Voltage Supervisor with 27 Selectable Thresholds and Watchdog Timer # DESCRIPTION The LTC®2917-A/LTC2917-B and LTC2918-A/LTC2918-B are low voltage single-supply monitors with selectable thresholds and an adjustable watchdog timer. The parts operate from 1.5V to 5.5V and consume a quiescent current of only 30µA. Two three state inputs select one of nine internally programmed thresholds without the need for external resistors. For the LTC2917, an additional three state input determines the tolerance (-5%, -10%, -15%). The tolerance for the LTC2918 is fixed at -5%. Threshold accuracy is guaranteed at $\pm 1.5\%$ over the entire operating temperature range. Glitch filtering ensures reliable reset operation without false triggering. The reset timeout and the watchdog timeout may be set with no external components, or adjusted using an external capacitor. A windowed watchdog feature is available for high-reliability applications (B1 versions). A separate manual reset input on the LTC2918-A/LTC2918-B allows a simple push button interface. Operation to 125°C makes the LTC2917-A/LTC2917-B and LTC2918-A/LTC2918-B suitable for automotive applications. T, LT, LTC and LTM are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners. #### **FEATURES** - 9 Selectable Supply Voltages 12V, 5V, 3.3V, 2.5V, 1.8V 1.5V, 1.2V, 1V, +ADJ (0.5V) - 3 Selectable Tolerances -5%, -10%, -15% (LTC2917) - Manual Reset Input (LTC2918) - 1.5V to 5.5V Supply Operation - Adjustable Watchdog Timeout - Windowed Watchdog Timeout for Higher Reliability Applications (LTC2917-B, LTC2918-B) - 6.2V Shunt Regulator for High Voltage Operation - Guaranteed Operation to 125°C - Guaranteed Threshold Accuracy: ±1.5% - Low Quiescent Current: 30µA Typical - Power Supply Glitch Immunity - Guaranteed \overline{RST} for $V_{CC} \ge 0.8V$ - 10-Lead MSOP Packages and (3mm × 2mm) DFN Packages # **APPLICATIONS** - Handheld Devices - Cell Phone Base Stations - Automotive Control Systems - Network Servers - Optical Networking Systems # TYPICAL APPLICATION 1.8V Supply Monitor with Manual Reset and Internal Timers Selected #### **Monitor Selection Table** | SEL1 | SEL2 | |-----------------|--| | V _{CC} | V _{CC} | | V_{CC} | Open | | V_{CC} | GND | | Open | V_{CC} | | Open | Open | | Open | GND | | GND | V _{CC} | | GND | Open | | GND | GND | | | V _{CC} V _{CC} V _{CC} Open Open Open GND | 29178fb # **ABSOLUTE MAXIMUM RATINGS** (Note 1, 2) | Terminal Voltages | | |--------------------------|------------------------------| | | 0.3V to 5.7V | | SEL1, SEL2, TOL, WDI, Ī | MR, RST –0.3V to 7.5V | | VM | –0.3V to 15V | | RT, WT | $-0.3V$ to $(V_{CC} + 0.3)V$ | | Terminal Currents | , | | V _{CC} (Note 3) | ±5mA | | Operating Temperature Range | | |--------------------------------------|----------------| | LTC2917C/LTC2918C | 0°C to 70°C | | LTC2917I/LTC2918I | –40°C to 85°C | | LTC2917H/LTC2918H | –40°C to 125°C | | Storage Temperature Range | –65°C to 150°C | | Lead Temperature (Soldering, 10 sec) | | | MSOP | 300°C | # PIN CONFIGURATION # **ORDER INFORMATION** | LEAD FREE FINISH | TAPE AND REEL | PART MARKING* | PACKAGE DESCRIPTION | TEMPERATURE RANGE | |--|---|------------------------------|--|--| | LTC2917CMS-B1#PBF | LTC2917CMS-B1#TRPBF | LTCQP | 10-Lead Plastic MSOP | 0°C to 70°C | | LTC2917IMS-B1#PBF | LTC2917IMS-B1#TRPBF | LTCQP | 10-Lead Plastic MSOP | -40°C to 85°C | | LTC2917HMS-B1#PBF | LTC2917HMS-B1#TRPBF | LTCQP | 10-Lead Plastic MSOP | -40°C to 125°C | | LTC2917CMS-A1#PBF | LTC2917CMS-A1#TRPBF | LTDGD | 10-Lead Plastic MSOP | 0°C to 70°C | | LTC2917IMS-A1#PBF | LTC2917IMS-A1#TRPBF | LTDGD | 10-Lead Plastic MSOP | -40°C to 85°C | | LTC2917HMS-A1#PBF | LTC2917HMS-A1#TRPBF | LTDGD | 10-Lead Plastic MSOP | -40°C to 125°C | | LTC2918CMS-B1#PBF | LTC2918CMS-B1#TRPBF | LTDCT | 10-Lead Plastic MSOP | 0°C to 70°C | | LTC2918IMS-B1#PBF | LTC2918IMS-B1#TRPBF | LTDCT | 10-Lead Plastic MSOP | -40°C to 85°C | | LTC2918HMS-B1#PBF | LTC2918HMS-B1#TRPBF | LTDCT | 10-Lead Plastic MSOP | -40°C to 125°C | | LTC2918CMS-A1#PBF | LTC2918CMS-A1#TRPBF | LTDGG | 10-Lead Plastic