
Freescale Semiconductor
Application Note

© 2013 Freescale Semiconductor, Inc. All rights reserved.

This document explains how to download and use the
functions of the Mentor Embedded Performance Library for
Freescale AltiVec Technology (MEPL), which can be
downloaded from the Mentor Graphics website.

By using AltiVec technology, most functions execute much
faster than other libraries and standard C code. This can be
most helpful in time sensitive applications, such as in
aerospace and military fields. The acceleration created by
AltiVec technology when using the MEPL has been proven.

This guide demystifies the MEPL functions and the
requirements and data types for each function’s input
parameters. The guide describes how to initialize input
parameters, how to pass in the variables, and the steps
needed to create the desired output. There is a section on
signal processing functions and a section filled with example
code using several of the functions provided in this library.

For easy reference, the function topics in this guide appear in
the same order as in the Mentor Embedded Performance
Library Reference Manual.

Document Number: AN4786
Rev. 0, 08/2013

Contents
1. Downloading and linking . 2
1.1. Downloading . 2
1.2. Linking . 2
2. Input parameters for common data types 2
3. Naming conventions . 3
4. Signal processing functions . 5
4.1. Create functions . 5
4.2. Destroy functions . 10
4.3. Compute functions . 10
4.4. Windowing functions . 17
4.5. Miscellaneous functions 18
5. Examples . 21
5.1. Scalar multiply . 21
5.2. Multiply-Add . 22
5.3. Maximum, returned by index 24
5.4. Root mean square . 25
5.5. 1D discrete fourier transform on 2D matrix 26
5.6. Fill vector with random values 27
6. MEPL and AltiVec technology 28
7. Revision history . 30

MEPL Quick Start Guide
Using the Mentor Embedded Performance Library for
Freescale AltiVec Technology (MEPL)

MEPL Quick Start Guide, Rev. 0

2 Freescale Semiconductor

Downloading and linking

1 Downloading and linking

1.1 Downloading
To find everything you need to download, go to mentor.com then search for ‘Mentor Embedded
Performance Library.’ The library should then be downloaded to a file titled ‘install directory.’ Then the
appropriate links can be made, which are explained next.

1.2 Linking
The linking necessary for your code to compile goes as follows:

1. In your c source code:
#include <mepl.h>

This should cover everything provided in the MEPL, because this header file contains:

#include <mepl/types.h>

#include <mepl/complex.h>

#include <mepl/math.h>

#include <mepl/misc.h>

#include <mepl/signal.h>

#include <mepl/image.h>

#include <mepl/random.h>

#include <mepl/vector.h>

2. In your gcc compiler command line:
-I/<install directory>/MEPL/bin/mepl-1.0/e6500-32/include

or
-I/<install directory>/MEPL/bin/mepl-1.0/e6500-64/include

3. In your gcc linker command line:
-L/<install directory>/MEPL/bin/mepl-1.0/e6500-32/lib -lcblas -latlas –lmepl

or
-L/<install directory>/MEPL/bin/mepl-1.0/e6500-64/lib -lcblas -latlas –lmepl

2 Input parameters for common data types
The data types used in the MEPL are a bit confusing. In the MEPL header files, the most common input
parameters are defined as follows:

typedef signed long int mepl_index;

typedef unsigned long int mepl_length;

typedef unsigned long int mepl_stride;

typedef float complex mepl_cfloat;

typedef double complex mepl_cdouble;

MEPL Quick Start Guide, Rev. 0

Freescale Semiconductor 3

Naming conventions

These data types are straight forward, except when it comes to the complex data types, mepl_cfloat and
mepl_cdouble. Both data types are interleaved complex numbers. In other words, one number will have two
elements: one real, one imaginary. One interleaved complex number in memory will resemble the
following structure:

When declaring a vector or matrix with the type mepl_cfloat or mepl_cdouble, they can be declared using
the following macros supplied by the MEPL library. These are given in the reference manual, but they are
worth repeating:

/* Construct a mepl_cfloat from two floats */

#define mepl_cfloat(r,i) ...

/* Construct a mepl_cdouble from two doubles */

#define mepl_cdouble(r,i) ...

/* Return the real component of a complex number */

float mepl_real_cf(mepl_cfloat v);

double mepl_real_cd(mepl_cdouble v);

/* Return the imaginary component of a complex number */

float mepl_imag_cf(mepl_cfloat v);

double mepl_imag_cd(mepl_cdouble v);

/* Return the magnitude of a complex number */

float mepl_cmag_f(mepl_cfloat v);

double mepl_cmag_d(mepl_cdouble v);

/* Return the conjugate of a complex number */

mepl_cfloat mepl_conj_f(mepl_cfloat v);

mepl_cdouble mepl_conj_d(mepl_cdouble v);

3 Naming conventions
The MEPL reference manual explains the library naming conventions. In this section, the MEPL naming
conventions are explained in further detail. Once the conventions are understood, it is much easier to
decipher what inputs are needed.

Each function name has the same format, unless noted otherwise. The format is given below:
mepl_function_p

Real Part

Imaginary Part

MEPL Quick Start Guide, Rev. 0

4 Freescale Semiconductor

Naming conventions

The _p at the end of the function name determines the primary input data type. This convention is used
through this entire document, so when an italicized P is seen it is referring to a data type. In addition, any
italicized text should be taken as a placeholder. If any text is italicized, it should be replaced with the
appropriate function name or data type. For example:

When transposing a matrix filled with floating point numbers, the function name mepl_function_p
will become mepl_transpose_f.

The different data types used in this library are given in this table.

Therefore, anytime one of these suffixes is seen, it is referring to one of the types given above. The first
two, meaning int and unsigned int, are not to be confused with mepl_index, mepl_length, or mepl_stride.
The latter data types were defined as those specific names because they correspond to their uses. In other
words, when a parameter is passed to a function as mepl_index, the user will know the parameter associates
with the index of the input vector or matrix. Likewise, mepl_length corresponds to the length of an input
vector or matrix and mepl_stride corresponds to the stride of an input vector or matrix.

