

# Power Management

Selection Guide 2017



### Dear Customer,

The world is evolving into a place of always-on interconnectivity – demanding reliable, high performance and energy efficient solutions. Tiny, barely visible electronic components have become an indispensable part of our daily lives. They help to feed regenerative energy into power grids with almost zero losses, tame power-hungry computers, give us new invisible radar interfaces to control hardware, safeguard the data flying through cyberspace, make our cars more energy-efficient and enable new technologies such as wireless charging. Smart cities with smart homes, Internet of Things, Industry 4.0, building and industrial automation as well as smart vehicles are environments with a new demand on capacity and size of our system solutions.

Infineon Technologies translates future lifestyle trends into system requirements for next generation semiconductor solutions. The new Power Management Selection Guide illustrates our very broad portfolio of advanced, high performance technologies for the interconnected world of tomorrow. It meets your requirements by providing the right-fit solution with leadership of technologies, innovation and quality standards unrivalled in the industry.

As innovation and quality leader, we offer our long term expertise, our supply chain – delivery reliability, flexibility and supply security – and our professional support. Please feel invited to find the right products and solutions for your purpose.



### 尊敬的客户,

我们所处的这个世界正演变成一个无时无刻都处于互连状态的世界,需要可靠高效且节能的解决方案。 那些微小的,几乎看不到的电子元件已经成为日常生活中不可或缺的一部分。 这些电子元件能够使再生能源几乎零损失地馈入电网,减少计算机的耗电量,提供新的可以控制硬件的隐形雷达接口,保护通过网络空间传输的数据,使汽车更加节能并实现诸如无线充电等新技术。 智慧城市是一个综合环境,包含智能家居、物联网、工业4.0、建筑和工业自动化以及智能车辆等方面,对系统解决方案的容量和规模提出了新的需求。

英飞凌科技将未来的生活趋势转化为下一代半导体解决方案的系统需求。 新的电源管理选型指南展示了英飞凌为未来的互连世界准备的各种先进的高性能技术组合。 这些组合将领先的技术与创新以及行业内无与伦比的质量标准结合起来,为您提供适合的解决方案,能够满足您的各种需求。

作为行业创新和质量的领导者,英飞凌提供久经考验的专业知识,我们的供应链交付方式可靠、灵活,保障供应,并且还提供专业的支持。 期待您能接受我们的邀请,为您的需求找到合适的产品和解决方案。



Andreas Urschitz
Division President of
Power Management & Multimarket

电源管理及多元化市场总裁

### Content

| Power management applications                                    | 6   |
|------------------------------------------------------------------|-----|
| 3D printer                                                       | 6   |
| Automatic opening systems                                        | 8   |
| Battery powered applications                                     | 10  |
| E-mobility                                                       | 12  |
| PowlRaudio™ class D audio amplifier                              | 16  |
| DC-DC enterprise power solution for data processing applications | 18  |
| Industrial automation                                            | 26  |
| Industrial welding                                               | 22  |
| LED lighting                                                     | 24  |
| Major home appliance                                             | 26  |
| Induction cooking                                                | 26  |
| Air conditioning                                                 | 27  |
| Microwave oven                                                   | 28  |
| Multicopter                                                      | 30  |
| Robotics                                                         | 33  |
| OPTIGA™ Trust product family                                     | 36  |
| SMPS                                                             | 38  |
| Laptop adapter                                                   | 38  |
| Mobile charger                                                   | 40  |
| PC power supply                                                  | 41  |
| TV power supply                                                  | 42  |
| Embedded power supply                                            | 44  |
| Server power supply                                              | 45  |
| Telecom power supply                                             | 47  |
| DC EV charging                                                   | 49  |
| Uninterruptible power supply                                     | 51  |
| Gate driver application guide                                    | 52  |
| Solar                                                            | 54  |
| Wireless charging                                                | 58  |
|                                                                  |     |
| 20 V – 400 V MOSFETs                                             | 62  |
|                                                                  |     |
| 500 V – 900 V MOSFETs                                            | 88  |
|                                                                  |     |
| SiC discretes & Si diodes                                        | 134 |
|                                                                  |     |
| Discrete IGBTs                                                   | 148 |
|                                                                  |     |
| Power ICs                                                        | 160 |
|                                                                  |     |
| Motor control and gate driver ICs                                | 216 |
|                                                                  |     |
| Microcontrollers                                                 | 234 |
|                                                                  |     |
| Sensors                                                          | 246 |
|                                                                  |     |
| Packages                                                         | 260 |



# From product thinking to system understanding

Infineon enables efficient generation, transmission and conversion of electrical energy

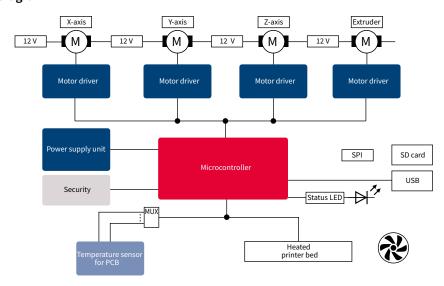


We make life easier, safer and greener – with technology that achieves more, consumes less and is accessible to everyone.





# 3D printer


### Industry-leading full system solution

Today, consumers can create a growing list of objects with nothing more than a digital file and a 3D printer. While the excitement is understandably big, 3D printers continue to face a number of limitations – most notably size and speed – that currently prevent the technology from fully replacing a number of assembly line manufacturing processes. Moving beyond these limitations to create winning 3D printing designs requires a highly reliable motor control solution with excellent speed control and position detection capabilities. Furthermore, the compact power supply must offer top energy efficiency and power density.

With Infineon's complete portfolio of semiconductor solutions, you will find components for 3D printing designs destined for high acclaim. We offer system solutions with every product you require – such as 40 V-800 V MOSFETs, CoolSET™ or integrated point-of-load converters (SupIRBuck™) for power management, our CIPOS™ Nano, NovalithIC™, IFX9201, sensor solutions and XMC4500 microcontroller for motor control, our OPTIGA™ Trust E for authentication and OPTIGA™ Trust TPM for security of data communication. As a leader in power management, Infineon offers benchmark product solutions for your power supply designs, ensuring highest efficiency ratings and higher power density. Our high level of integration of motor control solutions (up to 300 W), for example with our H-bridge IFX9201, CIPOS™ Nano or NovalithIC™, allows you to significantly reduce PCB space and system cost.

Our sensor solutions enable precise rotor position detection and more accurate switching points to ensure higher torque in our motor solutions. As proven by Infineon's exceptional track record, every component bearing the Infineon name is as robust as it is reliable.

### **Block diagram**

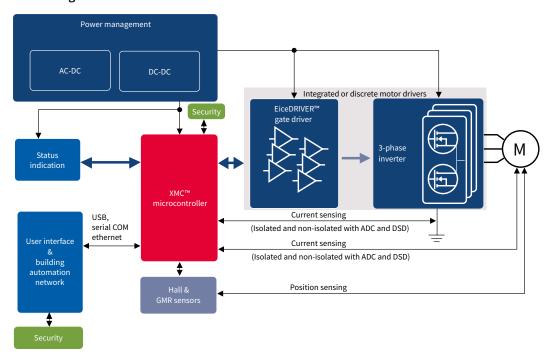




### Infineon's product recommendation for 3D printer

| Functional block              | Products                                                         | Selection/benefit                                                                                   |
|-------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Motor control                 | CIPOS™ Nano                                                      | High integration                                                                                    |
|                               | NovalithIC™                                                      | Integrated solution with fast signal processing and short delay times                               |
|                               | Angle sensor                                                     | Low power consumption and high accurate angular and linear position detection                       |
|                               | IFX9201                                                          | DC motor control for industrial applications – high integration, small package, protection features |
|                               | Hall switches                                                    | Recommendation                                                                                      |
|                               | Industrial microcontroller XMC1100/XMC4500                       | Recommendation                                                                                      |
|                               | Industrial transceiver                                           | Recommendation                                                                                      |
| Power supply:                 | 600 V CoolMOS™ P6/CE                                             | Ease-of-use and high efficiency                                                                     |
| PFC stage                     | 650 V PFC control IC                                             | High efficiency                                                                                     |
|                               | 650 V CoolSET™ F3                                                | High efficiency                                                                                     |
|                               | 650 V rapid 1/rapid 2 diodes                                     | Efficiency                                                                                          |
|                               | 650 V CoolSiC™ diodes generation 5                               | Ease-of-use and cost-optimized solution                                                             |
|                               | EiceDRIVER™ 2EDN gate driver                                     | Fast and robust gate driver                                                                         |
| Power supply:                 | 650 V quasi-resonant controller                                  | High efficiency                                                                                     |
| Main stage                    | 650 V LLC controller                                             | High efficiency                                                                                     |
|                               | 800 V CoolMOS™ CE/C3                                             | High efficiency                                                                                     |
|                               | EiceDriver™ 2EDN gate driver                                     | Fast and robust gate driver                                                                         |
| Main stage:                   | 40 V - 60 V OptiMOS™                                             | High efficiency                                                                                     |
| Synchronous rectification     | 60 V synchronous rectification MOSFET IRLR3636                   | High efficiency                                                                                     |
|                               | EiceDRIVER™ 2EDN gate driver                                     | Fast and robust gate driver                                                                         |
| Power supply:                 | Integrated power stages DC-DC: PowlRstage™, DrMOS                | High performance                                                                                    |
| DC-DC point-of-load           | Fully integrated point-of-load converter SupIRBuck™              | High performance DC-DC point-of-load solution                                                       |
| Recommended microcontroller + | Industrial microcontroller XMC1300, XMC4xxx-series               | Recommendation                                                                                      |
| DC-DC converter               | DC-DC voltage regulator (IFX90121, IFX91041, IFX81481, IFX80471) | High performance                                                                                    |
| Security                      | OPTIGA™ Trust E/OPTIGA™ TPM                                      | Enhanced embedded security                                                                          |




### Automatic opening system

Benchmark efficiency solutions for your motor control and power management

Every building and household utilizes openings at numerous positions in and around the building: sliding and swing doors, garage doors, sun-blinds and automated gates. When automated, these doors are equipped with systems that are able to manage the opening action, avoid unintentional opening, control the speed and torque, detect the presence of objects along the path, and a number of other functions. Automatic opening systems incorporate smart sensors, motor controls, supplies and battery management, which help to reduce energy losses in all conditions. This is where Infineon comes into place.

With Infineon's complete portfolio of semiconductor solutions, we offer system solutions for every product you require, ranging from power semiconductors over sensors to security products. Infineon products make your motor designs more energy efficient and secure against unauthorized manipulation of firmware update while our radar solutions cover a 16 times larger area than infrared solutions.

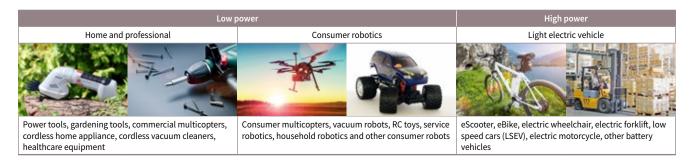
### **Block diagram**



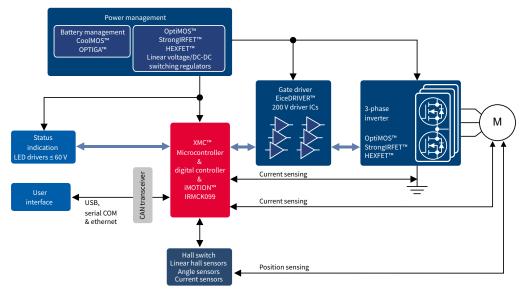


| Functional block | Products                                              | Selection/benefit                                                                    |
|------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------|
| Motor control    | 650 V TRENCHSTOP™ IGBT                                | Recommendation                                                                       |
|                  | Low voltage MOSFETs – OptiMOS™/StrongIRFET™           | Recommendation                                                                       |
|                  | Intelligent power modules/CIPOS™                      | High integration                                                                     |
|                  | Intelligent power modules – NovalithIC™               | High integration                                                                     |
|                  | Angle sensors                                         | Integrated solution with fast signal processing, short delay times                   |
|                  | Hall switches                                         | Low power consumption and high accurate angular and linear position detection        |
|                  | Double hall switches (TLE4966)                        | High integrated sensor solution for position detection including direction detection |
|                  | Gate driver ICs – EiceDRIVER™ 2EDL Compact/Enhanced   | Recommendation                                                                       |
|                  | Industrial microcontroller XMC1000/XMC4000            | Recommendation                                                                       |
|                  | DC-DC converter                                       | High performance                                                                     |
| Power management | AC-DC integrated power stage – 650 V CoolSET™ F3      | High efficiency                                                                      |
|                  | High voltage MOSFETs – 600 V CoolMOS™ P6              | High efficiency                                                                      |
|                  | 650 V TRENCHSTOP™ IGBT                                | High efficiency                                                                      |
|                  | Low voltage MOSFETs – OptiMOS™ (20 V - 300 V)         | High efficiency                                                                      |
|                  | PWM ICs for PFC/LLC/Combi PFC+LLC                     | High efficiency                                                                      |
|                  | Gate driver ICs – EiceDRIVER™ 2EDL Compact/ Enhanced  | Recommendation                                                                       |
| Motion sensor    | 24GHz radar sensor – BGT24MTR11/BGT24LTR11            | High performance                                                                     |
|                  | 24GHz radar sensor – BGT24MR2                         | High performance                                                                     |
|                  | 24GHz radar sensor – BGT24MTR12                       | High performance                                                                     |
| Security         | Security controller ICs – OPTIGA™ Trust E/OPTIGA™ TPM | Enhanced embedded security                                                           |




# Battery powered applications

### Highest performance in your motor control


Based on industry leading technology, highest quality and manufacturing expertise, Infineon provides a variety of innovative power semiconductors which enable designers to develop highly reliable and efficient solutions for all kinds of motor drive applications. Through our comprehensive portfolio we can address a broad range of battery powered motor control applications, such as power tools, forklifts, all kinds of light electric vehicles including e-skateboards, e-scooters, pedelecs, low speed cars and many others. Infineon offers an excellent selection of devices for power management and consumption, as well as voltage regulation – such as power MOSFETs (e.g. CoolMOS™ and OptiMOS™), XMC™ microcontrollers, EiceDRIVER™ gate drivers and more.

### Key enabling products are:

- Low voltage power MOSFETs OptiMOS™ and StrongIRFET™
- > Small Signal products
- > High voltage power MOSFETs CoolMOS™
- > EiceDRIVER™ Compact and 100 V/200 V gate driver ICs
- Magnetic sensors and voltage regulators
- Microcontrollers XMC™
- > Motion control ICs iMOTION™ IRMCK099
- > Authentication IC OPTIGA™ Trust B



### Typical battery powered three-phase system: a one-stop-shop for battery powered drives



www.infineon.com/motorcontrol

### A complete set of components that ensure system-cost competitiveness and high performance solution

|                                 | Consumer robotics                             | Home and professional   | Light electric vehicles         |
|---------------------------------|-----------------------------------------------|-------------------------|---------------------------------|
|                                 |                                               | StrongIRFET™ 20 V-300 V |                                 |
| MOSFETs                         | OptiMOS <sup>T</sup>                          | <sup>™</sup> 25 V-80 V  | OptiMOS™ 80 V-300 V             |
|                                 | CoolMOS™ P7 (s                                | standard grade)¹        | CoolMOS™ P7 (industrial grade)¹ |
| Cata delicantCa                 |                                               | EiceDRIVER™             |                                 |
| Gate driver ICs                 | 200 V and 600 V gate driver ICs               |                         |                                 |
| IPM                             | CIPOS™ Nano                                   |                         |                                 |
| Microcontrollers                | XMC1300                                       | /XMC1400                |                                 |
|                                 | iMOTION™                                      | XMC4500,                | /XMC4400                        |
| Microcontroller & driver supply | Linear voltage and DC-DC switching regulators |                         |                                 |
| CAN transceivers                | IFX1050, IFX1051                              |                         | IFX1050, IFX1051                |
| Magnetic sensors                | Hall and xMR sensors                          |                         |                                 |
| Authentication                  | OPTIGA™ Trust B                               |                         |                                 |

| Infineon product offering     |         | Consumer robotics                                                                    | Home and professional                                                   | Light electric vehicles                                             |
|-------------------------------|---------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------|
| Supply voltage                |         | 12 V-48 V                                                                            | 10.8 V-56 V                                                             | 24 V-144 V                                                          |
| MOSFET OptiMOS™               | Voltage | 25 V-100 V                                                                           | 20 V -100 V                                                             | 60 V-300 V                                                          |
| StrongIRFET™                  | Package | SuperSO8, PQFN 3x3, DirectFET™ S/M-Can                                               | SuperSO8, PQFN 3x3, DirectFET™ S/M/L-<br>Can, TOLL, TO-220, DPAK, D²PAK | TO-220, DPAK, D²PAK, D²PAK 7pin, TOLL,<br>DirectFET™ L-Can          |
| HV MOSFETs<br>CoolMOS™ P7     | Voltage | 600 V – 700 V*                                                                       | 600 V – 700 V*                                                          | 600 V**                                                             |
| IPM – CIPOS™ nano             |         | IRSM836-0x4MA (x=2,4,8)<br>IRSM808-204MH                                             | IRSM005-800MH<br>IRSM005-301MH                                          | IRSM836-0x4MA (x=2,4,8)<br>IRSM808-204MH                            |
| Authentication IC**)          |         | OPTIGA™ trust B                                                                      | OPTIGA™ trust B                                                         | OPTIGA™ trust B                                                     |
| Microcontroller XMC           |         | XMC1100                                                                              | XMC1300                                                                 | XMC1300                                                             |
| iMotion™                      |         | IRMCK099M                                                                            | IRMCK099M                                                               | XMC4400/4500                                                        |
| Microcontroller & driver supp | ly      | IFX1763/ IFX54441/ IFX54211/ IFX21003/<br>IFX30081/ IFX90121/ IFX91041               | IFX1763/ IFX54441/ IFX54211/ IFX21003/ IFX30081/ IFX90121/ IFX91041     | IFX1763/ IFX54441/ IFX54211/ IFX21003/ IFX30081/ IFX90121/ IFX91041 |
| CAN transceivers              |         | IFX1050, IFX1051                                                                     |                                                                         | IFX1050, IFX1051                                                    |
| Sensors                       |         | Hall switches (TLE496X),<br>Angle sensor (TLI5012B),<br>3D magnetic sensor (TLV493D) | Hall switches (TLE496X)                                                 | Hall switches (TLE496X),<br>Angle sensor (TLI5012B)                 |

### **Application requirements**

- > Efficiency: reduction of overall system energy consumption, increasing battery operating and life time, optimized thermal management
- > Reliability: reliable operating in harsh environments and avoiding system downtime
- > Maintenance: low maintenance and long lifetime of components
- > Size and cost: reduction of overall system size and cost
- > Time-to-market: reduction of development time and cost

### **Benefits of Infineon components**

- > Portfolio: complete portfolio out of one hand - enables scalability
- > Reliability: increased lifetime due to Infineon's reliability and quality
- > Size and cost: smallest area required for highest power density and BOM cost reduction due to lowest R<sub>DS(on)</sub>
- > Time-to-market: complete eco-system: simulations, documentation and demoboard solution for high-end solutions available

To shorten customer development cycle time and cost we offer a complete portfolio of low voltage motor control application kits:

| XMC1000 motor control application kit | XMC4000 motor control application kit | iMOTION™ modular application<br>design kit (MADK) | 40 V Medium Can ME/MF<br>DirectFET™ 3-phase BLDC motor drive<br>demo board |
|---------------------------------------|---------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------|
|                                       |                                       |                                                   |                                                                            |

<sup>&</sup>lt;sup>1</sup> If the necessary package/R<sub>DSion</sub> combination is not available in the new CoolMOS™ P7 series yet, the previous CoolMOS™ CE and P6 series are the preferred series

<sup>\*</sup> standard grade \*\* industrial grade

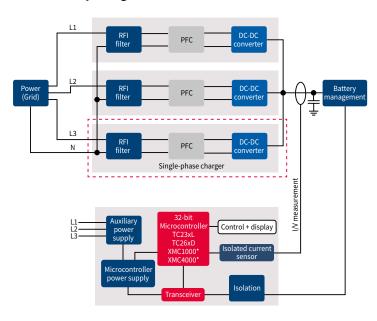


## E-mobility

Best solutions for battery chargers, wireless charging and battery management

To recharge the battery of an electric or hybrid/electric car, a charger is needed. Chargers can be implemented on-board or off-board the vehicle. Electric energy may be transferred to the vehicle by wire or by wireless methods like resonant inductive power transfer. Power units on-board the vehicle require automotive-grade components, while the wider product selection of industrial-grade components can be used for off-board units.

### On-board chargers


In cars with on-board chargers the batteries can be recharged from any standard AC power outlet, which provides maximum power of 3.6 kW best case (single-phase 230 V/16 A). This standard charging at low power takes several hours (overnight). Battery charging via the power grid requires a flexible power converter topology to handle different voltage and power ratings wherever the car may go to, and on-board chargers need to be as efficient and small as possible to stay cool at lowest possible weight.

### Off-board chargers

In off-board chargers, the power conversion from AC grid voltage to DC battery voltage is done outside the car and the resulting DC power is transmitted by wire to the EV's DC-charging socket. Ultra-fast chargers with power ratings at 50 kW and more have been designed in this way. As the power converter is off-board, automotive grade qualification is not required for the respective electronic components.

Apart from fast and ultra-fast chargers, there may be a market for off-board chargers in the power range up to 10 kW, for example to charge small and economic electric vehicles (LEVs). Also in case of the off-board chargers, selecting the right topology to enable maximum conversion efficiency is an important design criterion.

### AC-DC battery chargers: functional blocks



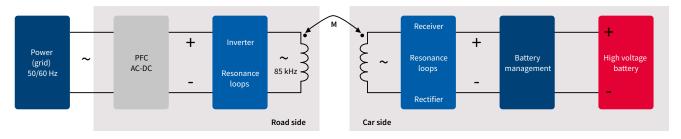
### www.infineon.com/emobility

<sup>\*</sup>For off-board chargers only

### Product portfolio for on-board and off-board charger applications

Infineon's comprehensive portfolio of semiconductors (sensors, microcontrollers, power semiconductors, etc.) lends itself perfectly to designs of compact units for on-board, off-board and wireless charging. Our products in this sector support high switching frequencies at lowest possible R<sub>DS(on)</sub> to enable compact and efficient designs: MOSFETs such as CoolMOS™, IGBTs such as TRENCHSTOP™ 5 and SiC Schottky diodes, like 650 V CoolSiC™ diode. In addition, integrated MOSFET and IGBT drivers, controller ICs for active CCM PFC high-performance microcontroller solutions and highly accurate current sensors complete our product portfolio.

### Automotive products for on-board units


| Typical part number    | Product family         | Description                                                               |
|------------------------|------------------------|---------------------------------------------------------------------------|
| 1ED020I12FA2           | Automotive EiceDRIVER™ | Single-channel isolated driver for 650 V/1200 V IGBTs and MOSFETs         |
| 1ED020I12FTA           | Automotive EiceDRIVER™ | Single-channel isolated driver, two-level turn-off for 650 V/1200 V IGBTs |
| 2ED020I12FA            | Automotive EiceDRIVER™ | Dual-channel isolated driver for 650 V/1200 V IGBTs and MOSFETs           |
| IPx65RxxxCFDA          | CoolMOS™               | 650 V MOSFET with integrated fast body diode                              |
| TC23xL, TC26xD         | AURIX™                 | 32-bit lockstep microcontroller                                           |
| TLF35584 <sup>1)</sup> | System supply          | New ISO26262-system-supply optimized for AURIX™                           |
| TLE7250G               | Transceiver            | High-speed automotive CAN transceiver                                     |
| TLE6251D               | Transceiver            | High-speed automotive CAN transceiver, with wake-up                       |

### Industrial products for off-board units

| Typical part number                           | Product family           | Description                                                                                         |
|-----------------------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------|
| IKWxxN65F5                                    | TRENCHSTOP™ 5            | 650 V fast IGBT with rapid 1 diode                                                                  |
| IGWxxN65F5                                    | TRENCHSTOP™ 5            | 650 V fast IGBT single                                                                              |
| IDWxxG65C5                                    | CoolSiC™ diode           | 650 V/1200 V SiC Schottky diode generation 5                                                        |
| IPW65RxxxC7                                   | CoolMOS™                 | 650 V MOSFET, CoolMOS™ C7 series for hard switching topologies                                      |
| HYBRIDPACK™ 1                                 | Power module             | 1200 V/200 A for fast and ultra-fast charging (>10 kW/phase)                                        |
| XMC1000 <sup>2)</sup> , XMC4000 <sup>2)</sup> | XMC™ microcontroller     | 32-bit ARM® Cortex® M0/M4F microcontrollers, up to 125°C ambient temperature (XMC4000)              |
| IFX1763, IFX54441, IFX54211                   | Linear voltage regulator | Linear voltage regulator family with output current capability of 500 mA/300 mA/150 mA respectively |
| IFX1050, IFX1021                              | Transceiver              | High-speed CAN transceiver/LIN transceiver                                                          |
| TLI4970                                       | Current sensor           | 600 V functional isolation, ± 50 A                                                                  |

### Wireless charging

Wireless methods for power transfer to charge the batteries of electric vehicles are gaining attention. Several concepts for wireless power transfer systems have been proposed, which in general seek to compensate the significant stray inductances on primary and secondary sides of the magnetic couplers by adaptive resonant methods. By the end of 2013, SAE announced a future standard for inductive charging which will define three power levels at 85 kHz. Infineon's TRENCHSTOP™ 5 IGBT and CoolSiC™ diodes are perfectly suited for driving inductive power transfer systems (on the road side) which operate inside the 80 kHz to 90 kHz band.

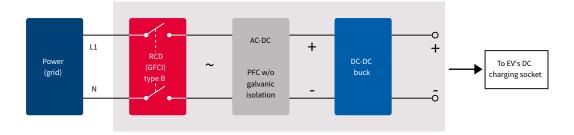


### www.infineon.com/emobility

- 1) in development
- for external chargers

#### Automotive products for the car side\*

| Typical part number    | Product family         | Description                                                             |
|------------------------|------------------------|-------------------------------------------------------------------------|
| 1ED020I12FA2           | Automotive EiceDRIVER™ | Single-channel isolated driver for 650 V/1200 V IGBTs and MOSFETs       |
| 1ED020I12FTA           | Automotive EiceDRIVER™ | Single-channel isolated driver, 2-level turn-off for 650 V/1200 V IGBTs |
| 2ED020I12FA            | Automotive EiceDRIVER™ | Dual-channel isolated driver for 650 V/1200 V IGBTs and MOSFETs         |
| IPx65RxxxCFDA          | CoolMOS™               | 650 V MOSFET with integrated fast body diode                            |
| TC23xL, TC26xD         | AURIX™                 | 32-bit lockstep microcontroller                                         |
| TLF35584 <sup>1)</sup> | System supply          | New ISO26262-system-supply optimized for AURIX™                         |


### Industrial products for the road side\*

| Typical part number | Product family           | Description                                                                                     |
|---------------------|--------------------------|-------------------------------------------------------------------------------------------------|
| IKW40N65F5          | TRENCHSTOP™ 5            | Fast IGBT with rapid 1 Diode, 40 A, TO-247                                                      |
| IGW40N65F5          | TRENCHSTOP™ 5            | Fast IGBT, single, 40 A, TO-247                                                                 |
| IDW40G65C5          | CoolSiC™ diode           | 650 V SiC Schottky diode generation 5, 40 A, TO-247 <sup>2)</sup>                               |
| XMC4000             | XMC™ Microcontroller     | 32-bit ARM® Cortex® -M4F microcontrollers, up to 125 °C ambient temperature                     |
| IFX1763, IFX54441   | Linear voltage regulator | Linear voltage regulator family with output current capability of 500 mA or 300 mA respectively |
| TLI4970             | Current sensor           | 600 V functional isolation, +/- 50 A                                                            |

<sup>\*</sup>Available in different current ratings

### Charger concepts without galvanic isolation of the power stages

Transformerless design, without galvanic isolation inside the power stages, are economic and efficient. But enhanced safety measures may be required to operate such designs from standard AC-grid power outlets. There need to be type-B RCD (GFCI) safety switches on the grid side to immediately break the circuit in case an unintended feedback of DC-voltage from the HV-battery into the AC-grid occurs under worst case failure conditions, but type-B safety switches on the grid side are not standard by today. This is a main reason why non-isolated designs are currently not accepted for on-board chargers as the level of safety measures on the grid side of the charging spot is uncertain. However, inside an off-board charger installation with an integrated type-B safety switch, the use of non-isolated concepts may be indicated. To highlight their opportunities, Infineon has investigated non-isolated concepts, built and evaluated laboratory-demonstrators of single-phase 3 kW chargers without galvanic isolation inside the power stages.



### Concept demonstrator of lean and efficient off-board DC-charger without galvanic isolation

Input 230 V/50 Hz single-phase AC

Output 220 V-390  $V_{DC}$ , max. power 3.3 kW at 350 V with 96.2 percent efficiency More detailed information about this demonstrator is available upon request.

### Industrial products for the road side

| Typical part number | Product family        | Description                                         |
|---------------------|-----------------------|-----------------------------------------------------|
| ICE3PCS01G          | Integrated controller | For active CCM PFC, PG-DSO-14                       |
| IPW65R019C7         | CoolMOS™ C7           | 650 V MOSFET, 19 mΩ, TO-247                         |
| IDW30G65C5          | CoolSiC™ diode        | 650 V SiC Schottky diode generation 5, 30 A, TO-247 |
| TLI4970             | Current sensor        | 600 V functional isolation, ± 50 A                  |

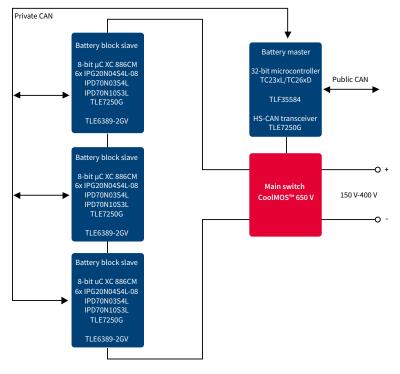
### www.infineon.com/emobility

- 1) in development
- Automotive version under consideration

### Best solution for battery management

An intelligent Battery Management System (BMS) is necessary to sustain battery performance throughout its entire lifetime – the challenge there is to tune the utilization of each battery cell individually. Passive cell balancing is the default approach where the weakest one of the cells sets the limits for battery lifetime and cruising range. Infineon's microcontrollers and sensors, in combination with our power devices, enable active cell balancing while charging and discharging. An active cell balancing system helps to increase the effective cruising range and the battery's lifetime by 5 to 10 percent, compared to passive balancing. In this context we want to highlight our 8-bit XC886CM microcontroller family for the slave blocks and the new 32-bit AURIX™ microcontroller family for the master block, our OptiMOS™ low voltage MOSFETs, our automotive CAN transceivers TLE7250G, TLE6251D, as well as step-down DC-DC controllers TLE6389-2GV and brand-new TLF35584.

#### Main switch


| Typical part number | Product family | Description                                  |
|---------------------|----------------|----------------------------------------------|
| IPx65RxxxCFDA       | CoolMOS™ CFDA  | 650 V MOSFET with integrated fast body diode |

### **Battery master**

| Typical part number    | Description                                         |  |  |
|------------------------|-----------------------------------------------------|--|--|
| TC23xL, TC26xD         | New 32-bit AURIX™ lockstep microcontroller          |  |  |
| TLF35584 <sup>1)</sup> | New ISO26262-system-supply optimized for AURIX™     |  |  |
| TLE7250G               | High-speed automotive CAN transceiver               |  |  |
| TLE6251D               | High-speed automotive CAN transceiver, with wake-up |  |  |

### **Battery master**

| Typical part number | Description                                                   |
|---------------------|---------------------------------------------------------------|
| XC886CM             | 8051 compatible 8-bit automotive microcontroller              |
| TLE6389-2GV         | Step-down DC-DC controller                                    |
| TLE7250G            | High-speed automotive CAN transceiver                         |
| IPG20N04S4L         | OptiMOS™ -T2 power transistor, logic level, dual, 40 V/8.2 mW |
| IPD70N03S4L         | OptiMOS™ -T2 power transistor, logic level, 30 V/4.3 mW       |
| IPD70N10S3L         | OptiMOS™ -T2 power transistor, logic level, 100 V/11.5 mW     |



### www.infineon.com/emobility

1) in development



# PowIRaudio™ class D audio amplifier

Attractive solutions for highest efficiency and power density

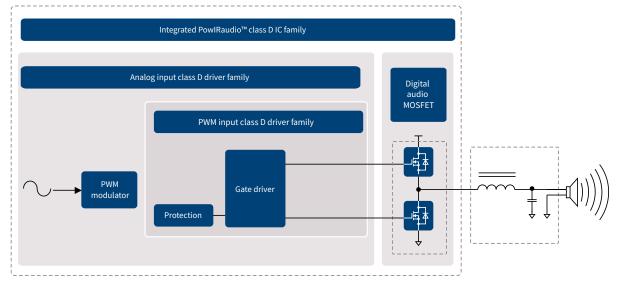
Infineon's audio solutions enable designers to improve the performance of their power amplifiers while increasing efficiency and reducing system size. Advances in semiconductor processes are behind a portfolio of class D technologies that allow professional home audio and car audio to benefit from the performance, power density and reliability that previously have been the domain of high-end systems.

