un-register */
usb_composite_register (&zero_driver) ;
usb_composite_unregister (&zero_driver) ;

Adding configuration

Any composite device can have multiple configurations with multiple interfaces, each
interface (or a group of interface) representing a unique function. You can use the following
API to add a configuration.

static struct usb_configuration sourcesink_driver = {
.label = "source/sink",
.strings = sourcesink_strings,

.bind= sourcesink_bind config, /* callback called during registration to finish
other configurations */
.setup = sourcesink_setup, /* callback to handle control requests */

.bConfigurationvalue = 3,
.bmAttributes = USB_CONFIG_ATT_ SELFPOWER,
.bMaxPower = 1,/* 2 mA, minimal */

Y

/* following function registered earlier, is called during registration */
static int __init zero_bind(struct usb_composite_dev *cdev)

{
usb_add_config(cdev, &sourcesink_driver) ;

}

Adding function

After adding configurations, you also need to define functions supported in each
configuration. We can add several functions as per our composite device design.

You can use the following mechanism to add functions to configurations.

/* Following function registered earlier is called during registration */
static int sourcesink_bind_config(struct usb_configuration *c)
{

struct f_sourcesink*ss;

int status;

ss = kzalloc(sizeof *ss, GFP_KERNEL) ;
if (!ss)
return -ENOMEM;

ss->function.name = "source/sink";
ss->function.descriptors = fs_source_sink_descs;
ss->function.bind = sourcesink_bind;
ss->function.unbind = sourcesink_unbind;
ss->function.set_alt = sourcesink_set_alt;

Doc ID 16604 Rev 2 73/245

Communication device drivers UMO0851

ss->function.disable = sourcesink_disable;
ss->function.suspend = sourcesink_suspend;
ss->function.resume = sourcesink_resume;

status = usb_add_function(c, &ss->function);
if (status)

kfree(ss);
return status;

}

Initializing USB descriptors

There are some fields in standard USB descriptors that require inputs from the composite
layer for initialization. In almost all descriptors some of these fields are indexed to string
tables and to an interface number for the interface descriptors. For this there are some
helper routines which are described below.

static int zero_bind(struct usb_composite_dev *cdev)
{
/* get next available string index */
id = usb_string_id(cdev) ;
if (id < 0)
return id;
strings_dev[STRING_MANUFACTURER_IDX] .id = id;
device_desc.iManufacturer = id;

}

static int sourcesink_bind(struct usb_configuration *c, struct usb_function *f)

{

/* allocate interface ID(s) */
id = usb_interface_id(c, f);
if (id < 0)
return id;
source_sink_intf.bInterfaceNumber = id;

Data and control transfer

After completing the registering process, the gadget driver can handle setup requests
through setup callbacks. In this way, you can configure other required endpoints and initiate
a transfer (of control or data) through Linux gadget framework APIls. You can obtain more
details on these APIs through references.The following table summarizes these APls and
their purpose.

Table 22. Linux gadget endpoint APIs

API Description

struct usb_ep *usb_ep_autoconfig(struct Allocates a suitable free endpoint described by
usb_gadget *, struct usb_endpoint descriptor *) | struct usb_endpoint_descriptor

Enables the endpoint ep, in order to be used for
data transfer. The endpoint ep is described in
struct usb_endpoint_descriptor

int usb_ep_enable(struct usb_ep *ep, const struct
usb_endpoint_descriptor *desc)

struct usb_request *usb_ep_alloc_request(struct

usb_ep *ep, gfo._t gfo_ flags) Allocates a request for USB transfer

Doc ID 16604 Rev 2 KYI

UMO0851

Communication device drivers

Table 22. Linux gadget endpoint APIs (continued)

void usb_ep_free_request(struct usb_ep “ep,
struct usb_request *req)

Frees the allocated request

int usb_ep_disable(struct usb_ep *ep)

Disables the endpoint ep, so that it is not usable

int usb_ep_queue(struct usb_ep *ep,
struct usb_request *req, gfp_t gfp_flags)

Submist a transfer request on this endpoint (ep)

int usb_ep_set_halt(struct usb_ep *ep)

Halts a particular endpoint (ep)

USBD control

You can use the following APIs to configure and program the USB Device.