Another confusing aspect of the data types is the difference between interleaved complex values and split
complex values. An interleaved element would contain both the real and imaginary part of a complex
number, while a split complex value will have two separate elements for the real and imaginary part of a
complex number. When there is a ‘z’ in the suffix, it can be thought of as a zipper separating the complex
number into two parts. Here’s an example:

Table 1. MEPL data types

Suffix Meaning

_i Signed integer (int)

_u Unsigned integer (unsigned int)

_f Single‐precision floating point (float)

_d Double‐precision floating point (double)

_cf Interleaved single‐precision complex (mepl_cfloat)

_cd Interleaved double‐precision complex (mepl_cdouble)

_zf Split single‐precision complex (represented as a pair of float arrays)

_zd Split double‐precision complex (represented as a pair of double arrays)

Interleaved complex array with k elements

Real [0]

Imaginary [0]

Real [1]

Imaginary [1]

...

Real [k]

Imaginary [k]

MEPL Quick Start Guide, Rev. 0

Freescale Semiconductor 5

Signal processing functions

In addition, any names used for variables correlate to the ones used in the reference manual. Therefore, if
you were to look from the reference manual to this guide, the names will correspond. This is meant to
create less confusion and aid in the process of using the MEPL.

4 Signal processing functions
Transformations, impulse responses, and convolution, which make up a majority of the signal processing
functions, are all computed with three smaller functions: create, compute, and destroy. These three
functions are used in that order, but will be explained in the same order as discussed in the MEPL reference
manual:

1. Create
2. Destroy
3. Compute

The remaining signal processing functions fall under windowing functions and miscellaneous functions
and will be explained in this order:

4. Windowing Functions

5. Miscellaneous Functions

4.1 Create functions
Create functions construct objects used in computing transformations, impulse responses, and
convolution. These objects are data structures containing pertinent information needed to compute the
signal processing functions. The names for each of the create functions are as follows:

mepl_function_create_p

The create functions are the first to be called out of the three functions for transformations, impulse
responses, and convolution. In the next section, we see how to properly declare and initialize the input
parameters for create functions, then describe how to use the create function. Below is a table of the inputs.

Split-Complex arrays with k elements

Real Array Imaginary Array

Real [0] Imaginary [0]

Real [1] Imaginary[1]

Real [2] Imaginary [2]

... ...

Real[k] Imaginary[k]

Table 2. Create functions with inputs

Create Functions Inputs

1D Discrete Fourier Transform (DFT) mepl_length l, mepl_dft_direction d

Multiple 1D DFT mepl_length rows, mepl_length cols,
mepl_dftm_direction d, mepl_axis a

MEPL Quick Start Guide, Rev. 0

6 Freescale Semiconductor

Signal processing functions

4.1.1 Declaring and initializing create functions
Each of the inputs in the table above describes the dimensions of the input vector(s) or matrix. When the
input is a matrix, the P const* H passed in will be a pointer to the first element in the top corner of the
matrix. For a 4x4 matrix, it points to the highlighted element below:

The other variables involved are the length of the matrix (l), the direction in which to compute a transform
(d), the number of rows in the matrix (rows), the number of columns in the matrix (cols), the stride between
rows (H_stride) and the axis on which to perform a transform (a). When calling a function that requires a
direction or axis specification, use the following type-definitions:

typedef enum { MEPL_DFT_FORWARD = -1, MEPL_DFT_INVERSE = 1

}mepl_dft_direction;

typedef enum { MEPL_BY_ROW = 0, MEPL_BY_COL = 1 }mepl_axis;

For a vector with N elements, an example declaration would be:

2D DFT mepl_length rows, mepl_length cols,
mepl_dft2d_direction d

Complex-to-Real or Real-to-Complex DFT mepl_length l

Multiple 1D Complex-to-Real or Real-to-Complex DFT mepl_length rows, mepl_length cols, mepl_axis
a

2D Complex-to-Real or Real-to-Complex DFT mepl_lenth rows, mepl_length cols

1D Discrete Cosine Transform (DCT) mepl_length l

1D Discrete Sine Transform (DST) mepl_length l

Multiple 1D DCT or DST mepl_length rows, mepl_length cols, mepl_axis
a

2D DCT or DST mepl_length rows, mepl_length cols

Finite Impulse Response (FIR) P const* kernel, mepl_length K, mepl_length N,
mepl_length D

Infinite Impulse Response (IIR) P const* A, mepl_stride A_stride, P const* B,
mepl_stride B_stride, mepl_length
num_filters, mepl_length N

Convolution P const* H, mepl_length H_length, mepl_length
X_length, mepl_length decimation

2D Convolution P const* H, mepl_length H_rows, mepl_length
H_cols, mepl_length X_rows, mepl_length
X_cols, mepl_length decimation

Table 2. Create functions with inputs (continued)

Create Functions Inputs

MEPL Quick Start Guide, Rev. 0

Freescale Semiconductor 7

Signal processing functions

mepl_length l = N;
mepl_dft_direction d = MEPL_DFT_FORWARD; //or MEPL_DFT_INVERSE
float* H[N];

For an MxN matrix, an example declaration would be:

mepl_dft_direction d = MEPL_DFT_FORWARD; //or MEPL_DFT_INVERSE
mepl_length rows = M;
mepl_length cols = N;
mepl_length H_stride = N;
mepl_axis a = MEPL_BY_ROW; //or MEPL_BY_COL
float* H[rows][cols];

For an NxN matrix, an example declaration would be:

mepl_length row = N, cols = N, H_stride = N;
mepl_dft_direction d = MEPL_DFT_FORWARD; //or MEPL_DFT_INVERSE
mepl_axis a = MEPL_BY_ROW; //or MEPL_BY_COL
float* H[rows][cols];

The only task left is to fill the matrix (H) or input vector, which is up to the user.