MSOP | 0°C to 70°C | | LTC2918IMS-A1#PBF | LTC2918IMS-A1#TRPBF | LTDGG | 10-Lead Plastic MSOP | -40°C to 85°C | | LTC2918HMS-A1#PBF | LTC2918HMS-A1#TRPBF | LTDGG | 10-Lead Plastic MSOP | -40°C to 125°C | | TAPE AND REEL (MINI) | TAPE AND REEL | PART MARKING* | PACKAGE DESCRIPTION | TEMPERATURE RANGE | | LTC2917CDDB-B1#TRMPBF | LTC2917CDDB-B1#TRPBF | LCQR | 10-Lead (3mm × 2mm) Plastic DFN | 0°C to 70°C | | LTC2917IDDB-B1#TRMPBF | LTC2917IDDB-B1#TRPBF | LCQR | 10-Lead (3mm × 2mm) Plastic DFN | -40°C to 85°C | | - | | | | | | LTC2917HDDB-B1#TRMPBF | LTC2917HDDB-B1#TRPBF | LCQR | 10-Lead (3mm × 2mm) Plastic DFN | -40°C to 125°C | | LTC2917HDDB-B1#TRMPBF
LTC2917CDDB-A1#TRMPBF | LTC2917HDDB-B1#TRPBF
LTC2917CDDB-A1#TRPBF | LCQR
LDGF | 10-Lead (3mm × 2mm) Plastic DFN 10-Lead (3mm × 2mm) Plastic DFN | -40°C to 125°C 0°C to 70°C | | | 1 | | , , | | | LTC2917CDDB-A1#TRMPBF | LTC2917CDDB-A1#TRPBF | LDGF | 10-Lead (3mm × 2mm) Plastic DFN | 0°C to 70°C | | LTC2917CDDB-A1#TRMPBF
LTC2917IDDB-A1#TRMPBF | LTC2917CDDB-A1#TRPBF
LTC2917IDDB-A1#TRPBF | LDGF
LDGF | 10-Lead (3mm × 2mm) Plastic DFN
10-Lead (3mm × 2mm) Plastic DFN | 0°C to 70°C
-40°C to 85°C | | LTC2917CDDB-A1#TRMPBF
LTC2917IDDB-A1#TRMPBF
LTC2917HDDB-A1#TRMPBF | LTC2917CDDB-A1#TRPBF
LTC2917IDDB-A1#TRPBF
LTC2917HDDB-A1#TRPBF | LDGF
LDGF
LDGF | 10-Lead (3mm × 2mm) Plastic DFN 10-Lead (3mm × 2mm) Plastic DFN 10-Lead (3mm × 2mm) Plastic DFN | 0°C to 70°C
-40°C to 85°C
-40°C to 125°C | | LTC2917CDDB-A1#TRMPBF
LTC2917IDDB-A1#TRMPBF
LTC2917HDDB-A1#TRMPBF
LTC2918CDDB-B1#TRMPBF | LTC2917CDDB-A1#TRPBF
LTC2917IDDB-A1#TRPBF
LTC2917HDDB-A1#TRPBF
LTC2918CDDB-B1#TRPBF | LDGF
LDGF
LDGF
LDCV | 10-Lead (3mm × 2mm) Plastic DFN | 0°C to 70°C
-40°C to 85°C
-40°C to 125°C
0°C to 70°C | | LTC2917CDDB-A1#TRMPBF
LTC2917IDDB-A1#TRMPBF
LTC2917HDDB-A1#TRMPBF
LTC2918CDDB-B1#TRMPBF
LTC2918IDDB-B1#TRMPBF | LTC2917CDDB-A1#TRPBF
LTC2917IDDB-A1#TRPBF
LTC2917HDDB-A1#TRPBF
LTC2918CDDB-B1#TRPBF
LTC2918IDDB-B1#TRPBF | LDGF LDGF LDGF LDCV LDCV | 10-Lead (3mm × 2mm) Plastic DFN | 0°C to 70°C -40°C to 85°C -40°C to 125°C 0°C to 70°C -40°C to 85°C | | LTC2917CDDB-A1#TRMPBF
LTC2917IDDB-A1#TRMPBF
LTC2917HDDB-A1#TRMPBF
LTC2918CDDB-B1#TRMPBF
LTC2918IDDB-B1#TRMPBF
LTC2918HDDB-B1#TRMPBF | LTC2917CDDB-A1#TRPBF LTC2917IDDB-A1#TRPBF LTC2917HDDB-A1#TRPBF LTC2918CDDB-B1#TRPBF LTC2918IDDB-B1#TRPBF LTC2918HDDB-B1#TRPBF | LDGF LDGF LDCV LDCV LDCV | 10-Lead (3mm × 2mm) Plastic DFN | 0°C to 70°C -40°C to 85°C -40°C to 125°C 0°C to 70°C -40°C to 85°C -40°C to 125°C | TRM = 500 pieces. *Temperature grades are identified by a label on the shipping container. Consult LTC Marketing for information on non-standard lead based finish parts. For more information on lead free part marking, go to: http://www.linear.com/leadfree/For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/ # ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25^{\circ}C$. $V_{CC} = 2.5V$, unless otherwise noted. (Note 2) EVANDOI PARAMETER CONDITIONS MIN TYP MAX | SYMBOL | PARAMETER | CONDITIONS | | MIN | TYP | MAX | UNITS | |--------------------------|--|---|---|-------------------------|-------------------------|-------------------------|----------------| | V _{CC(MIN)} | Minimum Supply Voltage | RST in Correct Logic State | • | 0.8 | | | V | | V _{CC(UVLO)} | Supply Undervoltage Lockout | | • | | | 1.5 | V | | V _{CC(SHUNT)} | Shunt Regulation Voltage | I _{VCC} = 0.5mA | • | 5.7 | 6.2 | 7.0 | ٧ | | I _{CC} | V _{CC} Pin Current | SEL1, SEL2, TOL, \overline{MR} = Open
SEL1, SEL2, TOL = GND (LTC2917)
\overline{MR} = V _{CC} (LTC2918) | • | | 30
45 | 50
80 | μA
μA | | Monitor Input (V | /M) | | | | | | | | V _{MT120} | 12V, 5% Reset Threshold
12V, 10% Reset Threshold
12V, 15% Reset Threshold | | • | 11.04
10.44
9.84 | 11.22
10.62
10.02 | 11.40
10.80
10.20 | V
V | | V _{MT50} | 5V, 5% Reset Threshold
5V, 10% Reset Threshold
5V, 15% Reset Threshold | | • | 4.600
4.350
4.100 | 4.675
4.425
4.175 | 4.750
4.500
4.250 | V
V
V | | V _{MT33} | 3.3V, 5% Reset Threshold
3.3V, 10% Reset Threshold
3.3V, 15% Reset Threshold | | • | 3.036
2.871
2.706 | 3.086
