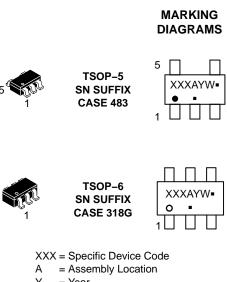
Secondary Side CV/CC Controller

The NCP4328 is a secondary side SMPS controller designed for use in applications which requires constant current and/or constant current regulation.

The NCP4328x consists of two OTA amplifiers for voltage and current loop regulation with precise internal voltage references. Outputs of OTAs are open drain type (OTAs sink current only).

The NCP4328B includes a LED driver pin implemented with an open drain MOSFET driven by a 1 kHz square wave with a 12.5% duty cycle working when VCC is above UVLO for indication purpose.

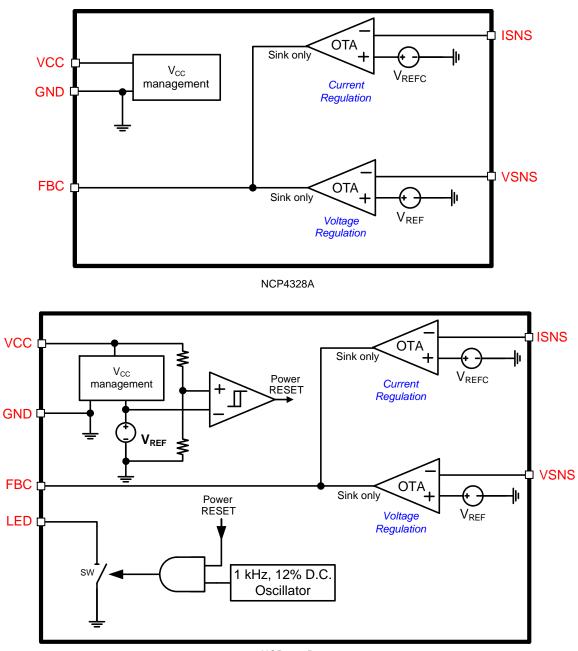
The NCP4328A is available in TSOP-5 package while the NCP4328B is available in TSOP-6 package.


Features

- Operating Input Voltage Range: 2.5 V to 36.0 V
- Supply current $< 100 \,\mu A$
- $\pm 0.5\%$ Reference Voltage Accuracy (T_J = 25°C)
- Constant Voltage and Constant Current (A versions) Control Loop
- Indication LED PWM Modulated Driver (NCP4328B)
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

- Offline Adapters for Notebooks, Game Stations and Printers
- LED Lightening
- High Power AC–DC Converters for TVs, Set–Top Boxes, Monitors etc.


- Y = Year
- W = Work Week
 - = Pb–Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering, marking and shipping information on page 8 of this data sheet.

1

NCP4328B

Figure 1. Simplified Block Diagrams NCP4328A and NCP4328B

PIN FUNCTION DESCRIPTION

NCP4328A TSOP-5	NCP4328B TSOP-6	Pin Name	Description
1	1	VCC	Supply voltage pin
2	2	GND	Ground
5	6	VSNS	Output voltage sensing pin, connected to output voltage divider
4	4	ISNS	Current sensing input for output current regulation, connect it to shunt resistor in ground branch.
-	5	LED	PWM LED driver output. Connected to LED cathode with current define by external serial resistance
3	3	FBC	Output of current sinking OTA amplifiers driving feedback optocoupler's LED. Connect here compensation networks as well.

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Input Voltage	V _{CC}	-0.3 to 40.0	V
FBC, LED Voltage	V _{FBC} , V _{LED}	-0.3 to V _{CC} + 0.3	V
VSNS, ISNS Voltage	V _{SNS} ,V _{ISNS}	-0.3 to 10.0	V
LED Current	I _{LED}	10	mA
Thermal Resistance – Junction-to-Air (Note 1)	$R_{ hetaJA}$	315	°C/W
Junction Temperature	TJ	-40 to 150	°C
Storage Temperature	T _{STG}	-55 to 150	°C
ESD Capability, Human Body Model (Note 2)	ESD _{HBM}	2000	V
ESD Capability, Machine Model (Note 2)	ESD _{MM}	250	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
1. 50 mm², 1.0 oz. Copper spreader.
2. This device series incorporates ESD protection and is tested by the following methods: ESD Human Body Model tested per JESD22–A114F ESD Machine Model tested per JESD22–A115C Latchup Current Maximum Rating tested per JEDEC standard: JESD78D.

