
User’s Manual
V3.3

Weston, FL 33326

μC/ ProbeTM

Graphical Live Watch™

Micriμm

1290 Weston Road, Suite 306

Weston, FL 33326

USA

www.micrium.com

Designations used by companies to distinguish their products are often claimed as

trademarks. In all instances where Micriμm Press is aware of a trademark claim, the product

name appears in initial capital letters, in all capital letters, or in accordance with the

vendor’s capitalization preference. Readers should contact the appropriate companies for

more complete information on trademarks and trademark registrations. All trademarks and

registered trademarks in this manual are the property of their respective holders.

Copyright © 2014 by Micriμm except where noted otherwise. All rights reserved. Printed in

the United States of America. No part of this publication may be reproduced or distributed

in any form or by any means, or stored in a database or retrieval system, without the prior

written permission of the publisher.

μC/Probe and the accompanying files are sold "as is". Micriμm makes and customer receives

from Micriμm no express or implied warranties of any kind with respect to the software

product, documentation, maintenance services, third party software, or other services.

Micriμm specifically disclaims and excludes any and all implied warranties of

merchantability, fitness for a particular purpose, and non-infringement. Due to the variety of

user expertise, hardware and software environments into which μC/Probe may be

subjected, the user assumes all risk of using μC/Probe. The maximum liability of Micriμm

will be limited exclusively to the purchase price.

600-uC-Probe-005

3

Table of Contents

Chapter 1 Introduction .. 6

Chapter 2 μC/Probe System Overview .. 9
2-1 μC/Probe Data Client ... 11

Chapter 3 μC/Probe Symbol Browser .. 15
3-1 ELF File ... 16
3-1-1 Loading an ELF file .. 16
3-1-2 Browsing the ELF file ... 16
3-2 CDF File .. 17
3-2-1 Loading a CDF file ... 18
3-3 CSF File .. 19
3-3-1 Creating a CSF file ... 19
3-4 MQTT Configuration File .. 23
3-4-1 Creating an MQTT Configuration File ... 24

Chapter 4 μC/Probe Settings .. 29
4-1 General Settings ... 30
4-2 Communication Settings Overview ... 31
4-2-1 Debugger-based Interfaces ... 31
4-2-2 Peripheral-based Interfaces .. 33
4-2-3 Third Party Plugins ... 35
4-2-4 MQTT Interface .. 36
4-3 Communication Settings Window ... 37
4-3-1 Segger J-Link ... 38
4-3-2 CMSIS-DAP .. 40
4-3-3 Cypress PSoC Prog ... 41
4-3-4 USB ... 42

4

4-3-5 TCP/IP .. 43
4-3-6 RS-232 .. 44

Chapter 5 μC/Probe Workspace Explorer .. 45

Chapter 6 μC/Probe Toolbox .. 47
6-1 Writable Controls ... 48
6-2 Linear Gauges .. 49
6-3 Horizontal Linear Gauges .. 49
6-4 Quadrant Gauges ... 50
6-5 Semicircle Gauges ... 50
6-6 Circular Gauges ... 51
6-7 Half Donuts ... 51
6-8 Cylinders ... 52
6-9 Charts ... 52
6-10 Numeric Indicators ... 53
6-11 LEDs ... 53
6-12 Advanced ... 54

Chapter 7 μC/Probe Layout Design Tools ... 55
7-1 μC/Probe Example ... 57

Chapter 8 Associating Symbols to Virtual Controls and Indicators 58

Chapter 9 Run-Time Mode ... 61
9-1 Run-Time Checklist .. 61
9-2 Running μC/Probe and your Debugging Software at the same time 62
9-3 IAR Systems C-SPY Plugin for μC/Probe ... 64
9-3-1 Configuring the TCP/IP Bridge between IAR C-SPY and μC/Probe . 65

Appendix A Configuring Virtual Controls and Indicators 67
A-1 Virtual Indicators .. 68
A-2 Virtual Controls ... 74
A-3 Charts ... 87

5

Appendix B Kernel Awareness Screen .. 96

Appendix C Terminal Window Control .. 99
C-1 Terminal Window Control Configuration ... 101
C-2 Properties Editor .. 102

Appendix D μC/Trace Triggers Control ... 103

Appendix E Spreadsheet Control .. 106
E-1 Adding an instance of the Spreadsheet Control 107
E-2 Configuring the Spreadsheet .. 108
E-3 Other Features ... 109
E-4 Application Example .. 110

Appendix F Scripting Control .. 111
F-1 Writing a Script ... 111
F-2 Adding an Instance of the Scripting Control 115
F-3 Configuring the Scripting Control ... 116
F-4 Executing the Script ... 117

Appendix G Data Logging Control ... 119

Appendix H Licensing .. 123
H-1 Ordering .. 124
H-2 Activating .. 126

Appendix I Bibliography ... 128

Index ... 129

6

Chapter

1
Introduction

μC/Probe is a Windows application designed to read and write the memory of any

embedded target processor during run-time. Memory locations are mapped to a set of

virtual controls and indicators placed on a dashboard. Figure 1-1 shows an overview of the

system and data flow.

Figure 1-1 μC/Probe Data Flow Diagram

Embedded System
Running μC/Probe-Target

Windows PC
Running μC/Probe

J-
Li

nk
 /

C
M

S
IS

-D
AP

 /
C

yp
re

ss
PS

oC

R
S

-2
32

TC
P

/IP
ELF File

µC/Probe Workspace

(2)

(1)

(3)

(4)

(5)

Symbol names
and addresses

Dashboard made out of
virtual controls mapped
to the target's symbols

[2]

[1]

[1] Including LAN, WAN, etc.
[2] Target Resident Code is

only required with TCP/IP
USB, and RS-232 interfaces.

U
S

B

7

F1-1(1) You have to provide μC/Probe with an ELF file with DWARF-2, -3 or -4

debugging information. The ELF file is generated by your toolchain’s linker.

μC/Probe parses the ELF file and reads the addresses of each of the embedded

target’s symbols (i.e. global variables) and creates a catalog known as symbol

browser, which will be used by you during design-time to select the symbols

you want to display on your dashboard. Refer to the document μC/Probe

Target Manual for more information on installing the μC/Probe Target C files

and building the ELF file.

Alternatively, you can also provide a chip definition file that contains the chip’s

peripheral register addresses or provide your own custom XML based symbol

file for those cases when your toolchain cannot generate one of the supported

ELF formats.

F1-1(2) During design-time, you create a μC/Probe workspace using a Windows PC

and μC/Probe. You design your own dashboard by dragging and dropping

virtual controls and indicators onto a data screen. Each virtual control and

indicator needs to be mapped to an embedded target’s symbol by selecting it

from the symbol browser. This document aims at providing more information

on creating your own dashboard with μC/Probe.

F1-1(3) Before proceeding to the run-time stage, μC/Probe needs to be configured to

use one of the following communication interfaces: J-Link, CMSIS-DAP, Cypress

PSoC Prog, USB, RS-232 or TCP/IP. In order to start the run-time stage, you

click the Run button and μC/Probe starts making requests to read the value of

all the memory locations associated with each virtual control and indicator (i.e.

buttons and gauges respectively). At the same time, μC/Probe sends commands

to write the memory locations associated with each virtual control (i.e. buttons

on a click event).

F1-1(4) In the case of a reading request, the embedded target responds with the latest

value. In the case of a write command, the embedded target responds with an

acknowledgement. Refer to the document μC/Probe Target Manual for more

information on all you need in regards to the firmware that implements the

communication interface that runs on the embedded target.

F1-1(5) μC/Probe parses the responses from the embedded target and updates the

virtual controls and indicators.

8

In case the communication of your choice is USB, RS-232 or TCP/IP, refer to the document

μC/Probe Target Manual for more information about the firmware that resides on the

Embedded System.

This document only provides information about the Windows PC side of the system.

9

Chapter

2
μC/Probe System Overview

This section provides an overview of the μC/Probe Windows Application.

Whenever you start μC/Probe in your Windows PC, three different modules are started:

μC/Probe Automatic Updates and Licensing System, μC/Probe Data Client and μC/Probe

Generic Target Communications Module as illustrated in Figure 2-1:

Figure 2-1 μC/Probe System Overview

ELF File
Symbol names
and addressesµC/Probe Data Client

(4)

(1)

(5)

(2)

(3)

µC/Probe Generic Target
Communications Module

µC/Probe

µC/Probe Automatic Updates
and Licensing System (AULS)

micrium.com

Embedded System
Running μC/Probe

Target

TCP/IP

USB

micrium.com

Software Updates
Server

Licensing ServerWindows PC

RS-232

(7)
(6)

TCP/IP

CMSIS-DAP
Cypress PSoC Prog

J-Link

10

F2-1(1) The Automatic Updates and Licensing System (AULS) is the part of the application

that allows you to install and keep your μC/Probe application up to date.

F2-1(2) The Educational Edition of μC/Probe is deployed with some of the Basic and

Professional Editions’ features and do not require internet access to activate the

software application. The Basic and Professional Edition of μC/Probe require

internet access to validate the license key provided by your Micriμm’s sales

representative.

For more information on μC/Probe Licensing see Appendix I, “Licensing” on

page 123.

F2-1(3) All Editions of μC/Probe are self-updating and every time you start the

application, if internet access is available, the μC/Probe AULS module checks

for newer versions of μC/Probe from the Micriμm website and as they become

available, the μC/Probe AULS module, automatically replaces any updated files.

F2-1(4) The μC/Probe Data Client is the part of the application that allows you to

design your dashboard (design-time mode) and run it (run-time mode).

The next section in this document provides more information in regards to

using the μC/Probe Data Client during design-time and run-time.

F2-1(5) The μC/Probe Generic Target Communications Module is the part of the

application that connects directly with the Embedded Target and responds to

the requests from the Data Client.

When the μC/Probe run-time mode gets started, the Data Client sends requests

to the Generic Target Communications Module. The requests contain not only

the embedded target communication settings but also all the symbol’s memory

address required by your dashboard design.

F2-1(6) The Generic Target Communications Module takes the request from the

μC/Probe Data Client and initiates a communication with the embedded target

through the configured communication interface.

11

μC/Probe Data Client

F2-1(7) The μC/Probe Data Client exchanges requests to read and write the memory

locations required by the current view of your dashboard’s design with the

embedded target through the Generic Target Communications Module.

2-1 μC/PROBE DATA CLIENT

The μC/Probe Data Client is illustrated in more detail in Figure 2-2:

Figure 2-2 μC/Probe Data Client: Design Time

ELF File
Symbol names
and addresses

ELF Header

Program Header
Table

.text

.rodata

.data

Section Header
Table

. . .

µC/Probe Data Client

(4)

(1)(5)

Design-Time

(3)

(2)(5)

12

μC/Probe Data Client

F2-2(1) The μC/Probe Data Client is the part of the application that during design-time

takes the ELF file with DWARF-2, -3 or -4 debugging information. As previously

discussed, the ELF file is generated by your toolchain’s linker. The μC/Probe

Data Client parses the ELF file and reads the addresses of each of the

embedded target’s symbols (i.e. global variables) and creates a catalog known

as symbol browser, which will be used by you during design-time to select the

symbols you want to display on your dashboard. Refer to the document

μC/Probe Target Manual for more information on installing the μC/Probe Target

C files and building the ELF file.

For more information, see Chapter 3, “μC/Probe Symbol Browser” on page 15.

F2-2(2) During design-time it is necessary to adjust the communication and other

general settings. See Chapter 4, “μC/Probe Settings” on page 29 for more

information on configuring μC/Probe.

F2-2(3) The Workspace Explorer in the μC/Probe Data Client allows you to add or

delete Projects and Data Screens among other things.

For more information, see Chapter 5, “μC/Probe Workspace Explorer” on

page 45.

F2-2(4) The μC/Probe Toolbox displays icons for the virtual controls and indicators that

you can add to your Data Screens. Each toolbox icon can be dragged and

dropped onto the Data Screen to build your own dashboard.

For more information, see Chapter 6, “μC/Probe Toolbox” on page 47.

F2-2(5) The μC/Probe Layout Design Tools help you arrange the virtual controls and

indicators on your data screen by speeding up the creation of your dashboard

and making it look great.

For more information, see Chapter 7, “μC/Probe Layout Design Tools” on

page 55.

13

μC/Probe Data Client

F2-2(6) The last step during design-time is to map each virtual control and indicator in

your Data Screen with an Embedded Target’s memory location. The symbol

browser allows you to quickly find the variable you want to display and then

all you have to do is drag the variable from the symbol browser and drop it

onto the virtual control or indicator of your choice.

See Chapter 8, “Associating Symbols to Virtual Controls and Indicators” on

page 58 for more information on using the symbol browser to map virtual

controls and indicators to the embedded target’s memory locations.

The actual μC/Probe windows application is shown in Figure 2-3:

Figure 2-3 μC/Probe Windows Application

F2-3(1) Chapter 3, “μC/Probe Symbol Browser” on page 15.

14

μC/Probe Data Client

F2-3(2) Chapter 4, “μC/Probe Settings” on page 29.

F2-3(3) Chapter 5, “μC/Probe Workspace Explorer” on page 45.

F2-3(4) Chapter 6, “μC/Probe Toolbox” on page 47.