2.921
2.756 | 3.135
2.970
2.805 | V
V
V | | V _{MT25} | 2.5V, 5% Reset Threshold
2.5V, 10% Reset Threshold
2.5V, 15% Reset Threshold | | • | 2.300
2.175
2.050 | 2.338
2.213
2.088 | 2.375
2.250
2.125 | V
V
V | | V _{MT18} | 1.8V, 5% Reset Threshold
1.8V, 10% Reset Threshold
1.8V, 15% Reset Threshold | | • | 1.656
1.566
1.476 | 1.683
1.593
1.503 | 1.710
1.620
1.530 | V
V
V | | V _{MT15} | 1.5V, 5% Reset Threshold
1.5V, 10% Reset Threshold
1.5V, 15% Reset Threshold | | • | 1.380
1.305
1.230 | 1.403
1.328
1.253 | 1.425
1.350
1.275 | V
V
V | | V _{MT12} | 1.2V, 5% Reset Threshold
1.2V, 10% Reset Threshold
1.2V, 15% Reset Threshold | | • | 1.104
1.044
0.984 | 1.122
1.062
1.002 | 1.140
1.080
1.020 | V
V
V | | V _{MT10} | 1V, 5% Reset Threshold
1V, 10% Reset Threshold
1V, 15% Reset Threshold | | • | 0.920
0.870
0.820 | 0.935
0.885
0.835 | 0.950
0.900
0.850 | V
V
V | | V _{MTADJ} | ADJ (0.5V), 5% Reset Threshold
ADJ (0.5V), 10% Reset Threshold
ADJ (0.5V), 15% Reset Threshold | | • | 460.0
435.0
410.0 | 467.5
442.5
417.5 | 475.0
450.0
425.0 | mV
mV
mV | | R _{VM} | VM Input Impedance (Note 4) | Fixed Threshold Modes | • | 0.5 | | 8 | MΩ | | I _{VM(ADJ)} | ADJ Input Current | VM = 0.5V | • | | | ±15 | nA | | Three-State Inp | uts (SEL1, SEL2), (TOL, LTC2917) | | | | | | | | V _{TPIN,LOW} | Low Level Input Voltage | | • | | | 0.5 | V | | V _{TPIN,HIGH} | High Level Input Voltage | | • | 1.4 | | | V | | $V_{TPIN,Z}$ | Pin Voltage when Open | $I = 0\mu A$ | | | 0.9 | | V | | I _{TPIN,Z} | Allowable Leakage in Open State | | • | | | ±5 | μА | | I _{TPIN,H/L} | Pin Input Current | V _{TPIN} = 0V, V _{CC} | • | | | ±20 | μА | | Reset Timer Co | ntrol (RT) | | | | | | | | I _{RT(UP)} | RT Pull-Up Current | $V_{RT} = 0.25V$ | • | -2 | -3 | -4 | μА | | I _{RT(DOWN)} | RT Pull-Down Current | V _{RT} = 1.1V | • | 2 | 3 | 4 | μА | | I _{RT(INT)} | Internal RT V _{CC} Detect Current | $V_{RT} = V_{CC}$ | • | | 1 | 8 | μА | | V _{RT(INT, LH)} | RT Internal Timer Threshold | V _{RT} Rising, Referenced to V _{CC} | • | -100 | -160 | -300 | mV | # **ELECTRICAL CHARACTERISTICS** The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25 \,^{\circ}\text{C}$. $V_{CC} = 2.5\text{V}$, unless otherwise noted. (Note 2) | SYMBOL | PARAMETER | CONDITIONS | | MIN | TYP | MAX | UNITS | |--------------------------|--|--|---|-----------------------|---------------------------|-----------------------|-------------| | Reset Output (F | RST) | | | | | • | | | t _{RST(INT)} | Internal Reset Timeout Period | $V_{RT} = V_{CC}$ | • | 150 | 200 | 260 | ms | | t _{RST(EXT)} | Adjustable Reset Timeout Period | C _{RT} = 2.2nF | • | 16 | 20 | 25 | ms | | t _{UV} | VM Undervoltage Detect to RST
Asserted | VM Less Than Reset Threshold
V _{MTX} by More Than 5% | • | 10 | 80 | 150 | μs | | V _{OL} | Output Voltage Low RST | $V_{CC} = 3.3V, I_{RST} = 2.5 mA$
$V_{CC} = 1V, I_{RST} = 100 \mu A$
$V_{CC} = 0.8V, I_{RST} = 15 \mu A$ | • | | 0.15
0.15
0.05 | 0.4
0.3
0.2 | V
V
V | | I _{OH(RST)} | RST Output Voltage High Leakage | RST = V _{CC} | • | | | ±1 | μА | | Watchdog Time | er Control (WT) | | • | | | | | | I _{WT(UP)} | WT Pull-Up Current | V _{WT} = 0.25V | • | -2 | -3 | -4 | μA | | I _{WT(DOWN)} | WT Pull-Down Current | V _{WT} = 1.1V | • | 2 | 3 | 4 | μA | | V _{WT(INT, LH)} | WT Internal Timer Threshold | V _{WT} Rising, Referenced to V _{CC} | • | -100 | -160 | -300 | mV | | I _{WT(INT)} | Internal WT V _{CC} Detect Current | $V_{WT} = V_{CC}$ | • | | 1 | 8 | μA | | I _{WT(DIS)} | Watchdog Disable Hold Current | V _{WT} = 0V | | | -3.5 | | μΑ | | Watchdog Input | t (WDI) | <u>, </u> | ' | | | | | | t _{WDU(INT)} | Internal Watchdog Upper Boundary | $V_{WT} = V_{CC}$ | • | 1.3 | 1.6 | 2 | S | | t _{WDL(INT)} | Internal Watchdog Lower Boundary (Note 5) | B Versions, V _{WT} = V _{CC} | • | 37.5 | 50 | 62.5 | ms | | t _{WDU(EXT)} | External Watchdog Upper Boundary | C _{WT} = 2.2nF | • | 130 | 160 | 200 | ms | | t _{WDL(EXT)} | External Watchdog Lower Boundary (Note 5) | B Versions, C _{WT} = 2.2nF | • | | t _{WDU(EXT)} /32 | | ms | | $\overline{V_{IL(WDI)}}$ | Input Low Voltage | | • | | | 0.4 | V | | V _{IH(WDI)} | Input High Voltage | | • | 1.1 | | | V | | t _{PW(WDI)} | Input Pulsewidth | | • | 400 | | | ns | | | WDI Leakage Current | | • | | | ±1 | μA | | Manual Reset I | nput (LTC2918) | | ' | | | | | | $\overline{V_{IL(MR)}}$ | Input Low Voltage | | • | | | 0.2 • V _{CC} | V | | V _{IH(MR)} | Input High Voltage | | • | 0.8 • V _{CC} | | | V | | R _{PU} | Pull-Up Resistance | | • | 50 | 100 | 150 | kΩ | | t _{PW(MR)} | Pulsewidth | | • | 250 | | | ns | **Note 1:** Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime. **Note 2:** All currents into pins are positive; all voltages are referenced to GND unless otherwise noted. **Note 3:** V_{CC} maximum pin voltage is limited by input current. Since the V_{CC} pin has an internal 6.2V shunt regulator, a low impedance supply which exceeds 5.7V may exceed the rated terminal current. Operation from higher voltage supplies requires a series dropping resistor. See Applications Information. **Note 4:** Input impedance is dependent on the configuration of the SEL pins. **Note 5:** In the LTC2917-B/LTC2918-B, edges must occur on WDI with a period between the lower and upper boundary or RST is invoked. For the LTC2917-A/LTC2918-A, the edges must simply occur before the upper boundary. See Applications Information. # TYPICAL PERFORMANCE CHARACTERISTICS 29178fb #### TYPICAL PERFORMANCE CHARACTERISTICS ### PIN FUNCTIONS **GND:** Device Ground. $\overline{\text{MR}}$ (LTC2918 only): Manual Reset Input (Active Low). A low level on the $\overline{\text{MR}}$ input causes the part to issue a reset, which is released one reset timeout after the input goes high. The pin has an internal 100k pull-up to V_{CC} , and thus may interface directly to a momentary pushbutton. Leave open if unused. **RST**: Open Drain RST Output. Asserts low when VM is below the threshold selected by SEL1, SEL2 and TOL input pins. Held low for an adjustable timeout after VM input is above threshold. **RT:** Reset Timeout Control Pin. Attach an external capacitor (C_{RT}) to GND to set a reset timeout of 9ms/nF. Leave RT open to generate a reset timeout of approximately 400 μ s. Tie RT to V_{CC} to generate a reset timeout of approximately 200ms. **SEL1, SEL2:** Monitor Voltage Select Three-State Input. SEL1, and SEL2 control the nominal threshold voltage that VM is set to monitor. Connect to V_{CC} , GND or leave unconnected in open state. (See Table 1). **TOL (LTC2917 only):** Three-State Input for Supply Tolerance Selection (-5%, -10% or -15%). Controls the tolerance band at which the VM supply is monitored. Connect to V_{CC} , GND, or leave unconnected in open state. (See Table 2) V_{CC} : Power Supply input. Bypass this pin to ground with a 0.1 μ F ceramic capacitor. A minimum of 1.5V on V_{CC} ensures that the part is out of under voltage lockout and that the voltage thresholds are accurate. Operates as a direct supply input for voltages up to 5.5V. Operates as a shunt regulator for supply voltages greater than 5.7V and should have a resistor between this pin and the supply to limit V_{CC} input current to no greater than 5mA. When used without a current-limiting resistor, pin voltage must not exceed 5.7V. **VM:** Voltage Monitor Input to \overline{RST} comparator. SEL1, SEL2 and TOL inputs select the exact threshold that asserts the \overline{RST} output. **WDI:** Watchdog Input. This pin must be driven to change state within a time less than the watchdog upper boundary time, or RST will be asserted low. On the LTC2917-B, LTC2918-B, the period must also be greater than the watchdog lower boundary time, and only falling edges are considered. Tie WT and WDI to GND to disable the watchdog timer. **WT:** Watchdog Timer Control Pin. Attach an external capacitor (C_{WT}) to GND to set a watchdog upper boundary timeout time of 72ms/nF. Tie WT to V_{CC} to generate a timeout of approximately 1.6s. Leave WT open to generate a timeout of approximately 3.2ms. Tie WT and WDI to GND to disable the watchdog timer. **Exposed Pad (DFN