ELECTRICAL CHARACTERISTICS

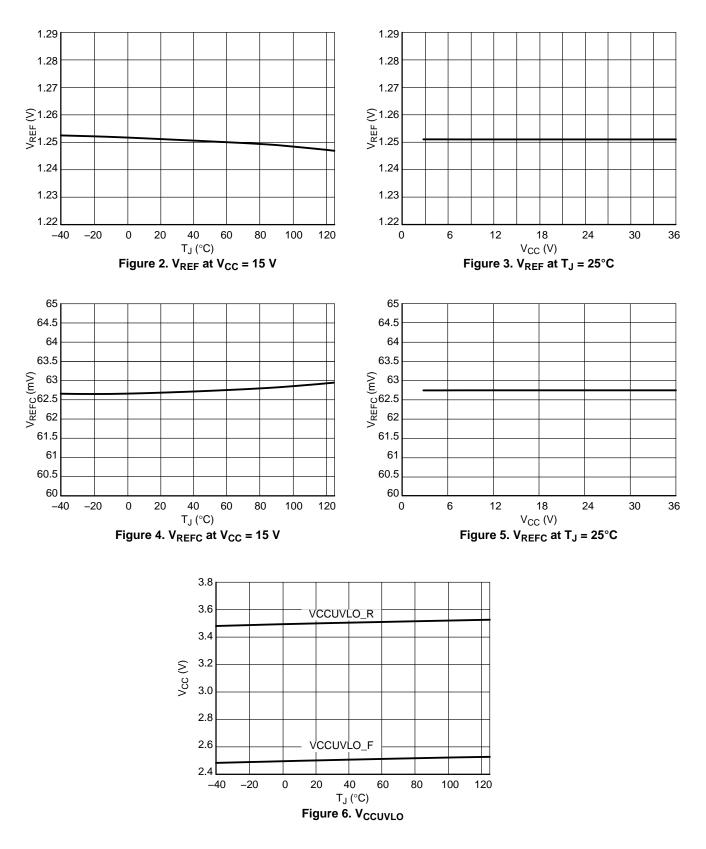
 $-40^{\circ}C \leq T_J \leq 125^{\circ}C;~V_{CC}$ = 15 V; unless otherwise noted. Typical values are at T_J = +25^{\circ}C.

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
Maximum Operating Input Voltage		Vcc			36.0	V
	V _{CC} rising	N	3.3	3.5	3.7	V
VCC UVLO	V _{CC} falling	VCCUVLO	2.3	2.5	2.7	
VCC UVLO Hysteresis		V _{CCUVLOHYS}	0.8	1.0		V
Ouissesset Oursest	NCP4328A			105	130	Δ
Quiescent Current	NCP4328B	ICC		115	140	μΑ

VOLTAGE CONTROL LOOP OTA

Transconductance Sink current only		gm _V		1		S
	$2.8~\text{V} \leq \text{V}_{CC} \leq 36.0~\text{V},~\text{T}_{J} = 25^{\circ}\text{C}$		1.244	1.250	1.256	
Reference Voltage	$2.8 \ V \leq V_{CC} \leq 36.0 \ V, \ T_J = 0 - 85^{\circ}C$	V _{REF} 1.240		1.250	1.264	V
	$\begin{array}{l} 2.8 \ V \leq V_{CC} \leq 36.0 \ V, \\ T_J = -40 - 125^\circ C \end{array}$	· KEF	1.230	1.250	1.270	-
Sink Current Capability	V _{FBC} > 1.5 V	I _{SINKV}	2.5			mA
Inverting Input Bias Current V _{SNS} = V _{REF}		I _{BIASV}	-100		100	nA