F2-3(5) Chapter 7, “μC/Probe Layout Design Tools” on page 55.

F2-3(6) Chapter 8, “Associating Symbols to Virtual Controls and Indicators” on page 58.

15

Chapter

3
μC/Probe Symbol Browser

The μC/Probe’s Symbol Browser is a list of your embedded target’s symbols that helps you

quickly find the symbol you want to use in your data screen. The symbol browser is

available during design-mode and it is located at the bottom of the application window.

There are four types of symbol files supported by μC/Probe’s parser:

■ ELF (Executable and Linkable Format).

■ CDF (Chip Definition File).

■ CSF (Custom Symbol File).

■ MQTT Configuration File (Message Queueing Telemetry Transport).

To load any of these files, you start by clicking one or more of the buttons indicated in

Figure 3-1:

Figure 3-1 μC/Probe Symbol Browser: Loading a symbols file

The following sections will describe each of the four types of symbol files supported by

μC/Probe. Keep in mind that you only require to load at least one of the following files.

16

ELF File

3-1 ELF FILE

This file is the output from your compiling and linking process. It contains the name, data

type and address of all your global variables.

3-1-1 LOADING AN ELF FILE

In order to provide μC/Probe with the path of the embedded target’s output file (ELF file),

locate and click the button labeled ELF File indicated in Figure 3-1.

μC/Probe will prompt for the ELF file path by using a standard open file dialog. Locate the

output file in your PC. The path is usually configured from your toolchain’s linker configuration.

The ELF file needs to have symbolic information for debugging purposes in the DWARF-2, -

3 or -4 format.

3-1-2 BROWSING THE ELF FILE

μC/Probe parses the ELF file and creates a catalog that you can browse to search for the

symbol you need. The symbol browser is a five-column tree list of symbols grouped by the

C file name where the variable was declared as shown in Figure 3-2:

Figure 3-2 μC/Probe Symbol Browser: Symbols grouped by C file

17

CDF File

F3-2(1) The symbol browser allows you to quickly find the symbol you want. Click on

the symbol browser headers row to sort the list by the column you want. You

can also expand and collapse tree nodes to focus on a particular C file, or you

can use the search box and search by symbol name or data type.

F3-2(2) The Name column shows the name of the symbol as declared in your C file.

F3-2(3) The Display Name column by default displays the name of the symbol as

declared in your C file, but also allows you to create an alias for the symbol.

Double-click over the Display Name cell to create an alias.

F3-2(4) The Type column displays the symbol’s C data type.

F3-2(5) The Size column displays the size in bytes of the symbol.

F3-2(6) The Memory Address column displays the symbol’s location in the embedded

target’s memory.

F3-2(7) Click on the red X next to the name of the ELF file, to remove a symbol file

from the symbol browser.

F3-2(8) The expand all and collapse all buttons allow you to browse more efficiently

throughout the symbol browser tree.

Be aware that the symbol browser in μC/Probe will detect if the ELF file has been re-

compiled and will refresh all addresses. However, in case you move the ELF file to a

different location in your file system, μC/Probe cannot update the addresses automatically.

Instead, you can update the symbol browser with the new path by first removing the ELF

file (red X next to the filename) and then opening the new ELF file.

3-2 CDF FILE

The CDF (Chip Definition File) contains the name, data type and address of all your device’s

I/O registers. μC/Probe installs in your PC with a very large catalog of chip definition files

that includes chips from semiconductors such as Analog Devices, Atmel, Cypress, Freescale,

Infineon, Renesas, ST, Texas Instruments and Xilinx among others.

18

CDF File

3-2-1 LOADING A CDF FILE

You can browse the CDF catalog and select your platform’s chip definition file by clicking

the button CDF File and using the CDF browser shown in Figure 3-3:

Figure 3-3 Chip Definition Files Browser

The CDF files provide the chip’s peripheral I/O register names and addresses which you can

use to associate with controls such as the Bit Control described in section A-2-8 “Bit Control

Properties Editor” on page 82.

19

CSF File

3-3 CSF FILE

μC/Probe is capable of parsing XML-based Custom Symbol Files (CSF), which is very useful

for those cases where your toolchain is incapable of generating one of the ELF file formats

supported by μC/Probe.

3-3-1 CREATING A CSF FILE

The best way to create a CSF file is by modifying the template located in your μC/Probe

installation directory at:

 $\Micrium\uC-Probe\Templates\uC-Probe-CSF-Template.csf

The template is associated with an XSD document that defines the XML schema for CSF files

supported by μC/Probe. We recommend using an XML editor capable of providing

IntelliSense features such as Visual Studio, shown in Figure 3-4:

Figure 3-4 Creating a CSF in Visual Studio: Drop-Down Lists

20

CSF File

Visual Studio makes editing your CSF file easier by filling required XML syntax for you. For

example, after a schema is associated with your CSF, you get a drop-down list of expected

elements any time you type "<".

When you type SPACE from inside a start tag, you also get a drop-down list showing all

attributes that can be added to the current element.

Likewise, when you type "=" for an attribute value, or the opening quote for the value, you

also get a list of possible values for that attribute.

Moreover, ToolTips appear on these IntelliSense lists giving you a description of each

element as illustrated in Figure 3-5:

Figure 3-5 Creating a CSF in Visual Studio: Tool Tips

Custom Symbol Files need to have the extension .csf for μC/Probe to recognize them as

such. Listing 3-1 shows an example of a CSF file that declares one integer, one array and

one data structure.

21

CSF File

Listing 3-1 XML-based Custom Symbol File Example

L3-1(1) The root element is called <CustomSymbols>. It includes the XSD schema

reference to help you editing in an XML editor such as Visual Studio.

L3-1(2) Each symbol or group of symbols are within the element tag

<GroupOfSymbols>. In this case it is used with the purpose of creating a group

of symbols declared in one single C file.

L3-1(3) The name of the group of symbols is App.c.

L3-1(4) The name of the first symbol in the group as declared in C.

<?xml version="1.0"?>
<CustomSymbols xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://micrium.com/probe/csf.xsd" > (1)
 <GroupOfSymbols> (2)
 <GroupName>App.c</GroupName> (3)
 <Symbols>
 <Symbol>
 <Name>MyUInt32</Name> (4)
 <DisplayName>My UInt32 Global Variable</DisplayName> (5)
 <DataType Size="4">unsigned long</DataType> (6)
 <MemoryAddress>0x10F4</MemoryAddress> (7)
 </Symbol>
 <Symbol>
 <Name>MyStruct</Name>
 <DataType Size="50">struct</DataType>
 <MemoryAddress>0x50AC</MemoryAddress>
 <DataMembers> (8)
 <Symbol>
 <Name>MyArray</Name>
 <DataType Size="16" IsArray="true" ArrayLength="4">int</DataType> (9)
 <MemoryAddress>0x50AC</MemoryAddress>
 </Symbol>
 <Symbol>
 <Name>MyCharPointer</Name>
 <DataType Size="4" IsPointer="true">char</DataType> (10)
 <MemoryAddress>1025</MemoryAddress>
 </Symbol>
 </DataMembers>
 </Symbol>
 </Symbols>
 </GroupOfSymbols>
</CustomSymbols>

22

CSF File

L3-1(5) You can also specify an alias for the group name for display purposes.

L3-1(6) The element tag <DataType> is the ANSI C data type of the variable including

the size in bytes as an attribute.

L3-1(7) The element tag <MemoryAddress> is the variable’s memory address in either

decimal or hexadecimal format (0x1234).

L3-1(8) For more complex symbols such as data structures, there is a tag called

<DataMembers> that allows you to specify a group of symbols that make part

of a data structure.

L3-1(9) In order to declare an array, you need to specify three attributes: A boolean flag

that indicates that the symbol is an array, the total number of bytes and the

number of elements in the array.

L3-1(10) Finally, any data type can be declared as a pointer by using the data type

boolean attribute IsPointer. In this case, it is the intention to specify a

symbol declared as char *.

In order to verify your CSF file, you can use the Symbol Browser from within μC/Probe as

shown in Figure 3-6. Notice the relationship between the XML tags and the tree nodes in

the Symbol Browser.:

Figure 3-6 XML-based Custom Symbol File Example as seen from μC/Probe’s Symbol Browser

23

MQTT Configuration File

3-4 MQTT CONFIGURATION FILE

The MQTT (Message Queueing Telemetry Transport) protocol is becoming the de facto

standard for IoT (Internet of Things) applications.

μC/Probe can be used to build an MQTT Client. If you have an embedded system that is

MQTT-ready, you can monitor and control your embedded system remotely by using any of

the virtual controls and indicators in μC/Probe’s toolbox.

Let’s take for example an embedded systems-based Weather Station that remotely publishes

via MQTT its readings to an MQTT broker as illustrated in Figure 3-7.

The MQTT broker stores the readings and then you can use μC/Probe to create a GUI that

displays the readings using some of the virtual indicators (e.g. thermometer to display

temperature) and configures the Weather Station with some of the virtual controls (e.g.

slider control to configure the sampling rate).

Figure 3-7 μC/Probe as an MQTT gateway

The details on how to setup an MQTT broker and how to make an embedded systems

MQTT-ready are beyond the scope of this document.

Embedded System

Windows PC
Running μC/Probe

MQTT Broker

M
Q

TTM
Q

TT

MQTT

24

MQTT Configuration File

However, a good place to start is looking at 2lemetry as an MQTT broker and Micriμm’s

μC/TCP-IP and μC/MQTTc as the firmware you need to make your embedded systems

MQTT-ready.

The next section will explain how to create an MQTT configuration file assuming that you

already have an account and configuration setup at the MQTT broker of your choice.

3-4-1 CREATING AN MQTT CONFIGURATION FILE

Similar to the Custom Symbol File (CSF) in section 3-3 “CSF File” on page 19, the best way

to create an MQTT configuration file is by modifying the template located in your μC/Probe

installation directory at:

 $\Micrium\uC-Probe\Templates\uC-Probe-MQTT-CfgFile-Template.mqtt

25

MQTT Configuration File

The template is associated with an XSD document that defines the XML schema for MQTT

configuration files supported by μC/Probe. We recommend using an XML editor capable of

providing IntelliSense features such as Visual Studio, shown in Figure 3-4:

Figure 3-8 Creating an MQTT Configuration File in Visual Studio: Drop-Down Lists

Visual Studio makes editing your MQTT configuration file easier by filling required XML

syntax for you. For example, after a schema is associated with your MQTT configuration,

you get a drop-down list of expected elements any time you type "<".

When you type SPACE from inside a start tag, you also get a drop-down list showing all

attributes that can be added to the current element.

26

MQTT Configuration File

Likewise, when you type "=" for an attribute value, or the opening quote for the value, you

also get a list of possible values for that attribute.

Moreover, ToolTips appear on these IntelliSense lists giving you a description of each

element as illustrated in Figure 3-5 when the user hovers the mouse over the Topic’s

WriteTo property:

Figure 3-9 Creating an MQTT Configuration File in Visual Studio: Tool Tips

MQTT Configuration Files need to have the extension .mqtt for μC/Probe to recognize

them as such. Listing 3-1 shows an example of an MQTT Configuration File that declares a

few variables.

27

MQTT Configuration File

Listing 3-2 XML-based MQTT Configuration File Example

L3-2(1) The root element is called <Brokers>. Inside this tag, you can have more than

one MQTT broker in case your data comes from various sources. The tag

includes the XSD schema reference to help you editing in an XML editor such

as Visual Studio.

L3-2(2) Each MQTT broker needs to be configured with the access credentials and

other settings specific to the account you have with your MQTT broker.

<?xml version="1.0" encoding="utf-8" ?>
<!--
 XML-based Message Queue Telemetry Transport (MQTT) Configuration File Example.
-->
<Brokers xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://micrium.com/probe/mqtt.xsd"> (1)
 <!-- User 1 Account at 2lemetry.com -->
 <Broker
 HostName="q.m2m.io"
 Port="1883"
 ClientID="any_unique_string_1"
 UseSSL="false"
 KeepAlive="30"
 Username="user_1@domain.com"
 Password="password_1"
 SendPasswordWithoutHashing="false"> (2)
 <!-- Topic -->
 <Topic WriteTo="com.micrium/WeatherMeterCfg/33076"
 ReadFrom="com.micrium/WeatherMeter/33076" > (3)
 <!-- JSON Format -->
 <Payload> (4)
 <!-- Read/Write variables -->
 <Variable Name="SamplingRate"
 DataType="int"
 Description="Samples per second." /> (5)
 <!-- Read-only variables -->
 <Variable Name="RelativeHumidity"
 DataType="int"
 Description="Air's relative humidity as a percentage (%)." />
 <Variable Name="Temperature"
 DataType="int"
 Description="Temperature in Fahrenheit degrees (F)." />
 </Payload>
 </Topic>
 </Broker>
</Brokers>

28

MQTT Configuration File

L3-2(3) MQTT brokers are usually provisioned with two topics per device (thing). In

this example, the weather meter at zip code 33326 is provisioned with two

topics; One that contains the Read/Write access variables and the other one

that contains the Read-only access variables. And if you want added security

you can even create a separate account for Read/Write access.