Table 23. USB device control APIs

API

Description

int usb_gadget_frame_number(struct
usb_gadget *gadget)

Returns the current Start of Frame number

int usb_gadget_wakeup(struct usb_gadget
*gadget)

Enables the remote wakeup feature of USB
Device

int usb_gadget_set_selfpowered(struct
usb_gadget *gadget)

USB Device is self powered

int usb_gadget_clear_selfpowered(struct
usb_gadget *gadget)

USB Device is not self powered but bus powered

int usb_gadget_ioctl(struct usb_gadget *,
unsigned code, unsigned long param)

Configures USB device on configuration change.
This APl is SPEAr-specific and is mandatory to
call on SET CONFIGURATION as it programs the
controller accordingly. param points to the
function descriptors.

Please refer hardware User Manual, USB_CSR
(of USBD) register for details.

USBD driver usage

As explained above, there can be various user defined functions over the Linux gadget
framework. Each of the functions (gadgets) exposes its own interface. For example, the USB
Ethernet function exposes a netdev interface, the USB serial gadget exposes a tty interface
and so on. This makes the usage of the USB gadgets very easy. You can use standard tools
for standard interfaces provided by these gadgets. You can find such example usage in:

® linux/Documentation/gadget_printer.txt for usb printer device
® linux/Documentation/gadget_serial.txt for usb serial device

SPEAr LSP provides a test gadget driver, "zero gadget", to test the USB Device controller.
This gadget does not have any user interface. It just provides two configurations, "source &
sink" and "loop back" to support several test cases which can be executed from the USB

Host side.

On USB Host corresponding to the zero gadget we have a "usbtest" driver which supports
several test cases to validate USB through ioctls. A standard application "testusb” is

Doc ID 16604 Rev 2 75/245

Communication device drivers

UMO0851

available on host side to execute desired test cases. Please refer to the following link for
details on this test setup.

http://www.linux-usb.org/usbtest/

445 USBD driver performance
The driver performance was evaluated using the following setup:
e HostPC:
— Linux Fedora Core11
— Processor: 1 GHz AMD Athlon 64 bit dual core
— RAM: 1 GB DDR2 RAM (667 MHz)
— Gigabit Ethernet
® Target device: SPEAr600
— CPU: 332 MHz - AHB: 166 MHz - DDR: 333 MHz
® Benchmark: testusb (www.linux-usb.org/usbtest/testusb.c)
® Test method
The target board is connected to the Linux PC via an USB standard A/B cable.
On host side run testusb using following command:
/testusb -D /proc/bus/usb/bus No/dev No. -t 1 -s 4096 -¢c 10
D = It used to pass the gadget zero bus id and device id
t = It used to pass the test type (1 is BulkOUT, 2 is BulkIN)
s = block size (4096,8192,16384,32768,65024)
¢ = test loop count
On target side run gadget zero as a module using make menuconfig to declare it as a
module and make modules to build it. Then insert the module passing the size of the buffer
as a parameter: insmod g_zero.ko buflen=4096.
® Testresult
The following are the results using following commands:
Target: insmod g_zero.ko buflen=4096
HOST: ./testusb -D /proc/bus/usb/bus No/dev No. -t 1 -s <BlkSize> -c 10
HOST: ./testusb -D /proc/bus/usb/bus No/dev No. -t 2 -s <BlkSize> -¢ 10
Table 24. USBD performance results
BlkSize Data Size BulkOUT time tBhl:::klglrJ\:ut BulkIN time (s) tBhl::)kllghput
(KB) (KB) (s) (Mbps) (Mbps)
4 400 0.039872 82.18298555 0.02514 130.3420843
8 800 0.041113 159.4045679 0.043696 149.9816917
16 1600 0.050237 260.9072994 0.062876 208.461098
32 3200 0.100362 261.1984616 0.125675 208.5888204
40 4000 0.125614 260.8626427 0.150206 218.1537355
80 8000 0.238237 275.087413 0.305275 214.6785685
76/245 Doc ID 16604 Rev 2 Kﬁ