Only):** Exposed Pad may be left open or connected to device ground. # **BLOCK DIAGRAM** # **TIMING DIAGRAMS** #### **Monitor Input Timing** #### Watchdog Timing (LTC2917-A, LTC2918-A) #### Watchdog Timing (LTC2917-B, LTC2918-B) / LINEAR #### **Supply Monitoring** The LTC2917/LTC2918 are low voltage single supply monitors with selectable thresholds. Two three-state inputs select one of nine internally programmed thresholds. For the LTC2917, a third three-state input selects the tolerance at which the supply connected to the VM pin is monitored (-5%, -10%, -15%). The tolerance for the LTC2918 is fixed at -5%. Threshold accuracy is guaranteed at $\pm 1.5\%$ over the entire operating temperature range. The LTC2917/LTC2918 asserts the \overline{RST} output low when VM is below the programmed threshold, and for a reset timeout period (t_{RST}) after VM goes above the threshold. The reset timeout can be configured to use one of two internal timers with no external components, or an adjusted timer programmed by placing an external capacitor from RT to ground. Glitch filtering ensures reliable reset operation without false triggering. #### Power-Up V_{CC} powers the drive circuits for the \overline{RST} pin. Therefore, as soon as V_{CC} reaches 0.8V during power up, the \overline{RST} output asserts low. Until V_{CC} reaches the undervoltage lockout threshold (guaranteed less than 1.5V), \overline{RST} is held low regardless of the state of VM. Once V_{CC} is above the undervoltage lockout threshold and VM is above the programmed threshold, the reset timer is started. After the reset timeout, the open drain pull-down releases \overline{RST} and the external pull-up resistor pulls high. #### Power-Down On power-down, once VM drops below its threshold or V_{CC} drops below the undervoltage lockout, \overline{RST} asserts logic low. #### **Monitor Threshold Control** The monitor threshold on the VM pin is controlled by the SEL1, SEL2 and TOL three-state pins. The SEL1 and SEL2 pins select one of nine preset nominal voltages (including one externally adjustable threshold) as shown in Table 1. The SEL1 and SEL2 three-state input pins should be connected to GND, V_{CC} or left unconnected during normal operation. Note that when left unconnected, the maximum leakage allowable from the pin to either GND or V_{CC} is $\pm 5\mu A$. The tolerance at which the monitored supply is measured is set by the TOL pin (LTC2917 only) as shown in Table 2. If desired (e.g. for margining purposes), the TOL pin may be driven by a three-state buffer. That three-state buffer must have a V_{OL} and V_{OH} which meet the V_{IL} and V_{IH} of the TOL pin specified in the Electrical Characteristics, and maintain less than $5\mu A$ of leakage in the open state. **Table 1. Voltage Threshold Settings** | NOMINAL VOLTAGE | SEL1 | SEL2 | |-----------------|-----------------|-----------------| | 12V | V _{CC} | V _{CC} | | 5V | V _{CC} | Open | | 3.3V | V _{CC} | GND | | 2.5V | Open | V _{CC} | | 1.8V | Open | Open | | *1.5V | Open | GND | | *1.2V | GND | V _{CC} | | *1V | GND | Open | | *ADJ (0.5V) | GND | GND | ^{*}Require a separate supply for V_{CC} Table 2. System Voltage Tolerance Settings | TOLERANCE | TOL | |-----------|-----------------| | -5% | V _{CC} | | -10% | Open | | -15% | GND | #### **Threshold Accuracy** The trip threshold for the supplies monitored is selected by configuring the three-state input pins. When using the adjustable input, a external resistive divider sets the trip threshold, allowing the user complete control over the trip point. Selection of this trip voltage is crucial to the reliability of the system. Any power supply has some tolerance band within which it is expected to operate (e.g. $5V\pm10\%$). It is generally undesirable that a supervisor issue a reset when the power supply is inside this tolerance band. Such a "nuisance" reset reduces reliability by preventing the system from functioning under normal conditions. To prevent nuisance resets, the supervisor threshold must be guaranteed to lie outside the power