L3-2(4) The data to be sent needs to be in JSON format. The tag <Payload> specifies

the JSON format expected by both the MQTT broker and μC/Probe.

L3-2(5) The tag <Variable> allows you to specify the name, data type and an optional

description for each variable within a topic.

In order to verify your MQTT configuration file, you can use the Symbol Browser from

within μC/Probe as shown in Figure 3-10. Notice the relationship between the XML tags and

the tree nodes in the Symbol Browser.:

Figure 3-10 XML-based MQTT Configuration File Example as seen from μC/Probe’s Symbol Browser

29

Chapter

4
μC/Probe Settings

The μC/Probe application’s tool bar is located at the top of the application window.

The μC/Probe Settings window is opened by making click on the Settings button in the

application’s tool bar as indicated in Figure 4-1:

Figure 4-1 μC/Probe Toolbar: Settings

The settings window is divided in the following categories:

■ General Settings:

The general settings include the application debug logging, automatic updates and data

collection settings.

■ Communication Settings:

The communication settings window includes the endianness type and the

communication interface settings.

30

General Settings

4-1 GENERAL SETTINGS

Figure 4-2 shows the μC/Probe General Settings window:

Figure 4-2 μC/Probe General Settings

F4-2(1) μC/Probe can be configured to log a specific level of verbosity for technical

support purposes. If you ever have to contact Micriμm’s technical support for

any issues with your μC/Probe application, you can select a logging type that

better describes your failure scenario.

F4-2(2) μC/Probe can be configured to automatically check and install updates as they

become available from the Micriμm website. μC/Probe will check for software

updates at startup if internet access is available.

31

Communication Settings Overview

4-2 COMMUNICATION SETTINGS OVERVIEW

μC/Probe supports a variety of communication interfaces that can be classified in four

groups:

■ Debugger-based Interfaces

■ Peripheral-based Interfaces

■ 3rd. Party Plugins

■ MQTT Interface

The following sections will describe each of the groups.

4-2-1 DEBUGGER-BASED INTERFACES

μC/Probe can interface with your embedded target via standard debugging tools such as:

■ J-Link

■ CMSIS-DAP

■ Cypress PSoC Prog

■ OpenSDA

When using one of these interfaces, μC/Probe reads and writes your global variables in a

non-intrusive way and without the need for any target resident code. These are the ideal

interface options if you require to maintain the real-time behavior of your application.

Follow the decisions tree diagram in Figure 4-3 to see if you can use one of these debugger-

based interfaces with your platform.

32

Communication Settings Overview

Figure 4-3 Debugger-based Interfaces

33

Communication Settings Overview

4-2-2 PERIPHERAL-BASED INTERFACES

μC/Probe can interface via the following communication modules:

■ USB

■ TCP/IP

■ RS-232

These interfaces however, require a special target resident code that implements the

μC/Probe protocol.

Micriμm has RS-232 drivers for various platforms available for free and if you are a

μC/USBD or μC/TCP-IP licensee then μC/Probe is ready to run on these stacks.

Follow the decisions tree diagram in Figure 4-4 to see if you can use one of these interfaces

with your platform.

34

Communication Settings Overview

Figure 4-4 Peripheral-based Interfaces

35

Communication Settings Overview

4-2-3 THIRD PARTY PLUGINS

μC/Probe can interface with the embedded target via your IDE thanks to a public API that

enables third party software applications to establish a TCP/IP bridge between the IDE and

μC/Probe.

The TCP/IP bridge is created in the form of a plugin and gives μC/Probe access to as many

platforms as the IDE supports.

Examples of these plugins are:

■ IAR Systems C-SPY plugin for μC/Probe

■ Eclipse plugin for μC/Probe

Follow the decisions tree diagram in Figure 4-5 to see if you can use one of these plugins

with your platform.

Figure 4-5 Third Party Plugins

36

Communication Settings Overview

4-2-4 MQTT INTERFACE

μC/Probe can also interface remotely to your embedded target via MQTT.

MQTT is becoming the de facto protocol for IoT applications and μC/Probe can be

configured to be an MQTT client for those embedded systems that do not have neither

TCP/IP connectivity nor intelligence that implements the MQTT protocol.

37

Communication Settings Window

4-3 COMMUNICATION SETTINGS WINDOW

Once you have chosen the appropriate communication interface for your platform, you can

configure μC/Probe from the communication settings window shown in Figure 4-6:

Figure 4-6 μC/Probe Communication Settings

F4-6(1) μC/Probe can be configured to interpret the byte order in either little or big

endian, select the option that corresponds to your target’s endianness type.

F4-6(2) During run-time, μC/Probe calculates the speed of your connection and

displays the value in either symbols per second or bytes per second.

38

Communication Settings Window

F4-6(3) You can adjust how fast you want μC/Probe to make requests to the target

depending on your application’s bandwidth. The fastest collection rate takes a

toll in both the embedded target and your Windows PC resources.

F4-6(4) μC/Probe supports MQTT, J-Link, CMSIS-DAP, Cypress PSoC Prog, USB, TCP/IP

and RS-232. Select the interface that your target supports, and configure the

settings corresponding to the interface.

The following sections describe how to configure each communication

interface. Refer to the document μC/Probe-Target Manual for more information

on the communication interface supported by the embedded target.

4-3-1 SEGGER J-LINK

J-Link is a USB powered JTAG emulator designed by Segger. In order to install the windows

drivers for J-Link (J-Link DLL) go to Segger’s website at www.segger.com and download the

J-Link software pack for Windows.

J-Link is the most popular emulator for ARM cores and it does not require any special code

resident in the embedded target to connect with μC/Probe.

If using J-Link, you can interface μC/Probe even with a bare-metal application running no

kernel at all, as shown in Figure 4-7:

Figure 4-7 μC/Probe via J-Link

IDE and Toolchain of your choice

Embedded System

Windows PC

http://www.micrium.com/probe/uC-Probe-TargetManual.pdf
http://www.segger.com/jlink-software.html
http://www.segger.com/jlink-software.html

39

Communication Settings Window

μC/Probe supports two types of J-link interface modes; JTAG and SWD. Select the interface

mode from the radio buttons and configure the J-Link speed from the horizontal slider

shown in Figure 4-8. μC/Probe will negotiate the speed you configured and if your device

does not support it, then it will select the maximum possible:

Figure 4-8 μC/Probe Communication Settings: J-Link

40

Communication Settings Window

4-3-2 CMSIS-DAP

CMSIS-DAP is the interface firmware for an ARM Cortex processor’s Debug Unit that

connects the Debug Port to USB. μC/Probe which executes on a host computer, connects

via USB to the Debug Unit and to the device that runs the application software. The Debug

Unit connects via JTAG or SW to the target device.

The CMSIS-DAP interface does not require you to install any drivers, simply connect a USB

cable between your board debug port and your Windows PC and then select the CMSIS-

DAP interface from the Settings window as shown in Figure 4-9:

Figure 4-9 μC/Probe Communication Settings: CMSIS-DAP

Keep in mind that the CMSIS-DAP interface supports the communication of one single client

at a time. In other words, you cannot run μC/Probe and your debugger software at the same

time.

41

Communication Settings Window

4-3-3 CYPRESS PSOC PROG

Cypress have their own debugging interface for their PSoC devices called PSoC

Programmer. The interface allows you to not only program and configure the PSoC device

but also to debug it. μC/Probe is tightly integrated with Cypress PSoC 5LP devices through

this interface.

To use this interface with your Cypress PSoC 5LP device you need to download and install

PSoC Programmer from the Cypress website at: http://www.cypress.com

Then you simply connect the board and select the PSoC Prog interface from the Settings

menu as shown in Figure 4-10:

Figure 4-10 μC/Probe Communication Settings: Cypress PSoC Prog

Keep in mind that the Cypress PSoC Prog interface supports the communication of one

single client at a time. In other words, you cannot run μC/Probe and your debugger

software at the same time.

42

Communication Settings Window

4-3-4 USB

μC/Probe supports a USB interface over the μC/USB Device stack by Micriμm. This USB

interface requires μC/Probe-Target code resident in your embedded system and because of

the nature of USB, it also requires a kernel. Micriμm supports many cores and most likely

this code is available from Micriμm. Contact Micriμm to find out if resident code for your

particular setup is available.

Once your embedded system is running μC/Probe-Target as described in the document

μC/Probe-Target Manual, the device should be ready to connect after plugging in. The

Windows computer will enumerate the device and will display it as one of the available

devices in the communication settings window as shown in Figure 4-11:

Figure 4-11 μC/Probe Communication Settings: USB

You can specify an optional timeout in seconds, which is the time μC/Probe is willing to

wait for the target to respond before presenting an error message.

http://www.micrium.com/probe/uC-Probe-TargetManual.pdf
http://www.micrium.com/probe/uC-Probe-TargetManual.pdf

43

Communication Settings Window

4-3-5 TCP/IP

μC/Probe supports a TCP/IP interface over the UDP protocol. The target requires a TCP/IP

stack that provides a BSD sockets interface. Regardless of the TCP/IP stack being used, this

interface requires μC/Probe-Target code resident in your embedded system and because of

the nature of TCP/IP, it also requires a kernel. Micriμm supports many cores and most likely

this code is available from Micriμm. Contact Micriμm to find out if resident code for your

particular setup is available.

Assuming your embedded system is running μC/Probe-Target as described in the document

μC/Probe-Target Manual, enter the IP address and port number of your embedded system

in the text boxes shown in Figure 4-12:

Figure 4-12 μC/Probe Communication Settings: TCP/IP

You can specify an optional timeout in seconds, which is the time μC/Probe is willing to

wait for the target to respond before presenting an error message.

The TCP/IP interface is also used to interface through third-party plugin proxies such as the

IAR Systems C-SPY plugin for μC/Probe as described in section 9-3 “IAR Systems C-SPY

Plugin for μC/Probe” on page 64.

http://www.micrium.com/probe/uC-Probe-TargetManual.pdf
http://www.micrium.com/probe/uC-Probe-TargetManual.pdf

44

Communication Settings Window

4-3-6 RS-232

μC/Probe supports a Serial RS-232 interface. This serial interface requires μC/Probe-Target

code resident in your embedded system. Micriμm supports many UARTs and most likely this

code is available from Micriμm. Contact Micriμm to find out if resident code for your

particular setup is available.

Assuming your embedded system is running μC/Probe-Target as described in the document

μC/Probe-Target Manual, enter the serial COM port number that your embedded target is

attached to and select the baud rate from the drop downs shown in Figure 4-13:

Figure 4-13 μC/Probe Communication Settings: RS-232

http://www.micrium.com/probe/uC-Probe-TargetManual.pdf
http://www.micrium.com/probe/uC-Probe-TargetManual.pdf

45

Chapter

5
μC/Probe Workspace Explorer

The μC/Probe Workspace Explorer is located on the right side of the application window

and it is shown in Figure 5-1:

Figure 5-1 μC/Probe Workspace Explorer

F5-1(1) μC/Probe allows you to create a dashboard or user interface in a matter of

minutes. The data screen is where you drag and drop the virtual controls and

indicators. Your data screen’s appearance and layout are very important. You

can use Projects as a means to separate complex dashboards into multiple

regions. Each project can contain multiple data screens and the workspace

explorer allows you to navigate through this hierarchy.

F5-1(2) Similar to Projects, Data Nodes are just another level of hierarchy that allows

you to group sets of virtual controls and indicators together into categories you

define.

F5-1(3) Data Screens are the screens where you drag and drop the virtual controls and

indicators. You can add as many data screens as you want.

46

F5-1(4) The Kernel Awareness Screen is a pre-configured Data Screen with all the

symbols related to μC/OS-III. See Appendix B, “Kernel Awareness Screen” on

page 96 for more information about this.

F5-1(5) Use this button to create a bridge between μC/Probe and Microsoft Excel.

F5-1(6) Use the Delete button to delete an item from the workspace explorer, including

Projects, Data Nodes, Data Screens and Kernel Awareness Screens.

F5-1(7) Use the indent button to push in an item in the Workspace Explorer tree. The

items you can adjust the level of indentation include Projects, Data Nodes, Data

Screens and Kernel Awareness Screens.

F5-1(8) Use the outdent button to push out an item in the Workspace Explorer tree.

The items you can outdent include Projects, Data Nodes, Data Screens and

Kernel Awareness Screens.

F5-1(9) Use the Import Screen button to import a previously exported screen.

F5-1(10) Use the Export Screen button to export the screen currently in focus to a file.

In order to organize your workspace tree you can also use your mouse to drag and drop

items and rename items by invoking the context menu with a right-click.

Figure 5-2 shows an example of using projects and data nodes to better present a control

panel for a liquid level control system:

Figure 5-2 Workspace Explorer for a Liquid Level Control System

47

Chapter

6
μC/Probe Toolbox

The μC/Probe Toolbox is located on the left side of the application window and it is shown

in Figure 6-1:

Figure 6-1 μC/Probe Toolbox

48

Writable Controls

Depending on the μC/Probe Edition you purchased, the available tools will vary. This

document describes all the features found in the Professional Edition of μC/Probe. For more

information on which features you have, see Appendix I, “μC/Probe Editions Comparison

Table” on page 125.