The inputs in the table above are very similar for all create functions needed for transforms, but the create
functions for impulse responses and convolutions differ slightly. These differences are explained in the
next sections:

• Section 4.1.1.1, “Finite impulse response (FIR)”

• Section 4.1.1.2, “Infinite Impulse Response (IIR)”

• Section 4.1.1.3, “Convolution”

4.1.1.1 Finite impulse response (FIR)

For the FIR, the kernel is initialized similarly to the input vector for transforms, but it serves a different
purpose. In addition, K acts as the length of the kernel, N is the length of the imaginary plane of the input
vector, and D is the stride of the input vector. Example declaration:

/* Kernel with M elements */

mepl_length K = M;

mepl_length N;

mepl_length D;

float kernel[K];

4.1.1.2 Infinite Impulse Response (IIR)

For the IIR, there are two input vectors (A and B). If the vectors have contiguous elements, the strides
(A_stride and B_stride) will equal one. Otherwise, the stride will be the number of memory addresses in
between each element. The length of both vectors is given by num_filters and the variable N is the length
of input data vectors for computations. Example declaration:

/* Vectors with M contiguous elements */

mepl_length num_filters = M;

mepl_length N;

MEPL Quick Start Guide, Rev. 0

8 Freescale Semiconductor

Signal processing functions

float A[num_filters];

float B[num_filters];

mepl_stride A_stride = 1;

mepl_stride B_stride = 1;

4.1.1.3 Convolution

For convolution, P const* H is the convolution kernel but will be declared and initialized the same as if it
were a regular matrix. H_length, the length of the convolution kernel, and X_length, the length of the input,
are identical to the length of a matrix or vector, so declaration and initialization are the same. The last input
parameter needed to create an object for convolution is decimation. The decimation factor, which is the
rate at which you wish to sample the data, is initialized just as a length would be initialized. Example
declaration:

/* 1D Convolution of Vector with M contiguous elements */

mepl_length H_length = M;

float H[H_length];

mepl_length X_length = M;

mepl_length decimation;

/* 2D Convolution of an MxN Matrix */

mepl_length H_rows = M, X_rows = M;

mepl_length H_cols = N, X_cols = N;

float H[H_rows][H_cols];

mepl_length decimation;

As described earlier under naming conventions, when a function ends with _zf, it means the input is
split-complex. In other words, there will be two input vectors, one containing the real part of a number and
the other containing the imaginary part. When the input is split-complex, the pointer for an interleaved
vector (H*) will become two pointers (H_real* and H_imag*). The same happens to the input variables
pertaining to the dimensions. When declaring and initializing your input data, keep this in mind. Whether
you choose to use interleaved vectors or split vectors makes a difference in what and how many input
parameters are needed.

4.1.2 Summary of declaring and initializing create functions
By now, you should be able to declare and initialize input parameters and use the create functions. If you
are still confused about the parameters, never fear! Here is a table summarizing what was just explained.
While you are looking at a specific function in the reference manual and you don’t know what to do with
it, look at this table. First, find the input parameter you are having trouble with. Then, you can see what it
stands for and how to declare and initialize the variable. For example declarations, the question mark
means it is up to the user to set a value.

MEPL Quick Start Guide, Rev. 0

Freescale Semiconductor 9

Signal processing functions

4.1.3 How to use create functions
The vast majority of signal processing functions need create functions to supply a pointer to the object used
to compute the signal. For each function, the data type for the object pointer is:

mepl_function_p*

Table 3. Summary of create functions

When you see: What it means: Example declarations:

mepl_length l Length of vector/matrix mepl_length l = ?;

mepl_direction d Desired direction of computation mepl_direction d = MEPL_DFT_FORWARD;
or

mepl_direction d = MEPL_DFT_INVERSE;

mepl_length rows Number of rows in matrix mepl_length rows = ?;

mepl_length cols Number of columns in matrix mepl_length cols = ?;

mepl_axis a Desired axis to approach for
computation

mepl_axis a = MEPL_BY_ROW;

or

mepl_axis a = MEPL_BY_COL;

P const* kernel Kernel for FIR P Kernel[K];

mepl_length K Length of input vector mepl_length K = ?;

mepl_length N Plane on which FIR is computed mepl_length N = ?;

mepl_length D Stride of input data mepl_length D = ?;

mepl_length num_filters Length of A & B vectors mepl_length num_filters = ?;

P const* A Input vector P A[num_filters];

mepl_stride A_stride Stride of vector A mepl_stride A_stride = ?;

P const* B Input vector P B[num_filters];

mepl_stride B_stride Stride of vector B mepl_stride B_stride = ?;

mepl_length N Length of input data vectors mepl_length N = ?;

P const* H Input vector for convolution P H[H_length];

mepl_length H_length Length of vector H mepl_length H_length = ?;

mepl_length X_length Length of input vector mepl_length X_length = ?;

mepl_length decimation Decimation factor for convolution mepl_length decimation = ?;

P const*H Input matrix for convolution P H[H_rows][H_cols];

mepl_length H_rows Number of rows in matrix H mepl_length H_rows = ?;

mepl_length H_cols Number of columns in matrix H mepl_length H_cols = ?;

mepl_length X_rows Number of rows in input matrix mepl_length X_rows = ?;

mepl length X_cols Number of columns in input matrix mepl_length X_cols = ?;

MEPL Quick Start Guide, Rev. 0

10 Freescale Semiconductor

Signal processing functions

At the beginning of each function in the Mentor Graphics reference manual, these object types are defined.
The structure of this object does not need to be understood in order to carry out this function. For example,
if an object was needed for a 1D DFT using interleaved complex floating point inputs, then the pointer
would be:

mepl_dft_cf*

A pointer should be declared and then set equal to the function. After calling the create function, this
pointer can be used further for the signal computation.

4.1.4 Example of create functions
All together, the code for declaring variables and calling the create function for an NxN matrix would go
as follows:

/* Variable Declarations */
mepl_length l = N;
mepl_dft_direction d = MEPL_DFT_FORWARD; //or MEPL_DFT_INVERSE
mepl_length stride = N;
mepl_cfloat const* X[l];

/* Object Pointer for 1D DFT */
mepl_dft_cf* dft;

/* Creating the Object */
dft = mepl_dft_create_cf(l, d);

4.2 Destroy functions
Just as the name would suggest, these functions destroy the objects that are used in computing transforms,
impulse responses, and convolution when they are no longer needed. The names for each of these functions
are:

mepl_function_destroy_p

The only input parameter for destroy functions is the object pointer. The code to call the function would be:

mepl_dft_destroy_cf(dft);

4.3 Compute functions
The final function to solve transformations, impulse responses, and convolutions is the compute function.
The compute function is the second to be performed out of the three. There are two different types of
compute functions: in-place computation and out-of-place computation. In-place means the results are
written over the input vector or matrix, i.e. in the place of the input values. Out-of-place means there is a
separate vector or matrix for the output values, so there will be an extra parameter passed into the compute
function. Compute functions have two different function calls, given below:

mepl_function_compute_ip_p (in-place computation)

or

mepl_function_compute_op_p (out-of-place computation)

MEPL Quick Start Guide, Rev. 0

Freescale Semiconductor 11

Signal processing functions

The inputs for compute functions differ depending on the dimension and type of function. The table below
gives the parameters passed to each compute function.