UMO0851

Communication device drivers

Table 24. USBD performance results (continued)
: ; . BulkOUT BulkIN
BlkSize Data Size
(le.)llkOUT time throughput BulkiIN time (s) |throughput
(KB) (KB) (Mbps) (Mbps)
160 16000 0.463621 282.7136821 0.588701 222.6461311
320 32000 0.914002 286.8090004 1.165675 224.8860103
400 40000 1.139009 287.6886838 1.454232 225.3285583
800 80000 2.340529 280.0050758 3.002247 218.2898342
1600 160000 4.680984 280.0095023 5.818188 225.2797606
3200 320000 9.356929 280.1602962 11.4153 229.6426524
Figure 18. USB Device performance at buffer length=4096
350
300
- P_._/IKH\H_’
@ /W
,E_ 2 —e— Buk Out
-
E 150 —@—Buk in
&
100
50
I:I T T T T T T T T T T T
& &
W@ & &
B S g .5:59 i ,;:Fp ég? k@,@
Data Size in KB
4.4.6 Configuration options
This section presents the general configuration options affecting the USB Device.
Kernel configurations
You can select the Linux kernel configurations from "make menuconfig". Their purpose is
mentioned in the table below.
Table 25. Linux kernel configuration
Configuration option Comment
CONFIG_USB_GADGET This enables USB gadget support in Linux kernel
CONFIG_USB_ZERO This enables a test gadget driver (“zero”
Ays Doc ID 16604 Rev 2 77/245

Communication device drivers UMO0851

Note:

4.4.7

4.5

4.5.1

78/245

Table 25. Linux kernel configuration (continued)

This enables SPEAr USB Device controller
support

CONFIG_USB_GADGET_SPEAR_SYN

This enables USB test module for testing zero
gadget on host side.

This enables dual (FULL and HIGH) speed
support.

CONFIG_USB_TEST

CONFIG_USB_GADGET_DUALSPEED

There are certainly other configurations related to the USB Device which may be required
for an individual application. One of these is FIFO related configurations. The RxFIFO on
SPEAr USBD can be configured for each endpoint. Keep in mind that total combined
RxFIFO usage for all out endpoints should not exceed 2 KB. Similarly, total combined
TxFIFO usage for all IN endpoints should be limited to 2 KB.

To change this FIFO configuration, you can edit the corresponding macro in
drivers/usb/gadget/spr_udc_syn.h.

/* Default Endpoint FIFO sizes in words */
#define EP1_IN_FIFO_SIZE 512/4
#define EP2_OUT_FIFO_SIZE 512/4

Buffer length configuration

The gadget drivers allocate a USB request and then submit it to the framework for transfer.
The length of such transfer requests will determine the performance of the driver. Allocating
a large buffer and hence a bigger buffer length will make CPU more free. USB DMA would
try to complete the transfer for the asked length and then interrupt CPU notifying the
completion of the transfer.

The maximum buffer length is limited to 65535 bytes on SPEAr USB Device.

References

e hitp://www.linux-usb.org/gadgets
® hitp://www.linux-usb.org/usbtest/
® hitp://www.usb.org/

12C driver

This section describes the driver for the 12C controller embedded in SPEAr. The IP is
provided by Synopsis.

Hardware overview

12C is a multi-master serial computer bus invented by Philips that is used to attach low-
speed peripherals to a motherboard, embedded system, or cell phone. It is a master-slave
protocol, where communication takes place between a host adapter (or host controller) and
client devices (or slaves).

Doc ID 16604 Rev 2 KYI

UMO0851 Communication device drivers
I12C uses only two bidirectional lines, serial data (SDA) and serial clock (SCL), pulled up with
resistors. Typical voltages used are +5 V or +3.3 V, but systems with, higher or lower
voltages are permitted too.

The 12C controller serves as an interface between the APB bus and the serial 12C bus. It
provides master functions, and controls all 12C bus-specific sequencing, protocol, arbitration
and timing.
Features supported by 12C are:
® Two-wire 12C serial interface
® Three speeds: standard mode (100 Kb/s), fast mode (400 Kb/s), high-speed mode (3.4
Mb/s)
® Master or slave 12C operation
® 7-or 10-bit addressing
® Slave bulk transfer mode
® Interrupt or polled-mode operation
® Simple software interface consistent with design ware APB peripherals
o Digital filter for the received SDA and SCL lines
® Component parameters for configurable software driver support
® DMA handshaking interface compatible with the arm PLO80 DMA controller (refer to
Section 6.2: General purpose DMA (DMAC) driver.
Figure 19. 12C hardware architecture
APB
< % SDA
IC_Clock ——»
> 12C controller SCA
Reset_Clock — >
.
DMA interface
< J
4.5.2 Software overview

The following figure illustrates the Linux 12C subsystem. It shows the role of the 12C
framework which interfaces the 12C bus driver (below) to the 12C specific device drivers

(above).