The items in the toolbox are contained in an accordion type of panel. You click on each

button to display the items that belong to a category.

If you are running the Basic or Professional Edition of μC/Probe and have the automatic

updates enabled, each category in this toolbox will expand with more virtual controls and

indicators as software updates become available.

The following sections present a brief introduction to each of the toolbox categories. For

more information on configuring each type of virtual control or indicator, see Appendix A,

“Configuring Virtual Controls and Indicators” on page 67.

6-1 WRITABLE CONTROLS

The writable controls shown in Figure 6-2 include buttons, check boxes, sliders, a bit

control, an RGB LED color picker, a numeric up/down and a textbox. Use these controls to

read and modify the value of symbols from the embedded target. For more information

configuring the properties of writable controls see Appendix A, “Virtual Controls” on

page 74.

Figure 6-2 μC/Probe Toolbox: Writable Controls

49

Linear Gauges

6-2 LINEAR GAUGES

Use the linear gauges shown in Figure 6-3 to display numeric data in a tri-color vertical

scale. For more information configuring the properties of linear gauges see Appendix A,

“Virtual Indicators” on page 68.

Figure 6-3 μC/Probe Toolbox: Linear Gauges

6-3 HORIZONTAL LINEAR GAUGES

Use the horizontal linear gauges shown in Figure 6-4 to display numeric data in a tri-color

horizontal scale. For more information configuring the properties of horizontal linear gauges

see Appendix A, “Virtual Indicators” on page 68.

Figure 6-4 μC/Probe Toolbox: Horizontal Linear Gauges

50

Quadrant Gauges

6-4 QUADRANT GAUGES

Use the quadrant gauges shown in Figure 6-5 to display numeric data in a tri-color quadrant

scale. For more information configuring the properties of quadrant gauges see Appendix A,

“Virtual Indicators” on page 68.

Figure 6-5 μC/Probe Toolbox: Quadrant Gauges

6-5 SEMICIRCLE GAUGES

Use the semicircle gauges shown in Figure 6-6 to display numeric data in a tri-color

semicircular scale. For more information configuring the properties of semicircle gauges see

Appendix A, “Virtual Indicators” on page 68.

Figure 6-6 μC/Probe Toolbox: Semicircle Gauges

51

Circular Gauges

6-6 CIRCULAR GAUGES

Use the circular gauges shown in Figure 6-7 to display numeric data in a tri-color circular

scale. For more information configuring the properties of circular gauges see Appendix A,

“Virtual Indicators” on page 68.

Figure 6-7 μC/Probe Toolbox: Circular Gauges

6-7 HALF DONUTS

Use the half donut indicators shown in Figure 6-8 to display numeric data in a bi-color

semicircular scale. For more information configuring the properties of half donuts see

Appendix A, “Virtual Indicators” on page 68.

Figure 6-8 μC/Probe Toolbox: Half Donuts

52

Cylinders

6-8 CYLINDERS

Use the cylinder or tank level indicator shown in Figure 6-9 to display numeric data in a

solid or gradient color. For more information configuring the properties of cylinders see

Appendix A, “Virtual Indicators” on page 68.

Figure 6-9 μC/Probe Toolbox: Cylinders

6-9 CHARTS

Use the charts shown in Figure 6-10 to display numeric data including arrays in a marker,

line, area or scatter x-y chart. For more information configuring the properties of charts see

Appendix A, “Timeline Charts” on page 87.

Figure 6-10 μC/Probe Toolbox: Charts

53

Numeric Indicators

6-10 NUMERIC INDICATORS

Use the numeric indicators shown in Figure 6-11 to display numeric data in text. For more

information configuring the properties of numeric indicators see Appendix A, “Formatting

Properties Editor” on page 68 and Appendix A, “Numeric Indicator Properties Editor” on

page 70.

Figure 6-11 μC/Probe Toolbox: Numeric Indicators

6-11 LEDS

Use the LEDs shown in Figure 6-12 to display not only boolean data types but also any

numeric variable that represents a color code in ARGB format. For more information

configuring the properties of LEDs see Appendix A, “Formatting Properties Editor” on

page 68 and Appendix A, “LED Properties Editor” on page 71.

Figure 6-12 μC/Probe Toolbox: LEDs

54

Advanced

6-12 ADVANCED

The advanced category of the toolbox includes other miscellaneous indicators such as a text

box, terminal window, scripting control, spreadsheet control, μC/Trace trigger control, data

logger, HID control and an image container capable of displaying an indexed array of

images. For more information configuring the properties of these advanced controls see

Appendix A, “Virtual Indicators” on page 68, Appendix E, “Spreadsheet Control” on

page 106 and Appendix F, “Scripting Control” on page 111.

Figure 6-13 μC/Probe Toolbox: Advanced

55

Chapter

7
μC/Probe Layout Design Tools

The Layout Design Tools are located on the Main Toolbar at the top of the application’s

window. They include tools to arrange the virtual controls and indicators on your data

screen as shown in Figure 7-1:

Figure 7-1 μC/Probe Layout Design Tools

F7-1(1) μC/Probe allows you to copy, cut and paste a single or multiple virtual controls

or indicators. Everything you select will be stored temporarily into μC/Probe’s

clipboard during your session.

F7-1(2) μC/Probe allows you to drag and drop virtual controls and indicators onto the

data screen and have them overlap one another. In some cases may be

necessary to move some of them to the front of the data screen. Select the

virtual control and indicator you want to move and click the Bring Forward
or Send Backward button to move it to the front or to the back respectively.

F7-1(3) μC/Probe includes accessibility features that make the software more user

friendly. You can control the zoom level of your μC/Probe Data Screen during

both design-time and run-time. Click the buttons with the magnifier glass to

zoom in and out, or use the keyboard shortcuts Ctrl+ to zoom-in and Ctrl- to
zoom-out.

56

F7-1(4) The panning tool in μC/Probe makes it easy to move a data screen around

while your are zoomed in. The Pan button is a toggle button, clicking the

button toggles the panning mode on and off.

F7-1(5) When you drag and drop a virtual control or indicator onto the data screen, the

next thing you usually do is resize or move the object around the data screen.

Turn the Snap-to-Grid mode on in order to align the virtual control or indicator

to the nearest intersection of grid lines. The Snap to Grid button is a toggle

button, clicking the button toggles the snap-to-grid mode on and off.

F7-1(6) You can combine multiple virtual controls and indicators so you can work with

them as though they were a single object. You can resize, move, copy and

paste all virtual controls and indicators in a group as a single unit.

After you have grouped virtual controls and indicators, you can still select any

single object within the group without un grouping by first selecting the group,

and then clicking on the object you want to select.

F7-1(7) μC/Probe allows you to easily align virtual controls and indicators by first

selecting the group of objects you want to align and then clicking on one of the

following alignment options:

■ Left or Right Edges

■ Top or Bottom Edges

■ Horizontal or Vertical Centers

All the objects are aligned with respect to the first selected item.

F7-1(8) Use the Units button to select the grid and ruler’s metric system.

F7-1(9) Use the Show/Hide Grid button to show and hide the grid lines on the data

screen. The snap-to-grid mode still works even if the grid is not visible.

F7-1(10) Use the Show/Hide Rulers button to show or hide the ruler. The Show/Hide

Rulers button is a toggle button, clicking the button turns the rulers on and off.

57

μC/Probe Example

F7-1(11) Every time you click the magnifier glass buttons to zoom in and out, μC/Probe

zooms in and out by certain zooming factor. Click the Zoom Factor button to

select a different zooming factor.

F7-1(12) Click the Full Screen mode button to hide all the tools except the data screen.

The Full Screen button is a toggle button, clicking the button turns the full

screen mode on and off.

7-1 μC/PROBE EXAMPLE

In order to demonstrate the previous layout design tools, Figure 7-2 shows an example of a

power plant’s diagram used as a background to create a control panel with μC/Probe:

Figure 7-2 μC/Probe Example of a Power Plant

58

Chapter

8
Associating Symbols to Virtual Controls and Indicators

During design-time, use the μC/Probe symbol browser discussed in Chapter 3, “μC/Probe

Symbol Browser” on page 15, to search and select the embedded target variables you want

to associate to each of the virtual controls and indicators you placed on your data screen.

Once you find the symbol you want to associate, drag and drop the symbol over the virtual

control or indicator you want, as shown in Figure 8-1:

Figure 8-1 Associating Symbols to Virtual Controls and Indicators

59

Repeat the same process for each of the virtual controls and indicators placed on your data

screen and μC/Probe will be ready to go into Run Mode unless you want to further

configure other optional settings.

In order to configure other optional settings you can use the symbols manager by hovering

your mouse pointer over the virtual control or indicator and making click on the icon

shown in Figure 8-2:

Figure 8-2 Invoking the Symbols Manager

Figure 8-3 shows the Symbols Manager:

Figure 8-3 Symbols Manager

60

F8-3(1) Tick the checkbox to have μC/Probe update the control’s value only when it is

visible and in focus.

Untick this checkbox for controls such as charts which you might want to keep

updated even when not visible to avoid any gaps in the plot.

F8-3(2) Click the red X to remove the symbol’s association from the virtual control or

indicator.

F8-3(3) Displays the name of the variable as declared in your C file.

F8-3(4) By default displays the name of the variable as declared in your C file, but this

text box allows you to create an alias for display purposes.

F8-3(5) Displays the data type of the variable as declared in your C file.

F8-3(6) Displays the size of the variable in number of bytes.

F8-3(7) Displays the memory location of the variable in the embedded target’s memory.

F8-3(8) The variable path displays the full variable name in those cases where the

variable you selected is a member of a data structure.

F8-3(9) In case the variable is an array, you can enable indexing of just a certain

amount of data.

61

Chapter

9
Run-Time Mode

9-1 RUN-TIME CHECKLIST

Before setting μC/Probe in Run-Time mode you should verify each of the following items:

Table 9-1 Run-Time Mode Checklist

Item # Description Reference

1 The embedded target has been programmed with an output file

(ELF file) with debug information in the DWARF-2, -3 or -4 format

or with an XML-based Custom-Symbol File or Chip-Definition

File.

μC/Probe Target Manual:

Chapter 5, on page 21,

Appendix C, on page 55 and

Appendix D, on page 61

2 The embedded target is running and connected to the Windows

PC through the communication interface of your choice.

μC/Probe Target Manual:

Chapter 3, on page 14

3 μC/Probe has been configured with the latest symbol file (ELF,

CDF, CSF or MQTT) that the embedded target is actually running.

μC/Probe User’s Manual:

Chapter 3, on page 15

4 μC/Probe has been configured with the proper communication

interface and settings.

μC/Probe User’s Manual:

Chapter 4, on page 29

5 μC/Probe contains at least one virtual control or indicator on the

data screen.

μC/Probe User’s Manual:

Chapter 7, on page 55

6 μC/Probe has been configured to associate the virtual control or

indicator with one of the embedded target’s variables displayed in

the symbol browser.

μC/Probe User’s Manual:

Chapter 8, on page 58

http://www.micrium.com/probe/uC-Probe-TargetManual.pdf#page=21
http://www.micrium.com/probe/uC-ProbeTarget.pdf#page=14
http://www.micrium.com/probe/uC-Probe-TargetManual.pdf#page=61
http://www.micrium.com/probe/uC-Probe-TargetManual.pdf#page=55

62

Running μC/Probe and your Debugging Software at the same time

In order to set μC/Probe in Run-Time mode, click on the run button indicated in Figure 9-1:

Figure 9-1 Setting μC/Probe in Run-Time mode

μC/Probe should start updating your data screens immediately and the application displays

all kinds of status information in the status bar at the bottom of the μC/Probe window as

shown in Figure 9-2:

Figure 9-2 μC/Probe Status Bar

9-2 RUNNING μC/PROBE AND YOUR DEBUGGING SOFTWARE
AT THE SAME TIME

Your debugging software for embedded applications usually comes integrated with your

IDE and at a minimum, allows you to step through the code, set breakpoints, display

register and memory windows, display call stack information, and monitor variables and

expressions. Examples of debugging software include IAR’s C-SPY and GNU’s GDB.

You can also use μC/Probe to extend the capabilities of your debugging software by

running both at the same time. μC/Probe allows you to have instant control over your

global variables in a real-time and non-intrusive way. From you debugger software, you can

set breakpoints at locations of particular interest in the application being debugged and

μC/Probe will stop updating the virtual controls and indicators at the same time.

This feature is accomplished by sharing the connection between the Windows PC and the

Embedded Target being debugged. Whether the debugger of your choice is IAR’s C-SPY,

GNU’s GDB or any other debugging software that supports J-Link, Figure 9-3 illustrates and

example of running μC/Probe and the debugger of your choice at the same time:

63

Running μC/Probe and your Debugging Software at the same time

Figure 9-3 Running μC/Probe and your debugging software at the same time

Notice how μC/Probe and the Debugger Software not only share the same ELF file but also

the same logic and physical interface through the Segger’s J-Link DLL and JTAG in-circuit

debugger respectively.