### Integrated class D audio modules

The integrated class D audio module family of devices integrates PWM controller and digital audio power MOSFETs in a single package to offer a highly efficient, compact solution that reduces component count, shrinks PCB size up to 70 percent and simplifies class D amplifier design.

### Class D audio ICs

Infineon's family of ICs developed specifically for class D audio applications enable audio system manufacturers to safely and efficiently design audio amplifiers with superior audio performance.


#### Class D MOSFETs

Audio MOSFETs are specifically designed for class D audio amplifier applications. Key parameters such as  $R_{DS(on)}$ ,  $Q_{G}$ , and  $Q_{rr}$  are optimized for maximizing efficiency, THD and EMI amplifier performance.

### The Infineon advantage

- > Unified design platform; scalable output power by replacing the MOSFETs
- Best-in-class power efficiency
- > Class D tailored MOSFETs offer high efficiency and improve audio performance
- Large voltage and current headroom

### **Block diagram**



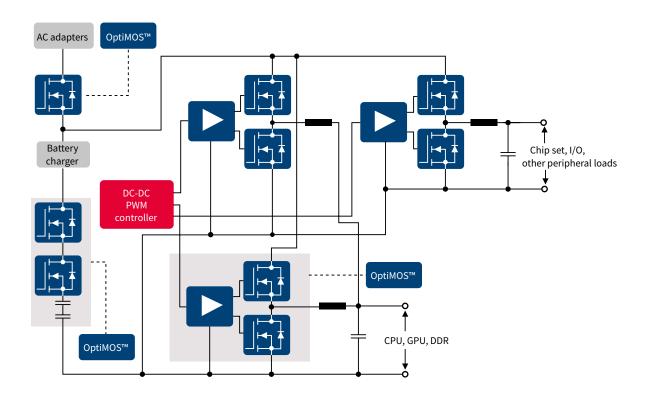
www.infineon.com/audio

### Integrated class D audio modules

|                |                          | IR4301M                   | IR4321M           | IR4311M           | IR4302M                   | IR4322M           | IR4312M           |
|----------------|--------------------------|---------------------------|-------------------|-------------------|---------------------------|-------------------|-------------------|
| Specifications | Number of audio channels | 1                         | 1                 | 1                 | 2                         | 2                 | 2                 |
|                | Max. power per channel   | 160 W                     | 90 W              | 45 W              | 130 W                     | 100 W             | 40 W              |
|                | Supply voltage           | ~ +/-3 4 V or 68 V        | ~ +/-25 V or 50 V | ~ +/-15 V or 32 V | ~ +/-32 V or 64 V         | ~ +/-25 V or 50 V | ~ +/-16 V or 32 V |
|                | Max. PWM frequency       | 500 kHz                   | 500 kHz           | 500 kHz           | 500 kHz                   | 500 kHz           | 500 kHz           |
| Features       | Differential audio input | ✓                         | ✓                 | ✓                 | ✓                         | ✓                 | ✓                 |
|                | Over-current protection  | ✓                         | ✓                 | ✓                 | ✓                         | ✓                 | ✓                 |
|                | Integrated power MOSFET  | √ (80 V)                  | √ (60 V)          | √ (40 V)          | √ (80 V)                  | √ (60 V)          | √ (40 V)          |
|                | PWM controller           | ✓                         | ✓                 | ✓                 | ✓                         | ✓                 | ✓                 |
|                | Thermal shutdown         | ✓                         | ✓                 | ✓                 | ✓                         | ✓                 | ✓                 |
|                | Click noise reduction    | ✓                         | ✓                 | ✓                 | ✓                         | ✓                 | ✓                 |
|                | Clip detection           |                           |                   |                   | ✓                         | ✓                 | ✓                 |
|                | Fault output             |                           |                   |                   | ✓                         | ✓                 | ✓                 |
|                | Package type             | 5 x 6 mm QFN              | 5 x 6 mm QFN      | 5 x 6 mm QFN      | 7 x 7 mm QFN              | 7 x 7 mm QFN      | 7 x 7 mm QFN      |
|                | Reference design         | IRAUDAMP12,<br>IRAUDAMP19 | IRAUDAMP21        | IRAUDAMP15        | IRAUDAMP16,<br>IRAUDAMP17 | IRAUDAMP22        | IRAUDAMP18        |

### Class D driver IC selection guide

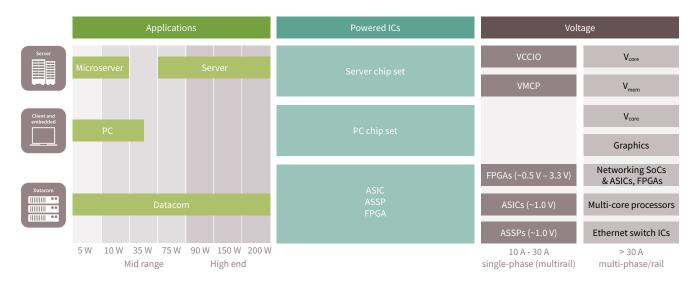
|                |                          | IRS20965S         | IRS20957S                | IRS2092S                                              | IRS2052M   | IRS2093M  | IRS2452AM  |
|----------------|--------------------------|-------------------|--------------------------|-------------------------------------------------------|------------|-----------|------------|
| Specifications | Number of audio channels | 1                 | 1                        | 1                                                     | 2          | 4         | 2          |
|                | Max. power per channel   | 500 W             | 500 W                    | 500 W                                                 | 300 W      | 300 W     | 500 W      |
|                | Supply voltage           | +/-100 V          | +/-100 V                 | +/-100 V                                              | +/-100 V   | +/-100 V  | +/-200 V   |
|                | Gate sink/source current | 2.0/2.0 A         | 1.2/1.0 A                | 1.2/1.0 A                                             | 0.6/0.5 A  | 0.6/0.5 A | 0.6/0.5 A  |
| Features       | Over-current protection  | ✓                 | ✓                        | ✓                                                     | ✓          | ✓         | ✓          |
|                | Over-current flag        | ✓                 |                          |                                                       |            |           |            |
|                | PWM input                | ✓                 | ✓                        |                                                       |            |           |            |
|                | Floating input           | ✓                 | ✓                        | ✓                                                     | ✓          | ✓         | ✓          |
|                | Dead time                |                   | ✓                        | ✓                                                     | ✓          | ✓         | ✓          |
|                | Protection control logic | ✓                 | ✓                        | ✓                                                     | ✓          | ✓         | ✓          |
|                | PWM controller           |                   |                          | ✓                                                     | ✓          | ✓         | ✓          |
|                | Clip detection           |                   |                          |                                                       | ✓          |           |            |
|                | Click noise reduction    |                   |                          | ✓                                                     | ✓          | ✓         | ✓          |
|                | Temperature sensor input |                   |                          |                                                       | ✓          |           | ✓          |
|                | Thermal shutdown         |                   |                          |                                                       | ✓          |           |            |
|                | Clock input              |                   |                          |                                                       | ✓          |           | ✓          |
|                | Package type             | 16pin SOIC narrow | 16pin SOIC narrow        | 16pin SOIC narrow                                     | MLPQ48     | MLPQ48    | MLPQ32     |
|                | Reference design         | -                 | IRAUDAMP4A,<br>IRAUDAMP6 | IRAUDAMP5,<br>IRAUDAMP7S,<br>IRAUDAMP7D,<br>IRAUDAMP9 | IRAUDAMP10 | IRAUDAMP8 | IRAUDAMP23 |




# DC-DC enterprise power solution for data processing applications

Multiphase and point-of-load DC-DC solution

An industry leader in digital power management, Infineon delivers solutions for the next generation server, communication, storage and client computing applications. Infineon offers a complete portfolio, including digital PWM controllers, integrated power stages, integrated point-of-load (PoL), MOSFET drivers, power blocks and discrete MOSFETs. These proven technologies offer full flexibility to our customers to optimize a complete system solution for space, performance, ease-of-design and cost to meet critical design goal objectives.


In addition, our latest software tools help simplify design, shorten design cycles and improve time-to-market.

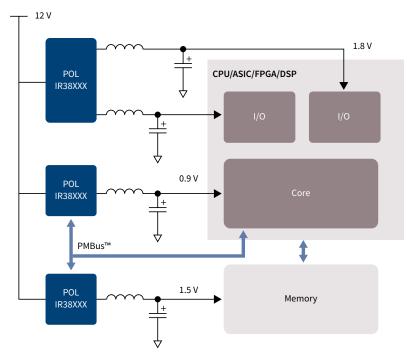


| Benefit                                             | Advantage                                                                                                                                                                                                                                                                                              |
|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Best-in-class efficiency                            | Digital controller + power stage provide Industry's best efficiency of more than 95%                                                                                                                                                                                                                   |
| Support all major VID interface and control schemes | Intel SVID, AMD SVI2, NVIDIA PWM VID, Parallel VID (up to 8-bit), PMBus™ Rev1.3, AVS Bus (PMBus™ Rev1.3)                                                                                                                                                                                               |
| Complete system solution                            | A broad portfolio of fully integrated point-of-load, integrated power stage and digital controller solutions in addition to discrete drivers & MOSFETs offers full flexibility to optimize complete system solutions requiring 1 A to 300 A+, single output/single phase to multiple output/multiphase |
| Digital controller flexibility                      | The industry's benchmark full featured 8-phase, multiple output, flexible configuration digital controllers                                                                                                                                                                                            |
| Ease-of-design                                      | GUI based optimization and configuration significantly reduces design cycle time                                                                                                                                                                                                                       |
| Smallest solution size                              | High density packaging and unique control schemes enable reduced external component count and overall board space                                                                                                                                                                                      |



### Multiphase DC-DC system solution






# DC-DC enterprise power solution for data processing applications

Integrated point-of-load converters

Infineon's point-of-load converters integrate a PWM controller, driver and MOSFETs into a small PQFN package for ease-of-use. The patented PWM modulation scheme allows greater than 1 MHz switching frequencies to deliver ultra compact layouts and smallest bill of materials. A PMBus™ interface is available for monitoring and control in systems that use advanced CPUs, ASICs and FPGAs.

### **Block diagram**

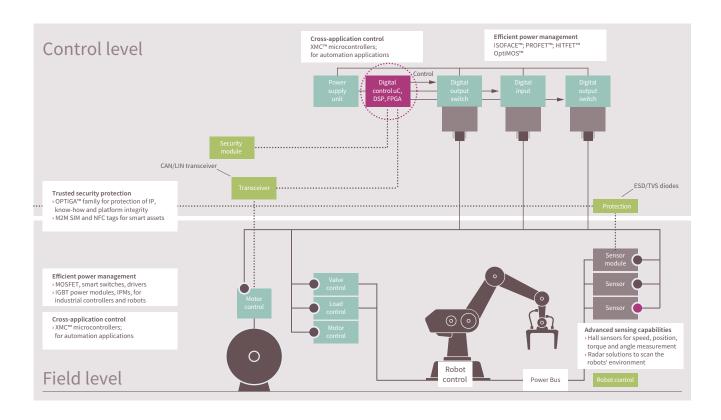


### **Key features**

- > Input voltage range 4.5 V-21 V
- Output current 1 A-35 A
- Operating temperature range of -40°C to 125°C

### **Key benefits**

- Integrated controller, driver, MOSFETs for small footprint
- High efficiency MOSFETs and thermally enhanced packages for operation without heat sinks




### **Product overview**

| Part number | Family           | I <sub>out</sub> | V <sub>in</sub> max.<br>[V] | f <sub>sw</sub><br>[MHz] | Package<br>[mm] | Key features                    |
|-------------|------------------|------------------|-----------------------------|--------------------------|-----------------|---------------------------------|
| IR38064     |                  | 35               | 21                          | 0.2-1.5                  | 5x7             |                                 |
| IR38063     | Dinital DMDtM    | 25               | 21                          | 0.2-1.5                  | 5x7             | PMBus™ interface                |
| IR38062     | Digital PMBus™   | 15               | 21                          | 0.2-1.5                  | 5x7             | PMDus interface                 |
| IR38060     |                  | 6                | 16                          | 0.2-1.5                  | 5x6             |                                 |
| IR3846      |                  | 35               | 21                          | 0.2-1.5                  | 5x7             |                                 |
| IR3847      |                  | 25               | 21                          | 0.2-1.5                  | 5x6             | Differential remote sense       |
| IR3448      |                  | 16               | 21                          | 0.2-1.5                  | 5x6             |                                 |
| IR3895      |                  | 16               | 21                          | 0.2-1.5                  | 5x6             |                                 |
| IR3894      |                  | 12               | 21                          | 0.2-1.5                  | 5x6             |                                 |
| IR3899      | Voltage mode     | 9                | 21                          | 0.2-1.5                  | 4x5             | Tracking, sequencing, margining |
| IR3898      |                  | 6                | 21                          | 0.2-1.5                  | 4x5             |                                 |
| IR3897      |                  | 4                | 21                          | 0.2-1.5                  | 4x5             |                                 |
| IR3892      |                  | 6+6              | 21                          | 0.2-1.5                  | 5x6             | Dual output                     |
| IR3891      |                  | 4+4              | 21                          | 0.2-1.5                  | 5x6             | Duaroutput                      |
| IR3823      |                  | 3                | 21                          | 0.2-1.5                  | 3.5x3.5         | Programmable soft-start         |
| IR3883      | Constant on-time | 3                | 14                          | 0.8                      | 3x3             | No compensation                 |

www.infineon.com/dataprocessing

# Industrial automation The smart choice for smart factories

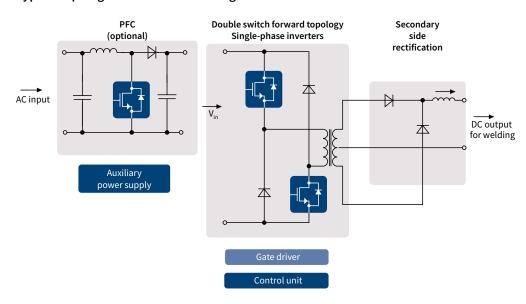


The growing pace of industrial automation and networking across industrial control systems presents manufacturers with evolving challenges. They need industrial-grade components that can withstand harsh manufacturing environments, meet the latest energy efficiency standards and offer robust levels of security. A microcontroller, for example, that does not support an extended temperature range is simply not fit for purpose. Other success factors include the right price/performance ratio, long term availability, thanks to guaranteed roadmaps and design support.

At Infineon, we are committed to making your automation designs as simple, energy efficient, secure and reliable as possible. Not only do we cover the full automation design flow from power management through control to interfacing and security, we also support our high quality, industrial-grade semiconductor offering with proven reference designs for easy design-in and rapid time-to-market. Benefit from our wide portfolio of smart switches for highly integrated and discrete solutions of I/O modules. In addition, we are the only manufacturer with a comprehensive portfolio of isolated I/O devices (ISOFACE™). As connectivity continues to boom, security is key to protecting your customers' operations. As the market-leading supplier, we offer embedded security solutions, such as OPTIGA™ Trust and OPTIGA™ TPM, to protect against attacks, counterfeiting, and manipulation. Infineon products are also engineered to allow a high level of integration while saving valuable space. Our semiconductor solutions are also speeding the transition towards the fourth "industrial revolution" by optimizing processes and sharing information across the entire value chain. An increasingly automated, connected environment presents new security challenges. Here, Infineon's hardware-based authentication systems and encryption solutions provide robust protection for product specifications, design blue-prints, production schedules and industrial secrets as they fly through cyberspace.



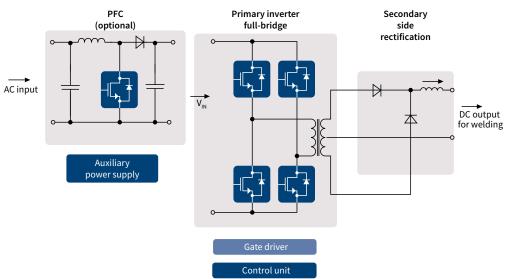
address key industry trends.


Discrete IGBTs are used in small inverterized single-phase hand-held welders with current output from 120 A to 200 A and three-phase industrial welding machines with current output up to 280 A. Infineon offers a wide product range to

Price competitive 650 V TRENCHSTOP™ 5 WR5 series has been specifically developed for the low power single-phase welding machine market. The TRENCHSTOP™ 5 WR5 offers low switching losses coupled with low conduction losses to provide efficiency to customers and outstanding thermal performance.

For the best-in-class performance, where customers strive for differentiation, the 650 V TRENCHSTOP™ 5 H5 series offers outstanding efficiency for optimized, low inductance designs.

The new high speed, soft switching 650 V TRENCHSTOP<sup>TM</sup> 5 S5 series have soft and smooth switching behavior with no tail current, while keeping very competitive switching performance. The TRENCHSTOP<sup>TM</sup> 5 S5 series can be used as plug and play replacement of previous generations of Infineon's IGBTs. The low  $V_{CE(sat)}$  650 V TRENCHSTOP<sup>TM</sup> 5 L5 series is an excellent solution for secondary Inverter AC output welding machines used for Aluminum (Al) or Magnesium (Mg) welding. For three-phase welding Inverters the 1200 V HighSpeed 3 family keeps leading market position for the best efficiency and highest reliability.


### Typical topologies for inverter welding machine < 280 A



\*(MMA/TIG < 280 A)

www.infineon.com/welding



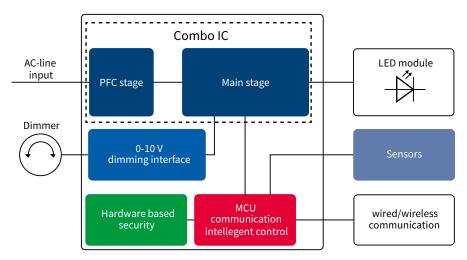


| Stage          |                        | Topology                         | Voltage class | Technology/product family                    | Selection                  |
|----------------|------------------------|----------------------------------|---------------|----------------------------------------------|----------------------------|
| PFC            | AC-DC                  | Boost converter/switch           | 650 V         | TRENCHSTOP™ 5 WR5                            | Cost/performace            |
|                |                        | Boost converter/switch           | 650 V         | TRENCHSTOP™ 5 S5                             | Efficiency and ease-of-use |
|                |                        | Boost converter/switch           | 650 V         | TRENCHSTOP™ 5 H5                             | Best efficiency            |
|                |                        | Boost converter/switch           | 1200 V        | HighSpeed 3                                  | Efficiency                 |
| Inverter       | DC-DC                  | Two transistor forward           | 650 V         | TRENCHSTOP™ 5 WR5                            | Cost/performace            |
|                |                        | Two transistor forward           | 650 V         | Rapid 1 diode                                | Efficiency                 |
|                |                        | Full-bridge/half-bridge          | 650 V         | TRENCHSTOP™ 5 WR5                            | Cost/performace            |
|                |                        | Full-bridge/half-bridge          | 650 V         | TRENCHSTOP™ 5 S5                             | Efficiency and ease-of-use |
|                |                        | Full-bridge/half-bridge          | 650 V         | TRENCHSTOP™ 5 H5                             | Best efficiency            |
|                | DC-AC                  | Al/Mg welding secondary inverter | 650 V         | TRENCHSTOP™ 5 L5<br>Low V <sub>CE(sat)</sub> | Efficiency                 |
| Secondary side | DC-DC                  | Output rectifier                 | 650 V         | Rapid 1 diode                                | Efficiency                 |
| rectification  |                        | Output rectifier                 | 650 V         | Rapid 1 diode – common cathode               | Efficiency                 |
| IGBT driver    | PFC/inverter           | Half-bridge single channel       | 650 V/1200 V  | EiceDRIVER™ (1ED-S compact)                  | Efficiency                 |
| Controller     | Controller             | Boost converter                  | 650 V         | CoolSET™ F3                                  | Recommendation             |
|                |                        | Boost converter                  | -             | XMC1000                                      | Flexibility                |
|                | Microcontroller supply | Linear voltage regulator         | up to 20 V    | IFX54211                                     | Efficiency                 |

www.infineon.com/welding



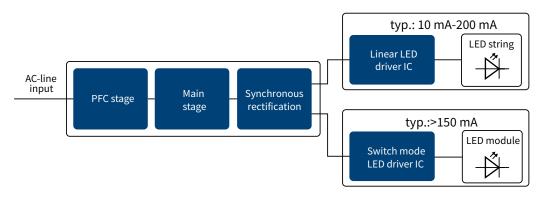
# LED lighting


Solutions for cost sensitive applications as well as for smart lighting

Our focus at Infineon lies on supplying tailored products for LED drivers, LED tubes, LED controls and LED strips. Our portfolio of high-quality, energy-efficient products and solutions comprises LED driver ICs, MOSFETs and microcontrollers suited for LED drivers as well as sensors and ICs for secure communication. In addition to offering products of proven quality, a highly competent global lighting team, in collaboration with channel partners, optimally supports our lighting customers in designing LED lighting products and systems.

### Key trends and challenges in LED lighting and our offering:

- > Light quality and human centric light
  - No current ripple by using two stage topologies (i.e. ICL5101)
  - Avoiding light flicker with analog dimming or puls density modulation (XMC1300) to very low dimming levels
  - Easy implementation of tunable light color
- Designing smaller and flatter LED drivers
  - Integrating up to 25 discrete components in one 0 V-10 V dimming interface IC (CDM10V)
  - Primary control with wide range input and output voltage range enabled by digital LED driver ICs (i.e. XDPL8105)
- Cost effectiveness
  - High voltage MOSFETs in SOT-223 housing
- > Smart lighting enabled by sensors
  - Reliable presence detection and large area coverage up to 300 m<sup>2</sup> enabled by 24GHz radar transceiver solutions (BGT24LTR11)


### **LED drivers**



### **LED drivers**

| Functional block           | Product type                                 | IC product family    | MOSFET technology | Voltage class                  |
|----------------------------|----------------------------------------------|----------------------|-------------------|--------------------------------|
| PFC stage                  | PFC                                          | IRS2505              | CoolMOS™ CE       | 600 V/650 V                    |
|                            |                                              | TDA4863              | CoolMOS™ CE       | 600 V/650 V                    |
| Combo solutions for PFC    | PFC+LLC (constant current /constant voltage) | ICL5101              | CoolMOS™ CE       | 600 V/650 V                    |
| and main stage             |                                              |                      | CoolMOS™ P6       | 600 V                          |
|                            | PFC/FB primary constant                      | IRS2982S + see below | CoolMOS™ CE       | 800 V                          |
|                            | voltage + secondary buck                     |                      | CoolMOS™ P7       | 800 V                          |
|                            | PFC + flyback (dual-stage)                   | XDPL8220             | CoolMOS™ CE       | 600 V/650 V/800 V              |
|                            |                                              |                      | CoolMOS™ P7       | 800 V                          |
|                            | PFC/flyback (single-stage)                   | XDPL8105             | CoolMOS™ CE       | 800 V                          |
|                            |                                              |                      | CoolMOS™ P7       | 800 V                          |
| Buck solutions             | Buck (single-stage)                          | ICL8201              | CoolMOS™ CE       | 500 V/600 V                    |
|                            | Secondary buck                               | ILD2111              | OptiMOS™          | 100 V/150 V/200 V/250 V/ 300 V |
|                            |                                              | ILD6150              | Integrated        | -                              |
|                            |                                              | XMC1300/XMC1400*     | OptiMOS™          | 100 V/150 V/ 200 V/250 V/ 300V |
| Synchronous rectification  | Synchronous rectification controller         | IR116xx              | OptiMOS™          | 100 V/150 V/200 V              |
| 0 V-10 V dimming interface | 0 V-10 V dimming interface                   | CDM10V               | -                 | -                              |
| Hardware based security    | OPTIGA™                                      | OPTIGA™ Trust        | -                 | -                              |
| мси                        | XMC™ microcontroller                         | XMC1100              | -                 | -                              |
| Sensors                    | Radar sensor                                 | BGT24LTR11           | -                 | -                              |
|                            | Barometric pressure sensor                   | DPS310               | -                 | -                              |

### LED driver with constant voltage output + linear/switch mode LED driver ICs



### Linear/switch mode LED driver ICs

| Functional block          | Topology   | IC product family | MOSFET technology                        | Voltage class                  |
|---------------------------|------------|-------------------|------------------------------------------|--------------------------------|
| Linear LED driver IC      | Linear     | BCR400 series     | Integrated (extra transistor for BCR450) | -                              |
| Switch mode LED driver IC | Buck       | ILD4000 series    | Integrated (OptiMOS™ for ILD4001)        | 30 V/60 V                      |
|                           |            | ILD6000 series    | Integrated                               | -                              |
|                           |            | XMC1300/XMC1400*  | OptiMOS™                                 | 100 V/150 V/200 V/250 V/ 300 V |
|                           | Buck/boost | ILD1151           | OptiMOS™                                 | 60 V/100 V                     |

www.infineon.com/lighting

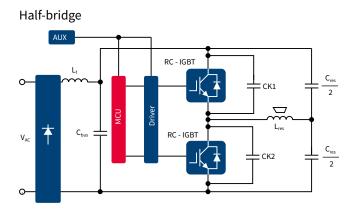
<sup>\*</sup>including communication

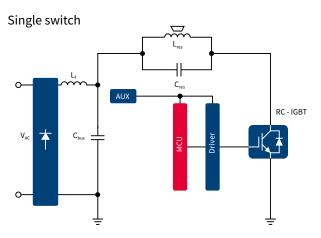


# Major home appliance

Highest performance and efficiency for induction cooking

Resonant-switching applications such as induction cooktops and inverterized microwave ovens have unique system requirements. The consumer marketplace demands that they be cost effective, energy efficient and reliable. To achieve these goals, designers need devices that are created specifically for these applications.


Infineon's RC discrete IGBTs were developed for resonant switching with a monolithically integrated reverse conducting diode. With this technology leadership and a broad portfolio of devices from 650 V to 1600 V, it is the market leader and provides the industry benchmark performance in terms of switching and conduction losses.


The newest family, RC-E, is cost- and feature-optimized specifically for low- to mid-range induction cookers and other resonant applications. This new family offers Infineon's proven quality in RC IGBTs with the best price versus performance and ease-of-use.

Infineon also offers a range of complementary products which can be used with the IGBTs, as well as in the central control and power supply subsystems of induction cooking appliances.

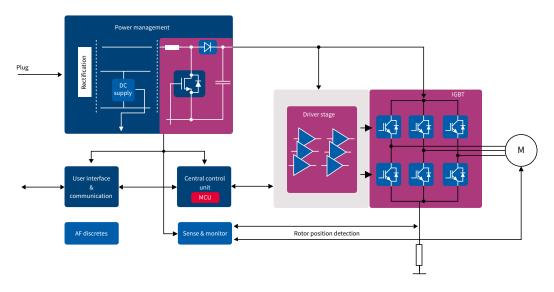
### Induction heating inverter (current resonance)

### Induction heating inverter (voltage resonance)





| Induction heating      | Topology                       | Voltage class    | Technology/product family       | Selection      |
|------------------------|--------------------------------|------------------|---------------------------------|----------------|
| DC-AC                  | Series-resonant half-bridge    | 650 V            | RC-H5                           | Recommendation |
|                        | Quasi-resonant single switch   | 1100 V           | RC-H3                           | Recommendation |
|                        | Quasi-resonant single switch   | 1200 V           | RC-H5, RC-E                     | Recommendation |
|                        | Quasi-resonant single switch   | 1350 V           | RC-H5                           | Recommendation |
|                        | Quasi-resonant single switch   | 1600 V           | RC-H2                           | Recommendation |
| IGBT driver            | Single channel and half-bridge | 600 V and 1200 V | General purpose gate driver ICs | Recommendation |
| Microcontroller        | 32-bit ARM® Cortex®-M0         | -                | XMC1302                         | Recommendation |
| Microcontroller supply | Linear voltage regulator       | Up to 20 V       | IFX54211                        | Efficiency     |
| AUX                    | Flyback fixed-frequency        | 800 V            | CoolSET™ F3 (VJZ-series)        | Recommendation |


www.infineon.com/homeappliance



# Major home appliance

### Innovative approach for air conditioning

Product designers are facing the daunting challenge of delivering smaller, smarter, more powerful and more energy-efficient appliances. Based on industry-leading technology and manufacturing expertise, our line of innovative components for household appliances meets and exceeds even the most rigorous requirements for reliability and quality. The following block diagram example of an air conditioning system, together with the product selection table, provides effective guidelines for engineers in selecting the right component for each power management stage inside major home appliances.



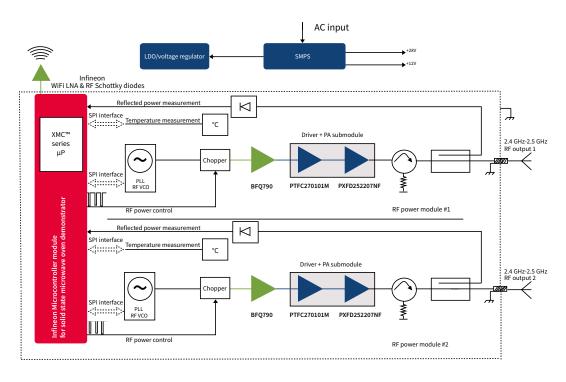
### Air conditioning

| Functional block                 | Topology                                  | Voltage class | Technology/product family                                | Selection      |
|----------------------------------|-------------------------------------------|---------------|----------------------------------------------------------|----------------|
| PFC AC-DC                        | IGBT – PFC CCM (high frequency – SC)      | 600 V         | HighSpeed 3                                              | Recommendation |
|                                  | IGBT – PFC CCM (low frequency – SC)       | 600 V         | TRENCHSTOP™ Performance                                  | Recommendation |
|                                  | IGBT – PFC CCM (cost competitive – No SC) | 650 V         | TRENCHSTOP™ 5 – H5                                       | Recommendation |
|                                  | MOSFET - PFC CCM                          | 600 V         | CoolMOS™ P6                                              | Reference      |
|                                  | Diode – PFC CCM                           | 650 V         | Rapid 1 and Rapid 2 diodes                               | Recommendation |
|                                  | Controller – PFC CCM                      | -             | ICE2PCS0xG, ICE3PCS0xG                                   | Recommendation |
|                                  | IPM - PFC CCM                             | 600 V         | CIPOS™                                                   | Recommendation |
| DC-AC                            | IGBT – B6-VSI                             | 600 V         | TRENCHSTOP™                                              | Efficiency     |
|                                  | IGBT – B6-VSI                             | 600 V         | RC-Drives Fast                                           | Recommendation |
|                                  | IPM – B6-VSI                              | 600 V         | CIPOS™                                                   | Recommendation |
| IGBT driver                      | Driver for B6 bridge                      | 600 V         | EiceDRIVER™ (6ED)                                        | Recommendation |
|                                  | Driver for B6 bridge                      | 600 V         | Gate driver ICs                                          | Recommendation |
| AUX                              | Flyback fixed-frequency                   | 800 V         | CoolSET™ F3R (VJZ-series)                                | Recommendation |
| Microcontroller/motor control IC | 32-bit ARM® Cortex®-M4                    | -             | XMC4100/XMC4200                                          | Recommendation |
|                                  | iMOTION™                                  | -             | IRMCxx motor control IC (incl. motion control algorithm) | Recommendation |
| Microcontroller supply           | Linear voltage regulator                  | Up to 20 V    | IFX1763, IFX54441, IFX54211, IFX3008                     | Efficiency     |
| Communication                    | CAN transceiver                           | -             | IFX1050, IFX1051, IFX1040                                | Robustness     |
| Position sensing                 | Angle sensor                              | -             | TLE5009, TLI5012B                                        | Recommendation |
|                                  | Hall switch                               | -             | TLI496x                                                  | Recommendation |



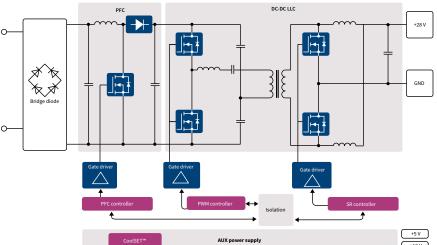
### Solid state RF powered oven solutions

Technology improving life quality


In the 1970s, Radio Frequency (RF) heating brought a convenient cooking experience to every household by using electromagnetic radiation in the microwave spectrum. With this technology consumers can reheat leftover meals, defrost frozen foods, etc. It has changed the way we cook meals by allowing families to rapidly heat food. However, the quality of the food cooking does not fulfill modern life standards due to the microwave's current design, as they cook unevenly and tend to lose power over time. These aspects will destroy user experience. Furthermore, microwave ovens are traditionally considered to pose safety risks due to the high voltages during operation or even while unplugged, as there is a high voltage magnetron and a high voltage capacitor inside that can retain a dangerous charge for a long time after being disconnected.

### Solid state RF powered oven solutions from Infineon

With the latest solid state RF powered oven solution from Infineon, consumers will reach a higher level of cooking experience. Families can enjoy more precise cooking, improved food quality, greater consistency in quality of cooking, selective heating, and versatile and complex cooking combinations. Using the latest LDMOS, manufacturers can use one or several of these 250 W units to build a microwave oven with the desired power level. The RF power transistors and architectures will provide a full range of power control, phase shifting, and frequency adjustment, allowing microwaves to cook complex food combinations. Also, safety is improved due to the 30 V operational voltage, which will replace the magnetron's 4 kV power supply, and the product lifetime is significantly greater. Moving in alignment with the home appliance trend, the solution from Infineon includes a reliable WIFI interface. Users can enjoy and share the cooking experience with the cloud community through the sensitivity, strong signal capability and interference immunity of this solution.