supply tolerance band. To ensure that the threshold lies outside the power supply tolerance range, the nominal threshold must lie outside that range by the monitor's accuracy specification. All 27 of the selectable thresholds have the same relative threshold accuracy of $\pm 1.5\%$ of the programmed nominal input voltage (over the full operating temperature range). Consider the example of monitoring a 5V supply with a 10% tolerance. The nominal threshold internal to the LTC2917 is 11.5% below the 5V input at 4.425V. With $\pm 1.5\%$ accuracy, the trip threshold range is $4.425V\pm75mV$ over temperature (i.e. 10% to 13% below 5V). The monitored system must thus operate reliably down to 4.35V or 13% below 5V over temperature. #### **Glitch Immunity** The above discussion is concerned only with the DC value of the monitored supply. Real supplies also have relatively high-frequency variation, from sources such as load transients, noise, and pickup. These variations should not be considered by the monitor in determining whether a supply voltage is valid or not. The variations may cause spurious outputs at \overline{RST} , particularly if the supply voltage is near its trip threshold. Two techniques are used to combat spurious reset without sacrificing threshold accuracy. First, the timeout period helps prevent high-frequency variation whose frequency is above $1/t_{RST}$ from appearing at the \overline{RST} output. When the voltage at VM goes below the threshold, the \overline{RST} pin asserts low. When the supply recovers past the threshold, the reset timer starts (assuming it is not disabled), and \overline{RST} does not go high until it finishes. If the supply becomes invalid any time during the timeout period, the timer resets and starts a fresh when the supply next becomes valid. While the reset timeout is useful at preventing toggling of the reset output in most cases, it is not effective at preventing nuisance resets due to short glitches (due to load transients or other effects) on a valid supply. To reduce sensitivity to these short glitches, the comparator has additional anti-glitch circuitry. Any transient at the input of the comparator needs to be of sufficient magnitude and duration $t_{\rm LIV}$ before it can change the monitor state. The combination of the reset timeout and anti-glitch circuitry prevents spurious changes in output state without sacrificing threshold accuracy. #### **Adjustable Input** When the monitor threshold is configured as ADJ, the internal comparator input is connected to the pin without a resistive divider, and the pin is high-impedance. Thus, any desired threshold may be chosen by attaching VM to a tap point on an external resistive divider between the monitored supply and ground, as shown in Figure 1. Figure 1. Setting the Trip Point Using the Adjustable Threshold. LINEAR The reference input of the comparator is controlled by the tolerance pin. The external resistive divider should make the voltage at VM = 0.5V when the supply is at nominal value. The actual threshold of VM accounts for the supply tolerance of $\pm 1.5\%$ guaranteed over the full operating temperature range. The resulting tolerances are -6.5%, -11.5%, -16.5% which correspond to 0.468V, 0.443V, 0.418V respectively. Typically, the user will pick a value of R1 based on acceptable current draw. Current used by the resistor divider will be approximately: $$R1 = \left(\frac{0.5V}{I}\right)$$ Recommended range of R1 is 1k—1M. Higher values of resistance exacerbate the degradation of threshold accuracy due to leakage currents. If the nominal value of the supply being monitored is V_{NOM} , then $$R2 = R1(2V_{NOM} - 1)$$ Resistor tolerances must be taken into account when determining the overall accuracy. #### **Selecting the Reset Timing Capacitor** The reset timeout period can be set to one of two fixed internal timers or set with a capacitor in order to accommodate a variety of applications. Connecting a capacitor, C_{RT} , between the RT pin and ground sets the reset timeout period, t_{RST} . The