IDE and Toolchain of your choice

Embedded System

Windows PC

64

IAR Systems C-SPY Plugin for μC/Probe

9-3 IAR SYSTEMS C-SPY PLUGIN FOR μC/PROBE

μC/Probe is tightly integrated with IAR Embedded Workbench® thanks to a TCP/IP bridge

between C-SPY® and μC/Probe. This bridge gives μC/Probe access to not only its native

supported platforms but also all the devices and processor architectures supported by IAR Systems

without the need to write any target resident code in the form of communication routines, because

C-SPY® handles all communication needed as illustrated in the following Figure 9-4:

Figure 9-4 Communication Interfaces Supported by IAR Systems C-SPY and μC/Probe

In regards to the communication interface options illustrated in Figure 9-4, some of them,

such as the ones based on JTAG are ready-to-go assuming your embedded target has either

an in-circuit debugger or an external JTAG probe (i.e. IAR's I-Jet). Other communication

interfaces require some resident code running in the embedded target, which is available by

Micriμm for most platforms.

Micriµm µC/Probe

IAR Embedded Workbench

C-SPY

Simulator driver

ROM-monitor
driver

Emulator driver

3rd. party driver

Simulator

TCP/IP
Interface

API

Generic Target
Comm Module

JTAG

RS-232

TCP/IP

Embedded Target

Provided by IAR

Provided by Micriµm

Ready to go Interface

Target code required interface

Ready to go TCP/IP bridge

JTAG (I-Jet)

TCP/IP bridge

OR

OR

OR

OR

65

IAR Systems C-SPY Plugin for μC/Probe

9-3-1 CONFIGURING THE TCP/IP BRIDGE BETWEEN IAR C-SPY
AND μC/PROBE

The TCP/IP bridge between C-SPY® and μC/Probe is built in the form of a plugin module

delivered with the Embedded Workbench product installation.

In order to configure Embedded Workbench to load the plugin, you open your project's

debugger options and select the plugin from the list of available plugins as shown in

Figure 9-5:

Figure 9-5 Configuring the IAR Systems Embedded Workbench

The plugin module gets loaded during a debug session and opens a TCP/IP socket on

localhost to listen for μC/Probe requests.

Depending on your network security settings, the first time you launch a debug session you

may be asked to allow Embedded Workbench to open a TCP/IP connection.

At the same time, μC/Probe needs to be configured to connect through its TCP/IP interface

to localhost on port 9930 as described in section 4-3-5 “TCP/IP” on page 43 and as shown in

Figure 9-6:

66

IAR Systems C-SPY Plugin for μC/Probe

Figure 9-6 Configuring μC/Probe to Interface with IAR Systems C-SPY plugin for μC/Probe

67

Appendix

A
Configuring Virtual Controls and Indicators

Once you drag and drop one of the virtual controls or indicators onto the data screen and

associate it with one of the embedded target’s symbols from the symbol browser, you can

access the properties tool bar by moving the mouse over the virtual control or indicator.

The tool bar shown in Figure A-1 appears for you to select between one of the three

configuration categories:

Figure A-1 Virtual Controls and Indicators Toolbar

FA-1(1) The Symbols Manager is common for all virtual controls and indicators, see

Chapter 8, “Associating Symbols to Virtual Controls and Indicators” on page 58

for more information on the Symbols Manager.

FA-1(2) The Properties Editor is similar among most of the virtual controls and

indicators and the next sections will describe how to use the Properties Editor

for just a few of the most representative virtual controls and indicators.

FA-1(3) The Range and Colors Editor is only available to those virtual indicators that

feature a multi-color scale. The next sections will describe how to use the

Range and Colors Editor for a few of the most representative virtual indicators.

68

A-1 VIRTUAL INDICATORS

A-1-1 FORMATTING PROPERTIES EDITOR

The virtual indicators formatting category applies to linear gauges, half donuts, cylinders,

numeric indicators, thermometers, graphs and any virtual indicator capable of showing the

symbol’s value in a graphical or text format. Figure A-2 shows the formatting category of a

linear gauge:

Figure A-2 Formatting Properties Editor

FA-2(1) In case you need to convert the value to Engineering Units (EU) before

displaying in the virtual indicator, you can use the scaling factor and offset to

specify the parameters of a linear conversion function. For example, if the

embedded target’s symbol you need to display is a 4-20mA value, you can

implement the standard linear equation y = mx + b where m is the scaling

factor, x is the 4-20mA value, b is the offset and y is the resulting Engineering

Units (EU) value to display.

69

A-1-2 RANGE AND COLORS EDITOR

The Range and Colors Editor applies to linear gauges, half donuts, cylinders and any virtual

indicator capable of displaying the symbol’s value in a graphical format along a multi-color

scale. Figure A-3 shows the Range and Colors Editor for a linear gauge:

Figure A-3 Range and Colors Editor

FA-3(1) Start by setting the Max limit, then click on the text boxes next to the

percentage signs and enter the thresholds in terms of percentage.

At the bottom of this section, the checkboxes allow you to configure the type

of scale and it’s appearance.

FA-3(2) Each time you click on one of the text boxes to set the percentages, the color

picker allows you to choose the color for that gauge band. You can enter the

color you want in hex format or by selecting a color from the vertical slider and

then fine tuning with the palette.

70

A-1-3 NUMERIC INDICATOR PROPERTIES EDITOR

The Numeric Indicator category from the Properties Editor only applies to numeric

indicators. Figure A-4 shows the numeric indicator’s properties. Font styles, alignment and

the thousand separator, they all apply to the number 0 shown in white:

Figure A-4 Numeric Indicator Properties Editor

71

A-1-4 LED PROPERTIES EDITOR

The LED control allows you to display a circle, triangle or rectangle with its color mapped

to the value of one of your embedded target’s global variable. This control works as a

virtual LED as illustrated in the example in Figure A-5 where the LED control is configured

to turn bright red when the value is 1 and dark red when the value is 0.

Figure A-5 LED Properties Editor

FA-5(1) You can include an optional Tooltip message that will appear with any

information you want to display about the item being hovered over.

72

FA-5(2) The Mappings section is where you get to make the association between the

LED’s color and the value of the symbol.

The checkbox labeled as Use RGB Format can be used to associate this

control to a global variable that stores a color code encoded in the ARGB

additive color model format. The ARGB format is a 32-bit value where each

byte is a channel representing the intensity of the channels Alpha, Red, Green

and Blue. For example, if the variable’s value is 0xFFFFFF00 then the LED

would turn Yellow.

FA-5(3) The Style section allows you to configure the LED’s appearance by modifying

the shape and border.

FA-5(4) You can also specify which color to show by default when communication with

the embedded target has not been established yet.

A-1-5 BITMAP ANIMATION PROPERTIES EDITOR

The bitmap animations are part of the toolbox’s advanced group. They are one of the most

powerful virtual indicators because you have the freedom to customize it however you want

by providing your own images.

Imagine you want to display the state of a valve to be either open or closed in a graphical

way by using the bitmap images shown in Figure A-6 and an embedded target’s application

variable named AppValveOutPct that stores the state of the outflow valve (0%:open and

100%:closed).

Figure A-6 Bitmaps to Animate

Figure A-7 shows the properties editor for the bitmap animation:

Valve
Open

Valve
Closed

73

Figure A-7 Bitmap Animation Properties Editor

FA-7(1) The list of images is initialized with two images. Start by selecting the image

you want to work with. A preview of the image is shown on the right side.

FA-7(2) You can add or delete more images into the list by making click on the red + or

x buttons respectively.

Select the transition effect check box if you want to add a fade-in and fade-out

effect between image transitions.

FA-7(3) Specify the bitmap file Path or browse to it. Additionally you can include an

optional Tooltip message that will appear with any information you want to

display about the item being hovered over.

FA-7(4) Specify the rules. In this case, if AppValveOutPct < 100 then the valve is

open, and if AppValveOutPct = 100 then the valve is all the way closed.

74

A-2 VIRTUAL CONTROLS

A-2-1 SLIDER CONTROL PROPERTIES EDITOR

The slider control is one of the few writable controls. It allows you to gradually modify an

adjustable embedded target symbol’s value. The user gets to select from a range of values

by moving a value indicator up and down a track. For example, you typically create a

volume control by using a slider control.

Figure A-8 shows the slider control properties editor:

Figure A-8 Slider Control Properties Editor

FA-8(1) The slider control has a minimum, a maximum, and an increment value. The

Tick Frequency not only determines the increment value but also the number

of tick marks along the track. You can reverse the scale by ticking the

checkbox.

FA-8(2) The General category includes the formatting properties that affect the slider’s

tick labels. Select the check box Use Discrete Values if you want the slider to

adjust the associated symbol by making discrete increments.

75

A-2-2 CUSTOM SLIDER PROPERTIES EDITOR

The custom slider is similar to the one from section A-2-1, except that it also allows you to

include two images to the left and right side of the slider’s track as shown in Figure A-9:

Figure A-9 Custom Slider Example

Imagine you want to control the state of a valve to be either open or closed by modifying

an embedded target’s application variable named AppValveOutPct that stores the state of

the outflow valve (0%:open and 100%:closed). Figure A-10 shows the custom slider

properties editor for such example:.

Figure A-10 Custom Slider Properties Editor

76

FA-10(1) You can include an optional Tooltip message that will appear with any

information you want to display about the item being hovered over.

FA-10(2) The custom slider control has a minimum and maximum range.

FA-10(3) You can turn on and off the images.

FA-10(4) Specify the path or browse to the bitmap you want to be placed on the left

and right sides of the track.

A-2-3 CUSTOM SWITCH PROPERTIES EDITOR

The custom switch control is a two state button. You can modify the value of an embedded

target’s symbol by specifying the values you want to write when the button is switched

between the On and Off states as shown in Figure A-11:

Figure A-11 Custom Switch Properties Editor

77

A-2-4 CHECKBOX PROPERTIES EDITOR

The checkbox control is similar to the custom switch but it also allows you to specify a label

to display when the checkbox is selected and not selected. In the example shown in

Figure A-12 such labels are set to Enabled during the On state and Disabled during the Off

state.

Figure A-12 Checkbox Properties Editor

78

A-2-5 PUSH BUTTON PROPERTIES EDITOR

The push button control is a momentary switch that switches between the states On while

held down and Off when released. The properties window is shown in Figure A-13.

Figure A-13 Push Button Properties Editor

FA-13(1) You can include an optional Tooltip message that will appear with any

information you want to display about the item being hovered over.

FA-13(2) You can specify the labels to display during the On and Off states. These

properties affect the label’s font family, font size and font color properties.

FA-13(3) During run-time, when the user holds down the push button, μC/Probe writes

the Push On Value one single time to the embedded target.

FA-13(4) When the user releases the button, μC/Probe writes the Push Off Value one

single time to the embedded target.

79

FA-13(5) Here you specify the labels you want to display during the On and Off states.

FA-13(6) The keyboard shortcut is a sequence or combination of keystrokes on the

keyboard which will invoke the Click event on the Push Button.

FA-13(7) You can also specify the border colors you want to display during the On and

Off states and whether or not you want to show the Push label on the corner.

A-2-6 TOGGLE BUTTON PROPERTIES EDITOR

The toggle button control is a button that switches between the states On and Off when

clicked. The properties window for a relay’s toggle button is shown in Figure A-14:

Figure A-14 Toggle Button Properties Editor

FA-14(1) You can include an optional Tooltip message that will appear with any

information you want to display about the item being hovered over.

80

FA-14(2) You can specify the labels to display during the On and Off states. These

properties affect the label’s font family, font size and font color properties.

FA-14(3) During run-time, when the user clicks and releases the button, μC/Probe writes

the Toggle On Value one single time to the embedded target.

FA-14(4) When the user clicks and releases the button again, μC/Probe writes the

Toggle Off Value one single time to the embedded target.

FA-14(5) Here you specify the labels you want to display during the On and Off states.

FA-14(6) You can specify the border colors you want to display during the On and Off
states and whether or not you want to show the Toggle label on the corner.

81

A-2-7 REPEAT BUTTON PROPERTIES EDITOR

The repeat button control is a button that switches between the states On while held down

and Off when released. The properties window is shown in Figure A-15:

Figure A-15 Repeat Button Properties Editor

FA-15(1) You can include an optional Tooltip message that will appear with any

information you want to display about the item being hovered over.

FA-15(2) You can specify the labels to display during the On and Off states. These

properties affect the label’s font family, font size and font color properties.

FA-15(3) During run-time, when the user holds down the repeat button, μC/Probe writes

the Value multiple times to the embedded target until the button is released.

FA-15(4) The value gets written to the embedded target multiple times at the specified

interval in milliseconds.

82

FA-15(5) Here you specify the labels you want to display during the On and Off states.

FA-15(6) You can specify the border colors you want to display during the On and Off
states and whether or not you want to show the Repeat label on the corner.

A-2-8 BIT CONTROL PROPERTIES EDITOR

The bit control is part of the writable controls category in μC/Probe’s toolbox. It allows you

to read and write to a symbol by either toggling its bits on and off or entering the value in

either decimal or hexadecimal format.

This control is perfect to represent peripheral I/O registers and the properties window is

shown in Figure A-16:

Figure A-16 Bit Control Properties Editor

FA-16(1) You can include an optional Tooltip message that will appear with any

information you want to display about the item being hovered over.

FA-16(2) You can specify the number of bytes in case you want to override the original

data size.