### Infineon's solution differentiates through important value drivers

By enabling OEMs innovation of smart, intelligent and connected home appliances, it helps OEMs to go from being an 'appliance manufacturer' to becoming a vital 'technology provider.'



www.infineon.com/microwave



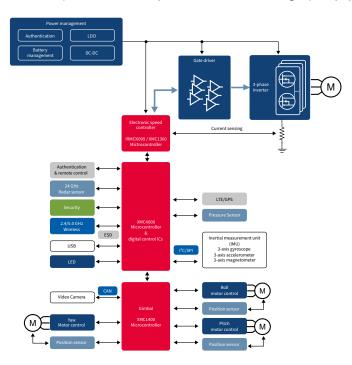


Infineon's highly efficient and cost effective switching power solution enhance the microwave oven performance.

Infineon offers a comprehensive portfolio to address a broad range. For further information visit our homepage.

### **Product recommendation**

| Sub Application | Recommendation                 | Key benefits                                                                                                |  |  |  |  |
|-----------------|--------------------------------|-------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Power supply    | CoolSET™: ICE2QR1765G, etc.    | High integrated AC-DC power controller, low standby, balancing of cost and performance                      |  |  |  |  |
|                 | PFC controller: ICE3PCS01G     | CCM, high power factor, low THD, multi-functional protection                                                |  |  |  |  |
|                 | PFC MOS: IPW60R070P6           | CoolMOS™ proven quality and performance, balancing of cost and performance                                  |  |  |  |  |
|                 | PFC diode: IDH06G65C5          | SiC generation 5, low FOM V <sub>f</sub> * Q <sub>c</sub>                                                   |  |  |  |  |
|                 | LLC controller: ICE1HS01G-01   | DSO-8, high performce, low cost                                                                             |  |  |  |  |
|                 | LLC HB MOS driver: IRS21834    | Noise immunity, robust, ease-of-use                                                                         |  |  |  |  |
|                 | LLC HB MOS: IPW60R099P6        | CoolMOS™ proven quality and performance, balancing of hard and soft switching                               |  |  |  |  |
|                 | SR MOS: IPP020N08N5            | OptiMOS™ 5, best-in-class FOM                                                                               |  |  |  |  |
|                 | SR driver controller: IR11672  | 200 V proprietary IC technology, 7 A peak turn off drive current, V <sub>cc</sub> range from 11.3 V to 20 V |  |  |  |  |
|                 | LDO: IFX1963TEV                | Low dropout, Low current consumption, wide temperature range, multi-protection                              |  |  |  |  |
| RF power        | Medium power amplifier: BFQ790 | Silicon Germanium (SiGe) technology, highly linear output stages                                            |  |  |  |  |
|                 | LDMOS driver: PTFC270101M      | Operating from 900 MHz to 2700 MHz, excellent gain, efficiency and linearity performance                    |  |  |  |  |
|                 | LDMOS: PXFD252207NF            | Thermally-enhanced high power RF LDMOS FET, high reliability and consistency                                |  |  |  |  |
| WiFi            | 5 G band LNA: BFP840ESD        | Best-in-class noise figure (0.95 dB), high transition, highest gain (18 dB)                                 |  |  |  |  |
|                 | 2.3 – 3.5 GHz LNA: BFP842ESD   | High linearity , high transition frequency, high robustness                                                 |  |  |  |  |
| MCU             | XMC4500                        | ARM® Cortex®-M4 core, 32-bit, 120 MHz, 160 kB SRAM                                                          |  |  |  |  |


www.infineon.com/microwave



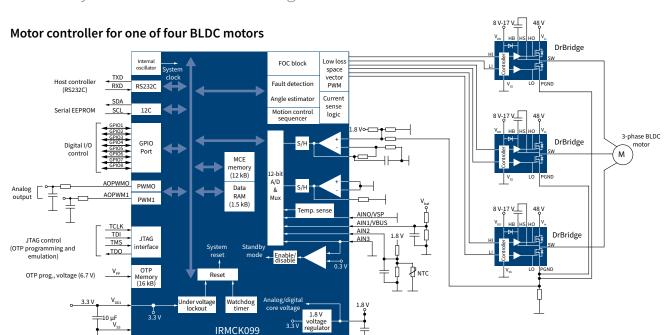
Multicopters are well on their way to become a huge hit in the consumer market. Currently, seldom manufacturers offer a system solution including everything from power electronics to controllers and sensors. But that is precisely what you need to design a highly efficient multicopter capable of what counts most among consumers: exceptionally long airtime. With great development progress in the field of data processing, navigation and control, the overall system performance is determined from reliable and efficient power management. Flying is the most critical application in terms of performance, efficiency and control. The high quality standards and system knowledge in automotive and industrial power electronics offer customers a wide spectra of system solutions, with the highest quality and performance standards.

### **Multicopter solutions from Infineon**

With Infineon's comprehensive portfolio of high quality products, you will find the best-possible components for multicopter designs. We offer a near system solution – everything from XMC™ microcontrollers, to iMOTION™ motor control ICs, to magnetic sensors and more – with the exception of one commodity, an IMU (Inertial Measurement Units) for existing solutions. Infineon is quickly becoming a one-stop-shop for existing multicopter applications. In the very fast growing multicopter market, energy efficiency and reliability are becoming more important. Camera applications, autonomous flying and sophisticated on-board equipment are pushing the limits of power management and reliability. Being a recognized leader in automotive and industrial power electronic systems, Infineon offers high quality system solutions for the next generation of multicopters.



| Benefits                             | Offer                                                                                                                                    |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Development effort and cost          | > With no or little experience in motor control, customers can implement the iMOTION™ motor control IC and take flight                   |
| reduction                            | > Project development can be reduced up to 30 percent by using reference designs and the DAVE™ platform for microcontroller programming  |
| Authentication                       | > Infineon's solutions enable authentication of components connected to the system                                                       |
|                                      | > Guaranteed safety and protection of the product, avoiding liability                                                                    |
| Ease of precision control for flight | > Through the benefits of multifunction sensors, the user can experience an easy, stable, smooth and accurate control of the multicopter |
| and data                             | > Closed loop control of gimbal motor, sensors enhanced camera stability and data transmission when recording video                      |
| Lighter                              | > The highly efficient components and effective flight control can make the multicopter lighter, which results in longer flight time     |
| Collision avoidance                  | > 24GHz radar sensors have the capability of detecting the proximity of objects such as trees, buildings, etc.                           |
| Broader portfolio                    | › Infineon can provide all the necessary critical semiconductor components for multicopters                                              |


www.infineon.com/multicopter



Infineon offers a comprehensive portfolio to address a broad range of multicopters. For further information please explore our homepage.

### Solution tree for multicopters

| Flight control                                                                       |                                                                |                                                                                 |                                                 |                                                                                                                      | ESC                                                                                       |                   |                                                                  |           |                                              |
|--------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------|------------------------------------------------------------------|-----------|----------------------------------------------|
| Microcontrollers                                                                     | Sensors                                                        | DC-DC modules                                                                   | LDO                                             | Low noise<br>amplifer(LNA                                                                                            | ) Microc                                                                                  | ontrollers        | Sensor                                                           | S         | Intelligent power modules                    |
| P XMC4000 family<br>P XMC1000 family<br>P AURIX™                                     | DPS310                                                         | > IFX90121ELV50<br>> IFX91041EJV33<br>> IFX91041EJV50                           | > IFX1117ME<br>> IFX54441EJV<br>> IFX1763XEJV33 | > LTE: BGA7H,<br>BGA7M, BGA7L<br>> GPS: BGA524N6<br>BGA824N6<br>> Wi-Fi: BFP842ES<br>BFR840L3RHESI<br>BFR843L3, etc. | > ePOWE<br>D,                                                                             | N™                | > Hall sensor:<br>TLI4961, TLV<br>> Angle sensor<br>TLI5012B, TL | 4961<br>: | > IRSM005-800MH<br>> IRSM836-084MA           |
| Security                                                                             | Accessory authentication                                       | Joystick                                                                        | Interface protec-<br>tion diodes                | LED drivers                                                                                                          |                                                                                           | FET gate<br>ivers | Dual n-cha<br>power MOS                                          |           | Low voltage<br>MOSFETs                       |
| OPTIGA™ Trust E<br>SLS32AIA<br>OPTIGA™ Trust P<br>SLJ52ACA<br>OPTIGA™ TPM<br>SLB96XX | > OPTIGA™ Trust<br>> SLS10ERE<br>> OPTIGA™ Trust B<br>SLE95250 | > 3D magnetic<br>sensor: TLV493D                                                | > ESD102 series                                 | > BCR450<br>> BCR321U<br>> BCR421U                                                                                   | <ul><li>&gt; IRS230</li><li>&gt; 6EDL04</li><li>&gt; IRS233</li><li>&gt; PX3517</li></ul> | 1N02P<br>65       | > IR3742, etc.<br>> BSC0925ND,                                   |           | > OptiMOS™ 5 series<br>> StrongIRFET™ serie: |
| Charger                                                                              |                                                                |                                                                                 |                                                 | Battery management                                                                                                   |                                                                                           |                   |                                                                  |           |                                              |
| High voltage MOS                                                                     | FETs Low voltage                                               | e MOSFETs F                                                                     | Stand alone<br>PWM controllers                  | Authenticati                                                                                                         | on ICs                                                                                    | Cell ba           | lancing                                                          | Low       | voltage MOSFETs                              |
| 0 600 V-650 V CoolMOS™CE                                                             |                                                                |                                                                                 |                                                 | > OPTIGA™ Trust B SLE95250                                                                                           |                                                                                           |                   | 8, DirectFET™                                                    |           |                                              |
| Gimbal control                                                                       |                                                                |                                                                                 |                                                 |                                                                                                                      |                                                                                           |                   |                                                                  |           |                                              |
| Microcontrollers                                                                     | Angle sensor                                                   | s LDO                                                                           | CAN trai                                        | nsceivers                                                                                                            | Low voltage<br>MOSFETs                                                                    |                   | ual n-channel<br>ower MOSFETs                                    |           | MOSFET gate<br>drivers                       |
| XMC1400 family                                                                       | > TLI5012B<br>> TLE5009                                        | <ul><li>) IFX1117ME</li><li>&gt; IFX54441EJV</li><li>&gt; IFX1763XEJV</li></ul> | > HS CAN IF<br>> IFX1050GV                      | /IO 25                                                                                                               | tiMOS™5<br>V-30 V<br>ongIRFET™<br>V-30 V                                                  | › IRF             | HM8363TRPBF,                                                     | etc. > II | R2101STRPBF, etc.                            |



The ready-to-use solution can bring differentiation and innovation

iMOTION™ ICs integrate all the control and analog interface functions required for sensorless field oriented control (FOC) of PM motors using DC link or leg shunt current measurements. In addition, they feature Infineon's patented and field proven motor control engine (MCE) that eliminates software coding from the motor control algorithm development process. Implementing a variable speed drive is reduced to configuring the MCE for the respective motor. Assisted by powerful tools like MCEwizard and MCEDesigner it is possible to have the motor up and running in less than an hour.

# Digital beam forming by BGT24MTR11 and BGT24RM2

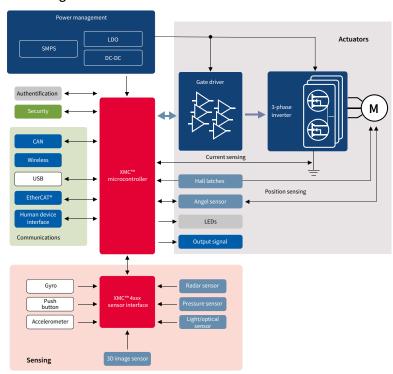
### The multi-functional 24GHz radar solutions bring innovation

www.infineon.com/multicopter





### Robotics

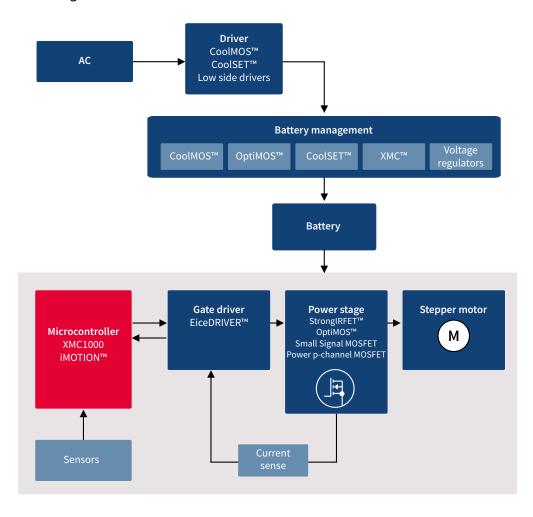

### Superior solutions for industrial and service robotics

The robotic revolution has started – new technologies and applications have transformed our professional and private spheres of everyday life. Robots are now about to join the ranks of such innovative and disruptive technologies by revolutionizing traditional habits and processes. Therefore, we at Infineon offer dedicated solutions for the industrial and service robot market addressing the different needs of our customers. Discover our solutions and product portfolios for robotics and drive the robotics revolution in domestic as well as in industrial environments.

### Industrial robotics

Industrial robots came a long way from their invention to their newest generations. Historically, industrial robots are commonly seen as the working horses of highly automated production lines performing extremely repetitive tasks with highest accuracy. The robot's workspace is protected by safety cells, which clearly separate workers and robots in order to prevent from collision and clamping situations. They perform high precision tasks for example in welding environments or handle heavy loads such as carrying car bodies in automotive production sites. But times are changing: The new generation of industrial robots called collaborative robots or "cobots" will work alongside humans without safety cells, assisting them and thereby augmenting the robot's and the worker's skills, thus creating new kinds of collaboration. In addition, they will be equipped with a higher number of axes in order to enable full freedom of movement. Nevertheless, this kind of boundless collaboration requires highest safety standard for the robots (EN ISO 10218 and ISO/TS 15066). Infineon is able to address all the requirements of "traditional" industrial robots and the new demands of collaborative robots.

### Block diagram - industrial robotics




www.infineon.com/industrial-robotics www.infineon.com/service-robotics

### Service robotics – powerful and quiet solutions

Service robotics is another fast growing segment with a 15 percent CAGR within the next 5 years. The key applications are electric vacuum cleaners and lawn mowers. High performance Infineon components such as low  $R_{DS(on)}$  MOSFETs, powerful microcontrollers and sensors enable high power density, weight reduction and quietness.

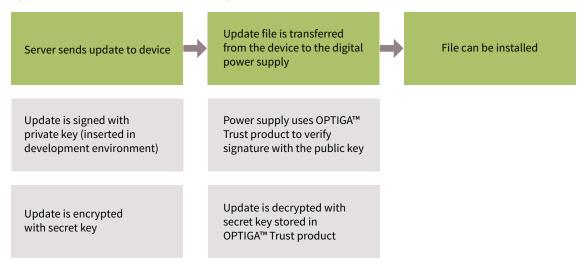
### Block diagram - service robotics



www.infineon.com/industrial-robotics www.infineon.com/service-robotics

### Infineon's product recommendation for robotics

| Functional block             | Products                                                                | Selection/benefit                                                                                                                           |  |  |  |  |  |
|------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Power management             | 600 V CoolMOS™ P6                                                       | Ease-of-use                                                                                                                                 |  |  |  |  |  |
|                              | 600 V/650 V CoolMOS™ C7                                                 | Best power density                                                                                                                          |  |  |  |  |  |
|                              | 800 V CoolMOS™ C3                                                       | Higher MTBF                                                                                                                                 |  |  |  |  |  |
|                              | EiceDRIVER™ ICs                                                         | Higher drive capability                                                                                                                     |  |  |  |  |  |
|                              | 650 V CoolSiC™ G5 SiC diode                                             | Improved density                                                                                                                            |  |  |  |  |  |
|                              | 650 V CoolMOS™ CFD2                                                     | Better reliability                                                                                                                          |  |  |  |  |  |
|                              | OptiMOS™ 5                                                              | Higher output current                                                                                                                       |  |  |  |  |  |
|                              | 650 V and 800 V CoolSET™                                                | Quasi-resonant operation for better EMI                                                                                                     |  |  |  |  |  |
|                              | DC-DC switching regulators                                              | Small system design                                                                                                                         |  |  |  |  |  |
|                              | LDOs                                                                    | Energy efficiency                                                                                                                           |  |  |  |  |  |
| Motor control                | IGBT modules                                                            | High power density – save space in the switch cabinet                                                                                       |  |  |  |  |  |
|                              | IGBT modules – IPOSIM                                                   | Lifetime calculation of converter based on power cycling capability                                                                         |  |  |  |  |  |
|                              | IPMs (low power up to ~2 kW)                                            | Compact converter size due to high integration, high power density                                                                          |  |  |  |  |  |
|                              | Smart high side switches/PROFET™                                        | Robustness including diagnosis and protection                                                                                               |  |  |  |  |  |
|                              | OptiMOS™ 30 V-300 V                                                     | Highest system efficiency, best-in-class performance (industry's lowest $R_{\scriptscriptstyle DS(on)}$ )                                   |  |  |  |  |  |
|                              | StrongIRFET™                                                            | High current carrying capability – high system reliability                                                                                  |  |  |  |  |  |
|                              | XMC1000/XMC4000 microcontroller family                                  | Precise motor control and current sensing, realization of precise position measurement                                                      |  |  |  |  |  |
|                              | EiceDRIVER™ IC with coreless transformer technology                     | Small system design – high power density, excellent position accuracy                                                                       |  |  |  |  |  |
|                              | Angle sensors – rotor position sensing (FOC, sinusoidal)                | Highest accuracy, dual die concept – redundancy in signal generation fulfilling highest safety standards                                    |  |  |  |  |  |
|                              | Hall latches – rotor position sensing (BLDC, prediction for sinusoidal) | Small system design                                                                                                                         |  |  |  |  |  |
|                              | Linear hall sensors – torque sensing                                    | Dual die concept – redundancy in signal generation fulfilling highest safety standards, high accuracy over whole temperature range          |  |  |  |  |  |
| Radar sensing and microphone | BGT24LTR11                                                              | 24 GHz – radar intelligent motion sensing and object classification, direction of movement, speed detection for highest safety requirements |  |  |  |  |  |
|                              | BGT60TR24                                                               | 60 GHz – intelligent motion sensing and object classification, direction of movement, speed detection for highest safety requirements       |  |  |  |  |  |
|                              | Silicon microphone                                                      | Comfortable voice controlled teaching                                                                                                       |  |  |  |  |  |
| Security/authentication      | OPTIGA™ family                                                          | Protection of business model                                                                                                                |  |  |  |  |  |
|                              |                                                                         | Prevent from line-down                                                                                                                      |  |  |  |  |  |
|                              |                                                                         | IP protection                                                                                                                               |  |  |  |  |  |
|                              |                                                                         | Brand protection                                                                                                                            |  |  |  |  |  |
|                              |                                                                         | Prevent from counterfeit products                                                                                                           |  |  |  |  |  |
| Communication                | CAN transceivers                                                        | High EMI robustness                                                                                                                         |  |  |  |  |  |
|                              | XMC4000 family                                                          | Ethernet – easy realization of embedded servers                                                                                             |  |  |  |  |  |
|                              |                                                                         | Easy and code efficient implementation of standard filed bus interface mode                                                                 |  |  |  |  |  |
|                              |                                                                         | USIC (serial communication for SPI, dSPI, qSPI, UART, IIC)                                                                                  |  |  |  |  |  |
|                              |                                                                         | USB – standardized interface for easy maintenance                                                                                           |  |  |  |  |  |
|                              | XMC4300 and XMC4800 series                                              | Integrated EtherCAT® slave controller – most cost and time efficient EtherCAT® implementation on the market                                 |  |  |  |  |  |

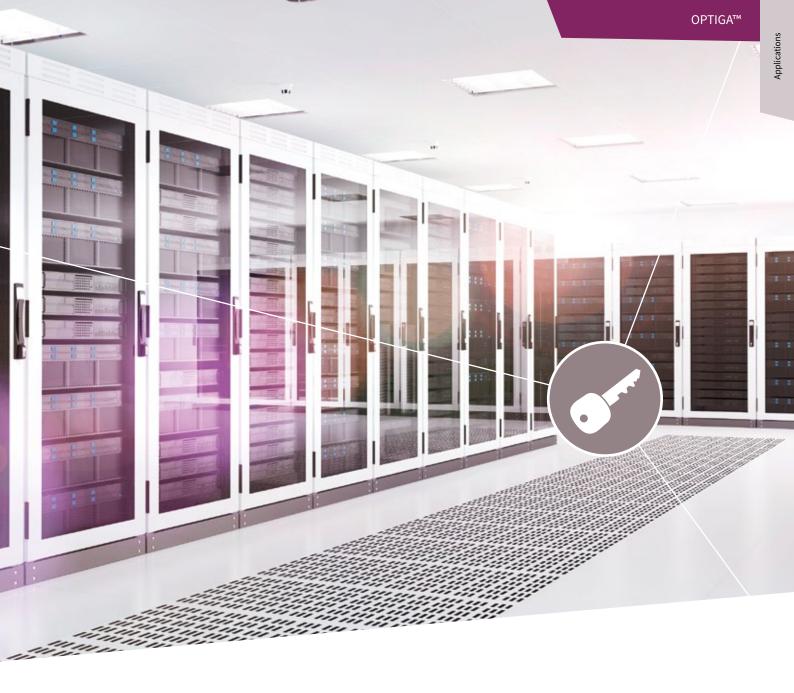

# OPTIGA<sup>TM</sup> Trust product family Enabling secured communication for IoT

An increasingly connected world enables offering new services and features leading to new business models. For these services high system reliability and data integrity is a key necessity. The Internet of Things generates an increased amount of data due to the proliferation of sensors and actuators that have become available at attractive cost. Intelligent lighting systems represent one of the leading applications that enable collection of information that goes beyond pure lighting functionality. Lighting system manufacturers are looking into new functions like gas, pressure and sound sensing in order to increase customer value in smart buildings and smart cities. Proliferation of interconnected nodes poses serious challenges in terms of ensuring that the Internet of Things does not offer backdoors to cybercrimes. Infineon offers several products that build an "anchor of trust" in order to ensure secure data communication with the OPTIGAT Trust product family.

In a connected world, digitally controlled power supplies have been adopted for their higher performance and reliability. The performance and security of these systems can be continuously improved by firmware updates. However, at the same time, system reliability is incredibly important and can be at danger when unauthorized updates are pushed into a system. The firmware of digitally controlled power supplies typically need to be updated, and given the potential physical damage (e.g. overvoltage) caused by unauthorized updates, the implementation of a high security standard when authenticating, decrypting and checking authenticity of a firmware update for a digital power supply is fundamental.

To prevent unauthorized firmware updates, updates can be sent with a cryptographic signature and as encrypted files allowing the receiving system to verify and decrypt the update before installing it. With Infineon's OPTIGA™ Trust product family, the keys used for the signature and encryption are stored in the hardware-based OPTIGA™ security solution and can therefore not be easily read out or altered.

### Application flow for secure software update




### Key benefits of OPTIGA™ security

Combining state-of-the-art hardware security controllers with software

- > Reliable turnkey products with a proven track record
- Strong security based on the latest cryptography
- Offering a variety of interfaces to match your system architecture
- Easy to integrate based on evaluation kits, host code and reference applets
- Developed and manufactured in certified environment

www.infineon.com/optiga



# Embedded security with OPTIGA™ Trust product family

Enabling secured software update onto digital power supplies

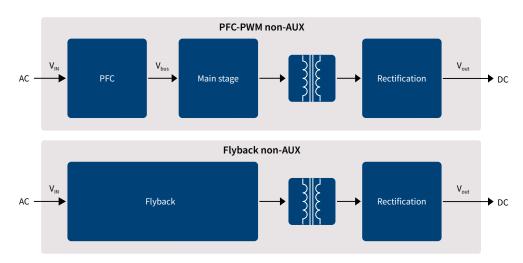




# **SMPS**

### Broad portfolio for highly efficient laptop adapter

Manufacturing of slimmer and lighter adapters requires ICs enabling high efficiency with good EMI performance and low standby power. It also requires cost effective MOSFETs in small packages that feature good electromagnetic interference (EMI) and excellent thermal performance. Infineon offers a wide range of products specifically designed for adapters including high voltage MOSFETs and control ICs for PFC and PWM stages, as well as low voltage MOSFETs for synchronous rectification. With these products, Infineon supports the trend towards a significantly higher efficiency level, especially in partial load conditions, as well as miniaturization of the adapter. Especially versatile are the recent released P7 series which combine high efficiency and optimized cost with ease-of-use. Infineon developed specifically for adapters a family of packages, characterized by short lead, IPAK Short Lead with ISO-Standoff and wide creepage that enable our customers cheap and reliable manufacturing. High power density at low manufacturing cost can be delivered using Infineon's SOT-223 cost effective package which enables SMT manufacturing maintaining very good thermal performances. For synchronous rectification, Infineon's OptiMOS™ series offers extremely low on-state resistance and low capacitances.


New control ICs support topologies such as quasi-resonant flyback and forced frequency resonant flyback (zero voltage switching) operation, ideal to implement high power density adapters and well supporting USB-PD requirements.

Regional regulations and a general increased sensitivity toward the containment of electronic waste are pointing toward the adoption of universal adapters. The implementations, methodologies and protocols are not yet harmonized, however Infineon is already closely monitoring and partnering with the decision makers to timely ensure the offer of a competitive semiconductor solution. The capability to efficiently manage different power classes and protocols will be key in this application, and Infineon is getting ready for supporting adapter makers in this challenge.

| Functional block          | Product category                 | Topology                                    | Product family                         | Benefits                                                                                                                                                                                                                           |
|---------------------------|----------------------------------|---------------------------------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Flyback converter         | High voltage MOSFETs Flyback 600 |                                             | 600 V/700 V/800 V CoolMOS™ P7          | <ul> <li>&gt; Fast switching speed for improved efficiency and thermals</li> <li>&gt; Reduced gate charge for enhanced light load efficiency</li> <li>&gt; Optimized V<sub>cs</sub> threshold for lower turn-off losses</li> </ul> |
|                           |                                  | Flyback                                     | 600 V/650 V/700 V/800 V<br>CoolMOS™ CE | Easy control of switching behavior due to higher R <sub>G,int</sub> Better transition losses versus standard MOSFET                                                                                                                |
|                           | Low voltage MOSFETs              | Flyback/auxiliary synchronous rectification | 100 V-150 V OptiMOS™                   | > Low conduction losses, reduced overshoot                                                                                                                                                                                         |
|                           | Control ICs                      | QR flyback IC                               | ICE2QS03G, ICE5QSAG                    | > High efficiency, low standby power                                                                                                                                                                                               |
|                           |                                  | FFR flyback IC                              | IDP2105                                | > High power density, digital control                                                                                                                                                                                              |
| PFC                       | High voltage MOSFETs             | DCM PFC                                     | 600 V CoolMOS™ P7                      | <ul> <li>Fast switching speed for improved efficiency</li> <li>Reduced gate charge for enhanced light load efficiency</li> <li>Optimized V<sub>cs</sub> threshold for lower turn-off losses</li> </ul>                             |
|                           |                                  | DCM/CCM PFC                                 | 600 V/650 V CoolMOS™ CE                | Easy control of switching behavior even in not optimized layout     Better switching losses in comparison with its predecessor     Rugged body Diode which prevents device failure during hard commutation                         |
|                           |                                  | DCM PFC                                     | 650 V rapid 1                          | Easy control of switching behavior due to higher R <sub>G,int</sub> Better transition losses versus standard MOSFET                                                                                                                |
|                           | Boost diode                      | DCM/PFC                                     | 650 V rapid 1                          | > Low conduction losses                                                                                                                                                                                                            |
|                           | Control ICs                      | DCM PFC ICs                                 | TDA4863G,<br>IRS2505LTRPBF             | Simple external circuitry     High power factor, low THD                                                                                                                                                                           |
| Main stage                | High voltage MOSFETs             | HB LLC                                      | 600 V CoolMOS™ P7                      | <ul> <li>Fast switching speed for improved efficiency and thermals</li> <li>Reduced gate charge for enhanced light load efficiency</li> <li>Optimized V<sub>cs</sub> threshold for lower turn-off losses</li> </ul>                |
|                           |                                  |                                             | 500 V/600 V CoolMOS™ CE                | Easy control of switching behavior due to higher R <sub>G,int</sub> Better transition losses versus standard MOSFET                                                                                                                |
| Synchronous rectification | Low voltage MOSFETs              | Synchronous rectification                   | 100 V-150 V OptiMOS™ 5                 | Low conduction losses, reduced overshoot     Logic level switching                                                                                                                                                                 |
|                           | Control ICs                      | Synchronous rectification                   | IR1161LTRPBF                           | <ul><li>&gt; High efficiency</li><li>&gt; Simple external circuitry</li></ul>                                                                                                                                                      |

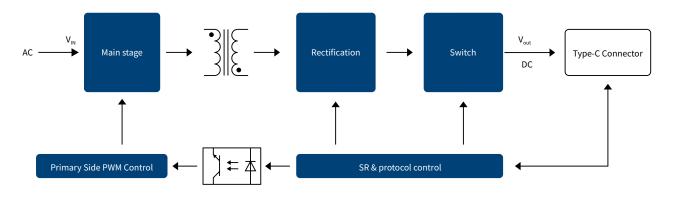


#### Block diagram





Modern mobile devices require a charger that provides faster charging but comes in a small size. High power density and cost effective power supplies can be designed by operating the converter at a higher switching frequency to avoid a considerable increase in transformer and output capacitor size. In realizing the required thermal performance and EMI behavior, power devices with lower losses and controlled switching behavior enable effective and fast product development.


Infineon's new control ICs support topologies such as quasi-resonant flyback and forced frequency resonant flyback (zero voltage switching) operation, ideal to implement high power density adapters and well supporting USB-PD requirements.

Infineon designed its new CoolMOS™ P7 MOSFET family for adapters and chargers. Special care has been taken to ensure very good thermal behavior, increased efficiency and fulfillment of all EMI requirements, enabling our customers to easily design products based on this new family. In addition, power devices in IPAK/SMD packages enable optimal PCB layout through minimal footprint. SMD packages offer additional benefits for automatized large volume production. Specifically, high power density at low manufacturing cost can be delivered using Infineon's SOT-223 cost effective package which enables SMT manufacturing maintaining very good thermal performances.

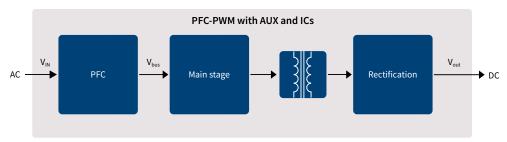
The CoolMOS™ high voltage MOSFETs, OptiMOS™ low voltage MOSFETs and synchronous rectification IC portfolios, enable high power density designs whilst meeting the thermal requirements.

| Functional block          | Product category                      | Topology                                | Product family                    | Benefits                                                                                                                                 |
|---------------------------|---------------------------------------|-----------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Flyback converter         | High voltage MOSFETs                  | High voltage MOSFETs Flyback 700 V Cool |                                   | Best price competitive CoolMOS™ family     Lower switching losses versus standard MOSFET     Controlled dV/dt and di/dt for better EMI   |
|                           | Control ICs                           | QR flyback                              | ICE5QSAG , ICE5QSAG               | > High efficiency, low standby power                                                                                                     |
|                           |                                       | FFR flyback IC                          | IDP2105                           | > High power density, ideal for USB-PD                                                                                                   |
| Synchronous rectification | Low voltage MOSFETs                   | Synchronous rectification               | 40 V-120 V OptiMOS™ 5 Logic Level | <ul> <li>Low conduction losses, reduced overshoot</li> <li>Logic level switching</li> <li>S308/PQFN 3.3x3.3 package available</li> </ul> |
|                           | Control ICs Synchronous rectification |                                         | IR1161LTRPBF                      | <ul><li>&gt; High efficiency</li><li>&gt; Simple external circuitry</li></ul>                                                            |

#### **Block diagram**






The PC power market is diversified into high-end gaming PC and better cost-performance sectors, to achieve a better price performance goal for desktop SMPS. The PC OEMs are implementing the desktop SMPS by removing the AUX power block, to save the cost of flyback circuit.

Infineon's IDP2321 is the first digital PFC + LLC combo IC worldwide to meet world leading PC manufacturers' specifications, with integrated drivers and 600 V depletion cell to achieve low standby power and lower cost. The PFC controlling loop is a configurable CrCM/DCM multimode to meet highest light-load efficiency. And the most important of all, IDP2321 has around 30~40 less part counts than traditional analogue solutions, thanks to the state-of-the-art digital control.