Doc ID 16604 Rev 2

79/245

Communication device drivers UMO0851

4.5.3

80/245

Figure 20. 12C framework architecture

User application 12C user mode

User space application
A y
A A
12C client driver
(sys./dev) 12C dev

. -

12C core layer

!

12C controller driver

Kernel space

Hardware 12C controller

12C framework in linux

The 12C kernel code is broken up into a number of logical pieces: the 12C core, 12C bus
drivers, 12C algorithm drivers and 12C client drivers.

12C core

The 12C core is a code base consisting of routines and data structures available to host
adapter drivers and client drivers. The core also provides a level of indirection that renders
client drivers independent of the host adapter, allowing them to work even if the client device
is used on a board that has a different 12C host adapter.

Device drivers for 12C host adapters

They fall in the realm of bus drivers and usually contain an adapter driver. The former uses
the latter to talk to the 12C bus. 12C host adapter code is provided by ST and the path is:

Refer to Linux-2.6.27/drivers/i2c/bus/spr_i2c_syn.c

Device drivers for 12C client devices

They are used for reading/writing to the slave device. 12C client device drivers for EEPROM
as an example are provided in the following path:

Refer to Linux-2.6.27/drivers/i2c/chips/eeprom.c
12C-dev

They allow communication with the user space. Usually, 12C devices are controlled by a
kernel driver. But you can also access all devices on an adapter from the user space,
through the /dev interface. For this, you need to load the module i2c-dev. Each registered i2c

Doc ID 16604 Rev 2 KYI

UMO0851

Communication device drivers

4.5.4

adapter gets a number, counting from 0. You can examine /sys/class/i2c-dev/to see what
number corresponds to which adapter. I12C device files are character device files with major
device number 89 and a minor device number corresponding to the number assigned as
explained above. They should be called "i2c-%d" (i2c-0, i2c-1, ...,i2c-10, ...). All 256 minor
device numbers are reserved for i2c.

Adding a new I2C client driver

To add a new client driver, you should be familiar with struct i2c_driver.The struct i2c_driver
describes an 12C chip driver. This structure is defined in the include/linux/i2c.h file. Only the
following fields are necessary to create a working chip driver.

/* set to a descriptive name of the I2C chip driver. This value shows up in the sysfs
file name created for every I2C chip device */

char name[I2C_NAME_SIZE];

/* called whenever a new I2C bus driver is loaded in the system. This function is
described in more detail below. */

int (*attach_adapter) (struct i12c_adapter *);
/* called when the i2c_client device is to be removed from the system. */
int (*detach_client) (struct i2c_client *);

static struct i2c_driver eeprom_driver = {
.driver = {
.name = "eeprom",
},
.id = I2C_DRIVERID_eeprom,
.attach_adapter = eeprom_attach_adapter,
.detach_client = eeprom_detach_client,

Y
Registering a chip driver

To register this 12C chip driver, the function i2c_add_driver() should be called with a pointer
to the struct i2c_driver.

static int __init eeprom_init (void)
{

return i2c_add_driver (&eeprom_driver) ;

}

Unregistering a chip driver

To unregister the 12C chip driver, the i2c_del_driver() function should be called with the
same pointer to the struct i2c_driver. 12¢c_del_driver() is defined in include/linux/i2c.h which
will internally call i2¢c_unregister_driver() defined in drivers/i2c/i2c-core.c

static void __exit eeprom_exit (void)
{
i2c_del_driver (&eeprom_driver) ;

}

Doc ID 16604 Rev 2 81/245

Communication device drivers UMO0851

Note:

82/245

Attaching an adapter

After the registration of the 12C chip driver, when an 12C bus driver is loaded, the
attach_adapter() function callback is called. This function checks if any 12C devices are on
the 12C bus to which the client driver wants to attach.

static int eeprom_attach_adapter (struct i2c_adapter *adapter)
{

return i2c_probe (adapter, &addr_data, eeprom detect);

}

The i2c_probe() function probes the 12C adapter, looking for the different addresses
specified in the struct addr_data. If a device is found, the eeprom_detect() function is called.