Table 4. Compute functions with inputs

Compute Functions Inputs

1D Discrete Fourier Transform (DFT)

in-place computation mepl_dft_cf const* dft, mepl_cfloat* X,
mepl_stride stride

out-of-place computation mepl_dft_cf const* dft, mepl_cfloat const* X,
mepl_stride X_stride, mepl_cfloat* Y,
mepl_stride Y_stride

Multiple 1D DFT

in-place computation mepl_dftm_cf const* dft, mepl_cfloat* X,
mepl_stride stride

out-of-place computation mepl_dftm_cf const* dft, mepl_cfloat const* X,
mepl_stride X_stride, mepl_cfloat* Y,
mepl_stride Y_stride

2D DFT

in-place computation mepl_dft2d_cf const* dft, mepl_cfloat* X,
mepl_stride stride

out-of-place computation mepl_dft2d_cf const* dft, mepl_cfloat const*
X, mepl_stride X_stride, mepl_cfloat* Y,
mepl_stride Y_stride

Complex-to-Real DFT

in-place computation Not applicable

out-of-place computation mepl_dft_c2r_cf const* dft, mepl_cfloat
const* X, mepl_stride X_stride, mepl_cfloat*
Y, mepl_stride Y_stride

Real-to-Complex DFT

in-place computation Not applicable

out-of-place computation mepl_dft_r2c_cf const* dft, mepl_cfloat
const* X, mepl_stride X_stride, mepl_cfloat*
Y, mepl_stride Y_stride

Multiple 1D Complex-to-Real

in-place computation Not applicable

out-of-place computation mepl_dftm_cf const* dft, mepl_cfloat const* X,
mepl_stride X_stride, mepl_cfloat* Y,
mepl_stride Y_stride

MEPL Quick Start Guide, Rev. 0

12 Freescale Semiconductor

Signal processing functions

Multiple 1D Real-to-Complex DFT

in-place computation Not applicable

out-of-place computation mepl_dftm_cf const* dft, mepl_cfloat const* X,
mepl_stride X_stride, mepl_cfloat* Y,
mepl_stride Y_stride

2D Complex-to-Real

in-place computation Not applicable

out-of-place computation mepl_dft2d_cf const* dft, mepl_cfloat const*
X, mepl_stride X_stride, mepl_cfloat* Y,
mepl_stride Y_stride

2D Real-to-Complex DFT

in-place computation Not applicable

out-of-place computation mepl_dft2d_cf const* dft, mepl_cfloat const*
X, mepl_stride X_stride, mepl_cfloat* Y,
mepl_stride Y_stride

1D Discrete Cosine Transform - Type 1 (DCT1)

in-place computation mepl_dct1_f const* dct, mepl_cfloat const* X,
mepl_stride X_stride, mepl_cfloat* Y,
mepl_stride Y_stride

out-of-place computation mepl_dct1_f const* dct, float const *X,
mepl_stride X_stride, float* Y, mepl_stride
Y_stride

1D Discrete Sine Transform - Type 1 (DST1)

in-place computation mepl_dst1_cf const* dst, mepl_cfloat const* X,
mepl_stride X_stride, mepl_cfloat* Y,
mepl_stride Y_stride

out-of-place computation mepl_dst1_f const *dst, float const* X,
mepl_stride X_stride, float* Y, mepl_stride
Y_stride

Multiple 1D DCT1

in-place computation mepl_dct1m_cf const* dct, mepl_cfloat const*
X, mepl_stride X_stride, mepl_cfloat* Y,
mepl_stride Y_stride

out-of-place computation mepl_dct1m_f const* dct, float const* X,
mepl_stride X_stride, float* Y, mepl_stride
Y_stride

Table 4. Compute functions with inputs (continued)

Compute Functions Inputs

MEPL Quick Start Guide, Rev. 0

Freescale Semiconductor 13

Signal processing functions

4.3.1 Declaring and initializing compute functions
For compute functions, the first parameter will be a pointer to the object generated with the create
functions. The input parameters following are the input vector(s) or matrix and output vector(s) or matrix.
The parameters with the data type of mepl_cfloat are interleaved complex floating points.

When initializing the vectors or matrices, use the appropriate macros given in the MEPL reference manual
and given in the Section 2, “Input parameters for common data types.” Here’s an example initialization:

/* Initialization of Vector with k Elements */

mepl_length l = k;

Multiple 1D DST1

in-place computation mepl_dst1m_cf const* dct, mepl_cfloat const*
X, mepl_stride X_stride, mepl_cfloat* Y,
mepl_stride Y_stride

out-of-place computation mepl_dst1m_f const* dst, float const* X,
mepl_stride X_stride, float* Y, mepl_stride
Y_stride

2D DCT1

in-place computation mepl_dct12d_cf const* dct, mepl_cfloat const*
X, mepl_stride X_stride, mepl_cfloat* Y,
mepl_stride Y_stride

out-of-place computation mepl_dct12d_f const *dct, float const* X,
mepl_stride X_stride, float* Y, mepl_stride
Y_stride

2D DST1

in-place computation mepl_dst12d_cf const* dct, mepl_cfloat const*
X, mepl_stride X_stride, mepl_cfloat* Y,
mepl_stride Y_stride

out-of-place computation mepl_dst12d_f const* dct, float const* X,
mepl_stride X_stride, float* Y, mepl_stride
Y_stride

Finite Impulse Response (FIR) mepl_fir_state_p* fir, P const* A, mepl_stride
A_stride, P* Z, mepl_stride Z_stride