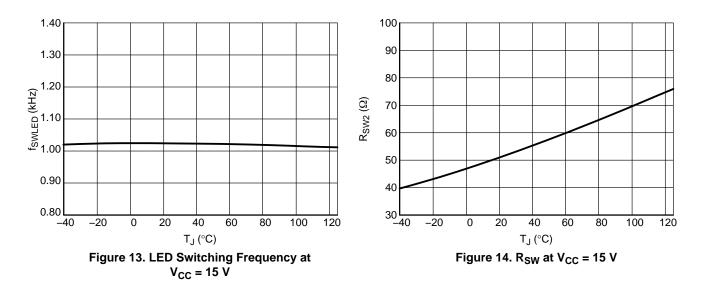
CURRENT CONTROL LOOP OTA


Transconductance	Sink current only	gm _C		3		S
	$T_J = 25^{\circ}C$		61.2	62.5	63.8	mV
Reference Voltage	$T_J = -20 - 85^{\circ}C$	V _{REFC}	60.5	62.5	64.5	
	$T_{J} = -40 - 125^{\circ}C$		60.0	62.5	65.0	
Sink Current Capability	V _{FBC} > 1.5 V	I _{SINKC}	2.5			mA
Inverting Input Bias Current	I _{SNS} = V _{REFC}	I _{BIASC}	-100		100	nA

LED DRIVER (NCP4328B Only)

Switching Frequency		f _{SWLED}		1		kHz
Duty Cycle	(Note 3)	D _{LED}	10.0	12.5	15.0	%
Switch Resistance	I _{LED} = 5 mA	R _{SW}		50		Ω

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 3. Guaranteed by design.


TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

APPLICATION INFORMATION

Typical application circuit for NCP4328A is shown in Figures 15 and 16 shows typical application circuit for NCP4328B that includes internal LED driver for indication purpose.

Power Supply

The NCP4328 is designed to operate from a single supply up to 36 V. It starts to operate when VCC voltage reaches 3.5 V and stops when VCC voltage drops below 2.5 V. VCC can be supplied by direct connection to the VOUT voltage of the power supply. It is highly recommended to add a RC filter (R1 and C2) in series from VOUT to VCC pin to reduce voltage spikes and drops that are produced at the converter's output capacitors. Recommended values for this filter are 220 Ω and 1 μ F.

Voltage Regulation Path

The output voltage is detected on the VSNS pin by the R3 and R4 voltage divider. This voltage is compared with the internal precise voltage reference. The voltage difference is amplified by gm_V of the transconductance amplifier. The amplifier output current is connected to the FBC pin. The compensation network is also connected to this pin to provide frequency compensation for the voltage regulation path. This FBC pin drives regulation optocoupler that provides regulation of primary side. The optocoupler is supplied via direct connection to VOUT line through resistor R2.

Regulation information is transferred through the optocoupler to the primary side controller where its FB pin is usually pulled down to reduce energy transferred to secondary output.

The output voltage can be computed by Equation 1.

$$V_{OUT} = V_{REF} \frac{R3 + R4}{R4}$$
 (eq. 1)

Current Regulation

The output current is sensed by the shunt resistor R5 in series with the load. Voltage drop on R5 is compared with internal precise voltage reference V_{REFC} at I_{SNS} transconductance amplifier input.

Voltage difference is amplified by gm_C to output current of amplifier, connected to FBC pin. Compensation network is connected between this pin and ISNS input to provide frequency compensation for current regulation path. Resistor R6 separates compensation network from sense resistor. Compensation network works into low impedance without this resistor that significantly decreases compensation network impact.

Current regulation point is set to current given by Equation 2.

$$I_{OUTLIM} = \frac{V_{REFC}}{R5}$$
 (eq. 2)

LED Driver (NCP4328B only)

LED driver is active when VCC is higher than V_{CCMIN} . LED driver consists of an internal power switch controlled by a PWM modulated logic signal and an external current limiting resistor R9. LED current can be computed by Equation 3

$$I_{LED} = \frac{V_{OUT} - V_{F_{LED}}}{R9}$$
 (eq. 3)

PWM modulation is used to increase efficiency of LED.