83

FA-16(3) You can also disable bits, in those cases where some of the bits are reserved

which is typically the case with peripheral I/O registers. This drop-down gives

you a list of all the bits along with a checkbox to enable and disable each bit.

FA-16(4) You can specify the minimum and maximum value range allowed.

FA-16(5) You can specify an initial value in either decimal or hexadecimal format.

FA-16(6) You can override the data type and specify whether it is signed or unsigned.

FA-16(7) Finally, you can hide the decimal and hexadecimal displays in case you want to

show the bit buttons only.

A-2-9 NUMERIC UP/DOWN CONTROL PROPERTIES EDITOR

The numeric up/down control is part of the writable controls category in μC/Probe’s

toolbox. It allows you to write a number to the embedded target. It consists of a single line

input text field and a pair of arrow buttons for stepping up or down as shown in Figure A-

17:

Figure A-17 Numeric Up/Down Control Properties Editor

FA-17(1) You can include an optional Tooltip message that will appear with any

information you want to display about the item being hovered over.

FA-17(2) You can specify the maximum and minimum range.

84

A-2-10 TEXT BOX CONTROL PROPERTIES EDITOR

The text box control is part of the writable controls category in μC/Probe’s toolbox. It

allows you to write a number to the embedded target. It consists of a single line input text

field as shown in Figure A-17:

Figure A-18 Text Box Control Properties Editor

85

FA-18(1) You can include an optional Tooltip message that will appear with any

information you want to display about the item being hovered over.

FA-18(2) You can specify an initial value, scaling options and a custom format. Standard

numeric format strings are used to format common numeric types. A standard

numeric format string takes the form Axx, where:

A is a single alphabetic character called the format specifier. Any numeric

format string that contains more than one alphabetic character, including white

space, is interpreted as a custom numeric format string.

xx is an optional integer called the precision specifier. The precision specifier

ranges from 0 to 99 and affects the number of digits in the result. Note that the

precision specifier controls the number of digits in the string representation of a

number. It does not round the number itself.

Here is some of the most typical examples of custom format strings:

The value 123.456 with a custom format string of “C” results in “$123.46”.

The value 1052.0329112756 with a custom format string of “E” results in

“1.052033E+003”.

The value 255 with a custom format string of “X” results in “FF”.

Or, as shown in the example: The value 87.52 with a custom format string of

“##.# Degrees” results in “87.5 Degrees”.

For more information on custom format strings search the Microsoft

documentation on Custom Format Strings.

FA-18(3) You can configure the style by modifying font, colors and borders.

FA-18(4) You can also specify the maximum and minimum ranges and whether or not

you want to restrict access to read-only.

86

A-2-11 RGB COLOR PALETTE PROPERTIES EDITOR

This control is a color picker that allows you to select a color from a palette. When you

select a color, the color is encoded in the ARGB additive color model format and written to

the associated global variable in the embedded target.

The ARGB format is a 32-bit value where each of the 4 channels (Alpha, Red, Green and

Blue) is a number between 0 and 255 that specifies the intensity of each color in the

mixture, from fully-off (0) to fully-on (255). The alpha channel represents the opacity of the

entire mixture of colors.

Figure A-19 RGB Color Palette

87

A-3 CHARTS

μC/Probe supports two types of charts; timeline charts and scatter x-y charts.

A-3-1 TIMELINE CHARTS

Timeline charts are those whose samples are considered events in time and the horizontal

axis represents the time. Figure A-20 shows the three types of timeline charts supported by

μC/Probe:

Figure A-20 Marker, Line and Area Charts

88

TIMELINE CHART PROPERTIES EDITOR

All three timeline chart types share the same properties editor as shown in Figure A-21:

Figure A-21 Charts Properties Editor

FA-21(1) You can include an optional Tooltip message that will appear with any

information you want to display about the item being hovered over.

FA-21(2) In order to change the number at which the vertical axis value starts or ends,

enter a different number in the Min box or the Max box.

In order to change the interval of tick marks and chart grid lines, enter a

different number in the Tick Marks Step box.

FA-21(3) In order to change the number at which the horizontal axis value starts or ends,

enter a different number in the Offset box or the Max Samples box.

89

FA-21(4) μC/Probe updates charts in one of three modes:

■ Strip Mode: similar to a chart recorder device that prints over a paper strip,

μC/Probe first plots points from the left to the right side of the chart. From

there, any new points are plotted at the rightmost side of the chart by

shifting old points to the left.

■ Scope Mode: similar to an oscilloscope, μC/Probe first plots points from the

left to the right side of the chart. Once the plot reaches the right side of the

chart, it erases the plot and begins plotting again from the left side of the

chart.

■ Burst Mode: this update mode was made for high performance

applications where you want to plot array data quickly by plotting the entire

array in one sweep. μC/Probe will not shift any points over the plotting

area. Instead, it will erase the plot and will plot the same array again,

assuming that the array is being updated by the embedded target.

FA-21(5) μC/Probe supports charts with multiple data series. That means that you can

associate multiple symbols from your embedded target into one single chart.

In order to tell which trace represents a symbol in your chart, a color-coded

legend with the name of the symbol is displayed over the chart. Select the

legend position that better suits your needs.

FA-21(6) In case you need to convert the value points to Engineering Units (EU) before

plotting in the chart, you can use the scaling factor and offset to specify the

parameters of a linear conversion function. For example, if the embedded

target’s symbol you need to display is a 4-20mA value, you can implement the

standard linear equation y = mx + b where m is the scaling factor, x is the 4-

20mA value, b is the offset and y is the resulting Engineering Units (EU) value

to be plotted.

90

TIMELINE CHART SERIES EDITOR

The charts series editor allows you to configure each trace in the plotting area. The series

editor is shared by all three types of charts as shown in Figure A-22:

Figure A-22 Charts Series Editor

FA-22(1) Select the data series you want to work with. By default, the name of the data

series is the same of the symbol as declared in your embedded target C files.

91

FA-22(2) μC/Probe supports three types of charts: marker, line and area charts. You can

mix and match chart types in one single chart by selecting the corresponding

check box.

FA-22(3) If the Show Line check box is selected, this section allows you to configure

the color and thickness of the line.

FA-22(4) If the Show Area check box is selected, this section allows you to configure

the color of the area.

FA-22(5) If the Show Points check box is selected, this section allows you to configure

the color, thickness and shape of the points.

A-3-2 SCATTER X-Y CHARTS

Contrary to timeline charts where the horizontal axis is a representation of time, the scatter

x-y charts allow you to use two different arrays to specify the x-y coordinates of each data

point.

Use a scatter x-y chart if the data you want to plot includes pairs of values and you want to

compare data points without regard of time.

The scatter x-y chart supports two modes of operation; burst and plot mode.

SCATTER X-Y CHART IN BURST MODE

Use the burst mode to compare sets of values stored in two different arrays.

For example, imagine a blood pressure monitor that stores the diastolic pressure in mmHg

for each patient. You can use the scatter x-y chart in burst mode to compare the diastolic

pressure among the patients age groups as follows.

92

Code Listing A-1 shows the two arrays that contain the data points.

Listing A-1 Two Arrays

First you drag-and-drop an instance of the scatter x-y chart into a data screen. Then you

open the symbols file (i.e. ELF file), search for the two arrays AppAgeTbl[] and

AppDiastolicPressure[], and drag-and-drop the arrays over the scatter x-y chart.

If you open the properties of the chart you will see something similar to Figure A-23:

Figure A-23 Scatter X-Y Chart Properties

static const CPU_INT08U AppAgeTbl[20] =
{
 20, 28, 32, 45, 26, 64, 23, 54, 32, 54, 23, 33, 44, 21, 43, 52, 56, 62, 23, 45
};

static const CPU_INT08U AppDiastolicPressureTbl[20] =
{
 64, 67, 72, 76, 65, 100, 64, 94, 80, 90, 70, 73, 81, 62, 87, 89, 91, 98, 68, 87
};

93

FA-23(1) Enter the title for your scatter x-y chart.

FA-23(2) μC/Probe will automatically set your plot mode to Burst Mode in case the axis

have been mapped to arrays.

In case you only have one single array and want to use the array indexes as

one of the axis, you can enable the checkbox Use Index Table and select which

axis you want the index to be.

FA-23(3) You can use this button to swap the axis.

FA-23(4) Set the range of your data points over the horizontal axis.

FA-23(5) Set the range of your data points over the vertical axis.

During run-time, μC/Probe and the scatter X-Y chart should plot all the data points at once

and will keep refreshing the plot as the values of the arrays change. You should see a

scatter chart similar to the one in Figure A-24:

Figure A-24 Scatter X-Y Chart in Burst Mode

94

SCATTER X-Y CHART IN PLOT MODE

For the plot mode of the X-Y scatter chart, imagine for instance you want to monitor in real-

time the power curve of a wind turbine. Your embedded application does not buffer any

data and instead, it only keeps the current wind speed (meters/sec) and current power

(watts) stored in the global variables AppWindSpd and AppPwr respectively.

Similar to the previous example, you drag-and-drop an instance of the scatter x-y chart into

a data screen. Then, you open the symbols file (i.e. ELF file), search for the two variables

AppWindSpd and AppPwr, and drag-and-drop the them over the scatter x-y chart.

If you open the properties of the chart you will see something similar to Figure A-25:

Figure A-25 Scatter X-Y Chart Properties

FA-25(1) Enter the title for your scatter x-y chart.

FA-25(2) μC/Probe will automatically set your chart to Plot Mode in case the axis have

been mapped to a pair of non-array variables.

95

In this case, you need to specify the size of the host-side buffer that will hold

the pair of values and whether or not you want the entire plot to be erased

once the buffer is full.

FA-25(3) You can use this button to swap the axis.

FA-25(4) Set the range of your data points over the horizontal axis.

FA-25(5) Set the range of your data points over the vertical axis.

During run-time, the scatter chart should start to fill the plot area with one data point at a

time and at the coordinate (AppWindSpd, AppPwr). Depending on the data change rate and

the data collection rate, eventually the chart should look similar to the one in Figure A-26:

Figure A-26 Scatter X-Y Chart in Plot Mode

96

Appendix

B
Kernel Awareness Screen

μC/Probe allows you to add pre-configured data screens that display some of the most

popular Micriμm’s software modules.

Figure B-1 and Figure B-2 show examples of the Kernel Awareness Screens for μC/OS-III.

The Screens display μC/OS-III’s internal data structures in a convenient series of windows.

This provides you with information about each of the active tasks in the embedded target

application among other kernel objects such as semaphores, event flags, mutexes, etc.

97

Figure B-1 Kernel Awareness Screen: Miscellaneous

Figure B-2 shows the information displayed for each task. The columns can be sorted and

the tri-color bar graphs highlight those tasks reaching their maximum stack space, which is

a typical bug when developing embedded systems:

98

Figure B-2 Kernel Awareness Screen: Task List

99

Appendix

C
Terminal Window Control

μC/Probe provides an option to enable debug traces to output the embedded target's

activity via any of the communication interfaces supported by μC/Probe. A trace message is

displayed in a terminal window control in μC/Probe, by calling a function

ProbeTermTrcPrint() from your embedded application as illustrated in Figure C-1.

Additionally, you can prefix the messages with special tags that μC/Probe will replace with

icons that you get to choose.

Figure C-1 Terminal Window Control - Trace Interface

Embedded System
Running μC/Probe

Target Code

Windows PC
Running μC/Probe

D
eb

ug
ge

r-
ba

se
d

in
te

rfa
ce

U
S

B
 o

rR
S-

23
2

TC
P

/ IP
ELF File

µC/Probe Workspace

Symbol names
and addresses

Dashboard made out of virtual controls
(i.e. Terminal Window control)
mapped to the target's symbols

ProbeTermTrcPrint("Testing tracing output...");

100

At the same time, μC/Probe provides the option to enable a command-line interface to the

embedded target. A command-line interface allows the user to issue a command to the

target from a terminal window control in μC/Probe. Examples of command lines are

ipconfig, dir or whatever command the programmer wants to implement in the

embedded target.

Figure C-2 Terminal Window Control - Command Line Interface

This appendix will introduce you to the debug trace and command-line tools available in

μC/Probe. It will show you how to configure the control in μC/Probe. More information on

the Terminal Window control such as how to include it in your embedded target code and

make use of it are in the target version of the μC/Probe manual.

Embedded System
Running μC/Probe

Target Code

Windows PC
Running μC/Probe

TC
P

/ IP

ELF File

µC/Probe Workspace

Symbol names
and addresses

Dashboard made out of virtual controls
(i.e. Terminal Window control)
mapped to the target's symbols

ProbeTermCmdPrint("IPv4 Address...");

D
eb

ug
ge

r-
ba

se
d

in
te

rfa
ce

U
S

B
 o

rR
S

-2
32

101

C-1 TERMINAL WINDOW CONTROL CONFIGURATION

The terminal window control is found in the miscellaneous category of μC/Probe’s toolbox.

Once you drag and drop an instance of this control onto the data screen, you do not need

to associate it with any of the embedded target’s symbols from the symbol browser, as this

is done automatically, assuming you have included the required target code to support

terminal window as described in the target version of the μC/Probe manual.