Infinite Impulse Response (IIR) mepl_iir_state_p* iir, P const* A, mepl_stride
A_stride, P* Z, mepl_stride Z_stride

Convolution mepl_conv_state_p const* conv, P const* X,
mepl_stride X_stride, P* Z, mepl_stride
Z_stride

2D Convolution mepl_conv2d_min_state_p* conv, P const* X,
mepl_stride X_stride, P* Z, mepl_stride
Z_stride

Table 4. Compute functions with inputs (continued)

Compute Functions Inputs

MEPL Quick Start Guide, Rev. 0

14 Freescale Semiconductor

Signal processing functions

mepl_cfloat X[l];

/* Fill Vector with Desired Values */

float real = 0.0;

float imag = 0.0;

int i;

for(i=0;i<1;i++){

X[i] = mepl_cfloat(real,imag) ;//calling macro

}

In addition, the initialized value could be hardcoded, which doesn’t require using a macro. An example of
this is given below.

/* Initialization of Vector with k Elements */

mepl_length l = k;

mepl_cfloat X[l];

/* Fill Vector with Value Init */

mepl_cfloat Init = {0.0,0.0};

int i;

for(i=0;i<1;i++){

X[i] = Init;

}

Another option is to use split-complex vectors and matrices. These will be initialized as described under
the create functions above with two separate variables.

4.3.2 Summary of compute functions
Below is a table to help recap the compute function. If you are looking back and forth between the
reference manual and this guide, you can easily find the input value giving you trouble, discover its
meaning, and see an example declaration. Anytime a question mark is seen, the value is to be set by the
user.

Table 5. Summary of compute functions

When you see: What it means: Example declaration

mepl_function_p* Object pointer Output for create function

mepl_cfloat* X Input vector for transform mepl_cfloat X[l] =
mepl_cfloat(r, i);

mepl_length stride Amount of memory between each
element

mepl_length stride = 1;

MEPL Quick Start Guide, Rev. 0

Freescale Semiconductor 15

Signal processing functions

4.3.3 How to use compute functions
After all the necessary elements are initialized, the compute function simply needs to be called. For
example, for a 1D DFT function, the function call would resemble this:

mepl_dft_compute_ip_cf(dft, X, stride);

or

mepl_dft_compute_op_cf(dft, X, X_stride, Y, Y_stride);

The results can then be reviewed by printing the appropriate vector and using the return macros supplied
in the MEPL. They are also stated in the Section 2, “Input parameters for common data types.” Below is
an example for printing an element of type mepl_cfloat.

/* Print Vector X with k Elements */

int i;

for(i=0;i<k;i++){

printf(“%f + i %f”, mepl_real_cf(X[i]), mepl_imag_cf(X[i]));

}

P* X_real For a split-complex input, this is the
vector containing the real part of each
element

P X_real[l];

X_real[j] = ?;

P* X_imag For a split-complex input, this is the
vector containing the imaginary part
of each element

P X_imag[l];

X_imag[j] = ?;

mepl_length X_stride Amount of memory between each
element; stride for X vector when
using out-of-place computation

mepl_length X_stride = 1;

mepl_cfloat* Y Output vector needed for out-of-place
computation

mepl_cfloat Y[l] =
mepl_cfloat(r, i);

mepl_length Y_stride Amount of memory between each
element; stride for Y vector when
using out-of-place computation

mepl_length Y_stride = 1;

P* Y_real When using out-of-place computation
and split-complex output, this is the
vector containing the real part of each
element

P Y_real[l];

Y_real[j] = ?;

P* Y_imag When using out-of-place computation
and split-complex output, this is the
vector containing the imaginary part
of each element

P Y_imag[l];

Y_imag[j] = ?;

Table 5. Summary of compute functions (continued)

When you see: What it means: Example declaration

MEPL Quick Start Guide, Rev. 0

16 Freescale Semiconductor

Signal processing functions

Both macros used in the printf statement above return the desired part of element X[i]. For the in-place
computation, the X vector would be printed and the Y vector would be printed for the out-of-place
computation.

4.3.4 Example of compute functions
Now that create, destroy, and compute functions are understood, here is an example for a 1D DFT using
all three:

/* Initialization for Vector with 4 Elements */

mepl_length l = 4;

mepl_dft_direction d = MEPL_DFT_FORWARD;

mepl_length stride = 1;

mepl_cfloat const* X[l]

/* Object Pointer for 1D DFT */

mepl_dft_cf* dft;

/* Creating the Object */

dft = mepl_dft_create_cf(l, d);

/* Compute the 1D DFT */

mepl_dft_compute_ip_cf(dft, X, stride);

/* Destroy the object */

mepl_dft_destroy_cf(dft);

For actual results, please read AN2115, Complex Floating Point Fast Fourier Transform, which gives the
Fourier Transform of an 8x8 matrix.

That concludes the explanation of transformations, impulse responses, and convolutions. The remaining
signal processing functions include windowing functions and other miscellaneous functions, which will be
explained in that order respectively.

MEPL Quick Start Guide, Rev. 0

Freescale Semiconductor 17

Signal processing functions

4.4 Windowing functions
The windowing functions are used to create a vector within a certain window. The inputs are given in the
following table.

4.4.1 Declaring and initializing windowing functions
Each of the windowing functions has an output vector (Z), with dimensions given by the stride and length
variables. For the Dolph-Chebyshev and Kaiser windows, there is an extra parameter for each that is passed
in first. Both should be initialized as a scalar, given the values corresponding to the user’s desired output.
An example declaration is given below:

/* Initialization for Vector with k Elements */

mepl_stride Z_stride = 1;

mepl_length Z_length = k;

P Z[Z_length];

P ripple; //Dolph-Chebyshev window only

P beta; //Kaiser window only

4.4.2 Summary of windowing functions
A recap of the windowing functions is given below, which is useful when looking for a specific input
parameter. In the example declaration column, the question marks means the set value is under the
discretion of the user.