The addr_data macro is defined in the include/linux/i2c.h file. It sets up a static variable
called addr_data based on the number of different types of chips that this driver supports
and the addresses at which these chips typically are present. It then provides the ability to
override these values by using module parameters.

static struct i2c_client_address_data addr_data = {
.normal_i2c = normal_i2c,
.probe = probe,
.ignore = ignore,
.forces = forces,
}
/* normal_i2c: An I2C chip driver provide the variables normal_i2c. It is an

array of addresses, all terminated by special value
I2C_CLIENT_END. Usually a specific type of I2C chip shows up
in only a limited range of addresses. The eeprom.c driver
defines these variables as static unsigned short normal_i2c[]
= { 0x50, 0x51, 0x52, 0x53, 0x54,0x55, 0x56, 0x57,
I2C_CLIENT_END }

The normal_i2c_range variable specifies that we can find this
chip device at any I2C address.

Probe: A list of pairs. The first value is a bus number (adapter
id), the second is the I2C address. These addresses are also
probed, as if they were in the 'normal' list.

The i2c_probe function will call the eeprom_detect function
only for those i2c addresses and the adapter id that actually
have a device on them (unless a " force' parameter was used) .

Ignore: List of adapter, address pairs not to scan. These addresses
are Never probed.

Forces: Contains list of valid address along with there adapter id.
The first value is a bus number (adapter id), the second is
the I2C address. A device is blindly assumed to be on the
given address, no probing is done. */

Chip detection

In the chip driver, when an 12C chip device is found, the function chip_detect() is called by
the 12C core. This function is declared with the following parameters:
static int eeprom_detect (struct i2c_adapter *adapter, int address, int kind);

The adapter variable is the 12C adapter structure on which this chip is located. The address
variable contains the address where the chip was found, and the kind variable indicates
what kind of chip was found.

The kind variable usually is ignored, but some I12C chip drivers support different kinds of 12C
chips, so this variable can be used to determine the type of chip present.

Doc ID 16604 Rev 2 K‘YI

UMO0851

Communication device drivers

This function is responsible for creating a struct i2c_client structure that will be registered
with the 12C core. The 12C core uses that structure as an individual 12C chip device. To
create this structure, the eeprom_detect() function is used:

struct i2c_client *new_client;
struct eeprom_data *data;
int err = 0;

if (!(data = kzalloc(sizeof (struct eeprom_data),
err = -ENOMEM;
goto exit;

GFP_KERNEL))) {

}
new_client = &data->client;

memset (data->data, 0xff, EEPROM_SIZE) ;
i2c_set_clientdata (new_client, data);
new_client->addr = address;
new_client->adapter = adapter;
new_client->driver = &eeprom_driver;
new_client->flags = 0;
strlcpy (new_client->name,

"eeprom", I2C_NAME_SIZE) ;

First, the struct i2c_client and a separate local data structure (called struct eeprom_data)
are created. After the memory is allocated successfully, some fields in the struct i2c_client
are set to point to this specific device and this specific driver. Notably, the addr, adapter and
driver variables must be initialized. The name of the struct i2c_client also must be set in
order to be displayed properly in the sysfs tree for this 12C device.

After the struct i2c_client is initialized, it must be registered with the 12C core. This is done
with a call to the i2c_attach_client() function

/* Tell the I2C layer a new client has arrived */
if ((err = i2c_attach_client(new_client)))
goto exit_kfree;

When this function returns, with no errors reported, the I12C chip device is set up properly in
the kernel.

For creating sysfs tree structure

sysfs_create_bin_file(&new_client->dev.kobj, &eeprom_attr);

In the Linux 2.6 kernel, all 12C chip devices and adapters show up in the sysfs filesystem.
12C chip devices can be found at /sys/bus/i2c/devices, listed by their adapter address and
chip address. For example, the eeprom_driver loaded on a machine might produce the
following sysfs tree structure.