following formula approximates the value of capacitor needed for a particular timeout: $$C_{RT} = t_{RST} \cdot 110 [pF/ms]$$ For example, using a standard capacitor value of 2.2nF would give a 20ms timeout. Figure 2 shows the desired reset timeout period as a function of the value of the timer capacitor. Leaving RT open with no external capacitor generates a reset timeout of approximately 400 μ s. Shorting RT to V_{CC} generates a reset timeout of approximately 200ms. Figure 2. Reset Timeout Period vs RT Capacitance #### **RST** Output Characteristics The DC characteristics of the \overline{RST} pull-down strength are shown in the Typical Performance Characteristics section. \overline{RST} is an open-drain pin and thus requires an external pull-up resistor to the logic supply. \overline{RST} may be pulled above V_{CC} , providing the voltage limits of the pin are observed. The open-drain of the RST pin allows for wired-OR connection of several LTC2917/LTC2918's. #### Watchdog #### LTC2917-A/LTC2918-A A standard watchdog function is used to ensure that the system is in a valid state by continuously monitoring the microprocessor's activity. The microprocessor must toggle the logic state of the WDI pin periodically (within upper boundary) in order to clear the watchdog timer. If timeout occurs, the LTC2917-A/LTC2918-A asserts RST low for the reset timeout period, issuing a system reset. Once the reset timeout completes, RST is released to go high and the watchdog timer starts again. During power-up, the watchdog timer remains cleared while RST is asserted low. As soon as the reset timer times out, RST goes high and the watchdog timer is started. #### LTC2917-B/LTC2918-B For applications in which reliability is even more critical, the LTC2917-B/LTC2918-B implements a windowed watchdog function by adding a lower boundary condition to the standard watchdog function. If the WDI input receives a falling edge prior to the watchdog lower boundary, the part considers this a watchdog failure, and asserts RST low (releasing again after the reset timeout period as described above). The LTC2917-B/LTC2918-B WDI input only responds to falling edges. #### **Setting the Watchdog Timeout Period** The watchdog timeout period is adjustable and can be optimized for software execution. The watchdog timeout period is adjusted by connecting a capacitor between WT and ground. Given a specified watchdog timeout period, the capacitor is determined by: $$C_{WT} = t_{WD} \cdot 13.8 [nF/s]$$ For example, using a standard capacitor value of $0.047\mu F$ would give a 3.4s watchdog timeout period. Leaving WT open with no external capacitor generates a timeout of approximately 3.2ms. Shorting WT to $V_{\rm CC}$ generates a timeout of approximately 1.6s. Connecting WT to GND disables the watchdog function. #### Manual Reset (LTC2918 Only) The LTC2918 includes the \overline{MR} pin for applications where a manual reset is desired. \overline{MR} is internally pulled up, making it ready to interface with a push button with no external components required. Asserting \overline{MR} low when \overline{RST} is high initiates a reset, resulting in \overline{RST} being asserted low for the reset timeout time. #### **Shunt Regulator** The LTC2917 and LTC2918 contain an internal 6.2V shunt regulator on the V_{CC} pin to allow operation from a high voltage supply. To operate the part from a supply higher than 5.7V, the V_{CC} pin must have a series resistor, R_{CC} , to the supply. See Figure 3. This resistor should be sized according to the following equation: $$\frac{V_{S(MAX)} - 5.7V}{5mA} \le R_{CC} \le \frac{V_{S(MIN)} - 7V}{250\mu A}$$ where $V_{S(MIN)}$ and $V_{S(MAX)}$ are the operating minimum and maximum of the supply. As an example, consider operation from an automobile battery which might dip as low as 10V or spike to 60V. We must then pick a resistance between 10.86k and 12k. Figure 3. 