Table 6. Windowing functions with inputs

Windowing Functions Inputs

Blackman window P *Z, mepl_stride Z_stride, mepl_length
Z_length

Dolph-Chebyshev window P ripple, P *Z, mepl_stride Z_stride,
mepl_length Z_length

Hanning window P *Z, mepl_stride Z_stride, mepl_length
Z_length

Kaiser window P beta, P *Z, mepl_stride Z_stride,
mepl_length Z_length

Table 7. Summary of windowing functions

When you see: What it means: Example Declaration

mepl_length Z_length Desired length for output vector mepl_length Z_length = ?;

P *Z Pointer to output vector P Z[Z_length];

Z[j] = ?;

mepl_length Z_stride Stride of output vector mepl_length Z_stride = 1;

MEPL Quick Start Guide, Rev. 0

18 Freescale Semiconductor

Signal processing functions

4.4.3 How to use windowing functions
Once the parameters are initialized, the function can then be called. For instance, to create a floating point
vector initialized with a Dolph-Chebyshev window, the call would be:

mepl_chebyshev_f(ripple, Z, Z_stride, Z_length);

The output would then be available to print in the Z vector.

4.4.4 Example of windowing functions
All together, the code should resemble the following example for a Dolph-Chebyshev window with
floating point data types. The values given are not set values and should be changed to match the user’s
task at hand.

/* Initialization for Vector with k Elements */

mepl_stride Z_stride = 1;

mepl_length Z_length = k;

float Z[Z_length];

/* Fill Input Vector */

int i;

for(i=0;i<Z_length;i++){

Z[i] = i;

}

/* Ripple of size 4 for Window */

float ripple = 4.0;

/* Function Call */

mepl_chebyshev_f(ripple, Z, Z_stride, Z_length);

4.5 Miscellaneous functions
The rest of the signal processing functions are given below, with their corresponding input parameters.
Primarily, they deal with the limits of a vector.

P* ripple Desired ripple for the
Dolph-Chebyshev window

P ripple = ?;

P* beta Transition width parameter for Kaiser
window

P beta = ?;

Table 7. Summary of windowing functions (continued)

When you see: What it means: Example Declaration

MEPL Quick Start Guide, Rev. 0

Freescale Semiconductor 19

Signal processing functions

4.5.1 Declaring and initializing miscellaneous functions
The declarations and initializations for the inputs above are the same as described in previous sections.
Therefore, this section will be excluded.

4.5.2 Summary of miscellaneous functions
Below is a summary table with example declarations for the miscellaneous signal processing functions.

Table 8. Miscellaneous functions with inputs

Miscellaneous Functions Inputs

Clip

within P low, P high, P* A, mepl_stride A_stride, P*
Z, mepl_stride Z_stride, mepl_length length

outside P low, P high, P* A, mepl_stride A_stride, P*
Z, mepl_stride Z_stride, mepl_length length

Limit P limit, P* A, mepl_stride A_stride, P* Z,
mepl_stride Z_stride, mepl_length length

Threshold P limit, P* A, mepl_stride A_stride, P* Z,
mepl_stride Z_stride, mepl_length length

Unwrap P const* A, mepl_stride A_stride, P* Z,
mepl_stride Z_stride, mepl_length length

Histogram P const* X, mepl_stride X_stride, mepl_length
X_length, P min, P max, unsigned int* Y,
mepl_stride Y_stride, mepl_length Y_length

Table 9. Summary of miscellaneous functions

When you see: What it means: Example Declaration

P low Lower threshold that defines the area
needed to be clipped

P low = ?;

P high Upper threshold that defines the area
needed to be clipped

P high = ?;

P limit Single-sided clip P limit = ?;

mepl_length length Length of vectors A and Z mepl_length length = ?;

P const* A Input vector for clip, threshold, or
unwrap

P A[length];

A[j] = ?;

mepl_stride A_stride Stride of input vector mepl_stride A_stride = 1;

P* Z Output vector for clip, threshold, or
unwrap

P Z[length];

Z[j] = ?;

mepl_stride Z_stride Stride of output vector mepl_stride Z_stride = 1;

mepl_length X_length Length of input vector mepl_length X_length = ?;

MEPL Quick Start Guide, Rev. 0

20 Freescale Semiconductor

Signal processing functions

4.5.3 How to use miscellaneous functions
These miscellaneous functions are fairly simple to execute. It is just a matter of declaring the appropriate
variables and passing them through the function.

4.5.4 Example of miscellaneous functions
An example of the function that clips values to lie outside the given values is given below. The primary
data type used here will be floating points.

/* Initialization for Vector with k Elements */

mepl_stride A_stride = 1;

mepl_stride Z_stride = 1;

mepl_length length = k;

float A[length];

float Z[length];

/* Fill the Input Vector */

int i;

for(i=0;i<length;i++){

A[i] = i;

}

/* Lower and Upper Thresholds */

float low = 6;

float high = 24;

/* Function Call */

mepl_iclip_f(low, high, A, A_stride, Z, Z_stride, length);

P const* X Input vector for histogram P X[X_length];

X[j] = ?;

mepl_stride X_stride Stride of input vector mepl_stride X_stride = ?;

P min Edge of first histogram bin P min = ?;

P max Edge of last histogram bin P max = ?;

mepl_length Y_length Length of output vector for histogram mepl_length Y_length = ?

unsigned int* Y Output vector for histogram unsigned int Y[Y_length];

Y[j] = ?;

mepl_stride Y_stride Stride of output vector mepl_stride Y_stride = ?;

Table 9. Summary of miscellaneous functions (continued)

When you see: What it means: Example Declaration

MEPL Quick Start Guide, Rev. 0

Freescale Semiconductor 21

Examples

5 Examples
From this point on, there will be examples of code using functions from the MEPL. The functions used are
given in this order:

1. Scalar multiply

2. Multiply-Add

3. Maximum, returned by index

4. Root mean square

5. 1D discrete fourier transform on 2D matrix

6. Fill vector with random values.

7. Linear interpolation

The order also correlates to the order they appear in the MEPL Reference Manual.