You can access the properties tool bar by moving the mouse over the terminal window

control. The tool bar shown in Figure C-3 appears for you to select between one of the two

configuration categories:

Figure C-3 Terminal Window Control Toolbar

FC-3(1) The Symbols Manager is common for all virtual controls and indicators, see

Chapter 8, “Associating Symbols to Virtual Controls and Indicators” on page 37

for more information on the Symbols Manager.

FC-3(2) The Properties Editor is similar among most of the virtual controls and

indicators and the next sections will describe how to use the Properties Editor.

102

C-2 PROPERTIES EDITOR

The properties editor for the terminal window control is shown in Figure C-4:

Figure C-4 Terminal Window Control Properties Editor

FC-4(1) You can change the font size for each panel.

FC-4(2) You can hide one of the interfaces.

FC-4(3) The terminal window control has a status bar that allows you to see the

communication status.

FC-4(4) The icons mapping interface allows you to configure an icon to be displayed

whenever a keyword is found in the message back from the target. This is

useful if you want to bring more attention to a set of messages, such as

warnings or errors.

FC-4(5) The terminal window control is also available in a high contrast theme.

103

Appendix

D
μC/Trace Triggers Control

μC/Trace is a runtime diagnostics tool for embedded software systems based on μC/OS-III.

μC/Trace gives developers an unprecedented insight into the runtime behavior, which

allows for reduced troubleshooting time and improved software quality, performance and

reliability. Complex software problems which otherwise may require many hours or days to

solve, can with μC/Trace be understood quickly, often in a tenth of the time otherwise

required. This saves you many hours of troubleshooting time. Moreover, the increased

software quality resulting from using μC/Trace can reduce the risk of defective software

releases, causing damaged customer relations.

The insight provided by μC/Trace also allows you to find opportunities for optimizing your

software. You might have unnecessary resource conflicts in your software, which are "low

hanging fruit" for optimization and where a minor change can give a significant

improvement in real-time responsiveness and user-perceived performance. By using

μC/Trace, software developers can reduce their troubleshooting time and thereby get more

time for developing new valuable features. This means a general increase in development

efficiency and a better ability to deliver high-quality embedded software within budget.

μC/Trace provides more than 20 interconnected views of the runtime behavior, including

task scheduling and timing, interrupts, interaction between tasks, as well as user events

generated from your application as shown in Figure D-1. μC/Trace can be used side-by-side

with a traditional debugger and complements the debugger view with a higher level

perspective, ideal for understanding the complex errors where a debugger’s perspective is

too narrow.

μC/Trace is more than just a viewer. It contains several advanced analyses developed since

2004, that helps you faster comprehend the trace data. For instance, it connects related

events, which allows you to follow messages between tasks and to find the event that

triggers a particular task instance. Moreover, it provides various higher level views such as

the Communication Flow graph and the CPU load graph, which make it easier to find

anomalies in a trace.

104

μC/Trace does not depend on additional trace hardware, which means that it can be used in

deployed systems to capture rare errors which otherwise are hard to reproduce.

Figure D-1 μC/Trace Analyzer Windows

The μC/Trace solution consists of three parts:

■ The PC application (μC/Trace), used to analyze the recordings as shown in Figure D-1.

■ A trace recorder library that integrates with μC/OS-III, provided in C source code.

■ Optionally, μC/Probe can be used for the target system connection.

The PC application μC/Trace has been developed for Microsoft Windows.

105

The trace recorder library stores the event data in a RAM buffer, which is uploaded on

request to the host PC using your existing debugger connection or μC/Probe.

And finally, you can use μC/Probe and a special control designed for μC/Trace called

μC/Trace Trigger Control, to trigger a recording and launch the μC/Trace analyzer. The

μC/Trace Trigger Control is shown in Figure D-2:

Figure D-2 μC/Trace Trigger Control

For more information on μC/Trace, go online to http://micrium.com/tools/uctrace

106

Appendix

E
Spreadsheet Control

Microsoft® Excel® is a very widely used spreadsheet application developed by the

Microsoft® Corporation. It features calculation and graphing tools among other features that

now you can embed in your μC/Probe data screens thanks to a technology offered by

Microsoft® called Automation.

Automation to Excel® allows you to programmatically perform actions such as creating a

new workbook, adding data to the workbook, or creating charts. Virtually, all of the actions

that you can perform manually through the user interface can also be performed

programmatically by using automation.

μC/Probe makes use of automation to allow you to create a workbook, map the

spreadsheet cells to your embedded target symbols and make use of all the features Excel®

has to offer.

This appendix will show you how to drag-and-drop an instance of Excel® into a μC/Probe

data screen and how to associate your embedded target symbols to the spreadsheet’s cells.

Microsoft®, Excel® and Windows® are either registered trademarks or trademarks of

Microsoft® Corporation in the United States and/or other countries. The use of Microsoft®

Excel® automation features by μC/Probe does not imply that Micriμm and/or μC/Probe have

any Microsoft® affiliation, sponsorship, endorsement, certification, or approval.

107

E-1 ADDING AN INSTANCE OF THE SPREADSHEET CONTROL

The Spreadsheet Control is only available on the Professional Edition of μC/Probe.

Additionally, you need to have Microsoft® Excel® version 2003 or newer installed on your

Windows® PC.

In order to add an instance of Excel®, go to the μC/Probe toolbox in the Advanced controls

category and drag-and-drop the icon labeled Spreadsheet into a data screen as illustrated in

Figure E-1:

Figure E-1 Adding an Instance of the Spreadsheet Control

108

E-2 CONFIGURING THE SPREADSHEET

Once you have successfully added an instance of Excel® into a data screen, it is time to

associate your embedded target symbols from the Symbol Browser to any cell in the

spreadsheet as illustrated in Figure E-2:

Figure E-2 Configuring the Spreadsheet

FE-2(1) You open a symbols file (i.e. ELF file) and browse through it as described in

Chapter 3, “μC/Probe Symbol Browser” on page 15.

FE-2(2) Make sure the checkbox labeled Add Symbols From The Symbol Browser at the

top is ticked and click over the cell that you want to configure.

FE-2(3) Go back to the Symbol Browser and double-click over the symbol you want to

configure.

109

E-3 OTHER FEATURES

Figure E-3 shows you other features:

Figure E-3 Other Features

FE-3(1) Excel® formulas start by typing in the equal sign in the cell where you want the

formula result to appear. As soon as you type in the equal sign, start entering

the first few letters of the name of the symbol you want to use in the

expression, and for your convenience, Excel® will show you a list of the

symbol names you have previously added to the spreadsheet.

When you click on a cell containing a formula in Microsoft® Excel®, the

formula always appears in the formula bar located above the column letters.

FE-3(2) You can import and export the spreadsheet along with the embedded target

symbols mapping in the form of a regular Microsoft® Excel® file (xls).

FE-3(3) Press the button labeled Delete Spreadsheet to remove the spreadsheet from the

data screen.

110

E-4 APPLICATION EXAMPLE

A great way to use μC/Probe and the Spreadsheet Control is to test and calibrate an

onboard accelerometer. Imagine your embedded application is reading an accelerometer’s X

and Y axis and storing them in the global variables AppAccelX and AppAccelY respectively

as shown in Figure E-4:

Figure E-4 Accelerometer

Very quickly you can add an instance of the spreadsheet control, map two cells to the

variables AppAccelX and AppAccelY, insert a bubble chart from Excel® and there you have

a bubble level as shown in Figure E-5:

Figure E-5 Bubble Level Chart

111

Appendix

F
Scripting Control

The Professional Edition of μC/Probe comes with a control that helps you programmatically

read and write your embedded target symbols on the fly.

You write a script in a C style language to read and write your embedded target symbols

and this control will execute your script whenever you want.

Use the μC/Probe Scripting Control to create configuration files, test scripts and to automate

the execution of any other common tasks which could alternatively be executed manually

by a human operator.

F-1 WRITING A SCRIPT

The μC/Probe Scripting Control supports a programming language that is very similar to C.

You write the script as a text file to manipulate variables in two different scopes; the script-

side and the embedded target side as described in the following sections.

112

F-1-1 SCRIPT-SIDE VARIABLES

You declare a variable on the script-side (host PC) by prefixing it with the keyword var or

with the data type as shown in Code Listing F-1:

Listing F-1 Script-Side Variables

F-1-2 EMBEDDED TARGET SIDE VARIABLES

The variables on the embedded target side are referenced by prefixing the name of the

variable with the dollar sign $ as shown in the following Code Listing F-2:

Listing F-2 Embedded Target Side Variables

var max_ch = 3; /* Declare a script-side variable by using the keyword */
 /* 'var' and initialize it before using it. */

string lcd_part_nbr = ""; /* Alternatively, you can declare script-side variables */
 /* by specifying its data type (char, string, short, */
 /* int, uint, long, ulong, float, double, bool, etc.). */

int gain = 10;

string filter_type; /* Furthermore, when the data type is specified, you do */
 /* not require to initialize the variable. */

if (max_ch == 8) {
 ...
} else {
 ...
}

$AppTimeout = 100; /* Target-side variables are prefixed with the $ sign */
$AppFrequency = 50; /* and they must be present in the target's ELF file. */

for (int i = 0; i < max_ch; i++) {
 $AppChannels.Ch[i].Gain = gain;
}

113

F-1-3 FLOW CONTROL STATEMENTS

The μC/Probe Scripting Control provides two styles of flow control; branching and looping.

BRANCHING

■ if statement

■ switch/case statement

■ ? operator

LOOPING

■ while loop

■ for loop

■ do/while loop

It is your responsibility to ensure the loops have a terminating condition and that the

terminating condition can be met. Code Listing F-3 shows an example of using some of

these flow control statements:

Listing F-3 Flow Control Example

if (max_ch == 8) {
 ...
} else {
 ...
}

switch ($AppSwitches) {
 case 1:
 ...
 break;
}

while ($AppStateCalibrating == true) {
 Sleep(“Calibrating”, 1000);
}

114

F-1-4 BUILT-IN INSTRUCTIONS

Besides the standard flow control statements previously mentioned, the μC/Probe Scripting

Control provides a set of built-in instructions to help you create a better user interface.

Code Listing F-4 shows you how to use the Sleep() and Pause() built-in instructions.

Listing F-4 Built-in Instructions

F-1-5 INCLUDING OTHER SCRIPT FILES

Similar to the directive #include in the C language, the μC/Probe Scripting Control allows

you to include other script files to help you organize your scripts in modules.

When a script file is included, the code it contains inherits the variable scope of the line on

which the include occurs. Any variables available at that line in the calling file will be

available within the called file, from that point forward. However, all functions defined in

the included file have the global scope.

for (int i = 0; i < max_ch; i++) {
 $AppChannels.Ch[i].Gain = 0;
 /* The Sleep instruction allows you to delay the script */
 /* execution (milliseconds) with a custom message. */
 Sleep("Reaching Steady-State...", 200);
}

$AppSelfTestStart = true;

Pause("Self-Test in progress..."); /* The Pause instruction allows you to pause the script */
 /* execution until you press a button in µC/Probe. */
if ($AppSelfTestResult < 0) {
 Abort(); /* The Abort instruction allows you to stop the script */
 /* execution. */
} else {
 ...
}

115

F-2 ADDING AN INSTANCE OF THE SCRIPTING CONTROL

To add an instance of the μC/Probe Scripting Control go to the μC/Probe toolbox in the

Advanced Controls category and drag-and-drop the icon labeled Scripting into a data screen

as shown in Figure F-1:

Figure F-1 Adding an Instance of the Scripting Control

116

F-3 CONFIGURING THE SCRIPTING CONTROL

Once you have successfully added an instance of the Scripting Control into a data screen,

you have to specify the path to the script file by making click on the properties editor

button, which in turn opens a file dialog for you to specify the location of your script file as

shown in Figure F-2:

Figure F-2 Configuring the Scripting Control

117

F-4 EXECUTING THE SCRIPT

Suppose you create a configuration script that not only sets the gain of each channel in your

data acquisition system, but also activates a system self test and then evaluates the results.

Code Listing F-5 shows the script for such an example.

Listing F-5 Configuration Script Example

 /* Configure the system. */
var max_ch = 3;
int gain = 10;

for (int i = 0; i < max_ch; i++) {
 $AppChannels.Ch[i].Gain = gain;
}

$AppSelfTestStart = true; /* Gets the system self test started. */

 /* The Sleep instruction allows you to delay the script */
 /* execution (milliseconds) with a custom message. */
Sleep("Self-Test in progress...", 5000);

 /* Evaluate the self test results. */
if ($AppSelfTestErr == 0) {
 /* The Pause() instruction allows you to suspend */
 /* execution until you press a button in µC/Probe. */
 Pause("System Configured OK.");
} else {
 Pause("Unable to Configure the System.");
}

118

Once you configure the Scripting Control with the script in Listing F-5, the control will parse

the code and will display each of the instructions the control will execute for you as shown

in Figure F-3:

Figure F-3 Configuration Script Example - Design Time

When you run μC/Probe, the control will execute your script when you click the button

with the chip icon and will display the status of each instruction’s execution as shown in

Figure F-4:

Figure F-4 Configuration Script Example - Run Time

119

Appendix

G
Data Logging Control

μC/Probe provides an option to log the values of any variable(s) in your symbols browser

to a CSV file. The Data Log Control is part of the Advanced category of μC/Probe’s toolbox.