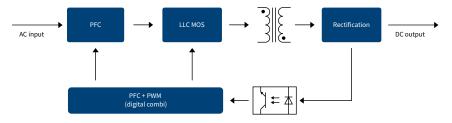
Furthermore, Infineon's IDP2321 offers flexible IC parameter configuration with friendly GUI, R&D engineers can key in the parameters on PC to fine tune and debug the system performance instead of soldering the passive components. Infineon offers the best total system solutions for non-AUX PC power, together with Infineon's SMD and through-hole MOSFETs.

| Functional block          | Topology                                        | Voltage class       | Technology                         | Benefits                                                                                                                                                                                                                                                                    |
|---------------------------|-------------------------------------------------|---------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PFC/Main stage            | FC/Main stage High voltage MOSFETs CrCM/DCM PFC |                     | 600 V CoolMOS™ P7                  | Best thermal performance     Rugged body diode     ESD enhancement for production line     Wide Ros(on) portfolio including both through-hole and     SMD packages available                                                                                                |
|                           |                                                 |                     | 600 V CoolMOS™ P6                  | <ul> <li>&gt; Fast switching speed for improved efficiency and thermals</li> <li>&gt; Low gate charge for enhanced light load efficiency and low power consumption at no load condition</li> <li>&gt; Optimized V<sub>GS</sub> threshold for low turn-off losses</li> </ul> |
|                           |                                                 |                     | 500 V CoolMOS™ CE                  | Optimize cost/performance     Better transition losses versus standard MOSFET                                                                                                                                                                                               |
|                           | Boost diodes                                    | DCM PFC             | 650 V Rapid 1                      | > Low conduction losses                                                                                                                                                                                                                                                     |
|                           |                                                 | CCM PFC             | 650 V Rapid 2                      | Low reverse recovery losses and PFC switch turn-on losses                                                                                                                                                                                                                   |
|                           | Control ICs                                     | CCM PFC IC          | ICE3PCS0xG                         | > High PFC, low THD                                                                                                                                                                                                                                                         |
| Main stage                | Control ICs                                     | HB LLC IC           | 650 V – ICE1HS01G-1 /<br>ICE2HS01G | > High efficiency, low EMI                                                                                                                                                                                                                                                  |
| Synchronous rectification | Mid. voltage diodes                             | HB LLC + center-tap | 40 V OptiMOS™                      | > Optimized cost/performance and low thermal                                                                                                                                                                                                                                |
|                           |                                                 |                     | 60 V OptiMOS™                      | > Layout tolerance, low thermals                                                                                                                                                                                                                                            |

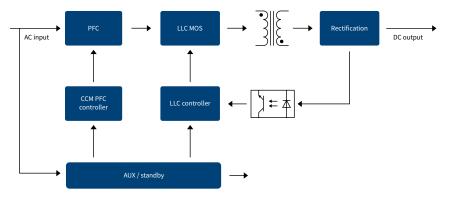
#### **Block diagram**



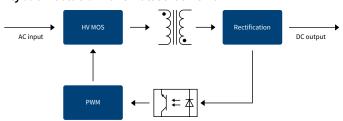



### TV power supply with lowest power consumption

In addition to their outstanding image quality, new generation TVs gain attention for their user interface, low power consumption and for the slim silhouette. This requires the power supply unit (PSU) to keep a low profile to maintain the TV's slim appearance and a low thermal dissipation image or an external adapter. In addition, a growing number of TV manufacturers will use external adapters to deliver DC power to the TV. Infineon introduced two products based on digital power technology, designed to meet challenging efficiency and standby power requirements for Internet of Things (IoT) enabled TVs (both embedded PSU and adapter). Thanks to digital power, our customers can reduce the number of TV power supplies by adapting the digital IC parameters to different TV and screen models by flexible and easy parameter setting. On top, Infineon recently introduced the 5th generation of low standby power flyback controllers, ideal to implement low power adapters for TVs and monitors. The new 600 V CoolMOS™ P7 is the logical successor of the current 600 V CoolMOS™ P6. The series has been developed to cover a broad spectrum of different applications where excellent performance and perfect ease-of-use is required. The rugged body diode enables not only the use in hard switching topologies such as power factor correction, boost and two transistor forward but also resonant topologies such as LLC where the technologies leads to high efficiency in both hard switching and resonant circuits. For higher R<sub>DS(on)</sub>s there is a new feature of an integrated ESD diode that helps improve the quality in manufacturing. At the same time the low  $R_{DS(on)}$  and gate charge  $Q_{G}$  enable high efficiency in the various topologies. The 600 V CoolMOS™ P7 comes with a wide variety of R<sub>DS(on)</sub>s and packages on both industrial and consumer grade to make it suitable for applications such as server, telecom, PC, solar as well as lighting, adapters and TV. Infineon developed specifically for TV power supplies a family of packages, characterized by short lead, SOT-223 mold stopper and wide creepage distance, which enable our customers cheap and reliable manufacturing.


| Functional block                | Product category        | Topology                  | Product family                                 | Benefits                                                                                                                                                                                                                                                                                                |
|---------------------------------|-------------------------|---------------------------|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Main stage/PFC combo<br>non-AUX | High voltage<br>MOSFETs | DCM PFC, HB LLC           | 600 V CoolMOS™ P7                              | <ul> <li>Fast switching speed for improved efficiency</li> <li>Low gate charge for enhanced light load efficiency<br/>and low power consumption at no load condition</li> <li>Optimized V<sub>cs</sub> threshold for lower turn-off losses</li> <li>Rugged body diode for HB LLC application</li> </ul> |
|                                 |                         |                           | 500 V/600 V CoolMOS™ CE                        | <ul> <li>Easy control of switching behavior even in not optimized layout</li> <li>Better switching losses in comparison with its predecessor</li> <li>Rugged body diode which prevents device failure during hard commutation</li> </ul>                                                                |
|                                 | Control ICs             | IDP2303                   | PFC-LLC non-AUX digital IC for TV embedded PSU | Low BOM count/system cost due to high integration     Low standby power     High system reliability     Shorter development cycles and higher design and production flexibility                                                                                                                         |
|                                 |                         | IDP2303A                  | PFC-LLC non-AUX digital IC for TV adapter      | <ul> <li>Low BOM count/system cost due to high integration</li> <li>Low standby power</li> <li>Small form factor designs</li> <li>High system reliability</li> </ul>                                                                                                                                    |
| PFC                             | Boost diodes            | DCM PFC                   | 650 V Rapid diode                              | > Low conduction losses                                                                                                                                                                                                                                                                                 |
|                                 | Control ICs             | CCM PFC IC                | ICE3PCS0xG                                     | > High PFC, low THD                                                                                                                                                                                                                                                                                     |
| Main stage                      | Control ICs             | HB LLC IC                 | ICE1HS01G-1 / ICE2HS01G                        | > High efficiency, low EMI                                                                                                                                                                                                                                                                              |
| Auxiliary power supply          | Control ICs             | QR/FF flyback<br>CoolSET™ | 700 V/800 V – ICE5QRxx70/80A(Z)(G)             | › Low standby power, high efficiency and robustness                                                                                                                                                                                                                                                     |
| Flyback                         | Control ICs             |                           | ICE5QSAG                                       | Selectable active burst mode entry/exit profile to optimize standby power     Adjustable line input over- and under voltage protection against abnormal line input     V <sub>cc</sub> and CS pin short to ground protection against abnormal operation                                                 |
| Synchronous rectification       | Low voltage<br>MOSFETs  | Flyback                   | 700 V CoolMOS™ P7                              | <ul> <li>Optimized for flyback topologies</li> <li>Best price competitive CoolMOS™ family</li> <li>Lower switching losses versus standard MOSFET</li> <li>Controlled dV/dt and di/dt for better EMI</li> </ul>                                                                                          |




#### Non-AUX digital solution for large screen size



#### High power solution for larger screen size



#### Flyback solution for small screen size



www.infineon.com/smps

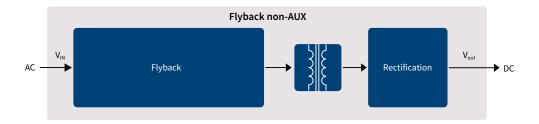
43



### SMPS

### Full system solutions for embedded power supplies

Customers who design or manufacture a product that needs embedded intelligence typically want to focus on the system design of their product, be it a white good, a vending machine, an automatic door opener or any other product. They do not want to spend valuable efforts and time in designing the power supply systems. They just want to use them, having a trouble less, EMI friendly and reliable power supply.


Infineon decided to build a scalable, broad range of products and flexible scalable and easy to reuse reference designs aimed at helping its customers with best fitting solutions tailored for different customer needs.

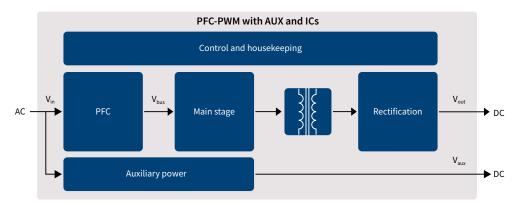
Depending on their specific needs our customers can select very low cost power supply reference designs featuring high integration or using a platform approach to reuse the same power designs for different products that need different power supplies. Or if high efficiency is needed, for example to meet energy star labels or to improve overall thermal performance, Infineon offers highest efficiency power supply reference designs.

In addition, Infineon offers a comprehensive reference designs and application notes helping customers to drastically improve the efficiency of their power supply by using secondary side synchronous rectification instead of a rectifier diode. Benefits of synchronous rectification are better efficiency, and better thermal performance of your power supply.

| Functional block       | Product category    | Topology   | Technology                                                                             | Selection                                                                                                                                   |  |
|------------------------|---------------------|------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|
| Auxiliary power supply |                     |            | 600 V/800 V –<br>ICE2QRxx65/80(Z)(G),<br>ICE3xRxx65/80J(Z)(G),<br>ICE5QRxx70/80A(Z)(G) | Low standby power, high efficiency and robustness                                                                                           |  |
| Flyback                | Control ICs         | QR flyback | ICE2QS03G, ICE5QSAG                                                                    | > High efficiency, low standby power                                                                                                        |  |
|                        | High voltage MOSFET | Flyback    | 600 V/650 V/700 V/800 V CoolMOS™CE<br>700 V/800 V CoolMOS™P7                           | Best price competitive CoolMOS™ family     Lower switching losses versus standard     MOSEFET     Controlled dV/dt and di/dt for better EMI |  |

#### **Block diagram**






### Highly efficient server power supply

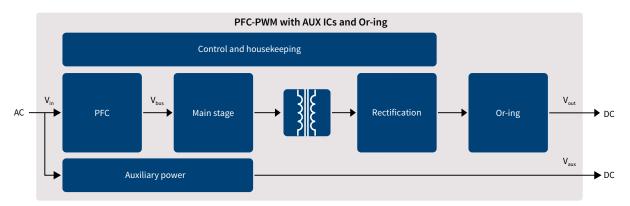
The trend of the enterprise server and datacenter server is to deliver more power per rack, meanwhile the higher rising cost of energy and environmental concerns make SMPS efficiency optimization a key requirement across the entire load range for server and data center design. This challenging task is combined with the requirement for higher power and higher power density with cost effective design. In the PFC stage and in general hard switching topologies used in server applications, Infineon proposes 600 V CoolMOS<sup>TM</sup> C7 family with the lowest FOM  $R_{DS(on)}$  \* $Q_G$  and  $R_{DS(on)}$  \* $E_{oss}$ . This provides the lowest switching losses, which are necessary in fast switching needed in high-end server SMPS, thus optimizing the efficiency starting from very light load operation. The very compact SMD packages such as ThinPAK, offer benefits in space and power density, and are used with Infineon's new industry standard non-isolated driver family 2EDN752x.

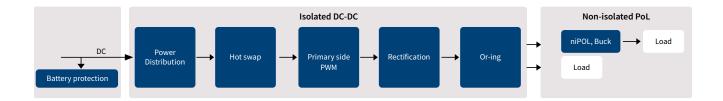
Complementary to 600 V CoolMOS™ C7 in high efficiency PFC is the CoolSiC™ diodes generation 5 family. The 600 V CoolMOS™ P6 family offers a good compromise between price and performance. This is valuable in both PFC and HV DC-DC stages where the low Q<sub>G</sub> and turn-off losses are important benefits, especially in the case of high switching frequency operation and high light load efficiency requirements. In applications with a low output voltage and high output current, further efficiency improvements have been made possible by the continuous reduction of on-resistance by Infineon's low voltage OptiMOS™ MOSFET series used in the synchronous rectification stage. Infineon's low voltage families are complemented by StrongIRFET™ which is optimized for lower switching frequencies and highest system robustness.

#### **Block diagram**



| Functional block                                       | Product category     | Topology                                   | Product family                                                                                      | Benefit                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------|----------------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PFC                                                    | High voltage MOSFETs | CCM/interleaved PFC; TTF                   | 600 V/650 V CoolMOS™ C7<br>600 V/650 V CoolMOS™ C7<br>Gold in TOLL                                  | Best FOM R <sub>DS(on)</sub> *Q <sub>G</sub> and R <sub>DS(on)</sub> *E <sub>oss</sub> Lowest R <sub>DS(on)</sub> per package     Low dependency of switching losses form R <sub>g,ext</sub>                                                                                                                                                    |
|                                                        | SiC diodes           | CCM/interleaved PFC                        | 650 V CoolSiC™ Schottky<br>diode generation 5                                                       | > Low FOM V <sub>F</sub> *Q <sub>G</sub>                                                                                                                                                                                                                                                                                                        |
|                                                        | Control ICs          | CCM PFC IC                                 | ICE3PCS0xG                                                                                          | > Ease-of-use                                                                                                                                                                                                                                                                                                                                   |
|                                                        | IGBTs                | CCM/interleaved PFC                        | 650 V TRENCHSTOP™ H5                                                                                | > High PFC, Low THD                                                                                                                                                                                                                                                                                                                             |
|                                                        |                      |                                            | 650 V TRENCHSTOP™ F5                                                                                | > High efficiency in low inductance designs                                                                                                                                                                                                                                                                                                     |
| Main stage                                             | High voltage MOSFETs | ITTF                                       | 600 V CoolMOS™ C7/P6                                                                                | <ul> <li>Fast switching speed for improved efficiency and thermals</li> <li>Low gate charge for enhanced light load efficiency and low power consumption at no load condition</li> <li>Optimized V<sub>cs</sub> threshold for lower turn-off losses</li> <li>Rugged body diode which prevents device failure during hard commutation</li> </ul> |
|                                                        |                      | LLC, half-bridge below<br>1 kW             | 600 V CoolMOS™ C7/P6                                                                                | <ul> <li>Low turn-off losses</li> <li>Low Q<sub>oss</sub></li> <li>Low Q<sub>G</sub></li> </ul>                                                                                                                                                                                                                                                 |
|                                                        |                      | LLC, phase shift full-bridge<br>below 1 kW | 650 V CoolMOS™ CFD2                                                                                 | <ul> <li>&gt; Fast and rugged body diode</li> <li>&gt; Highest reliability for 650 V V<sub>DS</sub></li> <li>&gt; Low Q<sub>c</sub> and soft commutation behavior</li> </ul>                                                                                                                                                                    |
|                                                        | IGBTs                | ZVS PS FB; LLC                             | 650 V TRENCHSTOP™ H5                                                                                | > Improved ruggedness and ease-of-use                                                                                                                                                                                                                                                                                                           |
|                                                        |                      | ZVS PS FB; LLC, TTF                        | 650 V TRENCHSTOP™ F5                                                                                | > Improved ruggedness and high efficiency in low inductance designs                                                                                                                                                                                                                                                                             |
|                                                        | Control ICs          | HB LLC IC                                  | ICE1HS01G-1                                                                                         | > High efficiency, low EMI                                                                                                                                                                                                                                                                                                                      |
|                                                        |                      |                                            | ICE2HS01G                                                                                           |                                                                                                                                                                                                                                                                                                                                                 |
| Sychronous rectification                               | Low voltage MOSFETs  | HB LLC and centertap                       | 40 V OptiMOS™                                                                                       | > High efficiency over whole load range, layout tolerance                                                                                                                                                                                                                                                                                       |
|                                                        |                      |                                            | 40 V StrongIRFET™                                                                                   | > High robustness and ruggedness                                                                                                                                                                                                                                                                                                                |
|                                                        |                      | ITTF                                       | 60 V OptiMOS™                                                                                       | > High efficiency, low thermals, low V <sub>DS</sub> overshoot                                                                                                                                                                                                                                                                                  |
|                                                        |                      |                                            | 60 V StrongIRFET™                                                                                   | High robustness and ruggedness                                                                                                                                                                                                                                                                                                                  |
|                                                        |                      | ZVS PS FB and center-tap                   | 80 V OptiMOS™                                                                                       | > High efficiency over whole load range, low V <sub>DS</sub> overshoot and oscillations                                                                                                                                                                                                                                                         |
|                                                        |                      |                                            | 80 V StrongIRFET™                                                                                   | > High robustness and ruggedness                                                                                                                                                                                                                                                                                                                |
| Auxiliary power supply                                 | Control ICs          | QR/FF flyback CoolSET™                     | 800 V - ICE2QRxx80(Z)(G)<br>ICE3xRxx80J(Z)(G)<br>700 V ICE5QRxx70A(Z)(G)<br>800 V ICE5QRxx80A(Z)(G) | Low standby power, high efficiency and robustness     An integrated 700 V/800 V superjunction power MOSFET with avalanche capability     Burst mode entry/exit to optimize standby power at different low load conditions                                                                                                                       |
| Housekeeping                                           | Microcontrollers     | -                                          | XMC1xxx                                                                                             | <ul> <li>Flexibility, HR PWM, digital communication</li> <li>ARM® based standard MCU family, wide family</li> </ul>                                                                                                                                                                                                                             |
| Conversion                                             | Microcontrollers     | -                                          | XMC4xxx                                                                                             | > Flexibility, HR PWM, digital communication                                                                                                                                                                                                                                                                                                    |
| PFC, PWM/resonant converter, synchronous rectification | Driver ICs           | -                                          | 1EDix EiceDRIVER™                                                                                   | > 100 ns typ. propagation delay time > Functional isolation > Separate source                                                                                                                                                                                                                                                                   |
|                                                        |                      | -                                          | 2EDNx EiceDRIVER™                                                                                   | 8 V UVLO option     -10 V input robusteness     Output robust against reverse current                                                                                                                                                                                                                                                           |





# **SMPS**

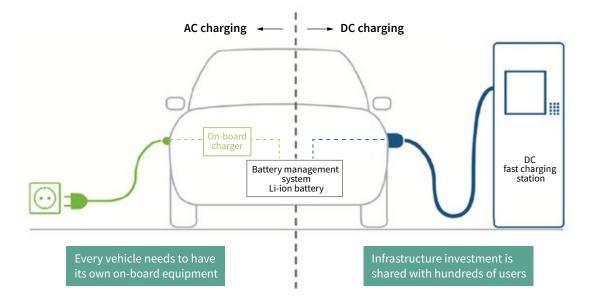
### Full system solution for telecom power supply

The telecommunication industry providing data, voice and video is continuously growing supported by the expansion into new markets and accelerated by the spread of wireless and broadband technologies. The outstanding improvements in telecom SMPS performance achieved in the past 10 years have been primarily brought by the dramatic reduction of the on-resistance achieved in high voltage MOSFETs, using the revolutionary superjunction principle. This principle was introduced by Infineon at the end of the nineties in the CoolMOS™ series. Equally impressive improvements in reverse-recovery characteristics have been achieved for high voltage SiC (Silicon Carbide) diodes. In order to achieve the new challenging efficiency targets, the synchronous rectification utilizing the unique performance of OptiMOS™ low voltage MOSFETs has become increasingly popular even in the typically high output voltage of telecom rectifiers.

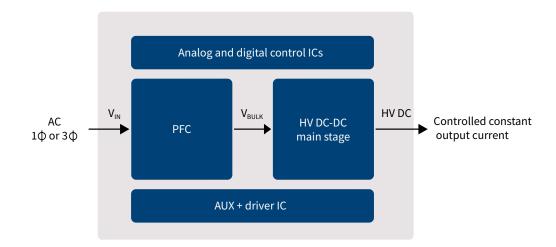
#### **Block diagram**






| Functional block                                       | Product category                               | Topology                            | Product family                                | Benefit                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------|------------------------------------------------|-------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PFC                                                    | High voltage MOSFETs                           | CCM/interleaved PFC; TTF            | 600 V/650 V CoolMOS™ C7                       | > Best FOM R <sub>DS(on)</sub> *Q <sub>c</sub> and R <sub>DS(on)</sub> *E <sub>oss</sub> > Lowest R <sub>DS(on)</sub> per package > Low dependency of switching losses form R <sub>g,ext</sub>                                                                                                                                                  |
|                                                        |                                                |                                     | 600 V CoolMOS™ P7                             | <ul> <li>Low turn-off losses</li> <li>Low Q<sub>oss</sub></li> <li>Low Q<sub>6</sub></li> </ul>                                                                                                                                                                                                                                                 |
|                                                        | SiC diodes                                     | CCM/interleaved PFC                 | 650 V CoolSiC™ Schottky<br>diode generation 5 | > Low FOM V <sub>F</sub> *Q <sub>C</sub>                                                                                                                                                                                                                                                                                                        |
|                                                        | Control ICs                                    | CCM PFC IC                          | 800 V – ICE3PCS0xG                            | > High PFC, Low THD                                                                                                                                                                                                                                                                                                                             |
| Main stage                                             | High voltage MOSFETs                           | CCM/interleaved PFC; TTF<br>HB LLC  | 600 V CoolMOS™ C7/P7                          | <ul> <li>Fast switching speed for improved efficiency and thermals</li> <li>Low gate charge for enhanced light load efficiency and low power consumption at no load condition</li> <li>Optimized V<sub>cs</sub> threshold for lower turn-off losses</li> <li>Rugged body diode which prevents device failure during hard commutation</li> </ul> |
|                                                        |                                                | LLC                                 | 600 V CoolMOS™ C7                             | > Low turn-off losses > Low Q <sub>oss</sub> > Low Q <sub>G</sub>                                                                                                                                                                                                                                                                               |
|                                                        |                                                | CCM/interleaved PFC; TTF<br>HB LLC  | 650 V CoolMOS™ CFD2                           | <ul> <li>Fast and rugged body diode</li> <li>Low Q<sub>c</sub></li> <li>Soft commutation behavior</li> </ul>                                                                                                                                                                                                                                    |
| PWM                                                    | Control ICs                                    | HB LLC IC                           | ICE1HS01G-1<br>ICE2HS01G                      | › High efficiency, low EMI                                                                                                                                                                                                                                                                                                                      |
| Sychronous rectification                               | Low voltage MOSFETs                            | Synchronous rectification<br>MOSFET | 80 V-100 V OptiMOS™                           | Industry's lowest FOM (R <sub>DS(on)</sub> *Q <sub>o</sub> ) leading to high efficiency at good price/performance Low voltage overshoots enabling easy design-in Industry's lowest R <sub>DS(on)</sub> Highest system efficiency and power density Outstanding quality and reliability Reduces the need for a snubber circuit                   |
| Auxiliary power supply                                 | Control ICs                                    | QR/FF flyback CoolSET™              | 800 V – ICE2QRxx80(Z)(G)<br>ICE3xRxx80J(Z)(G) | › Low standby power, high efficiency                                                                                                                                                                                                                                                                                                            |
| Housekeeping                                           | Microcontrollers                               | -                                   | XMC1xxx                                       | <ul> <li>Flexibility, HR PWM, digital communication</li> <li>ARM® based standard MCU family, wide family</li> </ul>                                                                                                                                                                                                                             |
| Conversion                                             | Microcontrollers                               | -                                   | XMC4xxx                                       | <ul> <li>Flexibility, HR PWM, digital communication</li> <li>ARM® based standard MCU family, wide family</li> </ul>                                                                                                                                                                                                                             |
| PFC, PWM/resonant converter, synchronous rectification | Driver ICs                                     | -                                   | 1EDix EiceDRIVER™                             | 100 ns typ. propagation delay time     Functional isolation     Separate source                                                                                                                                                                                                                                                                 |
|                                                        |                                                | -                                   | 2EDNx EiceDRIVER™                             | > 8 V UVLO option > (-)10 V input robusteness > Output robust against reverse current                                                                                                                                                                                                                                                           |
| Or-ing                                                 | Low voltage MOSFETs                            | Or-ing MOSFET                       | 60 V-200 V OptiMOS™                           | Industry's lowest FOM (R <sub>DS(on)</sub> *Q <sub>G</sub> ) leading to high efficiency at good price/performance                                                                                                                                                                                                                               |
| Battery protection                                     | Low voltage MOSFETs                            | MOSFET                              | 60 V-150 V OptiMOS™                           | Low voltage overshoots enabling easy design-in                                                                                                                                                                                                                                                                                                  |
| Isolated DC-DC                                         | Low voltage MOSFETs                            | Primary side PWM MOSFET             | 60 V-200 V OptiMOS™                           | > Industry's lowest R <sub>DS(on)</sub>                                                                                                                                                                                                                                                                                                         |
|                                                        |                                                |                                     | 60 V-200 V StrongIRFET™                       | Highest system efficiency and power density     Outstanding quality and reliability                                                                                                                                                                                                                                                             |
|                                                        |                                                |                                     | 60 V-200 V Small Signal                       | > Reduces the need for a snubber circuit                                                                                                                                                                                                                                                                                                        |
|                                                        |                                                | Synchronous rectification           | 40 V-100 V OptiMOS™                           |                                                                                                                                                                                                                                                                                                                                                 |
|                                                        |                                                | MOSFET                              | 40 V-100 V StrongIRFET™                       |                                                                                                                                                                                                                                                                                                                                                 |
|                                                        |                                                | Or-ing MOSFET                       | 25 V-30 V OptiMOS™                            |                                                                                                                                                                                                                                                                                                                                                 |
|                                                        |                                                |                                     | 25 V-30 V StrongIRFET™                        |                                                                                                                                                                                                                                                                                                                                                 |
| Non-isolated POL buck                                  | For more detailed informand non-isolated DC-DC |                                     | Iltiphase enterprise power                    | solution for data processing applications (page 18)                                                                                                                                                                                                                                                                                             |




With electric vehicles (EVs), now viable alternatives in some markets to traditional internal combustion engine vehicles, the demand for enhanced power supplies for charging stations is growing. Currently, all eyes are on China where EVs have gained traction in the rapidly-expanding middle class. And also the United States is soon expected to follow suit. However, for these markets to truly welcome EVs on a large scale they need widespread availability of DC charging infrastructure so that drivers can quickly charge their vehicles. DC charging stations are an attractive choice because they offer much faster charging than a standard AC EV charging pile, which many EV drivers have at home. Today, a DC charging pile with e.g. 120 kW can charge around 80 percent of an EV's battery in just 30 minutes. As these fast charging technologies improve, the charging time will drop even further.

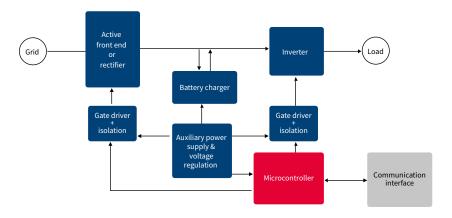
Whatever your DC EV charging power supply design needs, Infineon's portfolio of top quality semiconductors features highly-efficient products with a high power density. By partnering with us you gain a market-leader by your side with extensive experience in the area.

#### Off-board charging is becoming more attractive on the market



#### Block diagram




| Functional block                        | Product category            | Product family                                | Product                             | Additional information                       |
|-----------------------------------------|-----------------------------|-----------------------------------------------|-------------------------------------|----------------------------------------------|
| PFC stage                               | High voltage MOSFETs        | 600 V CoolMOS™ P6                             | IPW60R041P6                         | 600 V, 41 mΩ, TO-247                         |
| (3-phase input Vienna PFC stage)        |                             |                                               | IPW60R070P6                         | 600 V, 70 mΩ, TO-247                         |
| stage)                                  |                             | 650 V CoolMOS™C7                              | IPW65R019C7                         | 650 V, 19 mΩ, TO-247                         |
|                                         |                             | 600 V CoolMOS™ C7                             | IPW60R017C7                         | 600 V, 17 mΩ, TO-247                         |
|                                         |                             | 600 V CoolMOS™ P7                             | IPW60R037P7<br>IPW60R060P7          | 600 V, 37 mΩ, TO-247<br>600 V, 60 mΩ, TO-247 |
|                                         | SiC diodes                  | CoolSiC™ schottky diode 1200 V G5             | IDW15G120C5B                        | 1200 V, 15 A, TO-247                         |
|                                         |                             |                                               | IDW20G120C5B                        | 1200 V, 20 A, TO-247                         |
| HV DC-DC main stage                     | High voltage MOSFETs        | 650 V CoolMOS™ CFD2                           | IPW65R041CFD                        | 650 V, 41 mΩ, TO-247                         |
| (Soft switching type full-bridge stage) |                             |                                               | IPW65R080CFD                        | 650 V, 80 mΩ, TO-247                         |
| stage)                                  | SiC diodes                  | CoolSiC <sup>™</sup> schottky diode 1200 V G5 | IDW15G120C5B                        | 1200 V, 15 A, TO-247                         |
|                                         |                             |                                               | IDW20G120C5B                        | 1200 V, 20 A, TO-247                         |
|                                         |                             |                                               | IDW30G120C5B                        | 1200 V, 30 A, TO-247                         |
| Analog and digital control ICs          | Microcontroller             | ХМС <sup>тм</sup>                             | XMC1400 family (PFC stage)          | ARM® Cortex® M0 based μC                     |
|                                         |                             |                                               | XMC4000 family (HV DC-DC/PWM stage) | ARM® Cortex® M4F based μC                    |
| AUX                                     | AC-DC power conversion      | 5 <sup>th</sup> generation quasi-resonant     | ICE5QR0680AZ                        | 800 V, 0.8 mΩ, PG-DIP-7                      |
|                                         |                             | CoolSET™                                      | ICE5QR0680AG                        | 800 V, 0.8 mΩ, PG-DSO-12                     |
| Driver ICs                              | Gate driver ICs for MOSFETs | EiceDRIVER™ 2EDN                              | 2EDN7524F/R                         | 2-channel low-side, non-isolated, 5 A        |
| (PFC and LLC)                           |                             |                                               | 2EDN8524F/R                         | 2-channel low-side, non-isolated, 5 A        |
|                                         |                             | EiceDRIVER™ 2EDL                              | Upcoming                            | -                                            |



# Uninterruptible power supply (UPS)

Attractive solutions for highest efficiency and power density

Today's uninterruptible power supply systems introduce a wide range of challenges. Overcoming them requires an increase in output power, power density and energy efficiency. For all your UPS power supply applications, Infineon's high quality products provide you with complete system level solutions. Equipped with our semiconductors, UPS applications can achieve best-possible power conversion efficiency and cutting-edge power density. The benefits: cost reduction and fewer passive components – regardless of the topology used. By choosing Infineon for UPS applications you get solutions that fulfill the latest market requirements. This includes the trend of modularization of UPS brick units due to scalable power demand from datacenter, as well as the topology shift from 2-level to 3-level to achieve higher efficiency. Our products are suitable for any kind of uninterruptible power supplies in telecom, datacenter, servers or industrial automation environment.



| Stage              | Topology     | Voltage class | Technology                   | Selection                                   |
|--------------------|--------------|---------------|------------------------------|---------------------------------------------|
| Rectifier          | 3-phase      | 800 V/1600 V  | EasyBRIDGE, EconoBridge™     | Recommendation                              |
| PFC                | Boost PFC    | 1200 V        | TRENCHSTOP™                  | Ease-of-use                                 |
|                    | Boost PFC    | 1200 V        | HighSpeed 3                  | Efficiency                                  |
|                    | Boost PFC    | 650 V         | TRENCHSTOP™ 5 H5             | Efficiency                                  |
|                    | Boost PFC    | 650 V         | TRENCHSTOP™ 5 S5             | Efficiency and ease-of-use                  |
|                    | Boost PFC    | 650 V         | Rapid diode                  | Efficiency                                  |
|                    | Boost PFC    | 600 V/1200 V  | EASYPACK™                    | Recommendation                              |
|                    | PFC          | 600 V         | CoolMOS™ P6                  | Recommendation                              |
|                    | PFC          | 600 V         | CoolMOS™ C7                  | Recommendation                              |
| Inverter           | NPC 1        | 650 V         | TRENCHSTOP™ 5 H5             | Efficiency                                  |
|                    | NPC 1        | 650 V         | TRENCHSTOP™ 5 S5             | Efficiency and ease-of-use                  |
|                    | NPC 1        | 650 V         | Rapid diode                  | Efficiency                                  |
|                    | NPC 2        | 1200 V        | TRENCHSTOP™                  | Ease-of-use                                 |
|                    | NPC 2        | 1200 V        | HighSpeed 3                  | Efficiency                                  |
|                    | NPC 2        | 650 V         | TRENCHSTOP™ 5 H5             | Efficiency                                  |
|                    | NPC 2        | 650 V         | TRENCHSTOP™ 5 S5             | Efficiency and ease-of-use                  |
|                    | NPC 2        | 650 V         | Rapid diode                  | Efficiency                                  |
|                    | 2-level      | 600 V/1200 V  | EconoPACK™, EASYPACK™,       | Efficiency and ease-of-use, power density   |
|                    | 2-level      | 600 V/1200 V  | EconoPIM™, EconoDUAL™        | Efficiency and ease-of-use, power density   |
|                    | 3-level NPC1 | 600 V/1200 V  | EconoPACK™, EASYPACK™        | Power density, ease-of-use                  |
|                    | 3-level NPC2 | 600 V/1200 V  | EconoPACK™, EASYPACK™, 62 mm | Power density, ease-of-use high integration |
| Charger controller | Half-bridge  | 1200 V        | HighSpeed 3                  | Efficiency                                  |
| Driver IC          | -            | 1200 V        | EiceDRIVER™ Compact          | Recommendation                              |
| AUX                | -            | 650 V-800 V   | CoolSET™                     | Recommendation                              |