$ tree /sys/bus/i2c/

/sys/bus/i2c/

| -- devices

| |-- 0-0050 ->../../devices/platform/spear_i2c.6/i2c-0/0-0050

| |-- 0-0051 -> ../../../devices/platform/spear_i2c.6/i2c-0/0-0051

t-- 0-0053
-- drivers

-- 0-0052 -> ../.
VAN

-- i2c_adapter

./
./

./devices/platform/spear_1i2c
./devices/platform/spear_i2c.

.6/12c-0/0-0052
6/12c-0/0-0053

-- eeprom

| |-- 0-0050 -> ../../../devices/platform/spear_i2c.6/i2c-0/0-0050
| |-- 0-0051 -> ../../../devices/platform/spear_i2c.6/i2¢c-0/0-0051
\ -- 0-0052 -> ../../../devices/platform/spear_i2c.6/i2c-0/0-0052
| *-- 0-0053 -> ../../../devices/platform/spear_i2c.6/12c-0/0-0053

Doc ID 16604 Rev 2

83/245

Communication device drivers UMO0851

4.5.5

84/245

This shows four different I2C chip devices, all controlled by the same EEPROM driver. To
locate the controlling driver,you can look in the /sys/bus/i2c/drivers directory or in the
directory of the chip device itself and read the name file.

$ cat /sys/devices/platform/spear_i2c.6/12c-0/0-0050/name
eeprom

Read and write

To read and write from the user space, you need binary attribute. The structure used for this
is:

static struct bin_attribute eeprom_attr = {

.attr = {
.name = "eeprom",
.mode = S_IRWXUGO,

.owner = THIS_MODULE,
T,
.size = EEPROM_SIZE,
.read = eeprom_read,

}

Cleaning up

When the 12C chip device is removed from the system, by unloading either the 12C bus
driver or the 12C chip driver, the 12C core calls the detach_client() function specified in the
struct i2c_driver. This is usually a simple function, as it can be seen in the example driver's
implementation.

static int eeprom_detach_client (struct i2c_client *client)
{

int err;

sysfs_remove_bin_file(&client->dev.kobj, &xxx_attr);

err = i2c_detach_client(client);

if (err)

return err;
kfree(i2c_get_clientdata(client));
return 0;

}

While the i2¢_attach_client() function is called to register the struct i2c_client with the 12C
core, the i2c_detach_client() function is used to unregister it. If that function succeeds, the
memory the driver has allocated for the 12C device needs to be freed before returning from
the function.

This example driver does not specifically remove the sysfs files from the sysfs core. This
step is done automatically in the driver core within the i2c_detach_client() function. But if
necessary, you can remove the file manually using a call to device_remove_file.

I12C driver performance

The driver performance was evaluated using the following setup:
® Target device: SPEAr600
— CPU: 332 MHz - AHB: 166 MHz - DDR: 333 MHz
— M24C04 EEPROM (size: 512 Bytes, block size: 16 Bytes)

Doc ID 16604 Rev 2 KYI

UMO0851 Communication device drivers
® Test method
Build kernel with i2c support as module. After booting the SPEAr board insert i2c module
with different clock speeds (100,400 KHz):
insmod spr_i2c_syn.ko clock=100
insmod spr_i2c_syn.ko clock=400
Perform the measurement in this way:
time dd if=/dev/zero of=/dev/i2c-0 bs=16 count=1
time dd if=/dev/i2c-0 of=/dev/null bs=16 count=1
Note: As per I12C slave device limitation (the EEPROM) bs must be maximum 16.
® Test results
Table 26. 12C at clock speed=100
Sizein | Write Throughput Size in Read Throughput
Bytes (time in sec) (kbps) Bytes (time in sec) (kbps)
16 0.01 12.8 16 0.01 12.8
16 0.01 12.8 64 0.01 51.2
16 0.01 12.8 128 0.02 51.2
16 0.01 12.8 196 0.03 52.26666667
16 0.01 12.8 255 0.03 68
Table 27. 12C at clock speed=400
Sizein | Write Throughput Size in Read Throughput
Bytes (time in sec) (kbps) Bytes (time in sec) (kbps)
16 0.005 25.6 16 0.005 25.6
16 0.005 25.6 64 0.01 51.2
16 0.005 25.6 128 0.01 102.4
16 0.005 25.6 196 0.01 156.8
16 0.005 25.6 255 0.02 102
4.5.6 Known issues or limitations

® 10-bit addressing is not supported

® Data transfer is supported only in interrupt mode. DMA mode is not supported by the
current driver.