Figure G-1 Data Log Control

120

Figure G-1 illustrates how to log a variable called NetMeterAmps. All you have to do is drag

and drop an instance of the Data Log Control from the Advanced category in your toolbox

and then search the variable you want to data log in the Symbol Browser. You add the

variable to the data log by dragging and dropping it onto the Data Log control. You can add

as many variables as you want and they will be stored in a CSV file, one column per

variable.

You can configure the Data Log Control from the Properties Editor as shown in Figure G-2:

Figure G-2 Data Log Control Properties Editor

FG-2(1) You can either Import a Data Log Configuration file from a past logging

session or you can Export your current configuration to a file.

FG-2(2) The Data Logging Settings panel consists of two tabs; The Output tab and the

Data Logger tab. From the Output tab you can configure the output file. You

can specify the path and name of the output file along with other settings such

as the timestamps and whether or not reusing the same file or create a new one

by using an auto-increment number as part of the file name. By default the

output files are stored in the μC/Probe installation directory in the subfolder

DataLogging.

121

During run-time, the value of NetMeterAmps will be logged in the CSV file as shown in

Figure G-3:

Figure G-3 Data Log Output File (CSV format)

You can suspend or stop the data logging process by using the buttons in the status screen

shown in Figure G-4

Figure G-4 Data Log Control During Run-Time

122

Additionally, you can configure Start and Stop conditions to trigger the data logging

process. For example, Figure G-5 illustrates how to configure the Data Logger to Start

logging when the value of NetMeterAmps is between 20 and 50 amps.

The sampling period can also be configured from the same screen in terms of hours,

minutes, seconds and milliseconds

Figure G-5 Data Logger Start and Stop Conditions

119

Appendix

H
Human Machine Interface (HID) Control

μC/Probe allows you to use a USB HID control such as a gamepad, joystick or steering

wheel to control your embedded target. The HID Control is part of the Advanced category

of μC/Probe’s toolbox.

Figure H-1 HID Control Block Diagram

You simply declare in your embedded target the variables that will store the output from

your HID device.

Embedded System

Windows PC
Running μC/Probe

TC
P

/ IP

ELF File

USB HID Device

Symbol names
and addresses

Joystick, GamePad, Steering Wheel, etc.

D
eb

ug
ge

r-
ba

se
d

in
te

rfa
ce

U
S

B
 o

rR
S

-2
32

120

For example, if your HID device is a Joystick, then you would declare variables such as:

■ AppJoystickButton1

■ AppJoystickButton2

■ AppJoystickButton3

■ AppJoystickButtonX

■ AppJoystickButtonY

Then you drag and drop an instance of the HID control onto your Data Screen and start

associating the embedded variables to the control as shown in Figure H-2:

Figure H-2 Symbol Browser and HID Control

121

The next step is to configure each possible event from the HID device and map it to a

unique embedded target symbol. You first open the HID Control’s Properties Editor and

select your HID device as shown in Figure H-3:

Figure H-3 HID Control Properties Editor

Once you select your HID Device, the button labeled as Event-to-Symbol Mappings will

be enabled and you can proceed to map each event to an embedded target symbol. As you

move the joystick, μC/Probe will catch all the possible events and create a new option to

configure a mapping as shown in Figure H-4:

Figure H-4 HID Control Event-to-Symbol Mappings

122

During run-time μC/Probe displays the status of your HID Device with the table shown in

Figure H-5. The LED remains green during idle time and turns red once the event is caught.

At each event the value is written to the associated target symbol.

Figure H-5 HID Control Status

123

Appendix

I
Licensing

The Educational Edition of μC/Probe is freely available for students, teachers, and academic

organizations. You can purchase μC/Probe for your personally owned computer or those

owned by your employer by either a permanent license or a subscription based license as

follows:

■ Monthly Subscription License

Our e-commerce partner FastSpring will bill you automatically each month and you

may cancel the subscription at any point, no questions asked.

■ Yearly Subscription License

Our e-commerce partner FastSpring will bill you automatically each year and you may

cancel the subscription at any point, no questions asked.

■ Permanent License

Our e-commerce partner FastSpring will bill you only once and you will own the

license for an unlimited period of time.

Note: Keep in mind that all μC/Probe sales are final and non-refundable. The Educational

Edition of μC/Probe is available for free to enable you to “try before you buy”.

For example, if you purchase a yearly subscription and wish to cancel the subscription after

a couple of months, we will cancel your subscription and any future billing. However, we

will not be able to make any partial refunds and you would still be charged for the first year’s

subscription.

124

I-1 ORDERING

If you decide to purchase a license of μC/Probe you can go to our online store at:

http://micrium.com/tools/ucprobe/buy

125

The table below summarizes the main differences among the different editions of μC/Probe:

Table I-1 μC/Probe Editions Comparison Table

Feature
Educational

Edition

Basic

Edition

Professional

Edition

Design Mode x x x

Run-Time Mode (timeout in minutes) x (1) x (no-timeout) x (no-timeout)

Maximum Number of Data Screens 1 unlimited unlimited

Maximum Number of Gauge Styles 5 unlimited unlimited

Maximum Number of Numeric Indicator Styles 3 unlimited unlimited

Thermometer x x x

Cylinder Indicators x x x

Button Controls x x x

Slider Controls x x x

Bit Control x x x

Marker Chart x x x

Line Chart x x x

Area Chart x x x

Scatter X-Y Chart x

μC/OS-III Kernel Awareness x x x

Terminal Window Control x

Scripting Control x

Microsoft® Excel® Bridge x

μC/Trace Trigger Control x

Import/Export Data Screens x x

Numeric Up/Down Control x

Textbox Control x

Data Log Control x

HID Control x

126

I-2 ACTIVATING

Once you place an order on our online store you will receive an e-mail message with your

license key.

To activate your copy of μC/Probe, you need to have Internet access. Click on File ->

Activation and a window similar to the one shown below will be displayed:

Figure I-1 License Manager

FI-1(1) Use this tab to go online and purchase a license of μC/Probe.

FI-1(2) Use this tab to obtain a list of all your purchased licenses. The list will be sent

via e-mail to the e-mail address registered when you placed the order. All you

need to do is provide the invoice number.

FI-1(3) Use this tab to activate a license key and node-lock it to your computer. All you

need to do is copy and paste the license key from the e-mail message you

received and press the button Activate.

127

Please contact us for further information about pricing, ordering options, license activation

or cancelling a subscription at:

Micriμm

1290 Weston Road, Suite 306

Weston, FL 33326

+1 954 217 2036

+1 954 217 2037 (FAX)

E-Mail : sales@micrium.com

Website : www.micrium.com

128

Appendix

J
Bibliography

■ Labrosse Jean. μC/OS-II The Real-Time Kernel. R&D Technical Books,

ISBN 1-57820-103-9, 2002.

■ Labrosse Jean. μC/OS-III The Real-Time Kernel. Micriμm Press,

ISBN 978-0-98223375-3-0, 2009.

■ Légaré Christian. μC/TCP-IP The Embedded Protocol Stack. Micriμm Press, 2011.

129

Index

A
animation ...72
animation properties editor ...72–73
area charts ...87

C
chart properties editor ...88
chart series editor ..90
charts ...52, 87
charts properties editor ...88
charts series editor ..90
checkbox properties editor ...77
circular gauges ..51
communication settings ..31, 37

J-Link ...39
RS-232 ...44
TCP/IP ...42–43

configuration
terminal window control ...101

custom slider
example ...75
properties editor ...75

custom switch
properties editor ...76

cylinders ...52

D
data flow ..6
design time ..11

E
ELF file ...16

browsing ..16
example ..57

F
formatting

properties editor ...68

G
general settings ...30

H
half donuts ... 51
horizontal linear gauges .. 49

I
indicators ... 58

J
J-Link ... 38

K
kernel awareness screen

miscellaneous ... 97
task list .. 98

L
layout design tools .. 55
line charts .. 87
linear gauges ... 49

M
marker charts .. 87
miscellaneous (tools) .. 54

N
numeric indicator

properties editor ... 70
numerics (tools) ... 53

O
ordering ... 107, 111, 124
overview .. 9

P
properties editor

animation .. 72–73
checkbox .. 77
custom slider .. 75

130

formatting ..68
numeric indicator ..70
push button ...78
repeat button ...80
slider control ...74
terminal window control ...102
toggle button ...79

push button
properties editor ...78

Q
quadrant gauges ..50

R
range and colors editor ...69
repeat button

properties editor ...80
RS-232 ...44
run-time mode ...62
run-time mode checklist ...61

S
Segger J-Link ...38
semicircle gauges ..50
slider control

properties editor ...74
status bar ...62
symbol browser

loading an ELF file ..15
symbols grouped by C file ..16

symbols ..58
symbols manager ..59

T
TCP/IP ..42–43
terminal window control ..99–101

configuration ...101
properties editor ...102

toggle button
properties editor ...79

toolbar settings ..29
toolbox ...47

charts ...52
circular gauges ..51
cylinders ..52
half donuts ..51
horizontal linear gauges ...49
linear gauges ...49
miscellaneous ...54
numerics ..53
quadrant gauges ...50
semicircle gauges ...50
writable controls ...48

trace triggers control ...103–104

V
virtual controls ... 58, 67, 74
virtual indicators .. 67–68

W
Windows application .. 13
workspace explorer .. 45–46
writable controls ... 48

Z
μC/Probe data client ... 11

design time ... 11
μC/Trace triggers control 103–104

	Table of Contents
	Introduction
	µC/Probe System Overview
	2-1 µC/Probe Data Client

	µC/Probe Symbol Browser
	3-1 ELF File
	3-1-1 Loading an ELF file
	3-1-2 Browsing the ELF file

	3-2 CDF File
	3-2-1 Loading a CDF file

	3-3 CSF File
	3-3-1 Creating a CSF file

	3-4 MQTT Configuration File
	3-4-1 Creating an MQTT Configuration File

	µC/Probe Settings
	4-1 General Settings
	4-2 Communication Settings Overview
	4-2-1 Debugger-based Interfaces
	4-2-2 Peripheral-based Interfaces
	4-2-3 Third Party Plugins
	4-2-4 MQTT Interface

	4-3 Communication Settings Window
	4-3-1 Segger J-Link
	4-3-2 CMSIS-DAP
	4-3-3 Cypress PSoC Prog
	4-3-4 USB
	4-3-5 TCP/IP
	4-3-6 RS-232

	µC/Probe Workspace Explorer
	µC/Probe Toolbox
	6-1 Writable Controls
	6-2 Linear Gauges
	6-3 Horizontal Linear Gauges
	6-4 Quadrant Gauges
	6-5 Semicircle Gauges
	6-6 Circular Gauges
	6-7 Half Donuts
	6-8 Cylinders
	6-9 Charts
	6-10 Numeric Indicators
	6-11 LEDs
	6-12 Advanced

	µC/Probe Layout Design Tools
	7-1 µC/Probe Example

	Associating Symbols to Virtual Controls and Indicators
	Run-Time Mode
	9-1 Run-Time Checklist
	9-2 Running µC/Probe and your Debugging Software at the same time
	9-3 IAR Systems C-SPY Plugin for µC/Probe
	9-3-1 Configuring the TCP/IP Bridge between IAR C-SPY and µC/Probe

	Configuring Virtual Controls and Indicators
	A-1 Virtual Indicators
	A-1-1 Formatting Properties Editor
	A-1-2 Range and Colors Editor
	A-1-3 Numeric Indicator Properties Editor
	A-1-4 LED Properties Editor
	A-1-5 Bitmap Animation Properties Editor

	A-2 Virtual Controls
	A-2-1 Slider Control Properties Editor
	A-2-2 Custom Slider Properties Editor
	A-2-3 Custom Switch Properties Editor
	A-2-4 Checkbox Properties Editor
	A-2-5 Push Button Properties Editor
	A-2-6 Toggle Button Properties Editor
	A-2-7 Repeat Button Properties Editor
	A-2-8 Bit Control Properties Editor
	A-2-9 Numeric Up/Down Control Properties Editor
	A-2-10 Text Box Control Properties Editor
	A-2-11 RGB Color Palette Properties Editor

	A-3 Charts
	A-3-1 Timeline Charts
	A-3-2 Scatter X-Y Charts

	Kernel Awareness Screen
	Terminal Window Control
	C-1 Terminal Window Control Configuration
	C-2 Properties Editor

	µC/Trace Triggers Control
	Spreadsheet Control
	E-1 Adding an instance of the Spreadsheet Control
	E-2 Configuring the Spreadsheet
	E-3 Other Features
	E-4 Application Example

	Scripting Control
	F-1 Writing a Script
	F-1-1 Script-Side Variables
	F-1-2 Embedded Target Side Variables
	F-1-3 Flow Control Statements
	F-1-4 Built-in Instructions
	F-1-5 Including other Script Files

	F-2 Adding an Instance of the Scripting Control
	F-3 Configuring the Scripting Control
	F-4 Executing the Script

	Data Logging Control
	Human Machine Interface (HID) Control
	Licensing
	I-1 Ordering
	I-2 Activating

	Bibliography
	Index