# Gate driver application guide

|                  |           | Industrial, server, telecom SMPS ar |                                                       |         |                         |                           | com SMPS and                             | inverters                                |                                       |
|------------------|-----------|-------------------------------------|-------------------------------------------------------|---------|-------------------------|---------------------------|------------------------------------------|------------------------------------------|---------------------------------------|
|                  |           |                                     | PFC                                                   |         |                         |                           |                                          | High voltage                             | DC-DC                                 |
| Functionality    |           | Primary side controlled             |                                                       |         | Primary side controlled | Secondary side controlled |                                          |                                          |                                       |
| Торо             | Topology  |                                     | Interleaved<br>Boost- PFC<br>("classic": Diode + FET) | 0       | ess PFC                 | LLC                       | LLC                                      | ZVS                                      | (i)TTF                                |
| Switching davis  | High-side | SiC diode gen5                      | SiC diode gen5                                        | CoolMOS | S™ C7, P6               | CoolMOS™<br>CFD2, P6      | CoolMOS™<br>CFD2, P6                     | CoolMOS™<br>CFD2                         | CoolMOS™<br>C7, P6                    |
| Switching device | Low-side  | CoolMOS™ C7, P6                     | CoolMOS™ C7, P6                                       | CoolMOS | S™ C7, P6               | CoolMOS™<br>CFD2, P6      | CoolMOS™<br>CFD2, P6                     | CoolMOS™<br>CFD2                         | CoolMOS™<br>C7, P6                    |
| Gate-Driver IC   | High-side | n.a.                                | n.a.                                                  | 2501    | 1EDI                    | IR(S)21834                | 2EDN <sup>1)</sup><br>1EDN <sup>1)</sup> | 2EDN <sup>1)</sup><br>1EDN <sup>1)</sup> | 2EDN <sup>1)</sup> 1EDN <sup>1)</sup> |
|                  | Low-side  | 2EDN<br>1EDN                        | 2EDN<br>1EDN                                          | 2EDL    | 2EDN<br>1EDN            | IR(S)2183<br>IR(S)2184    | 2EDN <sup>1)</sup><br>1EDN <sup>1)</sup> | 2EDN <sup>1)</sup><br>1EDN <sup>1)</sup> | 2EDN <sup>1)</sup> 1EDN <sup>1)</sup> |

|                  |                | EV charging           |                        |                                          |                                          |  |  |
|------------------|----------------|-----------------------|------------------------|------------------------------------------|------------------------------------------|--|--|
|                  |                |                       | PFC High voltage DC-DC |                                          |                                          |  |  |
| Functio          | onality        |                       |                        |                                          |                                          |  |  |
| Topol            | logy           | Interleaved boost PFC | Vienn                  | Phase-shift<br>ZVS full-bridge           |                                          |  |  |
| Switching device | High-side      | SiC diode gen5        | CoolMOS                | S™ C7, P6                                | CoolMOS™ CFD2                            |  |  |
| Switching device | Low-side       | CoolMOS™ C7           | CoolMOS                | C7, P6                                   | CoolMOS™ CFD2                            |  |  |
|                  | High-side n.a. |                       | 1EDICompact            | 2EDN <sup>1)</sup><br>1EDN <sup>1)</sup> |                                          |  |  |
| Gate-Driver IC   | Low-side       | 2EDN<br>1EDN          | 2EDL                   | 2EDN<br>1EDN                             | 2EDN <sup>1)</sup><br>1EDN <sup>1)</sup> |  |  |

<sup>1)</sup> Requires pulse-transformer

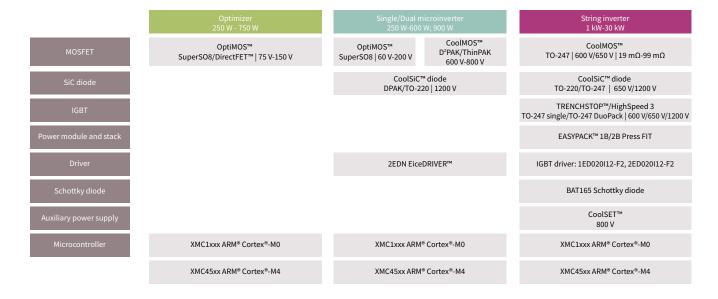
<sup>&</sup>lt;sup>2)</sup> Secondary side controlled

 $<sup>^{\</sup>mbox{\tiny 3)}}$  600 V for soft- and hard-switching high-performance, 650 V for hard-switching

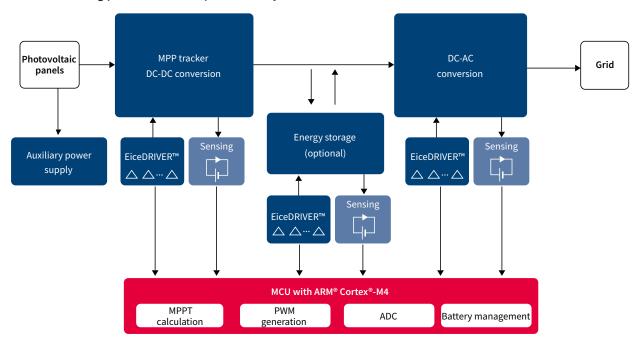
<sup>&</sup>lt;sup>4)</sup> Rugged hard- and soft-switching

|                                                           |                  | Synchronous rectification | 1             |  |
|-----------------------------------------------------------|------------------|---------------------------|---------------|--|
| 400 V DC-link                                             | Clas             | Classic                   |               |  |
| Full-bridge                                               | Center tapped    | Center tapped Full-bridge |               |  |
| CoolMOS <sup>TM</sup> C7 <sup>3)</sup> , P6 <sup>4)</sup> | n.a.             | OptiMOS™ 5                | OptiMOS™ 3, 5 |  |
| CoolMOS <sup>TM</sup> C7 <sup>3)</sup> , P6 <sup>4)</sup> | OptiMOS™ 5       | OptiMOS™ 5                | OptiMOS™ 3, 5 |  |
| 2EDN <sup>1)</sup><br>1EDN <sup>1)</sup>                  | n.a.             | 2EDL                      | n.a.          |  |
| 2EDN <sup>1)</sup><br>1EDN <sup>1)</sup>                  | 2EDN<br>2 x 1EDN | ZEDL                      | 2EDN          |  |

| Without transformer |                         | With transformer  |                  |
|---------------------|-------------------------|-------------------|------------------|
| < 20                | 00 W                    | > 200 W           |                  |
| Active clamp        | Buck                    | Full-/half-bridge | Push-pull        |
| Орг                 | tiMOS™ 3, 5; StrongIRFE | Ттм               | n.a.             |
| Орг                 | tiMOS™ 3, 5; StrongIRFE | Т™                | HEXFET™          |
| n.a.                | PX3517                  | 9501              | n.a.             |
| 2EDN<br>2 x 1EDN    | PX3519<br>2EDL          | 2EDL              | 2EDN<br>2 x 1EDN |

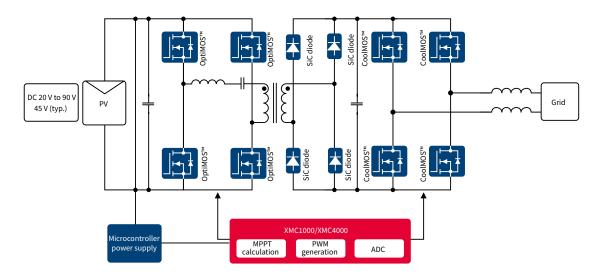

| Low voltage drives             |                                |                                               |                                |                                                    |                                          |                                |
|--------------------------------|--------------------------------|-----------------------------------------------|--------------------------------|----------------------------------------------------|------------------------------------------|--------------------------------|
| Power tools                    |                                |                                               |                                | Light electric v                                   | ehicles                                  |                                |
| Motor control                  | Battery ma                     | nagement                                      | Motor control                  | Charger                                            |                                          |                                |
|                                | Battery protection             |                                               |                                | Boost PFC                                          | LLC                                      | Synchronous rectification      |
| n.a.                           | n.a.                           |                                               | n.a.                           | n.a.                                               | CoolMOS™ P6                              | n.a.                           |
| OptiMOS™ 3, 5;<br>StrongIRFET™ | OptiMOS™ 3, 5;<br>StrongIRFET™ |                                               | OptiMOS™ 3, 5;<br>StrongIRFET™ | CoolMOS™ P6                                        | CoolMOS™ P6                              | OptiMOS™ 3, 5;<br>StrongIRFET™ |
| IRS2127(1)                     | IRS2127(1)                     | IP\$2005                                      | IRS2127(1)                     | n.a.                                               | 2EDN <sup>1)</sup><br>1EDN <sup>1)</sup> | n.a.                           |
| 2EDN<br>1EDN                   | 2EDN<br>1EDN                   | IRS2005<br>IRS21867<br>IRS2301<br>2EDL05N06PF | 2EDN<br>1EDN                   | 2EDN<br>1EDN<br>2EDL05N06PF<br>IRS2005<br>IRS21867 | 2EDN <sup>1)</sup><br>1EDN <sup>1)</sup> | 2EDN<br>1EDN                   |




# Solar

### Leading products for solar power systems

Infineon provides a comprehensive portfolio to deliver the best efficiency and reliability for solar applications. Infineon's leading edge technology like superjunction MOSFET, HighSpeed 3 and TRENCHSTOP™ 5, SiC Schottky diodes, coreless transformer driver etc., combined with rich experience and the highest quality, ensured our number 1 position in solar applications. The newest add ARM® Cortex®-M4 based MCU enables easy and high efficiency design.




#### Infineon leading products for complete solar system



www.infineon.com/solar

#### Microinverter



#### OptiMOS™ MOSFETs for microinverter

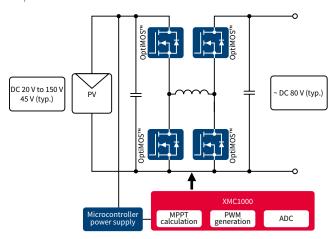
| Input voltage | Topology                                            | MOSFET breakdown voltage | SuperSO8                                                     | DirectFET™    | D <sup>2</sup> PAK                         |
|---------------|-----------------------------------------------------|--------------------------|--------------------------------------------------------------|---------------|--------------------------------------------|
| Up to 48 V    | Half-bridge, full-bridge,<br>LLC and other resonant | 60 V                     | BSC014N06NS<br>BSC016N06NS<br>BSC028N06NS<br>BSC039N06NS     | BSB028N06NN3G | -                                          |
| Up to 64 V    | Half-bridge, full-bridge,<br>LLC and other resonant | 80 V                     | BSC030N08NS5<br>BSC037N08NS5<br>BSC052N08NS5                 | BSB044N08NN3G | -                                          |
| Up to 80 V    | Half-bridge, full-bridge,<br>LLC and other resonant | 100 V                    | BSC035N10NS5<br>BSC040N10NS5                                 | -             | IPB020N10N5                                |
| Up to 60 V    | Flyback                                             | 150 V                    | BSC091N15NS5<br>BSC108N15NS5<br>BSC160N15NS5<br>BSC175N15NS5 | BSB165N15NZ3  | IPB041N15N5<br>IPB063N15N5<br>IPB108N15N3G |
|               | Push-pull                                           | 200 V                    | BSC320N20NS3G                                                | -             | IPB107N20N3G                               |

#### CoolMOS™ MOSFETs for microinverter

| Topology        | Package            | Voltage class | CoolMOS™    |
|-----------------|--------------------|---------------|-------------|
| Current source  | D <sup>2</sup> PAK | 800 V         | SPB17N80C3  |
| Current/voltage | D <sup>2</sup> PAK | 650 V         | IPB65R190C6 |
| source          |                    |               | IPB65R190C7 |
|                 |                    |               | IPB65R125C7 |
|                 |                    |               | IPB65R095C7 |
|                 |                    |               | IPB65R065C7 |
|                 |                    |               | IPB65R045C7 |
|                 | ThinPAK 8x8        | 600 V         | IPL60R185P7 |
|                 |                    |               | IPL60R125P7 |
|                 |                    |               | IPL60R105P7 |
|                 |                    |               | IPL60R085P7 |
|                 |                    |               | IPL60R065P7 |
|                 |                    |               | IPL60R185C7 |
|                 |                    |               | IPL60R125C7 |
|                 |                    |               | IPL60R104C7 |
|                 |                    |               | IPL60R065C7 |
|                 |                    | 650 V         | IPL65R195C7 |
|                 |                    |               | IPL65R130C7 |
|                 |                    |               | IPL65R099C7 |
|                 |                    |               | IPL65R070C7 |

#### CoolSiC<sup>™</sup> diodes for microinverter

| Topology  | Package       | Voltage class | Part number |
|-----------|---------------|---------------|-------------|
| Rectifier | TO-252 (DPAK) | 1200 V        | IDM02G120C5 |
|           |               |               | IDM05G120C5 |
|           |               |               | IDM08G120C5 |


| Functional block                                   | Product<br>category | Product<br>family    | Benefits                                                                                                          |
|----------------------------------------------------|---------------------|----------------------|-------------------------------------------------------------------------------------------------------------------|
| PFC, PWM/<br>resonant<br>converter,<br>synchronous | Driver ICs          | 1EDix<br>EiceDRIVER™ | <ul> <li>100 ns typ. propagation<br/>delay time</li> <li>Functional isolation</li> <li>Separate source</li> </ul> |
| rectification                                      |                     | 2EDNx<br>EiceDRIVER™ | > 8 V UVLO option > (-)10 V input robusteness > Output robust against reverse current                             |

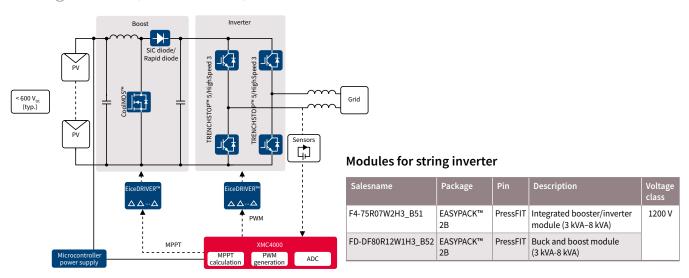
#### Microcontrollers for microinverter

| Topology               | Package                  | Voltage class | Technology                     |
|------------------------|--------------------------|---------------|--------------------------------|
| Microcontroller        | All                      | All           | XMC1000                        |
| Microcontroller supply | Linear voltage regulator | Up to 20 V    | IFX1763, IFX54441,<br>IFX54211 |
| Microcontroller        | All                      | All           | XMC4000                        |

www.infineon.com/solar

# Optimizer

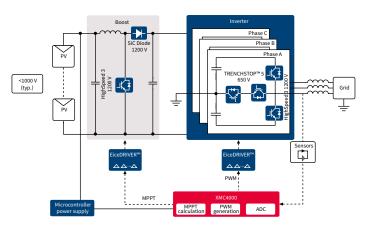



#### OptiMOS™ MOSFETs for optimizer DC-DC power conversion

| Input<br>voltage | Topology   | MOSFET<br>Breakdown voltage | SuperSO8                                                     | S308/PQFN 3.3x3.3                            | DirectFET™                     | D <sup>2</sup> PAK and DPAK               |
|------------------|------------|-----------------------------|--------------------------------------------------------------|----------------------------------------------|--------------------------------|-------------------------------------------|
| Up to 48 V       | Buck-boost | 60 V                        | BSC014N06NS<br>BSC016N06NS                                   | BSZ042N06NS                                  | BSB028N06NN3G                  | IPB026N06N                                |
| Up to 64 V       | Buck-boost | 80 V                        | BSC027N08NS5<br>BSC040N08NS5<br>BSC052N08NS5<br>BSC117N08NS5 | BSZ075N08NS5<br>BSZ084N08NS5<br>BSZ110N08NS5 | BSB044N08NN3G<br>BSF134N10NJ3G | IPB017N08N5<br>IPB031N08N5<br>IPB049N08N5 |
| Up to 80 V       | Buck-boost | 100 V                       | BSC035N10NS5<br>BSC040N10NS5<br>BSC060N10NS3                 | BSZ097N10NS5                                 | BSB056N10NN3                   | IPB020N10N5                               |
| Up to 125 V      | Buck-boost | 200 V                       | BSC320N20NS3G                                                | BSZ900N20NS3 G                               | -                              | IPD320N20N3G                              |

#### Microcontrollers for power optimizer

| Topology               | Package                  | Voltage class | Technology                  |
|------------------------|--------------------------|---------------|-----------------------------|
| Microcontroller        | All                      | All           | XMC1000                     |
| Microcontroller supply | Linear voltage regulator | Up to 20 V    | IFX1763, IFX54441, IFX54211 |
| Microcontroller        | All                      | All           | XMC4000                     |


# String inverter (non-isolated)



www.infineon.com/solar



# String inverter (three-phase)



#### Discrete power device for string inverter

| Inverter type | Function | Product series   | Part number  | Voltage class |
|---------------|----------|------------------|--------------|---------------|
| Single-phase  | Boost    | CoolMOS™ C7      | IPW60R040C7  | 600 V         |
|               |          | CoolSiC™ diode   | IDW20G65C5   | 650 V         |
|               | DC-DC    | CoolMOS™ P7      | IPW60R037P7  | 600 V         |
|               |          | CoolSiC™ diode   | IDW20G65C5   | 650 V         |
|               |          | Rapid diode      | IDW15E65D2   | 650 V         |
|               | Inverter | HighSpeed 3      | IKW40N60H3   | 600 V         |
|               |          | TRENCHSTOP™ 5 H5 | IKW40N65H5   | 650 V         |
|               |          | CoolMOS™ P7      | IPW60R037P7  | 600 V         |
| Three-phase   | Boost    | HighSpeed 3      | IKW40N120H3  | 1200 V        |
|               |          | CoolSiC™ diode   | IDW40G120C5B | 1200 V        |
|               |          | TRENCHSTOP™ 5 S5 | IKW40N65ES5  | 650 V         |
|               |          | TRENCHSTOP™ 5 L5 | IKW30N65EL5  | 650 V         |
|               | Inverter | HighSpeed 3      | IKW40N120H3  | 1200 V        |

www.infineon.com/solar www.infineon.com/igbtmodules1200v

#### Three-phase modules for string inverter

| Salesnames        | Voltage class |
|-------------------|---------------|
| F3L75R12W1H3_B11  |               |
| F3L150R12W2H3_B11 |               |
| F3L200R12W2H3_B11 | 1200 V        |
| F3L100R12W2H3_B11 | 1200 V        |
| FS3L25R12W2H3_B11 |               |
| FS3L15R12W2H3_B11 |               |

#### Booster modules for string inverter

| Salesnames        | Voltage class |
|-------------------|---------------|
| DF80R12W2H3F_B11  | 1200 V        |
| DF160R12W2H3F_B11 | 1200 V        |

#### EiceDRIVER™ for string inverter

| Power device | Driving method | Voltage class | Part number     |
|--------------|----------------|---------------|-----------------|
| IGBT         | Single channel | 1200 V        | 1ED020I12-F2/B2 |
| IGBT         | Half-bridge    | 1200 V        | 2ED020I12-FI    |

#### CoolSET™ for string inverter

| Voltage class | Part number  |
|---------------|--------------|
| 800 V         | ICE3AR2280JZ |
| 650 V         | ICE3BR1765JZ |

#### Microcontrollers for string inverter

| Topology               | Package                  | Voltage class | Technology                     |
|------------------------|--------------------------|---------------|--------------------------------|
| Microcontroller        | All                      | All           | XMC1000                        |
| Microcontroller supply | Linear voltage regulator | Up to 20 V    | IFX1763, IFX54441,<br>IFX54211 |
| Microcontroller        | All                      | All           | XMC4000                        |



# Wireless charging for consumer

Highest efficiency for the next level of charging

Within the last years, wireless charging gained more and more traction in the market and will heavily influence our daily lives in the coming years. Infine on offers a variety of innovative components to develop highly reliable and efficient solutions for the transmitter and adapter/charger (see page 38 and 40) parts of a wireless charging system by serving the key requirements of the dominating standards in the market: inductive (AirFuel and Qi (WPC)) and resonant (AirFuel).

#### Many end markets for wireless battery charging







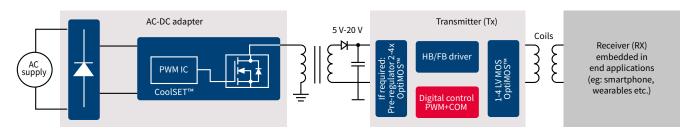













#### Key enabling products for transmitter and adapter

- Low and mid voltage power MOSFETs OptiMOS™
- > Driver ICs EiceDRIVER™
- > Microcontrollers XMC™
- > High voltage power MOSFETs CoolMOS™ CE/P7
- > PWM/flyback controllers and integrated power stage ICs CoolSET™
- > Synchronous rectification ICs and MOSFETs OptiMOS™

| Key application requirements                                             | Benefits of Infineon products                                             |
|--------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Efficient and easy to design transmitter solutions                       | > Right fit as well as high performance MOSFETs, ICs and microcontrollers |
| Smart heat management to provide cooling for receiver and transmitter    | > Highest efficiency components reduces need for extra cooling            |
| Small package sizes to enable small form factor designs (e.g. wearables) | > Smallest possible package size for low power MOSFETs 30 V-100 V         |
| Higher power ratings for faster charge speed                             | > Highest power density with low and high voltage MOSFETs                 |

#### Block diagram





#### Components for inductive (AirFuel and Qi) and low switching frequency transmitter solutions

Especially for the emerging higher power (15 W+) transmitter applications equipping your half- or full-bridge with components from the OptiMOS<sup>TM</sup> 30 V product family will pay off with superior power transfer performance. Single and dual n-channel OptiMOS<sup>TM</sup> versions with excellent  $R_{DS(on)}$  and charge characteristics are available in small footprint packages for your wireless power transmitter design. For multi-coil designs, there are very suitable IR MOSFET<sup>TM</sup> devices in 2x2 mm packages ready to use.

| Sub-application       | Voltage class                                                     | Package                        | Part number  | $R_{DS(on)}$ max @ $V_{GS}$ = 4.5 V [mQ] |  |  |  |
|-----------------------|-------------------------------------------------------------------|--------------------------------|--------------|------------------------------------------|--|--|--|
| Inverter MOSFETs      | 30 V                                                              | SuperSO8                       | BSC0996NS    | 11.8                                     |  |  |  |
|                       |                                                                   |                                | BSC0993ND    | 7.0                                      |  |  |  |
|                       |                                                                   | PQFN 3.3 x 3.3                 | BSZ0589NS    | 4.4                                      |  |  |  |
|                       |                                                                   |                                | BSZ0994NS    | 8.6                                      |  |  |  |
|                       |                                                                   |                                | BSZ0909NS    | 15                                       |  |  |  |
|                       |                                                                   | PQFN 2 x 2                     | IRFHS8342PbF | 25                                       |  |  |  |
|                       |                                                                   |                                | IRLHS6342PbF | 15.5                                     |  |  |  |
| Coil selection switch | 20 V                                                              | PQFN 2 x 2                     | IRLHS6242PbF | 11.7 (= 2.5 V drive capable)             |  |  |  |
|                       | 25 V                                                              |                                | IRFHS8242PbF | 21.0                                     |  |  |  |
|                       | 30 V                                                              |                                | IRFHS8342PbF | 25.0                                     |  |  |  |
|                       |                                                                   |                                | IRLHS6342PbF | 15.5 (= 2.5 V drive capable)             |  |  |  |
|                       |                                                                   | PQFN 3.3 x 3.3                 | BSZ0994NS    | 8.6                                      |  |  |  |
|                       |                                                                   |                                | BSZ0909NS    | 15                                       |  |  |  |
| Driver ICs            | PX3517 or PX3519 or A                                             | PX3517 or PX3519 or AUIRS2301S |              |                                          |  |  |  |
| Microcontroller       | XMC1302 or XMC1404 or XMC4108 (for details please check page 236) |                                |              |                                          |  |  |  |

#### Components for resonant (AirFuel) and high switching frequency transmitter solutions

Infineon offers superior power MOSFET technology especially in the 30 V-100 V areas for class D inverter designs and in the 150 V-250 V voltage class for class E inverter to address MHz switching implementations. We provide leading products in the industry when it comes to fast switching and have the best figure-of-merit for gate charge times  $R_{DS(on)}$  and for  $C_{oss}$  thus allowing you to achieve 6.78 MHz inverter designs using robust silicon MOSFET technology. There are even more targeted products in the pipeline and Infineon is working on its own medium voltage GaN technology and will bring it to the market with a significant performance increase over silicon MOSFETs. Infineon offers the "coolest" driver ICs in the industry, already available as low side drivers for class E implementations and soon as level shifted half-bridge driver for class D topologies. If your transmitter design uses a pre-regulator (buck or buck/boost) to control the input voltage of your amplifier you can find OptiMOS<sup>TM</sup> solutions in the 20 V-400 V MOSFETs section.

| Sub-application  | Voltage class                                        | Package                 | Part number            | $R_{DS(on)} \max @ V_{GS} = 4.5 V$ $[mQ]$ | Q္ဖ typical<br>[nC] | C <sub>oss</sub> typical<br>[pF] | Topology  |  |  |
|------------------|------------------------------------------------------|-------------------------|------------------------|-------------------------------------------|---------------------|----------------------------------|-----------|--|--|
| Inverter MOSFETS | 30 V                                                 | PQFN 2 x 2 Dual         | IRLHS6376PbF           | 48.0                                      | 2.8                 | 32                               | Class D   |  |  |
|                  |                                                      | PQFN 3.3 x 3.3 Dual     | BSZ0909ND              | 18.5                                      | 2.0                 | ~120                             | Class D   |  |  |
|                  |                                                      | SOT-23                  | IRLML0030PbF           | 33                                        | 2.75                | 84                               | Class D   |  |  |
|                  | 40 V                                                 | SOT-23                  | IRLML0040PbF           | 62                                        | 2.8                 | 49                               | Class D   |  |  |
|                  | 60 V                                                 |                         | IRLML0060PbF           | 98                                        | 2.6                 | 37                               | Class D   |  |  |
|                  | 80 V                                                 | PQFN 2 x 2              | IRL80HS120             | 32.0                                      | 3.5                 | 68                               | Class D/E |  |  |
|                  | 100 V                                                |                         | IRL100HS121            | 42.0                                      | 2.7                 | 62                               | Class D/E |  |  |
|                  | 150 V                                                | PQFN 3.3 x 3.3          | BSZ900N15NS3           | 75*                                       | 4.1*                | 46                               | Class E   |  |  |
|                  |                                                      |                         | BSZ520N15NS3           | 42*                                       | 7.2*                | 80                               | Class E   |  |  |
|                  | 200 V                                                | 200 V                   | BSZ900N20NS3           | 78*                                       | 7.2*                | 52                               | Class E   |  |  |
|                  |                                                      |                         | BSZ22DN20NS3           | 200*                                      | 3.5*                | 24                               | Class E   |  |  |
|                  |                                                      |                         | BSZ12DN20NS3           | 111*                                      | 5.4*                | 39                               | Class E   |  |  |
|                  | 250 V                                                |                         | BSZ42DN25NS3           | 375*                                      | 3.6*                | 21                               | Class E   |  |  |
| Driver ICs       | EiceDRIVER™ 2EDL71                                   | iceDRIVER™ 2EDL71**     |                        |                                           |                     |                                  |           |  |  |
|                  | EiceDRIVER™ 1EDN (for details please check page 216) |                         |                        |                                           |                     |                                  |           |  |  |
| Microcontroller  | XMC1302 or XMC140                                    | 4 or XMC4108 (for detai | ls please check page 2 | 236)                                      |                     |                                  |           |  |  |

<sup>\*</sup> V<sub>GS</sub> = 8 V

<sup>\*\*</sup> In development



# Infineon support for applications

# Useful links and helpful information

Learn more about our system solutions for your application. Find block diagrams, evaluation boards, videos, tools and related material for download.

www.infineon.com/3dprinter www.infineon.com/audio www.infineon.com/automaticopeningsystem www.infineon.com/automation www.infineon.com/consumer www.infineon.com/dataprocessing www.infineon.com/emobility www.infineon.com/homeappliance www.infineon.com/industrial-robotics www.infineon.com/lev www.infineon.com/lighting

www.infineon.com/microwave www.infineon.com/motorcontrol www.infineon.com/multicopter www.infineon.com/server www.infineon.com/service-robotics www.infineon.com/smps www.infineon.com/solar www.infineon.com/telecom www.infineon.com/ups www.infineon.com/welding www.infineon.com/wirelesspower

#### **Videos**













# OptiMOS™ and StrongIRFET™

20 V-300 V n-channel power MOSFETs

Infineon's semiconductors are designed to bring more efficiency, power density and cost effectiveness. The full range of OptiMOS™ and StrongIRFET™ power MOSFETs enables innovation and performance in applications such as switch mode power supplies (SMPS), motor control and drives, inverters and computing.

Infineon's highly innovative OptiMOS™ and StrongIRFET™ families consistently meet the highest quality and performance demands in key specifications for power system design such as on-state resistance and figure of merit characteristics.

OptiMOS™ power MOSFETs provide excellent best-in-class performance. Features include ultra-low R<sub>DS(on)</sub>, as well as low charge for high switching frequency applications. StrongIRFET™ power MOSFETs are designed for rugged industrial applications and are ideal for designs with a low switching frequency as well as those that require a high current carrying capability.

#### OptiMOS™ family attributes



#### StrongIRFET™ family attributes



www.infineon.com/powermosfet-20V-300V

# OptiMOS™ and StrongIRFET™

Space saving and high performance packages



Best thermal behavior in a tiny footprint



For highest efficiency and power management



**Enables significant space saving** 

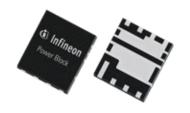


Optimized for high power applications

#### DirectFET™

The DirectFET™ portfolio is the best fit for a broad number of industrial applications such as voltage regulator for servers, DC-DC converters in telecom, solar microinverters and Maximum Power Point Trackers (MPPT), low voltage drives and synchronous rectification in server and desktop. With only a 31 mm² footprint, DirectFET™ M allows 79 percent space reduction in power components on the board compared to traditional D²PAK. In addition, the metal can enables double-sided cooling along with almost no package parasitic inductances, leading to a higher system efficiency. DirectFET™ Corner Gate offers the same benefits but in addition reduced package resistance, improved thermal behavior as well as increased current rating.

#### SuperSO8/PQFN 3.3 x 3.3


In applications such as synchronous rectification in server and desktop, motor drives and DC-DC converters in telecom, high power density and high efficiency are the main objectives. The trend set by Infineon to move from TO-220 to SuperSO8 and PQFN 3.3 x 3.3 reduces the area consumption considerably. With a three times lower resistance parasitic compared to TO-220, SuperSO8 offers high system efficiency and low design effort due to reduced spikes.

#### PQFN2x2

The PQFN 2 x 2 package is especially suited for high speed switching and form factor critical applications such as wireless chargers, DC-DC converters and adapters. It enables higher power density and improved efficiency as well as significant space saving.

#### TO-Leadless

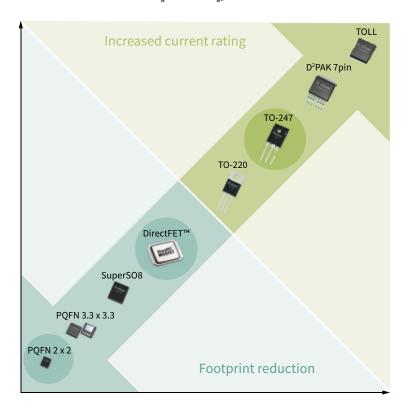
TO-Leadless is especially designed for high current applications with high power and reliability requirements such as forklift, light electric vehicles, eFuse, PoL (point-of-load) and telecom. The outstanding current capability of up to 300 A is a key feature of TO-Leadless. Furthermore, this package offers benefits in terms of optimized board space. The significantly smaller package size, reduced by 60 percent, enables a very compact design. Compared to D²PAK 7pin, TO-Leadless shows a 30 percent reduction in footprint. This allows a board space reduction in forklift applications. Additionally, the 50 percent height reduction offers a significant advantage in narrow applications such as rack or blade servers.



Significant design shrink

#### Power Block

OptiMOS™ 5 Power Block is a leadless SMD package in a 5.0 x 6.0 mm² package outline, including a low-side and a high-side MOSFET in a synchronous buck converter configuration. Replacing two separate discrete packages, such as SO-8 or SuperSO8, with the OptiMOS™ 5 Power Block enables a design shrink of at least 50 percent.


### OptiMOS™ 5 in additional packages

With the latest OptiMOS™ portfolio extension, OptiMOS™ 5 silicon is now available in more packages to address the demands for higher current carrying capability and significant space saving.

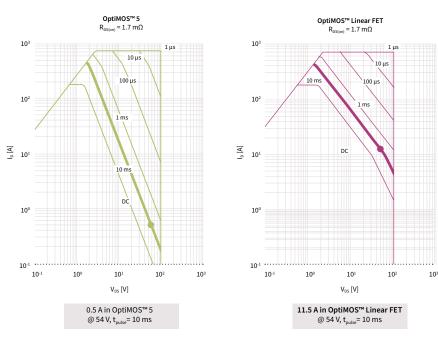
For the first time best-in-class OptiMOS™ 5 logic level silicon is available in a PQFN 2 x 2 package to achieve benchmark performance in high speed switching and form factor critical applications.

OptiMOS™ 5 die in a TO-247 package is the perfect fit for rugged high power applications enabling increased current carrying capability and a more robust and reliable performance.