5.1 Scalar multiply
Using complex floating points, the function name for scalar multiply is:

mepl_vmul_s_cf

Example Code:

#include <stdio.h>

#include <math.h>

#include <mepl.h>

void main(void){

/* Initialization for 8 Element Vector */

mepl_stride stride = 1;

mepl_length length = 8;

mepl_cfloat A[length];

mepl_cfloat b = 2.5; //scalar to multiply by

/* Fill Input Vector using Macro */

float real = 1.0;

float imag = 0.0;

int i;

for(i+0;i<length;i+=1){

A[i] = mepl_cfloat(real,imag);

}

/* Result Vector */

mepl_cfloat Z[length];

MEPL Quick Start Guide, Rev. 0

22 Freescale Semiconductor

Examples

/* Function Call */

mepl_vmul_s_cf(A, stride, b, Z, stride, length);

/* Print Result from Vector Z */

int i;

for(i=0;i<length;i++){

printf(“%f + i %f”, mepl_real_cf(Z[i]), mepl_imag_cf(Z[i]));

}

}

5.2 Multiply-Add
Using floating points, the function name for multiply-add is:

mepl_vmadd_f

Example Code:

#include <stdio.h>

#include <math.h>

#include <mepl.h>

void main(void){

/* Initialization for 8 Element Vector */

mepl_stride stride = 1;

mepl_length length = 8;

float A[N];

float B[N];

float C[N];

/* Fill Input Vectors with Init Value */

float Init = 1.0;

int i;

for(i=0;i<length;i+=1){

A[i] = Init;

B[i] = Init*2;

C[i] = Init;

Init += 1;

}

/* Result Vector */

float Z[length];

mepl_vmadd_f(A, stride, B, stride, C, stride, Z, stride, length);

}

MEPL Quick Start Guide, Rev. 0

Freescale Semiconductor 23

Examples

When adding a scalar instead of a vector, the function name is:

mepl_vaxpsy_f

Example Code:

#include <stdio.h>

#include <math.h>

#include <mepl.h>

void main(void){

/* Initialization for 8 Element Vectors */

mepl_stride stride = 1;

mepl_length length = 8;

float A[length];

float B[length];

float c = 2.0; //scalar to add with

/* Fill Input Vectors with Value Init */

float Init = 1.0;

int i;

for(i=0;i<length;i+=1){

A[i] = B[i] = Init;

Init += 1.0;

}

/* Result Vector*/

float Z[length];

/* Function Call */

mepl_vaxpsy_f(A, stride, B, stride, c, Z, stride, length);

}

MEPL Quick Start Guide, Rev. 0

24 Freescale Semiconductor

Examples

5.3 Maximum, returned by index
Using floating points, the function name for maximum, returned by index is:

mepl_maxidx_f

In this example, malloc and free are used for the index variable. Without malloc and free, the code will not
compile because of an incompatible declaration error. Because malloc and free are used, the file stdlib.h
needs to be linked as well.

Example Code:

#include <stdio.h>

#include <math.h>

#include <mepl.h>

#include <stdlib.h>

void main(void){

/* Initialization for 8 Element Vector */

mepl_stride stride = 1;

mepl_length length = 8;

float A[length];

/* Fill Input Vector with Value Init */

float Init = 1.0;

int i;

for(i=0;i<length;i+=1){

A[i] = Init;

Init += 1;

}

/* Result Variable */

float result;

/* Pointer to Index */

mepl_index *idx = (mepl_index*) malloc(1);

/* Function Call */

result = mepl_maxidx_f(A, stride, length, idx);

/* Free Index Pointer */

free(idx);

}

MEPL Quick Start Guide, Rev. 0

Freescale Semiconductor 25

Examples

5.4 Root mean square
Using floating points, the function name for root mean square is:

mepl_rms_f

This particular function doesn’t have the optimization expected with AltiVec technology. If simpler
functions are used to compute the root mean square, then optimization can be seen. The functions used
were a summation with absolute value and square-root. Together, the root mean square can be computed.

Example Code:

#include <stdio.h>

#include <math.h>

#include <mepl.h>

void main(void){

/* Initialization for 8 element Vector */

mepl_stride stride = 1;

mepl_length length = 8;

float X[length];

float sum; //extra variable used for

sum = 0.0; //summation

/* Fill Input Vector with Value Init */

float Init = 1.0;

int i;

for(i=0;i<length;i+=1){

X[i] = Init;

Init += 1;

}

/* Result Vector */

float Z;

/* Call to Summation-Absolute Value Function */

sum = mepl_sumsq_f(X, stride, length);

/* Divide Summation by Vector Length */

sum /= length;

/* Call to Square Root Function */

mepl_vsqrt_f(&sum, stride, &Z, stride, stride);

}

MEPL Quick Start Guide, Rev. 0

26 Freescale Semiconductor

Examples

5.5 1D discrete fourier transform on 2D matrix
Using floating point and split-complex values, the function name for 1D discrete fourier transform on 2D
matrix is:

mepl_dft_compute_ip_zf

The example given below uses the 1D DFT to get a result for a 2D Matrix. Therefore, the 1D DFT function
is computed in a loop on each column. The easier option would be to use the 2D DFT function.

Example Code:

#include <stdio.h>

#include <math.h>

#include <mepl.h>

/* To prevent errors, the arrays need to be global variables */

#define length 8 //number of rows and columns

#define log2_length 3

mepl_cfloat X[length][length];

void main(void){

/* Fill Input Matrix with Values Init1 & Init2 */

int i, j, k;

mepl_cfloat Init1 = {0.0,0.0};

mepl_cfloat Init2 = {1.0,0.0};

for(i=0;i<length;i+=1){

for(k=0;k<length;k+=1){

//the if statement below creates a pulse

if((i>=2)&&(i<=5)&&(k>=2)&&(k<=5)){

X[i][k] = Init2;

}else{ X[i][k] = Init1; }

}

}

/* Create DFT Object */

mepl_dft_cf* plan;

plan = mepl_dft_create_cf(length,MEPL_DFT_FORWARD);

/* Compute the 1D DFT on 2D Matrix */

for(i=0;i<length;i++){

mepl_dft_compute_ip_cf(plan, X[i], length);

MEPL Quick Start Guide, Rev. 0

Freescale Semiconductor 27

Examples

}

/* Print Results */

for(i=0;i<length;i++){

printf(“%f + i %f”, mepl_real_cf(X[i]), mepl_imag_cf(X[i]));