12V Supply Monitor Powered From 12V, Utilizing the Internal Shunt Regulator with 3.3V Logic Out # TYPICAL APPLICATIONS # 1V Supply Monitor with Windowed Watchdog Timeout and Internal Timers Selected 12V Supply Monitor with 20ms Reset Timeout and 3.4s Watchdog Timeout, with 3.3V Logic Out 9V, -15% Tolerance Supply Monitor ith 1.8V Logic Out # TYPICAL APPLICATIONS # 3.3V, -10% Tolerance Supply Monitor with Disabled Watchdog #### 1.8V, -5% Supply Monitor with Manual Reset *OPTIONAL RESISTOR RECOMMENDED TO EXTEND ESD TOLERANCE #### 1.5V Supply Monitor with Tolerance Control for Margining, -5% Operation with -15% Margining #### PACKAGE DESCRIPTION #### MS Package 10-Lead Plastic MSOP (Reference LTC DWG # 05-08-1661) - 1. DIMENSIONS IN MILLIMETER/(INCH) - 2. DRAWING NOT TO SCALE - 3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE - 4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS. INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE 5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX # **DDB Package 10-Lead Plastic DFN (3mm × 2mm)**(Reference LTC DWG # 05-08-1722 Rev Ø) #### NOTE: - 1. DRAWING CONFORMS TO VERSION (WECD-1) IN JEDEC PACKAGE OUTLINE M0-229 - 2. DRAWING NOT TO SCALE - 3. ALL DIMENSIONS ARE IN MILLIMETERS - 4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE - 5. EXPOSED PAD SHALL BE SOLDER PLATED - 6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE # TYPICAL APPLICATION #### Dual Supply Monitor (1.8V and 12V) with Manual Reset # **RELATED PARTS** | PART NUMBER | DESCRIPTION | COMMENTS | |-------------|-------------------------------------------------------------|-----------------------------------------------------------------| | LTC690 | 5V Supply Monitor, Watchdog Timer and Battery Backup | 4.65V Threshold | | LTC694-3.3 | 3.3V Supply Monitor, Watchdog Timer and Battery Backup | 2.9V Threshold | | LTC1232 | 5V Supply Monitor, Watchdog Timer and Push-Button Reset | 4.37V/4.62V Threshold | | LTC1326 | Micro Power Precision Triple Supply Monitor | 4.725V, 3.118V, 1V Threshold (±0.75%) | | LTC1536 | Precision Triple Supply Monitor for PCI Applications | Meets PCI tFALL Timing Specifications | | LTC1726 | Micro Power Triple Supply Monitor for 2.5V/5V, 3.3V and ADJ | Adjustable RESET and Watchdog Time-Outs | | LTC1727 | Micro Power Triple Supply Monitor with Open-Drain Reset | Individual Monitor Outputs in MSOP | | LTC1728 | Micro Power Triple Supply Monitor with Open-Drain Reset | 5-Lead SOT-23 Package | | LTC2900 | Programmable Quad Supply Monitor | Adjustable RESET, 10-Lead MSOP and 3mm × 3mm 10-Lead DFN | | LTC2901 | Programmable Quad Supply Monitor | Adjustable RESET and Watchdog Timer, 16-Lead SSOP Package | | LTC2902 | Programmable Quad Supply Monitor | Adjustable RESET and Tolerance, 16-Lead SSOP Package, Margining | | LTC2903 | Precision Quad Supply Monitor | 6-Lead SOT-23 Package, Ultra Low Voltage Reset | | LTC2904 | 3-State Programmable Precision Dual Supply Monitor | Adjustable Tolerance, 8-Lead SOT-23 Package | | LTC2905 | 3-State Programmable Precision Dual Supply Monitor | Adjustable RESET and Tolerance, 8-Lead SOT-23 Package | | LTC2906 | Precision Dual Supply Monitor 1 Selectable and 1 Adjustable | Separate V _{CC} Pin, RST/ RST Outputs | | LTC2907 | Precision Dual Supply Monitor 1 Selectable and 1 Adjustable | Separate V _{CC} Pin, Adjustable Reset Timer | | LTC2908 | Precision Six Supply Monitor (Four Fixed and 2 Adjustable) | 8-Lead SOT-23 and DDB Packages | | LTC2909 | Precision Triple/Dual Input UV, OV | 2 ADJ Inputs | | LTC2910 | Octal Positive/Negative Voltage Monitor | 16-Lead SSOP and 5mm × 3mm DFN Packages | | LTC2912 | Single UV/OV Voltage Monitor, Adjustable UV and OV | 8-Lead TSOT and 3mm × 2mm DFN Packages | | LTC2913 | Dual UV/OV Voltage Monitor | 10-Lead MSOP and 3mm × 3mm DFN Packages | | LTC2914 | Qual UV/OV Positive/Negative Voltage Monitor | 16-Lead SSOP and 5mm × 3mm DFN Packages | | LTC2915 | Single Supervisor with 27 Selectable Thresholds | 10-Lead MSOP and 3mm × 2mm DFN-10 Packages | | LTC2916 | Single Supervisor with 9 Selectable Thresholds | Manual Reset, 10-Lead MSOP and 3mm × 2mm DFN-10 Packages | LT 0208 REV B • PRINTED IN USA TECHNOLOGY © LINEAR TECHNOLOGY CORPORATION 2007