DirectFET<sup>M</sup> is optimized for high frequency applications by offering lowest parasitic resistance and inductance and together with OptiMOS<sup>M</sup> 5 achieves the lowest FOM, and FOM,



www.infineon.com/powermosfet-20V-300V



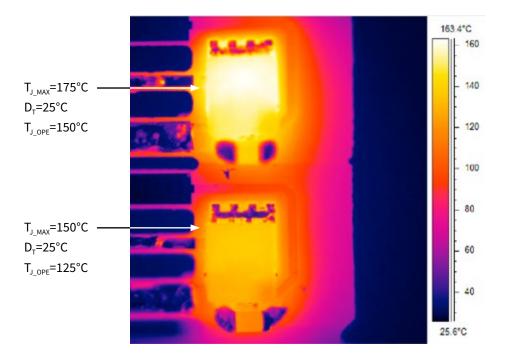

# OptiMOS™ Linear FET

Combining low  $R_{\scriptscriptstyle DS(on)}$  with wide safe operating area

OptiMOS<sup>TM</sup> Linear FET is a revolutionary approach to avoid the trade-off between on-state resistance ( $R_{DS(on)}$ ) and linear mode capability – operation in the saturation region of an enhanced mode MOSFET. It offers the state-of-the-art  $R_{DS(on)}$  of a trench MOSFET as well as the wide safe operating area of a classic planar MOSFET. This new product is the perfect fit for hot-swap and e-fuse applications commonly seen in telecom and battery management systems. OptiMOS<sup>TM</sup> Linear FET prevents damage at the load in case of a short circuit by limiting high inrush currents. OptiMOS<sup>TM</sup> Linear FET will be available in three voltage classes – 100 V, 150 V, and 200 V – in either  $D^2PAK$  or  $D^2PAK$ -7 package.

### Safe operating area comparison




www.infineon.com/optimos-linearfet

# 175°C SuperSO8

Improved ruggedness and enhanced temperature rating

Future Infineon products in SuperSO8 will offer an enhanced temperature capability of 175°C to support higher power density designs and improved robustness.

Over and above 150°C rated devices, a 175°C offers either more power at a higher operating junction temperature or longer lifetime at the same operating junction temperature.



The new OptiMOS<sup>TM</sup> fast diode products in 200 V, 250 V and 300 V are the first ones in SuperSO8 that make use of the extended junction temperature  $(T_j)$ . They are especially designed to withstand extreme conditions such as in fan-less or hot-airflow environments. Fast diode products are furthermore optimized for body diode hard commutation by significantly decreasing reverse recovery charge  $(Q_{rr})$ .

| OptiMOS                                         | S™ & StrongIR                                | FET™ 20 V (Suր                                        | per) logic level                                                                                                                            |                |                                               | Onboard Malinboard Hotebook                   | DC-DC VRO/VRM LED                                                                                                                           |
|-------------------------------------------------|----------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| $R_{DS(on)}$ max @ $V_{GS}$ =10 V [m $\Omega$ ] | TO-252<br>(DPAK)                             | DirectFET™                                            | PQFN 2 x 2                                                                                                                                  | PQFN 3.3 x 3.3 | SuperSO8                                      | SO-8                                          | SOT-23                                                                                                                                      |
| <1                                              |                                              | IRL6283MTRPBF<br>R <sub>DS(on)</sub> =0.65 mΩ         |                                                                                                                                             |                | IRFH6200TRPBF<br>R <sub>DS(on)</sub> =0.99 mΩ |                                               |                                                                                                                                             |
| 1-2                                             |                                              |                                                       |                                                                                                                                             |                | BSC019N02KS G<br>R <sub>DS(on)</sub> =1.9 mΩ  |                                               |                                                                                                                                             |
| 2.4                                             |                                              |                                                       |                                                                                                                                             |                | BSC026N02KS G<br>$R_{DS(on)}$ =2.6 m $\Omega$ | IRF6201TRPBF<br>$R_{DS(on)}$ =2.45 m $\Omega$ |                                                                                                                                             |
| 2-4                                             | IRLR6225TRPBF<br>R <sub>DS(on)</sub> =4.0 mΩ | IRL6297SDTRPBF**<br>R <sub>DS(on)</sub> =3.8 mΩ; dual |                                                                                                                                             |                | IRLH6224TRPBF<br>R <sub>DS(on)</sub> =3.0 mΩ  |                                               |                                                                                                                                             |
| 4-10                                            |                                              |                                                       |                                                                                                                                             |                | BSC046N02KS G<br>R <sub>DS(on)</sub> =4.6 mΩ  | IRF3717<br>R <sub>DS(on)</sub> =4.4 mΩ        |                                                                                                                                             |
| >10                                             |                                              |                                                       | $ \begin{array}{l} \text{IRLHS6242TRPBF} \\ \text{R}_{\text{DS(on)}} \text{=} 11.7 \text{ m}\Omega \\ \text{IRLHS6276TRPBF**} \end{array} $ |                |                                               |                                               | $\begin{array}{c} \text{IRLML6244}^{1)}  *** \\ \text{R}_{\text{DS(on)}} = 21  \text{m}\Omega \\ \\ \text{IRLML6246}^{1)}  *** \end{array}$ |
|                                                 |                                              |                                                       | $R_{DS(on)}$ =45.0 mΩ; dual                                                                                                                 |                |                                               |                                               | $R_{DS(on)}$ =46 m $\Omega$                                                                                                                 |

#### $\begin{array}{c} R_{\text{DS(on)}} \, max \\ @ \, V_{\text{GS}} = 10 \, V \\ [m\Omega] \end{array}$ DirectFET™ PQFN 2 x 2 PQFN 3.3 x 3.3 SuperSO8 SOT-23 IRF6718L2TRPBF BSC009NE2LS R<sub>DS(on)</sub>=0.9 mΩ BSC009NE2LS5 $R_{DS(on)}$ =0.7 m $\Omega$ BSB008NE2LX $R_{DS(on)}$ =0.9 mΩ BSC009NE2LS5I\*\* $R_{DS(on)}$ =0.8 m $\Omega$ $R_{DS(on)}$ =0.95 m $\Omega$ BSC010NE2LS IRF6898MTRPBF\*\* BSZ013NE2LS5I\*\* $R_{DS(on)}$ =1.1 m $\Omega$ $R_{DS(on)}$ =1.3 m $\Omega$ $R_{DS(on)}=1.0 \text{ m}\Omega$ BSZ014NE2LS5IF \* \*\* BSB012NE2LXI\*\* BSC010NE2LSI\*\* R<sub>DS(on)</sub>=1.45 mΩ BSZ017NE2LS5I\*\* $R_{DS(on)}$ =1.05 m $\Omega$ BSC014NE2LSI\* $R_{DS(on)}$ =1.2 m $\Omega$ IRF6717MTRPBF $R_{DS(on)}$ =1.25 $m\Omega$ $R_{DS(on)}$ =1.7 $m\Omega$ $R_{DS(on)}$ =1.4 m $\Omega$ IRF6894MTRPBF\*\* IRFH5250D BSZ018NE2LS $R_{DS(on)}$ =1.8 m $\Omega$ BSZ018NE2LSI\*\* $R_{DS(on)}$ =1.3 m $\Omega$ $R_{DS(on)}$ =1.4 m $\Omega$ BSC015NE2LS5I\*\* BSB013NE2LXI\* $R_{DS(on)}$ =1.8 m $\Omega$ $R_{DS(on)}=1.5 \text{ m}\Omega$ $R_{DS(on)}=1.3 \text{ m}\Omega$ IRF6797MTRPBF\*\* BSC018NE2LS 1-2 $R_{DS(on)}$ =1.4 m $\Omega$ IRF6716M R<sub>DS(on)</sub>=1.8 mΩ BSC018NE2LSI\* $R_{DS(on)}$ =1.6 m $\Omega$ IRF6715MTRPBF $R_{DS(on)}=1.8 \text{ m}\Omega$ $R_{DS(on)}=1.6 \text{ m}\Omega$ IRF6893MTRPBF\*\* $R_{DS(on)}$ =1.6 m $\Omega$ IRF6892STRPBF\*\* $R_{DS(on)}$ =1.7 m $\Omega$ IRF6795MTRPBF\*\* $R_{DS(on)}$ =1.8 m $\Omega$ IRF6714MTRPBF BSZ031NE2LS5 BSC024NE2LS $R_{DS(on)}$ =2.4 m $\Omega$ BSC026NE2LS5 $R_{DS(on)}$ =2.1 m $\Omega$ $R_{DS(on)}$ =3.1 m $\Omega$ BSF030NE2LQ BSZ033NE2LS5 IRF8252 $R_{DS(on)}$ =3.3 m $\Omega$ BSZ036NE2LS $R_{DS(on)}$ =2.6 m $\Omega$ BSC032NE2LS $R_{DS(on)}=3.0 \text{ m}\Omega$ $R_{DS(on)} = 2.7 \text{ m}\Omega$ 2-4 BSF035NE2LQ $R_{DS(on)}$ =3.5 mΩ IRF6811STRPBF\*\* $R_{DS(on)}$ =3.6 m $\Omega$ $R_{DS(on)}$ =3.2 m $\Omega$ $R_{DS(on)}$ =3.7 mΩ IRF6802SD $R_{DS(on)}$ =4.2 mΩ IRF6710S2TRPBF IRFHM8228TRPBF BSC050NE2LS

#### www.infineon.com/powermosfet-20V-30V

IRFHS8242

 $R_{DS(on)}=13 \text{ m}\Omega$ 

OptiMOS™ & StrongIRFET™ 25 V logic level

 $R_{DS(on)}$ =4.5 m $\Omega$ IRF6712STRPBF

R<sub>DS(on)</sub>=4.9 mΩ IRF6810STRPBF\*\*

 $R_{DS(on)}$ =5.2 m $\Omega$ 

4-10

> 10

 $R_{DS(on)}$ =5.0 m $\Omega$ 

 $R_{DS(on)}$ =5.2 m $\Omega$ BSZ060NE2LS

 $R_{DS(on)}$ =7.7  $m\Omega$ 

 $R_{DS(on)}$ =6.0 m $\Omega$ 

IRFML8244

 $R_{DS(on)}$ = 24  $m\Omega$ 

 $<sup>^\</sup>star$  Optimized for resonant applications (e.g. LLC converter)

 $<sup>^{\</sup>star\star}$  Monolithically integrated Schottky-like diode

<sup>\*\*\*</sup>  $R_{DS(on)}$  max @  $V_{GS}$ =4.5 V

 $<sup>^{\</sup>scriptscriptstyle 1)}$  2.5  $V_{\scriptscriptstyle GS}$  capable



## OptiMOS™ & StrongIRFET™ 25 V/30 V in power stage 5x6









| Part number |           |                                   | Monolithically BV <sub>DSS</sub> [V] |           | @ V <sub>GS</sub> =4.5 V max. | Q <sub>g</sub> [nC] @ \ | $Q_g[nC]$ @ $V_{GS}$ =4.5 V typ. |  |
|-------------|-----------|-----------------------------------|--------------------------------------|-----------|-------------------------------|-------------------------|----------------------------------|--|
|             |           | integrated Schottky<br>like diode |                                      | High-side | Low-side                      | High-side               | Low-side                         |  |
| BSC0910NDI  | TISON 5x6 | ✓                                 | 25                                   | 5.9       | 1.6                           | 7.7                     | 25.0                             |  |
| BSC0911ND   | TISON 5x6 | -                                 | 25                                   | 4.8       | 1.7                           | 7.7                     | 25.0                             |  |
| BSC0921NDI  | TISON 5x6 | ✓                                 | 30                                   | 7.0       | 2.1                           | 5.8                     | 21.0                             |  |
| BSC0923NDI  | TISON 5x6 | ✓                                 | 30                                   | 7.0       | 3.7                           | 5.2                     | 12.2                             |  |
| BSC0924NDI  | TISON 5x6 | ✓                                 | 30                                   | 7.0       | 5.2                           | 5.2                     | 8.6                              |  |
| BSC0925ND   | TISON 5x6 | -                                 | 30                                   | 6.4       | 6.4                           | 5.2                     | 6.7                              |  |

# OptiMOS™ & StrongIRFET™ 25 V/30 V in Power Block 5x6 and 5x4







| Part number    | Package   | Monolithically BV <sub>DSS</sub> [V] |    | $R_{_{DS(on),max.}}[m\Omega]$ @ $V_{_{GS}}\!\!=\!\!4.5V$ max. |          | $Q_g[nC]$ @ $V_{GS}$ =4.5 V typ. |          |
|----------------|-----------|--------------------------------------|----|---------------------------------------------------------------|----------|----------------------------------|----------|
|                |           | integrated Schottky<br>like diode    |    | High-side                                                     | Low-side | High-side                        | Low-side |
| BSG0810NDI     | TISON 5x6 | ✓                                    | 25 | 4.0                                                           | 1.2      | 5.6                              | 16.0     |
| BSG0811ND      | TISON 5x6 | -                                    | 25 | 4.0                                                           | 1.1      | 5.6                              | 20.0     |
| BSG0813NDI     | TISON 5x6 | ✓                                    | 25 | 4.0                                                           | 1.7      | 5.6                              | 12.0     |
| IRFH4257DTRPBF | PQFN 5x4  | ✓                                    | 25 | 4.7                                                           | 1.8      | 9.7                              | 23.0     |

#### OntiMOS™ & StrongIRFFT™ 30 V logic level











| Оримо                                             | 3 & Stiongikee 30                                                                                                                                                                                                                                                                                                                                                                                                                                 | v logic level                                                                                                                                                                                                                                                                                                                                                      | _                                            |                                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $R_{DS(on), max.}$ @ $V_{GS}$ =10 V [m $\Omega$ ] | TO-252<br>(DPAK)                                                                                                                                                                                                                                                                                                                                                                                                                                  | TO-263<br>(D <sup>2</sup> PAK)                                                                                                                                                                                                                                                                                                                                     | TO-263<br>(D <sup>2</sup> PAK 7pin)          | TO-220                                                                                                                                                                                                                                                                                                      |
| <1                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                    | IPB009N03L G<br>R <sub>DS(on)</sub> =0.95 mΩ |                                                                                                                                                                                                                                                                                                             |
| 1-2                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IRLS3813TRLPBF<br>$R_{DS(on)}$ =1.95 m $\Omega$                                                                                                                                                                                                                                                                                                                    |                                              | IRLB3813PBF $R_{DS(on)}$ =1.95 m $\Omega$                                                                                                                                                                                                                                                                   |
|                                                   | $ \begin{aligned} & \text{IRLR8743TRPBF} \\ & R_{\text{DS(on)}} = 3.1 \text{ m}\Omega \\ & \text{IPD031N03L G} \\ & R_{\text{DS(on)}} = 3.1 \text{ m}\Omega \end{aligned} $                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                    |                                              | IRLB8314PBF<br>$R_{DS(m)}$ =2.4 mΩ<br>IRL3713PBF<br>$R_{DS(m)}$ =3.0 mΩ                                                                                                                                                                                                                                     |
| 2-4                                               | IPD040N03L G                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} \text{IPB034N03L G} \\ \text{R}_{\text{DS(on)}} \text{=} 3.4 \text{ m}\Omega \end{array}$                                                                                                                                                                                                                                                        |                                              | $ \begin{array}{c} \text{IRLB8743PBF} \\ R_{\text{DS(om)}} = 3.2 \text{ m}\Omega \\ \text{IPP034N03L G} \end{array} $                                                                                                                                                                                       |
| 4-10                                              | $\begin{split} R_{DS(on)} = & 4.0 \text{ m}\Omega \\ \text{IPD050N03L G} \\ R_{DS(on)} = & 5.0 \text{ m}\Omega \\ \text{IRLR872GTRPBF} \\ R_{DS(on)} = & 5.8 \text{ m}\Omega \\ \text{IPD060N03L G} \\ R_{DS(on)} = & 6.0 \text{ m}\Omega \\ \text{IPD075N03L G} \\ R_{DS(on)} = & 7.5 \text{ m}\Omega \\ \text{IRLR8729TRPBF} \\ R_{DS(on)} = & 8.9 \text{ m}\Omega \\ \text{IPD090N03L G} \\ R_{DS(on)} = & 9.0 \text{ m}\Omega \\ \end{split}$ | $ \begin{aligned} & \text{IPB042N03L G} \\ & R_{\text{DS(on)}} \!\! = \!\! 4.2 \text{ m} \Omega \\ & \text{IPB055N03L G} \\ & R_{\text{DS(on)}} \!\! = \!\! 5.5 \text{ m} \Omega \\ & \text{IPB065N03L G} \\ & R_{\text{DS(on)}} \!\! = \!\! 6.5 \text{ m} \Omega \\ & \text{IPB080N03L G} \\ & R_{\text{DS(on)}} \!\! = \!\! 8.0 \text{ m} \Omega \end{aligned} $ |                                              | $\begin{array}{l} R_{Ds(om)} = 3.4 \ m\Omega \\ \\ IPPO42N03LG \\ R_{Ds(om)} = 4.2 \ m\Omega \\ \\ IRLB8748PBF \\ R_{Ds(om)} = 4.8 \ m\Omega \\ \\ IPPO55N03LG \\ R_{Ds(om)} = 5.5 \ m\Omega \\ \\ IRL8113PBF \\ R_{Ds(om)} = 6.0 \ m\Omega \\ \\ IRLB8721PBF \\ R_{Ds(om)} = 8.7 \ m\Omega \\ \end{array}$ |
| 10-25                                             | $^{18}$ <sub>Signi</sub> 3803L G<br>$^{19}$ <sub>Diss</sub> 13.5 mΩ<br>IRLR3103<br>$^{18}$ <sub>R<sub>D</sub></sub> 19.0 mΩ                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                    |                                              |                                                                                                                                                                                                                                                                                                             |











| OptiMO:                                                                          | S™ & StrongIRFE                         | T™ 30 V logic leve                                                                                           | el                                          |                                                                                                              |                                 |                                                   |
|----------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------------------------|
| $\begin{array}{c} R_{DS(on),max.} \\ @\ V_{GS} = 10\ V \\ [m\Omega] \end{array}$ | Bare Die<br>(R <sub>DS(on) typ.</sub> ) | DirectFET™                                                                                                   | PQFN 3.3 x 3.3                              | SuperSO8                                                                                                     | TO-Leadless                     | PQFN 2 x 2                                        |
| <1                                                                               |                                         |                                                                                                              |                                             |                                                                                                              | IPT004N03L $R_{DS(on)}$ =0.4 mΩ |                                                   |
|                                                                                  |                                         |                                                                                                              |                                             | $\begin{array}{c} \text{IRFH8303TRPBF} \\ \text{R}_{\text{DS(on)}} \text{=} 1.1 \text{ m}\Omega \end{array}$ |                                 |                                                   |
|                                                                                  |                                         |                                                                                                              |                                             | $\begin{array}{c} BSC011N03LS \\ R_{DS(on)} = 1.1  m\Omega \\ \\ BSC011N03LSI^{**} \end{array}$              |                                 |                                                   |
|                                                                                  |                                         |                                                                                                              |                                             | $R_{DS(on)}$ =1.1 m $\Omega$                                                                                 |                                 |                                                   |
|                                                                                  |                                         |                                                                                                              |                                             | IRFH8307TRPBF $R_{DS(on)}=1.3 \text{ m}\Omega$                                                               |                                 |                                                   |
| 1-2                                                                              |                                         |                                                                                                              |                                             | BSC0500NSI**<br>R <sub>DS(on)</sub> =1.3 mΩ                                                                  |                                 |                                                   |
|                                                                                  |                                         | $\begin{array}{c} \text{IRF8301MTRPBF} \\ \text{R}_{\text{DS(on)}} \text{=} 1.5 \text{ m}\Omega \end{array}$ |                                             | BSC014N03LS G $R_{DS(on)}$ =1.4 m $\Omega$                                                                   |                                 |                                                   |
|                                                                                  |                                         |                                                                                                              | BSZ0500NSI** $R_{DS(on)}$ =1.5 mΩ           | BSC016N03LS G $R_{DS(on)}$ =1.6 m $\Omega$                                                                   |                                 |                                                   |
|                                                                                  |                                         | IRF8302MTRPBF** $R_{DS(on)}$ =1.8 m $\Omega$                                                                 | BSZ019N03LS $R_{DS(on)}$ =1.9 $m\Omega$     | BSC0901NS $R_{DS(on)}$ =1.9 $m\Omega$                                                                        |                                 |                                                   |
|                                                                                  |                                         |                                                                                                              | BSZ0901NS $R_{DS(on)}$ =2.0 m $\Omega$      | BSC0501NSI** $R_{DS(on)}$ =1.9 m $\Omega$                                                                    |                                 |                                                   |
|                                                                                  | IPC055N03L3 $R_{DS(on)}$ =2.7 mΩ        |                                                                                                              | BSZ0501NSI**<br>R <sub>DS(on)</sub> =2.0 mΩ | BSC0901NSI**<br>R <sub>DS(on)</sub> =2.0 mΩ                                                                  |                                 |                                                   |
|                                                                                  |                                         |                                                                                                              |                                             |                                                                                                              |                                 | IRLHS6342*** $R_{DS(on)}$ = 16 m $\Omega$         |
| >10                                                                              |                                         |                                                                                                              |                                             |                                                                                                              |                                 | IRFHS8342 $R_{DS(on)}$ = 16 m $\Omega$            |
|                                                                                  |                                         |                                                                                                              |                                             |                                                                                                              |                                 | IRLHS6376***<br>R <sub>DS(on)</sub> = 63 mΩ; dual |

www.infineon.com/powermosfet-20V-30V www.infineon.com/baredie

<sup>\*\*</sup> Monolithically integrated Schottky-like diode

<sup>\*\*\*</sup> R<sub>DS(on)</sub> max @ V<sub>GS</sub>=4.5 V

#### Beard Mainboard Notebook DC-DC VRD/VRI OptiMOS™ & StrongIRFET™ 30 V logic level SO-8 Bare Die DirectFET™ PQFN 3.3 x 3.3 SuperSO8 SO-8 $\begin{array}{l} R_{\scriptscriptstyle DS(on),\; max.} \\ @V_{\scriptscriptstyle GS} = 10 \ V \end{array}$ Dual $(R_{DS(on) \, typ.})$ [mΩ] BSC011N03LST<sup>2)</sup> $R_{\text{DS(on)}}$ =1.1 m $\Omega$ BSZ0901NSI\*\* IRF8304MTRPBF BSC020N03LS G $R_{DS(on)}$ =2.1 m $\Omega$ $R_{DS(on)}=2.2 \text{ m}\Omega$ $R_{DS(on)}=2.0 \text{ m}\Omega$ IPC042N03L3<sup>3)</sup> IRLHM620TRPBF BSC0502NSI\*\* $R_{DS(on)}$ =3.7 m $\Omega$ $R_{DS(on)}$ =2.5 m $\Omega$ $R_{DS(on)}$ =2.4 m $\Omega$ IRF8306MTRPBF\*\* BSZ0902NS BSC025N03LS G $R_{DS(on)}$ =2.5 m $\Omega$ $R_{DS(on)}$ =2.6 m $\Omega$ $R_{ps(pp)}=2.5 \text{ m}\Omega$ BSC0902NS $R_{DS(on)}$ =2.6 m $\Omega$ IRF8252TRPBF $R_{DS(on)}=2.7 \text{ m}\Omega$ BSZ0902NSI\*\* BSC0902NSI\*\* IRF8788TRPBF $R_{DS(on)}$ =2.8 m $\Omega$ $R_{DS(on)}$ =2.8 m $\Omega$ $R_{DS(on)}$ =2.8 m $\Omega$ < 4 BSZ0502NSI\* IRFH8316TRPBF $R_{DS(on)}=2.8 \text{ m}\Omega$ $R_{DS(on)}$ =2.95 m $\Omega$ BSC030N03LS G $R_{DS(on)} = 3.0 \text{ m}\Omega$ BSZ0503NSI\*\* IRFH8318TRPBF $R_{DS(on)}=3.4 \text{ m}\Omega$ $R_{DS(on)}=3.1 \text{ m}\Omega$ IRLHM630\*\*\* BSC0503NSI\* IRF7862TRPBF $R_{DS(on)} = 3.5 \text{ m}\Omega$ $R_{DS(on)}$ =3.2 m $\Omega$ $R_{DS(on)}$ =3.3 m $\Omega$ BSZ035N03LS G BSC034N03LS G IRF8734TRPBF $R_{DS(on)}$ =3.5 m $\Omega$ $R_{DS(on)}$ =3.5 m $\Omega$ $R_{DS(on)}$ =3.4 m $\Omega$ IRFHM830 BSC0504NSI\* $R_{DS(on)} = 3.8 \text{ m}\Omega$ $R_{DS(op)}=3.7 \text{ m}\Omega$ BSZ0904NSI\*\* BSC0904NSI\* $R_{DS(on)}$ =4.0 m $\Omega$ $R_{DS(on)}=3.7 \text{ m}\Omega$ IRFHM830D IRFH8324TRPBF $R_{DS(on)} = 4.3 \text{ m}\Omega$ $R_{DS(pp)}$ =4.1 m $\Omega$ BSC042N03LS G BSZ0506NS $R_{DS(on)}$ =4.4 m $\Omega$ $R_{DS(on)}$ =4.2 m $\Omega$ IRFHM8326TRPBF BSC0906NS $R_{DS(on)}$ =4.7 m $\Omega$ $R_{ps(qp)}=4.5 \text{ m}\Omega$ IRFH8321TRPBF $R_{DS(on)}$ =4.9 m $\Omega$ IPC028N03L3 BSZ050N03LS G IRFH8325TRPBF IRF8736TRPBF $R_{DS(on)}$ =5.0 m $\Omega$ BSC050N03LS G $R_{DS(on)}=5.0 \text{ m}\Omega$ $R_{\text{DS(on)}}$ =5.0 $m\Omega$ $R_{DS(on)}$ =4.8 $m\Omega$ BSZ058N03LS G $R_{DS(on)}=5.8 \text{ m}\Omega$ $R_{DS(on)}=5.0 \text{ m}\Omega$ IPC022N03L3 IRFHM8329TRPBF BSC052N03LS $R_{DS(on)}$ =5.2 m $\Omega$ BSC057N03LS G $R_{DS(on)}=6.1 \text{ m}\Omega$ $R_{\text{DS(on)}}$ =5.3 m $\Omega$ 4-10 BS7065N03LS $R_{DS(on)}=5.7 \text{ m}\Omega$ $R_{DS(on)}=6.5 \text{ m}\Omega$ IRF8327S2 IRFHM8330TRPBF IRFH8330TRPBF R<sub>DS(on)</sub>=6.6 mΩ BSC080N03LS G $R_{DS(on)} = 7.3 \text{ m}\Omega$ .=6.6 mΩ IRFHM831 $R_{DS(on)}=8.0 \text{ m}\Omega$ \_= 7.8 mΩ BSZ088N03LS G IRFH8334TRPBF IRF8721TRPBF R<sub>DS(on)</sub>=9.0 mΩ BSC090N03LS G $R_{DS(on)}$ =8.8 m $\Omega$ $R_{DS(on)}$ =8.5 m $\Omega$ IRFHM8334TRPBF IRF8714TRPBF $R_{DS(on)}$ =9.0 m $\Omega$ $R_{DS(on)}=9.0 \text{ m}\Omega$ $R_{DS(on)}=8.7 \text{ m}\Omega$ $R_{DS(on)}$ =9.2 $m\Omega$ BSZ100N03LS G $R_{DS(on)}$ =10.0 m $\Omega$ BSZ0909NS BSC120N03LS G IPC014N03L3 IRF8707TRPBF IRF7907TRPBF $R_{DS(on)}$ =11.8 m $\Omega$ +16.4 m $\Omega$ $R_{DS(on)}=12.0 \text{ m}\Omega$ $R_{\text{DS(on)}}$ =10.3 $m\Omega$ $R_{DS(on)}$ =12.0 m $\Omega$ $R_{\text{DS(on)}}$ =11.9 $m\Omega$ IRFHM8337TRPBF IRFH8337TRPBF IRL63421) 3 IRF8513TRPBF $R_{DS(on)} = 14.6 \text{ m}\Omega$ $IRL6372^{1)***}$ $R_{DS(on)}$ =2.7 m $\Omega$ +15.5 m $\Omega$ $R_{DS(on)}=12.4 \text{ m}\Omega$ $R_{DS(on)}$ =12.8 m $\Omega$ 10-25 BSZ130N03LS G IRF8313TRPBF $R_{DS(on)} = 15.5 \text{ m}\Omega + 15.5 \text{ m}\Omega$ $R_{DS(on)} = 18 \text{ m}\Omega; \text{ dual}$ $R_{DS(on)}$ =13.0 m $\Omega$ IRFHM8363TRPBF IRF7905TRPBF $R_{DS(on)}$ =17.1 m $\Omega$ +21.8 m $\Omega$ $R_{DS(on)}$ =14.9 m $\Omega$ BSC072N03LD G 2 x 7.2 $R_{DS(on)}=7.2 \text{ m}\Omega$ BSZ0910ND<sup>2)</sup> 2 x 9.5 $R_{DS(on)}$ =9.5 m $\Omega$ ; dual BSC150N03LD G 2 x 15 $R_{DS(on)}$ =15.0 $m\Omega$ BSZ0909ND<sup>2</sup> 2 x 18 $R_{DS(on)}$ =18 m $\Omega$ ; dual

#### www.infineon.com/powermosfet-20V-30V

 $<sup>^{\</sup>scriptscriptstyle 1)}$  2.5  $V_{\scriptscriptstyle GS}$  capable

<sup>&</sup>lt;sup>2)</sup> In development <sup>3)</sup> R<sub>DS(on)</sub> typ. @V<sub>GS</sub>= 4.5 V

<sup>\*\*</sup> Monolithically integrated Schottky-like diode \*\*\*  $R_{\text{DS(on)}}$  max @  $V_{\text{GS}}\!\!=\!\!4.5~\text{V}$ 

# OptiMOS™ & StrongIRFET™ 30 V logic level 5 V optimized











| R <sub>DS(on), max.</sub>      | PQFN 3.3 x 3.3                     | SuperSO8                           | SO-8                               | SO-8                          | SOT-23                           | TSOP-6                          |
|--------------------------------|------------------------------------|------------------------------------|------------------------------------|-------------------------------|----------------------------------|---------------------------------|
| @V <sub>GS</sub> =10 V<br>[mΩ] |                                    |                                    |                                    | Dual                          |                                  |                                 |
|                                |                                    | BSC014N03MS G                      |                                    |                               |                                  |                                 |
|                                |                                    | $R_{DS(on)}=1.4 \text{ m}\Omega$   |                                    |                               |                                  |                                 |
| 1.0                            |                                    | BSC016N03MS G                      |                                    |                               |                                  |                                 |
| 1-2                            |                                    | $R_{DS(on)}=1.6 \text{ m}\Omega$   |                                    |                               |                                  |                                 |
|                                |                                    | BSC020N03MS G                      |                                    |                               |                                  |                                 |
|                                |                                    | $R_{DS(on)} = 2.0 \text{ m}\Omega$ |                                    |                               |                                  |                                 |
|                                |                                    | BSC025N03MS G                      | BSO033N03MS G                      |                               |                                  |                                 |
| 2-4                            |                                    | $R_{DS(on)} = 2.5 \text{ m}\Omega$ | $R_{DS(on)} = 3.3 \text{ m}\Omega$ |                               |                                  |                                 |
| 2-4                            | BSZ035N03MS G                      | BSC030N03MS G                      | BSO040N03MS G                      |                               |                                  |                                 |
|                                | $R_{DS(on)} = 3.5 \text{ m}\Omega$ | $R_{DS(on)} = 3.0 \text{ m}\Omega$ | $R_{\rm DS(on)}$ =4.0 m $\Omega$   |                               |                                  |                                 |
|                                |                                    | BSC042N03MS G                      |                                    |                               |                                  |                                 |
|                                |                                    | $R_{DS(on)}$ =4.2 m $\Omega$       |                                    |                               |                                  |                                 |
|                                | BSZ050N03MS G                      | BSC050N03MS G                      |                                    |                               |                                  |                                 |
|                                | $R_{DS(on)} = 5.0 \text{ m}\Omega$ | $R_{DS(on)}=5.0 \text{ m}\Omega$   |                                    |                               |                                  |                                 |
|                                |                                    | BSC057N03MS G                      |                                    |                               |                                  |                                 |
| 4-10                           |                                    | $R_{DS(on)}=5.7 \text{ m}\Omega$   |                                    |                               |                                  |                                 |
| 4-10                           | BSZ058N03MS G                      | BSC080N03MS G                      |                                    |                               |                                  |                                 |
|                                | $R_{DS(on)} = 5.8 \text{ m}\Omega$ | $R_{DS(on)}$ =8.0 m $\Omega$       |                                    |                               |                                  |                                 |
|                                | BSZ088N03MS G                      | BSC090N03MS G                      |                                    |                               |                                  |                                 |
|                                | $R_{DS(on)} = 8.8 \text{ m}\Omega$ | $R_{DS(on)}$ =9.0 m $\Omega$       |                                    |                               |                                  |                                 |
|                                | BSZ100N03MS G                      | BSC100N03MS G                      |                                    |                               |                                  |                                 |
|                                | $R_{DS(on)}=10.0 \text{ m}\Omega$  | $R_{DS(on)}$ =10.0 m $\Omega$      |                                    |                               |                                  |                                 |
|                                | BSZ130N03MS G                      | BSC120N03MS G                      | BSO110N03MS G                      |                               | IRLML0030                        | IRLTS6342***                    |
|                                | $R_{DS(on)}$ =13.0 m $\Omega$      | $R_{DS(on)}$ =12.0 m $\Omega$      | $R_{DS(on)}=11.0 \text{ m}\Omega$  |                               | $R_{DS(on)}=27 \text{ m}\Omega$  | $R_{DS(on)}$ =14.6 m $\Omega$   |
|                                |                                    |                                    |                                    |                               | IRLML6344 <sup>1)</sup> ***      | IRFTS8342                       |
| >10                            |                                    |                                    |                                    |                               | $R_{DS(on)}=29 \text{ m}\Omega$  | $R_{DS(on)}=19 \text{ m}\Omega$ |
| >10                            |                                    |                                    |                                    |                               | IRLML63461) ***                  |                                 |
|                                |                                    |                                    |                                    |                               | $R_{DS(on)}$ =63 m $\Omega$      |                                 |
|                                |                                    |                                    |                                    |                               | IRLML2030                        |                                 |
|                                |                                    |                                    |                                    |                               | $R_{DS(on)}=100 \text{ m}\Omega$ |                                 |
| 2 x 15                         |                                    |                                    |                                    | BSO150N03MD G                 |                                  |                                 |
| 2 1 1 3                        |                                    |                                    |                                    | $R_{DS(on)}$ =15.0 m $\Omega$ |                                  |                                 |
| 2 x 22                         |                                    |                                    |                                    | BSO220N03MD G                 |                                  |                                 |
| 2 1 22                         |                                    |                                    |                                    | $R_{DS(on)}$ =22.0 m $\Omega$ |                                  |                                 |

