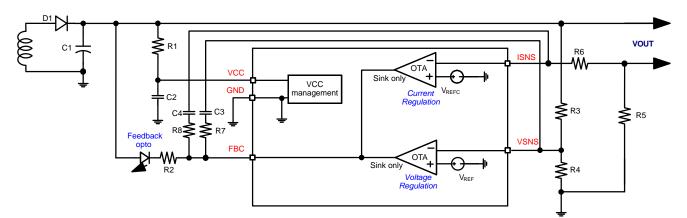


Figure 15. Typical Application Schematic for NCP4328A

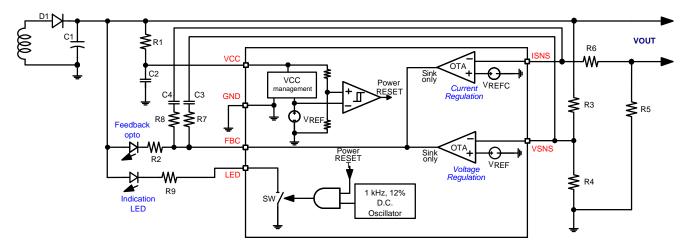


Figure 16. Typical Application Schematic for NCP4328B

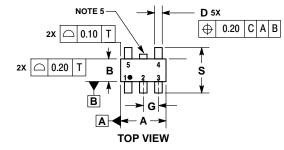
ORDERING INFORMATION

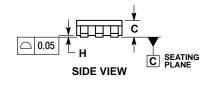
Device	Marking	LED Driver	Package	Shipping [†]
NCP4328ASNT1G	A32	No	TSOP–5 (Pb–Free)	3000 / Tape & Reel
NCP4328BSNT1G	U32	Yes	TSOP-6 (Pb-Free)	3000 / Tape & Reel

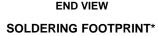
+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

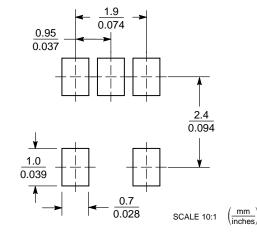
PACKAGE DIMENSIONS

TSOP-5 CASE 483-02 ISSUE K

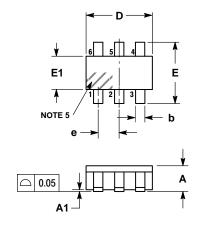

DETAIL Z

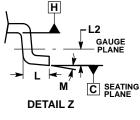

DETAIL Z

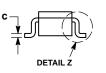

NOTES:


- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS.
 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
 4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSION A.
 5. OPTIONAL CONSTRUCTION: AN ADDITIONAL TRIMMED LEAD IS ALLOWED IN THIS LOCATION. TRIMMED LEAD NOT TO EXTEND MORE THAN 0.2 FROM BODY.
- FROM BODY.

	MILLIMETERS				
DIM	MIN MAX				
Α	3.00	BSC			
В	1.50	BSC			
С	0.90	1.10			
D	0.25	0.50			
G	0.95	BSC			
н	0.01	0.10			
J	0.10	0.26			
К	0.20	0.60			
м	0 °	10 °			
S	2.50	3.00			

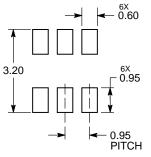





*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

TSOP-6 CASE 318G-02 ISSUE V


NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: MILLIMETERS. 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM
- MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
 DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH,
- DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSIONS D AND E1 ARE DETERMINED AT DATUM H.
- 5. PIN ONE INDICATOR MUST BE LOCATED IN THE INDICATED ZONE.

10°

	MILLIMETERS				
DIM	MIN	NOM	MAX		
Α	0.90	1.00	1.10		
A1	0.01	0.06	0.10		
b	0.25	0.38	0.50		
с	0.10	0.18	0.26		
D	2.90	3.00	3.10		
E	2.50	2.75	3.00		
E1	1.30	1.50	1.70		
е	0.85	0.95	1.05		
L	0.20	0.40	0.60		
L2	0.25 BSC				
М		-			

RECOMMENDED ^{0°} SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and **W** are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemic.com/site/pdf/Patent–Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC products are not designed, intended, or authorized for use as components insystems intended to support or sustain life, or for any other application in which the failure of the SCILLC product out of use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees ansing out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright as and is not for resade in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

NCP4328/D

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: NCP4328ASNT1G NCP4328BSNT1G