Doc ID 16604 Rev 2 85/245

Communication device drivers UumMo851

4.5.7

4.5.8

4.6

4.6.1

86/245

Configuration options

Table 28. 12C configuration options

Configuration option Comment
CONFIG_I2C Enables 12C support.
CONFIG_I2C_CHARDEV Enables 12C device interface.
CONFIG_I2C_SPEAR Enables SPEAr 12C hardware bus support.
References

® Linux-2.6.27/Documentation/i2c
® Linux-2.6.27/drivers/i2c/chips/

SPI driver

This section describes the driver for the SPI controller embedded in SPEAr.

Hardware overview

The serial peripheral interface bus or SPI bus is a synchronous serial data link standard
named by Motorola that operates in full duplex mode. Devices communicate in master/slave
mode where the master device initiates the data frame. Individual slave select (chip select)
lines allow multiple slave devices. SPI is used to connect microcontrollers to sensors,
memory and peripherals.

Figure 21. Master slave connectivity

+—p SCLK
» MOSI SPI
MISO Slave
» SS
— SCLK
L MOSI sPl
MISO Slave
———— SS

4

Doc ID 16604 Rev 2

UMO0851 Communication device drivers
The SPI bus specifies four logic signals.
® SCLK - serial clock (output from master)
® MOSI - master output, slave input (output from master)
® MISO - master input, slave output (output from slave)
® SS - slave select (active low; output from master)
SPEAr600 has three SSP ARM PL022 controllers and SPEAr3xx has one SSP ARM PL022
controller. SSP controllers are connected through the APB bus and thus they work on the
APB clock. SSP frequency is configured by dividing APB frequency with a factor specified in
the controller configuration.
SPEAr support both master and slave sides for the following interfaces:
® Motorola SPI - compatible interface
® Texas instruments synchronous serial interface
® National Semiconductor Microwire interface
In SPEAr3xx, although four chip select lines are available, only one at a time can be
operational. The selection of the active one is done using the two GPIO lines 6 and 7. The
FSSOUT of SPI controller is multiplexed to the external CSx according to the following table.
Table 29. Section of active CSx signal by GPIO7 and GPIO6
GPIO[7] GPIO[6] CSx
0 0 CS1
0 1 Cs2
1 0 CS3
1 1 CS4
4.6.2 Software overview

The SPI framework present in Linux supports only the master side of the Motorola SPI
interface. User applications can use the interface of the protocol drivers present in Linux.
Protocol drivers use the standard call provided by the SPI framework present in Linux. The
SPI controller driver provides interface to the SPI Framework for accessing the SPI
controller. The SPI controller transfers data through the SPI slave devices/memories
connected to it according to the configuration provided by the SPI controller driver. The
following figure presents the SPI software system architecture:

Doc ID 16604 Rev 2 87/245

Communication device drivers UMO0851

4.6.3

Note:

88/245

Figure 22. SPI driver architecture

User space User applications

EEPROM protocol driver|| SPIDEV protocol driver

Kernel space Linux SPI framework

SPI controller driver

SSP controller (ARM Prime cell - PL 022)

Hardware

SPI slave devices SPI slave memory

SPI framework in Linux

The Linux SPI Framework defines two types of SPI drivers in Linux (see Figure 22):

Controller drivers: these drivers configure SPI controllers. Their interface can be used
for configuring the controller and transfer data over the SPI bus. They may or may not
use DMA for data transfer with the slave device. The Linux SPI framework uses
controller drivers for all its SPI related operations. You can find them at
drivers/spi/spr_ssp_pl022*.

Protocol/Slave drivers: These drivers pass messages through the controller driver to
communicate with a slave device on the other side of a SPI link. They are present
above the SPI kernel framework and they provide interface to the user applications
present in the user space.

Currently two sample protocol drivers are present in the LSP drivers/spi folder.

EEPROM protocol driver: This driver uses the SPI framework to communicate with a
M25P40 EEPROM chip present on the SPEAr board. You can access it by opening,
reading and writing the following node:

sys/bus/spi/drivers/eeprom/spi3.1/m25

General char interface driver - spidev: This driver provides a char dev interface to

the SPI controller. To access it, use the followin