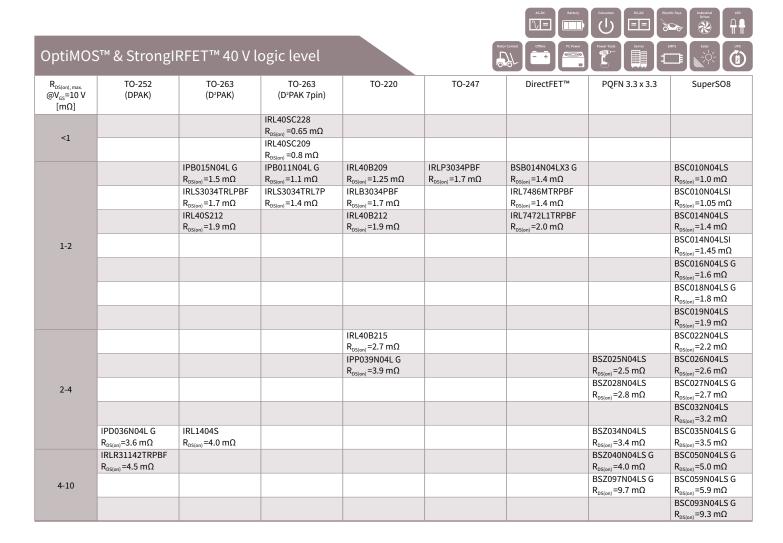















| OptiMC                    | S™ & Stro                        | ngIRFET™                          | 40 V norm                         | al level                         |                                  |                                  |                                   |                                     |                                    |                         |
|---------------------------|----------------------------------|-----------------------------------|-----------------------------------|----------------------------------|----------------------------------|----------------------------------|-----------------------------------|-------------------------------------|------------------------------------|-------------------------|
| R <sub>DS(on), max.</sub> | TO-252                           | TO-263                            | TO-263                            | TO-220                           | TO-247                           | Bare Die                         | DirectFET™                        | PQFN 3.3 x 3.3                      | SuperSO8                           | TO-220                  |
| @V <sub>GS</sub> =10 V    | (DPAK)                           | (D <sup>2</sup> PAK)              | (D <sup>2</sup> PAK 7pin)         |                                  |                                  | (R <sub>DS(on) typ.</sub> )      |                                   | _                                   |                                    | FullPAK                 |
| [mΩ]                      |                                  |                                   |                                   |                                  |                                  |                                  |                                   |                                     |                                    |                         |
| <1                        |                                  |                                   | IRFS7430TRL7PP                    |                                  |                                  | IPC218N04N3                      |                                   |                                     |                                    |                         |
| ~1                        |                                  |                                   | $R_{DS(on)}=0.75 \text{ m}\Omega$ |                                  |                                  | $R_{DS(on)}=0.9 \text{ m}\Omega$ |                                   |                                     |                                    |                         |
| 1-2                       |                                  | IRFS7430TRLPBF                    | IRFS7434TRL7PP                    | IRFB7430PBF                      | IRFP7430PBF                      | IPC171N04N                       | IRF7739L1TRPBF                    |                                     | IRFH7084TRPBF                      |                         |
|                           |                                  | $R_{DS(on)}=1.3 \text{ m}\Omega$  | $R_{DS(on)}=1.0 \text{ m}\Omega$  | $R_{DS(on)}=1.3 \text{ m}\Omega$ | $R_{DS(on)}=1.3 \text{ m}\Omega$ | $R_{DS(on)}=1.1 \text{ m}\Omega$ | $R_{DS(on)}=1.0 \text{ m}\Omega$  |                                     | $R_{DS(on)}=1.25 \text{ m}\Omega$  |                         |
|                           |                                  | IPB015N04N G                      | IPB011N04N G                      | IPP015N04N G                     |                                  |                                  | IRF7480MTRPBF                     |                                     | IRFH7004TRPBF                      |                         |
|                           |                                  | $R_{DS(on)}=1.5 \text{ m}\Omega$  | $R_{DS(on)}=1.1 \text{ m}\Omega$  | $R_{DS(on)}=1.5 \text{ m}\Omega$ |                                  |                                  | $R_{DS(on)}=1.2 \text{ m}\Omega$  |                                     | $R_{DS(on)}=1.4 \text{ m}\Omega$   |                         |
|                           |                                  | IRFS3004                          | IRFS3004-7P                       |                                  |                                  |                                  | IRF7946TRPBF                      |                                     | BSC017N04NS G                      |                         |
|                           |                                  | $R_{DS(on)}=1.75 \text{ m}\Omega$ | $R_{DS(on)}=1.25 \text{ m}\Omega$ |                                  |                                  |                                  | $R_{DS(on)}=1.4 \text{ m}\Omega$  |                                     | $R_{DS(on)}=1.7 \text{ m}\Omega$   |                         |
|                           |                                  | IRFS7434TRLPBF                    | IRFS7437TRL7PP                    | IRFB7434PBF                      |                                  |                                  | BSB015N04NX3 G                    |                                     | IRF40H210                          |                         |
|                           |                                  | $R_{DS(on)}=1.6 \text{ m}\Omega$  | $R_{DS(on)}=1.4 \text{ m}\Omega$  | $R_{DS(on)}=1.6 \text{ m}\Omega$ |                                  |                                  | $R_{DS(on)}=1.5 \text{ m}\Omega$  |                                     | $R_{DS(on)}=1.7 \text{ m}\Omega$   |                         |
|                           |                                  | IRFS7437TRLPBF                    | IPB020N04N G                      | IRFB7437PBF                      |                                  |                                  | IRF40DM229                        |                                     | BSC019N04NS G                      |                         |
|                           |                                  | $R_{DS(on)}=1.8 \text{ m}\Omega$  | $R_{DS(on)}=2.0 \text{ m}\Omega$  | $R_{DS(on)}$ =2.0 m $\Omega$     |                                  |                                  | $R_{DS(on)}=1.85 \text{ m}\Omega$ |                                     | $R_{DS(on)}=1.9 \text{ m}\Omega$   |                         |
| 2-4                       | IRFR7440TRPBF                    |                                   |                                   | IPP023N04N G                     |                                  |                                  | IRF7483MTRPBF                     |                                     | IRFH7440TRPBF                      |                         |
|                           | $R_{DS(on)}=2.4 \text{ m}\Omega$ |                                   |                                   | $R_{DS(on)}=2.3 \text{ m}\Omega$ |                                  |                                  | $R_{DS(on)}=2.3 \text{ m}\Omega$  |                                     | $R_{DS(on)}$ =2.4 m $\Omega$       |                         |
|                           | IRFR7446TRPBF                    | IRFS7440TRLPBF                    |                                   | IRFB7440PBF                      |                                  |                                  |                                   |                                     | BSC030N04NS G                      |                         |
|                           | $R_{DS(on)}$ =3.9 m $\Omega$     | $R_{DS(on)}=2.5 \text{ m}\Omega$  |                                   | $R_{DS(on)}$ =2.5 m $\Omega$     |                                  |                                  |                                   |                                     | $R_{DS(on)}$ =3.0 m $\Omega$       |                         |
|                           |                                  | IRF1404S                          |                                   | IRFB7446PBF                      |                                  |                                  |                                   |                                     | IRFH7446TRPBF                      |                         |
|                           |                                  | $R_{DS(on)}$ =4.0 m $\Omega$      |                                   | $R_{DS(on)}=3.3 \text{ m}\Omega$ |                                  |                                  |                                   |                                     | $R_{DS(on)} = 3.3 \text{ m}\Omega$ |                         |
| 4-10                      |                                  |                                   |                                   | IPP041N04N G                     |                                  |                                  |                                   | BSZ042N04NS G                       | BSC054N04NS G                      | IPA041N04N G            |
|                           |                                  |                                   |                                   | $R_{DS(on)}=4.1 \text{ m}\Omega$ |                                  |                                  |                                   | $R_{DS(on)}$ =4.2 m $\Omega$        | $R_{DS(on)}=5.4 \text{ m}\Omega$   | $R_{DS(on)}=4.1m\Omega$ |
|                           | IRF40R207                        |                                   |                                   | IRF40B207                        |                                  |                                  |                                   |                                     |                                    |                         |
|                           | $R_{DS(on)}=5.1 \text{ m}\Omega$ |                                   |                                   | $R_{DS(on)}$ =4.5 m $\Omega$     |                                  |                                  |                                   |                                     |                                    |                         |
|                           |                                  |                                   |                                   | IPP048N04N G                     |                                  |                                  |                                   |                                     |                                    |                         |
|                           |                                  |                                   |                                   | $R_{DS(on)}$ =4.8 m $\Omega$     |                                  |                                  |                                   |                                     |                                    |                         |
| >10                       |                                  |                                   |                                   |                                  |                                  |                                  |                                   | BSZ105N04NS G                       |                                    |                         |
|                           |                                  |                                   |                                   |                                  |                                  |                                  |                                   | $R_{DS(on)}=10.5 \text{ m}\Omega$   |                                    |                         |
|                           |                                  |                                   |                                   |                                  |                                  |                                  |                                   | BSZ165N04NS G                       |                                    |                         |
|                           |                                  |                                   |                                   |                                  |                                  |                                  |                                   | $R_{ps(qn)} = 16.5 \text{ m}\Omega$ |                                    |                         |

www.infineon.com/powermosfet-20V-30V www.infineon.com/powermosfet-40V-75V





www.infineon.com/powermosfet-40V-75V



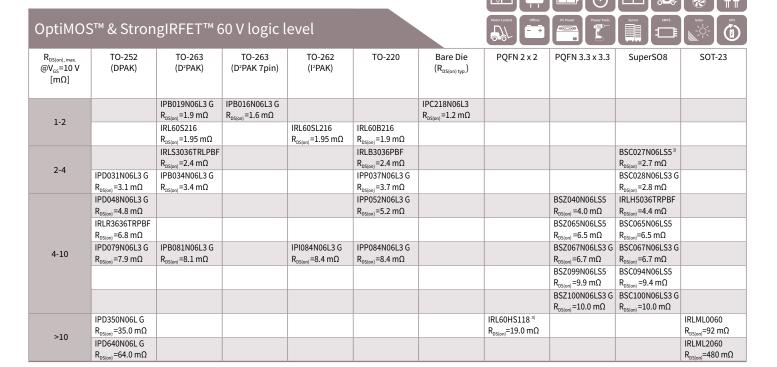
| OptiMO                                                                                                 | S™ & StrongIF                      | RFET™ 60 V no                                           | rmal level                           |                                                        | Moor Control                                  | PC POWER TOOLS Server              | SHPS Solar UPS                     |
|--------------------------------------------------------------------------------------------------------|------------------------------------|---------------------------------------------------------|--------------------------------------|--------------------------------------------------------|-----------------------------------------------|------------------------------------|------------------------------------|
| $\begin{array}{c c} R_{\text{DS(on), max.}} \\ @V_{\text{GS}} = 10 \text{ V} \\ [m\Omega] \end{array}$ | TO-252<br>(DPAK)                   | TO-263<br>(D²PAK)                                       | TO-263<br>(D²PAK 7pin)               | TO-262<br>(I²PAK)                                      | TO-220                                        | TO-220<br>FullPAK                  | TO-247                             |
|                                                                                                        |                                    |                                                         | IPB010N06N <sup>2)</sup>             |                                                        |                                               |                                    |                                    |
|                                                                                                        |                                    |                                                         | $R_{DS(on)}=1.0 \text{ m}\Omega$     |                                                        |                                               |                                    |                                    |
|                                                                                                        |                                    |                                                         | IRFS7530TRL7PP                       |                                                        |                                               |                                    |                                    |
|                                                                                                        |                                    |                                                         | $R_{DS(on)}=1.4 \text{ m}\Omega$     |                                                        |                                               |                                    |                                    |
| 1-2                                                                                                    |                                    |                                                         | IPB014N06N <sup>2)</sup>             |                                                        |                                               |                                    |                                    |
|                                                                                                        |                                    |                                                         | R <sub>DS(on)</sub> =1.4 mΩ          |                                                        |                                               |                                    |                                    |
|                                                                                                        |                                    |                                                         | IPB017N06N3 G                        |                                                        |                                               |                                    |                                    |
|                                                                                                        |                                    | IDECTEDATOL DDE                                         | $R_{DS(on)}=1.7 \text{ m}\Omega$     | IDIO20NOCN <sup>2)</sup>                               | IDED7520DD5                                   |                                    | IDED7530DD5                        |
|                                                                                                        |                                    | IRFS7530TRLPBF<br>$R_{DS(on)}$ = 2.0 m $\Omega$         | IRFS7534TRL7PP $R_{DS(on)}$ =1.95 mΩ | IPI020N06N <sup>2</sup><br>R <sub>DS(on)</sub> =2.0 mΩ | IRFB7530PBF<br>$R_{DS(on)}$ =2.0 m $\Omega$   |                                    | IRFP7530PBF                        |
|                                                                                                        | IPD025N06N <sup>2)</sup>           | IRFS7534TRLPBF                                          | IRFS3006TRL7PP                       | R <sub>DS(on)</sub> -2.0 11112                         | IPP020N06N <sup>2)</sup>                      |                                    | $R_{DS(on)}$ =2.0 m $\Omega$       |
|                                                                                                        | $R_{DS(on)} = 2.5 \text{ m}\Omega$ | $R_{DS(on)} = 2.4 \text{ m}\Omega$                      | $R_{DS(on)} = 2.1 \text{ m}\Omega$   |                                                        | $R_{DS(on)} = 2.0 \text{ m}\Omega$            |                                    |                                    |
|                                                                                                        | TOS(on) 2.3 TT12                   | IRFS3006                                                | TVDS(on) Z.I IIIIZ                   | IPI024N06N3 G                                          | IRFB7534PBF                                   |                                    |                                    |
|                                                                                                        |                                    | $R_{DS(on)} = 2.5 \text{ m}\Omega$                      |                                      | $R_{DS(on)} = 2.4 \text{ m}\Omega$                     | $R_{DS(on)} = 2.4 \text{ m}\Omega$            |                                    |                                    |
|                                                                                                        |                                    | IPB026N06N <sup>2)</sup>                                |                                      | 1-DS(on) = 1 1 1 1 = 1                                 | IPP024N06N3 G <sup>2)</sup>                   |                                    | IRFP3006PBF                        |
|                                                                                                        |                                    | $R_{DS(on)} = 2.6 \text{ m}\Omega$                      |                                      |                                                        | $R_{DS(on)} = 2.4 \text{ m}\Omega$            |                                    | $R_{DS(on)} = 2.5 \text{ m}\Omega$ |
|                                                                                                        |                                    | IPB029N06N3 G                                           |                                      | IPI029N06N <sup>2)</sup>                               | IPP029N06N <sup>2)</sup>                      | IPA029N06N <sup>2)</sup>           | IRFP3206PBF                        |
|                                                                                                        |                                    | $R_{DS(on)} = 2.9 \text{ m}\Omega$                      |                                      | $R_{DS(on)} = 2.9 \text{ m}\Omega$                     | $R_{DS(on)} = 2.9 \text{ m}\Omega$            | $R_{DS(on)} = 2.9 \text{ m}\Omega$ | $R_{DS(on)} = 3.0 \text{ m}\Omega$ |
| 2-4                                                                                                    | IPD033N06N <sup>2)</sup>           | IRFS3206                                                |                                      | IPI032N06N3 G                                          | IPP032N06N3 G                                 | IPA032N06N3 G                      |                                    |
|                                                                                                        | $R_{DS(on)}$ =3.3 m $\Omega$       | $R_{DS(on)}=3.0 \text{ m}\Omega$                        |                                      | $R_{DS(on)} = 3.2 \text{ m}\Omega$                     | $R_{DS(on)}$ =3.2 m $\Omega$                  | $R_{DS(on)} = 3.2 \text{ m}\Omega$ |                                    |
|                                                                                                        | IPD034N06N3 G                      | IRFS7537TRLPBF                                          |                                      |                                                        | IRFB7537PBF                                   |                                    | IRFP7537PBF                        |
|                                                                                                        | $R_{DS(on)}$ =3.4 m $\Omega$       | $R_{DS(on)}$ =3.3 m $\Omega$                            |                                      |                                                        | $R_{DS(on)}$ =3.3 m $\Omega$                  |                                    | $R_{DS(on)}$ =3.3 m $\Omega$       |
|                                                                                                        | IPD038N06N3 G                      | IPB037N06N3 G                                           |                                      |                                                        | IPP040N06N3 G                                 |                                    |                                    |
|                                                                                                        | $R_{DS(on)}$ =3.8 m $\Omega$       | $R_{DS(on)}=3.7 \text{ m}\Omega$                        |                                      |                                                        | $R_{DS(on)}$ =4.0 m $\Omega$                  |                                    |                                    |
|                                                                                                        |                                    | IRFS3306                                                |                                      | IPI040N06N3 G                                          | IPP040N06N <sup>2)</sup>                      | IPA040N06N <sup>2)</sup>           |                                    |
|                                                                                                        |                                    | $R_{DS(on)}$ =4.2 m $\Omega$                            |                                      | $R_{DS(on)}$ =4.0 m $\Omega$                           | $R_{DS(on)}$ =4.0 m $\Omega$                  | $R_{DS(on)}$ =4.0 m $\Omega$       |                                    |
|                                                                                                        | IRFR7540TRPBF                      | IRFS7540TRLPBF                                          |                                      |                                                        | IRFB7540PBF                                   | IPA057N06N3 G                      |                                    |
|                                                                                                        | $R_{DS(on)} = 4.8 \text{ m}\Omega$ | $R_{DS(on)} = 5.1 \text{ m}\Omega$                      |                                      |                                                        | $R_{DS(on)} = 5.1 \text{ m}\Omega$            | $R_{DS(on)}$ =5.7 m $\Omega$       |                                    |
|                                                                                                        | IPD053N06N <sup>2)</sup>           | IPB054N06N3 G                                           |                                      |                                                        | IPP057N06N3 G <sup>2)</sup>                   |                                    |                                    |
|                                                                                                        | $R_{DS(on)} = 5.3 \text{ m}\Omega$ | R <sub>DS(on)</sub> =5.4 mΩ<br>IPB057N06N <sup>2)</sup> |                                      |                                                        | $R_{DS(on)} = 5.7 \text{ m}\Omega$            |                                    |                                    |
|                                                                                                        |                                    | $R_{DS(on)} = 5.7 \text{ m}\Omega$                      |                                      |                                                        | IRFB7545PBF<br>  $R_{DS(on)}$ =5.9 m $\Omega$ |                                    |                                    |
| 4-10                                                                                                   | IRFR7546TRPBF                      | IRF1018ES                                               |                                      |                                                        | IPP060N06N <sup>2)</sup>                      | IPA060N06N <sup>2)</sup>           |                                    |
|                                                                                                        | $R_{DS(on)} = 7.9 \text{ m}\Omega$ | $R_{DS(on)}=8.4 \text{ m}\Omega$                        |                                      |                                                        | $R_{DS(on)} = 6.0 \text{ m}\Omega$            | $R_{DS(on)} = 6.0 \text{ m}\Omega$ |                                    |
|                                                                                                        | IPD088N06N3 G                      | - DS(on)                                                |                                      |                                                        | IRF60B217                                     | IPA093N06N3 G                      |                                    |
|                                                                                                        | $R_{DS(on)} = 8.8 \text{ m}\Omega$ |                                                         |                                      |                                                        | $R_{DS(on)} = 9.0 \text{ m}\Omega$            | $R_{DS(on)} = 9.3 \text{ m}\Omega$ |                                    |
|                                                                                                        | IRF60R217                          | IPB090N06N3 G                                           |                                      |                                                        | IPP093N06N3 G                                 | 55(611)                            |                                    |
|                                                                                                        | $R_{DS(on)} = 9.9 \text{ m}\Omega$ | $R_{DS(on)}$ =9.0 m $\Omega$                            |                                      |                                                        | $R_{DS(on)}$ =9.3 m $\Omega$                  |                                    |                                    |
| - 10                                                                                                   | IPD400N06N G                       | IRFS3806                                                |                                      |                                                        |                                               |                                    |                                    |
| >10                                                                                                    | $R_{DS(on)}$ =40.0 m $\Omega$      | $R_{DS(on)}=15.8 \text{ m}\Omega$                       |                                      |                                                        |                                               |                                    |                                    |







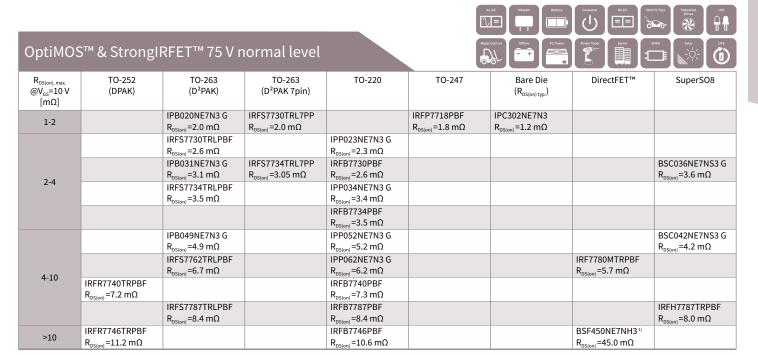









## OptiMOS™ & StrongIRFET™ 60 V normal level


| $\begin{array}{c} R_{DS(on),max.} \\ @V_{GS} = 10 \text{ V} \\ [m\Omega] \end{array}$ | Bare Die<br>(R <sub>DS(on) typ.</sub> ) | DirectFET™                         | PQFN 3.3 x 3.3                     | SuperSO8                            | TO-Leadless                                          |
|---------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------|------------------------------------|-------------------------------------|------------------------------------------------------|
| <1                                                                                    |                                         |                                    |                                    |                                     | IPT007N06N <sup>2)</sup> R <sub>DS(on)</sub> =0.7 mΩ |
|                                                                                       | IPC218N06N3                             | IRF7749L1TRPBF                     |                                    | BSC014N06NS <sup>2)</sup>           | IPT012N06N                                           |
|                                                                                       | $R_{DS(on)}=1.3 \text{ m}\Omega$        | $R_{DS(on)}=1.5 \text{ m}\Omega$   |                                    | $R_{DS(on)}=1.4 \text{ m}\Omega$    | $R_{DS(on)} = 1.2 \text{ m}\Omega$                   |
|                                                                                       | 25(0.1)                                 | 25(01)                             |                                    | BSC014N06NST <sup>3)</sup>          | 55(01)                                               |
|                                                                                       |                                         |                                    |                                    | $R_{DS(on)} = 1.45 \text{ m}\Omega$ |                                                      |
| 1-2                                                                                   |                                         |                                    |                                    | BSC016N06NST <sup>3)</sup>          |                                                      |
|                                                                                       |                                         |                                    |                                    | $R_{DS(on)} = 1.6 \text{ m}\Omega$  |                                                      |
|                                                                                       |                                         |                                    |                                    | BSC016N06NS <sup>2)</sup>           |                                                      |
|                                                                                       |                                         |                                    |                                    | $R_{DS(on)}=1.6 \text{ m}\Omega$    |                                                      |
|                                                                                       |                                         | IRF7748L1TRPBF                     |                                    | BSC028N06NS <sup>2)</sup>           |                                                      |
|                                                                                       |                                         | $R_{DS(on)} = 2.2 \text{ m}\Omega$ |                                    | $R_{DS(on)} = 2.8 \text{ m}\Omega$  |                                                      |
|                                                                                       |                                         |                                    |                                    | BSC028N06NST <sup>3)</sup>          |                                                      |
|                                                                                       |                                         |                                    |                                    | $R_{DS(on)} = 2.8 \text{ m}\Omega$  |                                                      |
|                                                                                       |                                         | BSB028N06NN3 G                     |                                    | BSC031N06NS3 G                      |                                                      |
| 2-4                                                                                   |                                         | $R_{DS(on)} = 2.8 \text{ m}\Omega$ |                                    | $R_{DS(on)}=3.1 \text{ m}\Omega$    |                                                      |
| 2-4                                                                                   |                                         | IRF60DM206                         |                                    | IRFH7085TRPBF                       |                                                      |
|                                                                                       |                                         | $R_{DS(on)} = 2.9 \text{ m}\Omega$ |                                    | $R_{DS(on)}=3.2 \text{ m}\Omega$    |                                                      |
|                                                                                       |                                         |                                    |                                    | BSC034N06NS <sup>2)</sup>           |                                                      |
|                                                                                       |                                         |                                    |                                    | $R_{DS(on)}=3.4 \text{ m}\Omega$    |                                                      |
|                                                                                       |                                         | IRF7580MTRPBF                      |                                    | BSC039N06NS <sup>2)</sup>           |                                                      |
|                                                                                       |                                         | $R_{DS(on)} = 3.6 \text{ m}\Omega$ |                                    | $R_{DS(on)}=3.9 \text{ m}\Omega$    |                                                      |
|                                                                                       |                                         | IRF6648                            | BSZ042N06NS <sup>2)</sup>          | IRLH5036TRPBF                       |                                                      |
|                                                                                       |                                         | $R_{DS(on)} = 7.0 \text{ m}\Omega$ | $R_{DS(on)}$ =4.2 m $\Omega$       | $R_{DS(on)}$ =4.4 m $\Omega$        |                                                      |
|                                                                                       |                                         | IRF6674                            |                                    | IRFH7545TRPBF                       |                                                      |
|                                                                                       |                                         | $R_{DS(on)}=11.0 \text{ m}\Omega$  |                                    | $R_{DS(on)}=5.2 \text{ m}\Omega$    |                                                      |
| 4-10                                                                                  |                                         |                                    | BSZ068N06NS <sup>2)</sup>          | BSC066N06NS <sup>2)</sup>           |                                                      |
| 1 10                                                                                  |                                         |                                    | $R_{DS(on)}$ =6.8 m $\Omega$       | $R_{DS(on)}$ =6.6 m $\Omega$        |                                                      |
|                                                                                       |                                         |                                    | BSZ076N06NS3 G                     | BSC076N06NS3 G                      |                                                      |
|                                                                                       |                                         |                                    | $R_{DS(on)} = 7.6 \text{ m}\Omega$ | $R_{DS(on)} = 7.6 \text{ m}\Omega$  |                                                      |
|                                                                                       |                                         |                                    | BSZ100N06NS <sup>2)</sup>          | BSC097N06NS <sup>2)</sup>           |                                                      |
|                                                                                       |                                         |                                    | $R_{DS(on)}=10.0 \text{ m}\Omega$  | $R_{DS(on)}$ =9.7 m $\Omega$        |                                                      |
| >10                                                                                   |                                         |                                    | BSZ110N06NS3 G                     | BSC110N06NS3 G                      |                                                      |
|                                                                                       |                                         |                                    | $R_{DS(on)}=11.0 \text{ m}\Omega$  | $R_{DS(on)}=11.0 \text{ m}\Omega$   |                                                      |



#### www.infineon.com/powermosfet-40V-75V

 $<sup>^{2)}</sup>$  6 V rated (R $_{DS(on)}$  also specified @ V $_{GS}$  = 6 V)

<sup>3)</sup> In development



|                                                   |                                              |                                                               |                                                             |                                              |                                                               |                                               |                                            | AC-DC                                         | Adapter Battery                         |                                                                                      | Electric Toys                                                                | Industrial Drives C                            |
|---------------------------------------------------|----------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------|-----------------------------------------------|--------------------------------------------|-----------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------|
| OptiMO:                                           | S™ & Stro                                    | ngIRFET⊺                                                      | ™ 80 V no                                                   | rmal leve                                    | l – logic le                                                  | evel                                          |                                            | Motor Control                                 | Offine PC Power                         | Power Tools Serve                                                                    | SNPS                                                                         | Solar<br>                                      |
| $R_{DS(on), max.}$ @ $V_{GS}$ =10 V [ $m\Omega$ ] | TO-252<br>(DPAK)                             | TO-263<br>(D <sup>2</sup> PAK)                                | TO-263<br>(D <sup>2</sup> PAK<br>7pin)                      | TO-262<br>(I²PAK)                            | TO-220                                                        | TO-220<br>FullPAK                             | Bare Die<br>(R <sub>DS(on) typ.</sub> )    | DirectFET™                                    | PQFN 2 x 2                              | PQFN 3.3<br>x 3.3                                                                    | SuperSO8                                                                     | TO-Lead-<br>less                               |
| 1-2                                               |                                              | IPB017N08N5<br>R <sub>DS(on)</sub> =1.7 mΩ<br>IPB020N08N5     | IPB015N08N5<br>R <sub>DS(on)</sub> =1.5 mΩ<br>IPB019N08N3 G |                                              | IPP020N08N5                                                   |                                               | IPC302N08N3<br>R <sub>DS(on)</sub> =1.2 mΩ |                                               |                                         |                                                                                      |                                                                              | IPT012N08N5<br>R <sub>DS(on)</sub> =1.2 mΩ     |
|                                                   |                                              | $R_{DS(on)}$ =2.0 mΩ<br>IPB024N08N5<br>$R_{DS(on)}$ =2.4 mΩ   | R <sub>DS(on)</sub> =1.9 mΩ                                 |                                              | $R_{DS(on)}$ =2.0 mΩ<br>IPP023N08N5<br>$R_{DS(on)}$ =2.3 mΩ   |                                               |                                            |                                               |                                         |                                                                                      | BSC025N08LS5 <sup>3)</sup> R <sub>DS(on)</sub> =2.5 mΩ                       |                                                |
|                                                   |                                              | IPB025N08N3 G<br>R <sub>DS(on)</sub> =2.5 mΩ                  | IPB030N08N3 G<br>R <sub>DS(on)</sub> =3.0 mΩ                |                                              | IPP027N08N5<br>R <sub>DS(on)</sub> =2.7 mΩ                    |                                               |                                            |                                               |                                         |                                                                                      | BSC026N08NS5<br>R <sub>DS(on)</sub> =2.6 mΩ                                  |                                                |
| 2-4                                               |                                              | IPB031N08N5                                                   |                                                             |                                              | IPP028N08N3 G<br>R <sub>DS(on)</sub> =2.8 mΩ<br>IPP034N08N5   | IPA028N08N3 G<br>R <sub>DS(on)</sub> =2.8 mΩ  |                                            |                                               |                                         |                                                                                      | BSC030N08NS5<br>$R_{DS(on)}$ =3.0 mΩ<br>BSC037N08NS5                         | IPT029N08N5 $R_{DS(on)} = 2.9 \text{ m}\Omega$ |
|                                                   |                                              | $R_{DS(on)}$ =3.1 mΩ<br>IPB035N08N3 G<br>$R_{DS(on)}$ =3.5 mΩ |                                                             | IPI037N08N3 G<br>R <sub>DS(on)</sub> =3.7 mΩ | $R_{DS(on)}$ =3.4 mΩ<br>IPP037N08N3 G<br>$R_{DS(on)}$ =3.7 mΩ | IPA037N08N3 G<br>R <sub>DS(on)</sub> =3.7 mΩ  |                                            |                                               |                                         |                                                                                      | $R_{DS(on)}$ =3.7 mΩ<br>BSC040N08NS5<br>$R_{DS(on)}$ =4.0 mΩ                 |                                                |
|                                                   | IPD046N08N5<br>R <sub>DS(on)</sub> =4.6 mΩ   | IPB049N08N5<br>R <sub>DS(on)</sub> =4.9 mΩ                    |                                                             | **DS(on)                                     | IPP052N08N5<br>R <sub>DS(on)</sub> =5.2 mΩ                    |                                               |                                            | BSB044N08NN3 G<br>R <sub>DS(on)</sub> =4.4 mΩ |                                         |                                                                                      | BSC047N08NS3 G<br>R <sub>DS(on)</sub> =4.7 mΩ                                |                                                |
|                                                   | IPD053N08N3 G<br>R <sub>DS(on)</sub> =5.3 mΩ | IPB054N08N3 G<br>R <sub>DS(on)</sub> =5.4 mΩ<br>IPB067N08N3 G |                                                             |                                              | IPP057N08N3 G<br>R <sub>DS(on)</sub> =5.7 mΩ                  | IPA057N08N3 G<br>R <sub>DS(on)</sub> =5.7 mΩ  |                                            |                                               |                                         | BSZ070N08LS5                                                                         | BSC052N08NS5<br>$R_{DS(on)}$ =5.2 m $\Omega$<br>BSC057N08NS3 G               |                                                |
| 4-10                                              |                                              | R <sub>DS(on)</sub> =6.7 mΩ                                   |                                                             |                                              |                                                               |                                               |                                            |                                               |                                         | R <sub>DS(on)</sub> =7.0 mΩ<br>BSZ075N08NS5                                          | R <sub>DS(on)</sub> =5.7 mΩ<br>BSC061N08NS5                                  |                                                |
|                                                   | IPD096N08N3 G<br>R <sub>DS(on)</sub> =9.6 mΩ |                                                               |                                                             |                                              | IPP100N08N3 G<br>R <sub>DS(on)</sub> =9.7 mΩ                  | IPA100N08N3 G<br>R <sub>DS(on)</sub> =10.0 mΩ |                                            |                                               |                                         | $R_{DS(on)} = 7.5 \text{ m}\Omega$ $BSZ084N08NS5$ $R_{DS(on)} = 8.4 \text{ m}\Omega$ | $R_{DS(on)}$ =6.1 m $\Omega$<br>BSC072N08NS5<br>$R_{DS(on)}$ =7.2 m $\Omega$ |                                                |
|                                                   | IPD135N08N3 G                                |                                                               |                                                             |                                              |                                                               |                                               |                                            | BSB104N08NP3<br>R <sub>DS(on)</sub> =10.4 mΩ  | IRL80HS120 $R_{DS(on)}$ =32.0 $m\Omega$ | BSZ110N08NS5<br>R <sub>DS(on)</sub> =11.0 mΩ<br>BSZ123N08NS3 G                       | BSC117N08NS5<br>R <sub>DS(on)</sub> =11.7 mΩ<br>BSC123N08NS3                 |                                                |
| >10                                               | R <sub>DS(on)</sub> =13.5 mΩ                 |                                                               |                                                             |                                              |                                                               |                                               |                                            |                                               |                                         | R <sub>DS(on)</sub> =12.3 mΩ                                                         | $R_{DS(po)}$ =12.3 mΩ BSC340N08NS3 G $R_{DS(po)}$ =34.0 mΩ                   |                                                |

www.infineon.com/powermosfet-40V-75V www.infineon.com/powermosfet-80V-100V

 $<sup>^{\</sup>scriptscriptstyle{1)}}\, Direct FET^{\scriptscriptstyle{\mathsf{TM}}}\, S$ 