}

/* Destroy DFT Object */

mepl_dft_destroy_cf(plan);

}

5.6 Fill vector with random values
Using floating points, the function name for fill vector with random values is:

mepl_vrandu_f

Example Code:

#include <stdio.h>

#include <math.h>

#include <mepl.h>

void main(void){

/* Initialization for 8 Element Vector */

mepl_stride stride = 1;

mepl_length length = 8;

mepl_index seed = 16;

/* Result Vector */

float a[length];

/* Create RNG Object using the Seed */

mepl_randstate_f* r;

r = mepl_randcreate_f(seed);

/* Function Call */

mepl_vrandu_f(r, a, stride, N);

/* Destroy Object */

mepl_randdestory_f(r);

}

5.7 Linear interpolation
Using floating points, the function name for linear interpolation is:

mepl_interp_linear_f

Example Code:

MEPL Quick Start Guide, Rev. 0

28 Freescale Semiconductor

MEPL and AltiVec technology

#include <stdio.h>

#include <math.h>

#include <mepl.h>

void main(void){

/* Initialization for 8 Element Vectors */

mepl_stride stride = 1;

mepl_length length = 8;

float x_data[length];

float y_data[length];

float xp[length];

/* Fill Input Vectors with Values Init1 & Init2 */

float Init1 = 3.1;

float Init2 = 3.0;

int i;

for(i=0;i<length;i+=1){

x_data[i] = y_data[i] = Init1;

xp[i] = Init2;

if(i%2!=0){ Init1 += 2.2; }

else{ Init1 += 1.0; }

Init2 += 1.0;

}

/* Result Vector */

float yp[length];

mepl_interp_linear_f(x_data, stride, y_data, stride, length, xp, stride, yp, stride,
length);

}

6 MEPL and AltiVec technology
After reading this guide, hopefully you will be more comfortable using the Mentor Embedded
Performance Library. This library takes advantage of the AltiVec technology on products with an e6500
core, such as the T4240 chip, accelerating the computation time needed to execute the functions. A few of
the functions have been tested against other libraries, proving the speed-up time. The proof can be seen in
the data provided for some of the example functions.

MEPL Quick Start Guide, Rev. 0

Freescale Semiconductor 29

MEPL and AltiVec technology

For each function and input size, there is an approximate result describing how much faster the function
from the MEPL is compared to an alternative function or method. This was calculated by dividing the
number of clock cycles it took to complete the alternative computation by the number of clock cycles it
took to complete the MEPL function. The last column is then the percent increase in speed that AltiVec
technology creates for the MEPL functions. As seen in the table above, AltiVec technology optimization
tends to be greater with large sizes of data. Overall, the MEPL is extremely useful for anyone who wishes
to make faster calculations.

Table 10. Performance improvements with MEPL and AltiVec technology

Function Input Size
Times Faster
(approximate)

Percent Increase in
Computation Speed

Scalar Multiply Vector w/8 elements 0.2 – 80%

Vector w/256 elements 1.0 – 4%

Vector w/8192 elements 5.0 402%

Vector Multiply-Vector Add Vector w/8 elements 0.1 – 87%

Vector w/256 elements 1.4 42%

Vector w/8192 elements 3.3 227%

Vector Multiply-Scalar Add Vector w/8 elements 0.1 – 89%

Vector w/256 elements 0.7 – 32%

Vector w/8192 elements 3.9 294%

Maximum, returned by index Vector w/8 elements 0.1 – 93%

Vector w/256 elements 0.4 – 93%

Vector w/8192 elements 3.3 227%

Root Mean Square (RMS) Vector w/8 elements 7.4 638%

Vector w/256 elements 6.1 507%

Vector w/8192 elements 8.0 696%

1D Discrete Fourier Transform
on 2D Matrix

8x8 Matrix 0.5 – 48%

256x256 Matrix 3.6 263%

Fill Vector with Random
Values

Vector w/8 elements 1.9 93%

Vector w/256 elements 5.5 453%

Vector w/8192 elements 6.5 549%

MEPL Quick Start Guide, Rev. 0

30 Freescale Semiconductor

Revision history

7 Revision history
This table provides a revision history for this document.

Table 11. Document revision history

Rev.
number

Date Substantive change(s)

0 08/2013 Initial release.

Document Number: AN4786
Rev. 0

08/2013

Information in this document is provided solely to enable system and software

implementers to use Freescale products. There are no express or implied copyright

licenses granted hereunder to design or fabricate any integrated circuits based on the

information in this document.

Freescale reserves the right to make changes without further notice to any products

herein. Freescale makes no warranty, representation, or guarantee regarding the

suitability of its products for any particular purpose, nor does Freescale assume any

liability arising out of the application or use of any product or circuit, and specifically

disclaims any and all liability, including without limitation consequential or incidental

damages. “Typical” parameters that may be provided in Freescale data sheets and/or

specifications can and do vary in different applications, and actual performance may vary

over time. All operating parameters, including “typicals,” must be validated for each

customer application by customer’s technical experts. Freescale does not convey any

license under its patent rights nor the rights of others. Freescale sells products pursuant

to standard terms and conditions of sale, which can be found at the following address:

freescale.com/SalesTermsandConditions.

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Freescale, the Freescale logo, AltiVec, and QorIQ are trademarks of Freescale

Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the

property of their respective owners. The Power Architecture and Power.org word marks

and the Power and Power.org logos and related marks are trademarks and service marks

licensed by Power.org.

© 2013 Freescale Semiconductor, Inc.

	MEPL Quick Start Guide
	1 Downloading and linking
	1.1 Downloading
	1.2 Linking

	2 Input parameters for common data types
	3 Naming conventions
	4 Signal processing functions
	4.1 Create functions
	4.2 Destroy functions
	4.3 Compute functions
	4.4 Windowing functions
	4.5 Miscellaneous functions

	5 Examples
	5.1 Scalar multiply
	5.2 Multiply-Add
	5.3 Maximum, returned by index
	5.4 Root mean square
	5.5 1D discrete fourier transform on 2D matrix
	5.6 Fill vector with random values
	5.7 Linear interpolation

	6 MEPL and AltiVec technology
	7 Revision history