<sup>3)</sup> In development

#### OptiMOS™ & StrongIRFET™ 100 V normal level TO-252 TO-263 TO-262 TO-263 TO-220 TO-220 TO-247 $\begin{array}{l} R_{\text{DS(on), max.}} \\ @V_{\text{GS}} = 10 \text{ V} \end{array}$ (DPAK) (D<sup>2</sup>PAK) (D<sup>2</sup>PAK 7pin) (I<sup>2</sup>PAK) FullPAK [mΩ] IPB020N10N5 IPB017N10N5 $R_{\text{DS(on)}}$ =2.0 $m\Omega$ $R_{\text{DS(on)}}$ =1.7 $m\Omega$ 1-2 IPB020N10N5LF IPB017N10N5LF $R_{DS(nn)}=2.0 \text{ m}\Omega$ $R_{DS(on)}=1.7 \text{ m}\Omega$ IPB027N10N3 G IPP023N10N5 IRFP4468PBF IPB024N10N5 $R_{\scriptscriptstyle DS(on)}$ =2.7 m $\Omega$ $R_{\scriptscriptstyle DS(on)}$ =2.4 $m\Omega$ $R_{\text{DS(on)}}$ =2.3 m $\Omega$ $R_{\scriptscriptstyle DS(on)}$ =2.6 $m\Omega$ IPB027N10N5 IPB025N10N3 G IPI030N10N3 G IPP030N10N3 IPA030N10N3 G $R_{\scriptscriptstyle DS(on)}$ =3.0 $m\Omega$ $R_{DS(on)}=2.7 \text{ m}\Omega$ $R_{DS(on)} = 2.5 \text{ m}\Omega$ $R_{DS(on)}$ =3.0 m $\Omega$ $R_{DS(on)}$ =3.0 m $\Omega$ 2-4 IPB033N10N5LF IPB032N10N5 IPP030N10N5 $R_{DS(on)}$ =3.3 $m\Omega$ $R_{DS(on)}$ =3.2 m $\Omega$ $R_{\text{DS(on)}}$ =3.0 m $\Omega$ IPB039N10N3 G IPP039N10N53 $R_{DS(on)}$ =3.9 m $\Omega$ $R_{DS(on)}$ =3.9 $m\Omega$ IPD050N10N5 IPB042N10N3 G IPI045N10N3 G IRFB4110PBF IPA045N10N3 G IRFP4110PBF $R_{DS(on)}$ =5.0 m $\Omega$ $R_{DS(on)}$ =4.5 m $\Omega$ $R_{DS(on)}$ =4.2 m $\Omega$ $R_{DS(on)}$ =4.5 m $\Omega$ $R_{\scriptscriptstyle DS(on)}$ =4.5 $m\Omega$ $R_{\scriptscriptstyle DS(on)}$ =4.5 m $\Omega$ IPD068N10N3 G IRFS4010TRLPBF IPA083N10N5 IRFP4310ZPBF IPP045N10N3 G $R_{DS(on)}$ =6.8 m $\Omega$ $R_{DS(on)}$ =4.7 m $\Omega$ $R_{DS(on)}$ =4.5 m $\Omega$ $R_{DS(on)}$ =8.3 m $\Omega$ $R_{\scriptscriptstyle DS(on)}$ =6.0 m $\Omega$ IRFS4310ZTRLPBF IRFB4310ZPBF IPA086N10N3 G $R_{DS(on)}$ =6.0 m $\Omega$ $R_{DS(on)}$ =6.0 $m\Omega$ $R_{\text{DS(on)}}$ =8.6 $m\Omega$ IPB065N10N3 G $R_{DS(on)} = 6.5 \text{ m}\Omega$ 4-10 IPI072N10N3 G IPP072N10N3 G $R_{DS(on)}$ =7.2 m $\Omega$ $R_{DS(on)} = 7.2 \text{ m}\Omega$ IPD082N10N3 G IPP083N10N5 $R_{DS(on)}$ =8.2 m $\Omega$ $R_{DS(on)}$ =8.3 m $\Omega$ IPB083N10N3 G IPI086N10N3 G IPP086N10N3 G $R_{DS(on)}$ =8.3 m $\Omega$ $R_{DS(on)}$ =8.6 $m\Omega$ $R_{DS(on)}$ =8.6 m $\Omega$ IRFS4410ZTRLPBF IRFS4410ZTRLPBF IRFP4410ZPBF $R_{DS(on)}$ =9.0 m $\Omega$ $R_{DS(on)}$ =9.0 m $\Omega$ $R_{DS(on)}$ =9.0 m $\Omega$ IPD122N10N3 G $R_{DS(on)} = 12.2 \text{ m}\Omega$ IPD12CN10N G IPB123N10N3 G $R_{\scriptscriptstyle DS(on)}$ =12.4 $m\Omega$ $R_{\scriptscriptstyle DS(on)}$ =12.3 $m\Omega$ IRFR4510TRPBF IRFS4510TRLPBF 10-25 $R_{DS(on)}$ =13.9 m $\Omega$ $R_{DS(on)}$ =13.9 m $\Omega$ IPD180N10N3 G IPI180N10N3 G $R_{DS(on)}$ =18.0 m $\Omega$ $R_{\text{DS(on)}}$ =18.0 m $\Omega$ IPD25CN10N G $R_{DS(on)}$ =25.0 m $\Omega$ IPD33CN10N G $R_{DS(on)}$ =33.0 m $\Omega$ >25 IPD78CN10N G $R_{DS(on)}$ =78.0 m $\Omega$













| оримо:                                            | s & Strongikre                          | 1 ~ 100 v 11011114            | at tevet                       |                                      |                               |                                  |
|---------------------------------------------------|-----------------------------------------|-------------------------------|--------------------------------|--------------------------------------|-------------------------------|----------------------------------|
| $R_{DS(on), max.}$ @ $V_{GS}$ =10 V [ $m\Omega$ ] | Bare Die<br>(R <sub>DS(on) typ.</sub> ) | DirectFET™                    | PQFN 3.3 x 3.3                 | SuperSO8                             | SO-8                          | TO-Leadless                      |
|                                                   | IPC302N10N3                             |                               |                                |                                      |                               | IPT015N10N5                      |
| 1-2                                               | $R_{DS(on)}=1.7 \text{ m}\Omega$        |                               |                                |                                      |                               | $R_{DS(on)}=1.5 \text{ m}\Omega$ |
|                                                   | IPC313N10N3R                            |                               |                                |                                      |                               | IPT020N10N3                      |
|                                                   | $R_{DS(on)}$ =1.9 m $\Omega$            |                               |                                |                                      |                               | $R_{DS(on)}$ =2.0 m $\Omega$     |
|                                                   | IPC26N10NR                              | IRF7769L1TRPBF                |                                | BSC035N10NS5                         |                               |                                  |
| 2-4                                               | $R_{DS(on)}$ =3.2 m $\Omega$            | $R_{DS(on)}$ =3.5 m $\Omega$  |                                | $R_{DS(on)}=3.5 \text{ m}\Omega$     |                               |                                  |
| - '                                               | IPC173N10N3                             |                               |                                | BSC040N10NS5                         |                               |                                  |
|                                                   | $R_{DS(on)}$ =3.6 m $\Omega$            |                               |                                | $R_{DS(on)}$ =4.0m $\Omega$          |                               |                                  |
|                                                   |                                         | IRF100DM116 <sup>3)</sup>     |                                | BSC046N10NS3 G                       |                               |                                  |
|                                                   |                                         | $R_{DS(on)}$ =4.3 m $\Omega$  |                                | $R_{DS(on)}$ =4.6 m $\Omega$         |                               |                                  |
|                                                   |                                         | BSB056N10NN3 G                |                                | BSC060N10NS3 G                       |                               |                                  |
|                                                   |                                         | $R_{DS(on)}$ =5.6 m $\Omega$  |                                | $R_{DS(on)}$ =6.0 m $\Omega$         |                               |                                  |
|                                                   |                                         |                               |                                | BSC070N10NS3 G                       |                               |                                  |
| 4-10                                              |                                         |                               |                                | $R_{DS(on)} = 7.0 \text{ m}\Omega$   |                               |                                  |
| . 20                                              |                                         |                               |                                | BSC070N10NS5                         |                               |                                  |
|                                                   |                                         |                               |                                | $R_{DS(on)} = 7.0 \text{ m}\Omega$   |                               |                                  |
|                                                   |                                         |                               |                                | IRFH5010TRPBF                        |                               |                                  |
|                                                   |                                         |                               |                                | $R_{DS(on)}$ =9.0 m $\Omega$         |                               |                                  |
|                                                   |                                         |                               | BSZ097N10NS5                   | BSC098N10NS5                         |                               |                                  |
|                                                   |                                         |                               | $R_{DS(on)}$ =9.7 m $\Omega$   | $R_{DS(on)}$ =9.8 m $\Omega$         |                               |                                  |
|                                                   |                                         |                               |                                | BSC109N10NS3 G                       |                               |                                  |
|                                                   |                                         |                               |                                | $R_{DS(on)}$ =10.9 m $\Omega$        |                               |                                  |
|                                                   |                                         |                               |                                | BSC118N10NS G                        |                               |                                  |
|                                                   |                                         |                               |                                | $R_{DS(on)}$ =11.8 m $\Omega$        |                               |                                  |
| 10-25                                             |                                         | BSF134N10NJ3 G 1)             |                                | IRFH7110TRPBF                        |                               |                                  |
| 10 25                                             |                                         | $R_{DS(on)}$ =13.4 m $\Omega$ |                                | $R_{DS(on)}$ =13.5 m $\Omega$        |                               |                                  |
|                                                   | IPC045N10N3                             |                               | BSZ160N10NS3 G                 | BSC160N10NS3 G                       |                               |                                  |
|                                                   | R <sub>DS(on)</sub> =15.2 mΩ            |                               | $R_{DS(on)}$ =16.0 m $\Omega$  | $R_{DS(on)}$ =16.0 m $\Omega$        |                               |                                  |
|                                                   |                                         | IRF6662TRPBF                  |                                | BSC196N10NS G                        | IRF7853TRPBF                  |                                  |
|                                                   |                                         | $R_{DS(on)}$ =22.0 m $\Omega$ |                                | $R_{DS(on)}$ =19.6 m $\Omega$        | $R_{DS(on)}$ =18.0 m $\Omega$ |                                  |
|                                                   |                                         | IRF6645TRPBF                  | BSZ440N10NS3 G                 | BSC252N10NSF G                       |                               |                                  |
| >25                                               |                                         | $R_{DS(on)}$ =35.0 m $\Omega$ | $R_{DS(on)}$ =44.0 m $\Omega$  | $R_{DS(on)}=25.2 \text{ m}\Omega$    |                               |                                  |
| - 25                                              |                                         | IRF7665S2TRPBF                |                                | BSC440N10NS3 G                       |                               |                                  |
|                                                   |                                         | $R_{DS(on)}$ =62.0 m $\Omega$ |                                | $R_{DS(on)}$ =44.0 m $\Omega$        |                               |                                  |
| 2 x 75                                            |                                         |                               |                                | BSC750N10ND G                        |                               |                                  |
| 2 7 13                                            |                                         |                               |                                | $R_{DS(on)}$ =75.0 m $\Omega$ ; dual |                               |                                  |
| 2 x 195                                           |                                         |                               | IRFHM792TRPBF                  |                                      |                               |                                  |
| Z X 133                                           |                                         |                               | $R_{DS(on)}$ =195.0 m $\Omega$ |                                      |                               |                                  |

## OptiMOS™ & StrongIRFET™ 100 V logic level







| $\begin{array}{c} R_{\text{DS(on), max.}} \\ @V_{\text{GS}} = 10 \text{ V} \\ [m\Omega] \end{array}$ | TO-252<br>(DPAK)              | TO-263<br>(D²PAK)            | TO-263<br>(D <sup>2</sup> PAK 7pin)         | TO-220                            | Bare Die<br>(R <sub>DS(on) typ.</sub> ) | PQFN 2 x 2                    | PQFN 3.3 x 3.3                      | SuperSO8                          | SOT-23                      |
|------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------|---------------------------------------------|-----------------------------------|-----------------------------------------|-------------------------------|-------------------------------------|-----------------------------------|-----------------------------|
| 2-4                                                                                                  |                               |                              | IRLS4030TRL7PP $R_{DS(on)}$ =3.9 m $\Omega$ |                                   |                                         |                               |                                     |                                   |                             |
| 4-10                                                                                                 |                               | IRLS4030TRLPBF               |                                             | IRLB4030PBF                       |                                         |                               | BSZ096N10LS5                        |                                   |                             |
| 4-10                                                                                                 |                               | $R_{DS(on)}$ =4.3 m $\Omega$ |                                             | $R_{DS(on)}$ =4.3 m $\Omega$      |                                         |                               | $R_{DS(on)} = 9.6 \text{ m}\Omega$  |                                   |                             |
|                                                                                                      |                               |                              |                                             | IPP12CN10L G                      | IPC045N10L3 <sup>2)</sup>               |                               |                                     | BSC105N10LSF G                    |                             |
|                                                                                                      |                               |                              |                                             | $R_{DS(on)}=12.0 \text{ m}\Omega$ | $R_{DS(on)}$ = 16.0 m $\Omega$          |                               |                                     | $R_{DS(on)}$ =10.5 m $\Omega$     |                             |
| 10-25                                                                                                | IRLR3110ZTRPBF                |                              |                                             |                                   |                                         |                               | BSZ146N10LS5                        | BSC123N10LS G                     |                             |
| 10-25                                                                                                | $R_{DS(on)}$ =14.0 m $\Omega$ |                              |                                             |                                   |                                         |                               | $R_{DS(on)} = 14.6 \text{ m}\Omega$ | $R_{DS(on)}=12.3 \text{ m}\Omega$ |                             |
|                                                                                                      |                               |                              |                                             |                                   |                                         |                               | BSZ150N10LS3                        |                                   |                             |
|                                                                                                      |                               |                              |                                             |                                   |                                         |                               | R <sub>DS(on)</sub> =15.0 mΩ        |                                   |                             |
| - 25                                                                                                 |                               |                              |                                             |                                   | IPC020N10L33)                           | IRL100HS121 <sup>3)</sup>     |                                     | BSC265N10LSF G                    | IRLML0100                   |
| >25                                                                                                  |                               |                              |                                             |                                   | $R_{DS(on)}$ =42.0 m $\Omega$           | $R_{DS(on)}$ =43.0 m $\Omega$ |                                     | $R_{DS(on)}$ =26.5 m $\Omega$     | R <sub>DS(on)</sub> =220 mΩ |

www.infineon.com/powermosfet-80V-100V

 $<sup>^{1)}</sup>$  DirectFETTM S  $^{2)}$  R<sub>DS(on)</sub> typ. specified @ 4.5 V  $^{3)}$  In development

















|                                                                                                      |                                               |                                               |                                              |                                               |                                               |                                              | 0-0                                  |                                                 |
|------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|----------------------------------------------|-----------------------------------------------|-----------------------------------------------|----------------------------------------------|--------------------------------------|-------------------------------------------------|
| $\begin{array}{c} R_{\text{DS(on), max.}} \\ @V_{\text{GS}} = 10 \text{ V} \\ [m\Omega] \end{array}$ | TO-252<br>(DPAK)                              | TO-263<br>(D²PAK)                             | TO-263<br>(D <sup>2</sup> PAK 7pin)          | TO-262<br>(I²PAK)                             | TO-220                                        | Bare Die<br>(R <sub>DS(on) typ.</sub> )      | PQFN 3.3 x 3.3                       | SuperSO8                                        |
|                                                                                                      |                                               |                                               |                                              |                                               |                                               | IPC302N12N3 $R_{DS(on)}=2.5 \text{ m}\Omega$ |                                      |                                                 |
| 2-4                                                                                                  |                                               |                                               |                                              |                                               |                                               | IPC26N12N<br>R <sub>DS(on)</sub> =3.0 mΩ     |                                      |                                                 |
|                                                                                                      |                                               | IPB038N12N3 G<br>R <sub>DS(on)</sub> =3.8 mΩ  | IPB036N12N3 G<br>R <sub>DS(on)</sub> =3.6 mΩ |                                               |                                               | IPC26N12NR $R_{DS(on)}$ =3.2 m $\Omega$      |                                      |                                                 |
|                                                                                                      |                                               |                                               |                                              | IPI041N12N3 G<br>R <sub>DS(on)</sub> =4.1 mΩ  | IPP041N12N3 G<br>R <sub>DS(on)</sub> =4.1 mΩ  |                                              |                                      |                                                 |
| 4-10                                                                                                 |                                               |                                               |                                              |                                               | IPP048N12N3 G<br>R <sub>DS(on)</sub> =4.8 mΩ  |                                              |                                      |                                                 |
|                                                                                                      |                                               |                                               |                                              | IPI076N12N3 G<br>R <sub>DS(on)</sub> =7.6 mΩ  | IPP076N12N3 G<br>R <sub>DS(on)</sub> =7.6 mΩ  |                                              |                                      | BSC077N12NS3 G<br>R <sub>DS(on)</sub> =7.7 mΩ   |
| 40.05                                                                                                | IPD110N12N3 G<br>R <sub>DS(on)</sub> =11.0 mΩ |                                               |                                              |                                               | IPP114N12N3 G<br>R <sub>DS(on)</sub> =11.4 mΩ |                                              |                                      |                                                 |
| 10-25                                                                                                |                                               | IPB144N12N3 G<br>R <sub>DS(on)</sub> =14.4 mΩ |                                              | IPI147N12N3 G<br>R <sub>DS(on)</sub> =14.7 mΩ | IPP147N12N3 G<br>R <sub>DS(on)</sub> =14.7 mΩ |                                              | BSZ240N12NS3 G $R_{DS(on)}$ =24.0 mΩ | BSC190N12NS3 G<br>$R_{DS(on)}$ =19.0 m $\Omega$ |

















OptiMOS™ & StrongIRFET™ 120 V normal level

|               | _ |
|---------------|---|
| Solar Telecom |   |

| оримо.                                                                                               | s & Strong                                    | KFET 133 V                                           | /-120 A HOLLI                                   | ai ievei                                                   |                                               |                                                          |                                               |                                                    |
|------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------|-------------------------------------------------|------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------|-----------------------------------------------|----------------------------------------------------|
| $\begin{array}{c} R_{\text{DS(on), max.}} \\ @V_{\text{GS}} = 10 \text{ V} \\ [m\Omega] \end{array}$ | TO-252<br>(DPAK)                              | TO-263<br>(D²PAK)                                    | TO-263<br>(D <sup>2</sup> PAK 7pin)             | TO-251 /<br>TO-251 Short Lead<br>(IPAK/IPAK Short<br>Lead) | TO-262<br>(I²PAK)                             | TO-220                                                   | TO-220<br>FullPAK                             | TO-247                                             |
|                                                                                                      |                                               | IPB048N15N5                                          | IPB044N15N5                                     |                                                            | IPI051N15N5                                   | IPP051N15N5 2)                                           |                                               |                                                    |
|                                                                                                      |                                               | $R_{DS(on)}$ =4.8 m $\Omega$                         | $R_{DS(on)}$ =4.4 m $\Omega$                    |                                                            | $R_{DS(on)}=5.1 \text{ m}\Omega$              | $R_{DS(on)}=5.1 \text{ m}\Omega$                         |                                               |                                                    |
|                                                                                                      |                                               | IPB048N15N5LF                                        | IRF135SA204 5)                                  |                                                            |                                               |                                                          |                                               |                                                    |
|                                                                                                      |                                               | $R_{DS(on)}$ =4.8 m $\Omega$                         | $R_{DS(on)}$ =5.9 m $\Omega$                    |                                                            |                                               |                                                          |                                               |                                                    |
|                                                                                                      |                                               | IPB072N15N3 G                                        | IPB060N15N5                                     |                                                            | IPI075N15N3 G                                 | IPP075N15N3 G                                            |                                               | IRFP4568PBF                                        |
| 4-10                                                                                                 |                                               | $R_{DS(on)}$ =7.2 m $\Omega$                         | $R_{DS(on)}$ = 6.0 m $\Omega$                   |                                                            | $R_{DS(on)} = 7.5 \text{ m}\Omega$            | $R_{DS(on)}=7.5 \text{ m}\Omega$                         |                                               | $R_{DS(on)}$ =5.9 m $\Omega$                       |
| 4-10                                                                                                 |                                               | IPB073N15N5                                          | IPB065N15N3 G                                   |                                                            | IPI076N15N5                                   | IPP076N15N5                                              | IPA075N15N3 G                                 |                                                    |
|                                                                                                      |                                               | $R_{DS(on)}=7.3 \text{ m}\Omega$                     | $R_{DS(on)}=6.5 \text{ m}\Omega$                |                                                            | $R_{DS(on)}=7.6 \text{ m}\Omega$              | $R_{DS(on)}=7.6 \text{ m}\Omega$                         | $R_{DS(on)}$ =7.5 m $\Omega$                  |                                                    |
|                                                                                                      |                                               | IPB083N15N5LF<br>$R_{DS(on)}$ =8.3 m $\Omega$        |                                                 |                                                            |                                               |                                                          |                                               |                                                    |
|                                                                                                      |                                               | IRF135S203 <sup>5)</sup> R <sub>DS(on)</sub> =8.4 mΩ |                                                 |                                                            |                                               | IRF135B203 <sup>5)</sup> R <sub>DS(on)</sub> =8.4 mΩ     |                                               |                                                    |
|                                                                                                      |                                               | IPB108N15N3 G<br>R <sub>DS(on)</sub> =10.8 mΩ        | IRFS4115TRL7PP<br>$R_{DS(on)}$ =11.8 m $\Omega$ |                                                            | IPI111N15N3 G<br>R <sub>DS(on)</sub> =11.1 mΩ | IPP111N15N3 G<br>R <sub>DS(on)</sub> =11.1 mΩ            | IPA105N15N3 G<br>R <sub>DS(on)</sub> =10.5 mΩ |                                                    |
| 10-25                                                                                                |                                               | IRFS4321<br>R <sub>DS(on)</sub> =15.0 mΩ             | IRFS4321TRL7PP<br>$R_{DS(on)}$ =14.7 m $\Omega$ |                                                            |                                               | IRFB4321PBF<br>R <sub>DS(on)</sub> =15.0 mΩ              |                                               | IRFP4321PBF<br>$R_{DS(on)} = 15.5 \text{ m}\Omega$ |
|                                                                                                      | IPD200N15N3 G<br>R <sub>DS(on)</sub> =20.0 mΩ | IPB200N15N3 G<br>R <sub>DS(on)</sub> =20.0 mΩ        |                                                 |                                                            |                                               | IPP200N15N3 G <sup>2)</sup> R <sub>DS(on)</sub> =20.0 mΩ |                                               |                                                    |
|                                                                                                      |                                               | IRFS4615PBF<br>$R_{DS(on)}$ =42.0 m $\Omega$         |                                                 |                                                            |                                               | IRFB4615PBF<br>$R_{DS(on)}$ =39.0 m $\Omega$             |                                               |                                                    |
|                                                                                                      | IRFR4615                                      | IRFS5615PBF                                          |                                                 | IRFU4615PBF                                                |                                               | IRFB5615PBF                                              |                                               |                                                    |
| . 25                                                                                                 | R <sub>DS(on)</sub> =42.0 mΩ                  | $R_{DS(on)}$ =42.0 m $\Omega$                        |                                                 | $R_{DS(on)}$ =42.0 m $\Omega$                              |                                               | $R_{DS(on)}$ =39.0 m $\Omega$                            |                                               |                                                    |
| >25                                                                                                  | IPD530N15N3 G                                 | IPB530N15N3 G                                        |                                                 |                                                            | IPI530N15N3 G <sup>2)</sup>                   | IPP530N15N3 G <sup>2)</sup>                              |                                               |                                                    |
|                                                                                                      | R <sub>DS(on)</sub> =53.0 mΩ                  | $R_{DS(on)}$ =53.0 m $\Omega$                        |                                                 |                                                            | R <sub>DS(on)</sub> =53.0 mΩ                  | $R_{DS(on)}$ =53.0 m $\Omega$                            |                                               |                                                    |
|                                                                                                      |                                               |                                                      |                                                 |                                                            |                                               | IRFB4019PBF                                              |                                               |                                                    |
|                                                                                                      |                                               |                                                      |                                                 |                                                            |                                               | $R_{DS(on)}$ =95.0 m $\Omega$                            |                                               |                                                    |













| оринов                                                                                               | , « su ong i i i                                                                                                                                                                    | .00 1 100 1 11011114116                                                                                                                                                                                                                                     |                                                                           | 0.6                                                                                                                                                                                                                  |                                                                                                          |
|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| $\begin{array}{c} R_{\text{DS(on), max.}} \\ @V_{\text{GS}} = 10 \text{ V} \\ [m\Omega] \end{array}$ | Bare Die<br>(R <sub>DS(on) typ.</sub> )                                                                                                                                             | DirectFET™                                                                                                                                                                                                                                                  | PQFN 3.3 x 3.3                                                            | SuperSO8                                                                                                                                                                                                             | TO-Leadless                                                                                              |
| 4-10                                                                                                 | $\begin{aligned} & \text{IPC302N15N3} \\ & R_{\text{DS(on)}} \! = \! 4.9 \text{ m}\Omega \\ & \text{IPC300N15N3R} \\ & R_{\text{DS(on)}} \! = \! 4.9 \text{ m}\Omega \end{aligned}$ |                                                                                                                                                                                                                                                             |                                                                           | $\begin{array}{c} BSC093N15NS5 \\ R_{DS(on)} = 9.3 \ m\Omega \end{array}$                                                                                                                                            | $\begin{aligned} & \text{IPT059N15N3} \\ & \text{R}_{\text{DS(on)}} = 5.9 \text{ m}\Omega \end{aligned}$ |
| 10-25                                                                                                |                                                                                                                                                                                     | $\begin{aligned} & \text{IRF7779L2TRPBF}^{5)} \\ & R_{\text{DS(om}} = 11.0 \text{ m}\Omega \\ & \text{IRF150DM115}^{3)} \\ & R_{\text{DS(on}} = 11.4 \text{ m}\Omega \\ & \text{BSB165N15NZ3 G} \\ & R_{\text{DS(on}} = 16.5 \text{ m}\Omega \end{aligned}$ |                                                                           | $\begin{aligned} &BSC110N15NS5 \\ &R_{DS(m)} \!=\! 11.0 \text{ m}\Omega \\ &BSC160N15NS5 \\ &R_{DS(m)} \!=\! 16.0 \text{ m}\Omega \\ &BSC190N15NS3 \text{ G} \\ &R_{DS(m)} \!=\! 19.0 \text{ m}\Omega \end{aligned}$ |                                                                                                          |
| >25                                                                                                  |                                                                                                                                                                                     | $\begin{array}{c} \text{BSB280N15NZ3 G} \\ R_{\text{DS(om}} = 28.0 \text{ m}\Omega \\ \\ \text{IRF6643TRPBF} \\ R_{\text{DS(om}} = 34.5 \text{ m}\Omega \\ \\ \text{IRF6775MTRPBF} \\ R_{\text{DS(om}} = 56.0 \text{ m}\Omega \\ \end{array}$               | BSZ520N15NS3 G $R_{DS(on)}$ =52.0 mΩ BSZ900N15NS3 G $R_{DS(on)}$ =90.0 mΩ | $\begin{array}{c} BSC360N15NS3~G\\ R_{DS(on)}{=}36.0~m\Omega\\ \\ BSC520N15NS3~G\\ R_{DS(on)}{=}52.0~m\Omega\\ \end{array}$                                                                                          |                                                                                                          |













|                                                                                                          | 200 V normal level                                                                                                                                                                          |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TO-252<br>(DPAK)                                                                                         | TO-263<br>(D²PAK)                                                                                                                                                                           | TO-262<br>(I²PAK)                                                                                          | TO-220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TO-247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                          |                                                                                                                                                                                             |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} \text{IRF200P222} \\ \text{R}_{\text{DS(on)}} \text{=} 6.6 \text{ m}\Omega \\ \text{IRFP4668PBF} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                          | IPB107N20N3 G<br>R <sub>DS(on)</sub> =10.7 mΩ<br>IPB107N20NA <sup>4)</sup><br>R <sub>SS(on)</sub> =10.7 mΩ                                                                                  | IPI110N20N3 G<br>R <sub>DS(on)</sub> =11.0 mΩ                                                              | IPP110N20N3 G $R_{DS(on)}$ =11.0 mΩ IPP110N20NA <sup>4</sup> $R_{NS(on)}$ =11.0 mΩ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{l} R_{DS(on)}\!=\!9.7~m\Omega\\ IRF200P223\\ R_{DS(on)}\!=\!11.5~m\Omega \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                          | $\begin{split} & \text{IPB110N20N3LF} \\ & R_{\text{DS(on)}} \! = \! 11.0 \text{ m}\Omega \\ & \text{IPB117N20NFD} \\ & R_{\text{DS(on)}} \! = \! 11.7 \text{ m}\Omega \end{split}$         |                                                                                                            | $\begin{array}{l} \text{IPP120N20NFD} \\ \text{R}_{\text{DS(on)}} \!=\! \! 12.0 \text{ m}\Omega \\ \text{IRFB4127PBF} \\ \text{R}_{\text{DS(on)}} \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} \text{IRFP4127PBF} \\ \text{R}_{\text{DS(om)}} \! = \! 21.0 \text{ m}\Omega \\ \text{IRFP4227PBF} \\ \text{R}_{\text{DS(om)}} \! = \! 25.0 \text{ m}\Omega \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                          | $R_{DS(on)}$ =22.0 m $\Omega$<br>IRFS4227TRLPBF                                                                                                                                             |                                                                                                            | IRFB4227PBF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| IPD320N20N3 G<br>R <sub>DS(on)</sub> =32.0 mΩ                                                            | R <sub>DS(on)</sub> = 20.0 Hi2<br>  IPB320N20N3 G<br>  R <sub>DS(on)</sub> = 32.0 mΩ                                                                                                        | IPI320N20N3 G<br>R <sub>DS(on)</sub> =32.0 mΩ                                                              | $\begin{split} & \text{IPP320N20N3 G} \\ & \text{R}_{\text{DS(on)}} \text{=} 32.0 \text{ m}\Omega \\ & \text{IRFB4620PBF} \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $ \begin{array}{l} \text{IRFR4620TRLPBF} \\ R_{\text{DS(on)}} \! = \! 78.0 \text{ m}\Omega \end{array} $ | $\begin{aligned} & \text{IRFS4620TRLPBF} \\ & R_{\text{DS(on)}} \! = \! 78.0 \text{ m}\Omega \\ & \text{IRFS4020TRLPBF} \\ & R_{\text{DS(on)}} \! = \! 105.0 \text{ m}\Omega \end{aligned}$ |                                                                                                            | $ \begin{aligned} & \text{IRFB5620PBF} \\ & R_{\text{DS(on)}} \! = \! 72.5 \text{ m}\Omega \\ & \text{IRFB4020PBF} \\ & R_{\text{DS(on)}} \! = \! 100.0 \text{ m}\Omega \\ & \text{IRF200B211} \end{aligned} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                          | $(\text{DPAK})$ $IPD320N20N3 \ G$ $R_{DS(on)} = 32.0 \ m\Omega$ $IRFR4620TRLPBF$                                                                                                            | $\begin{array}{c} \text{(DPAK)} & \text{(D°PAK)} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$ | $(DPAK) \qquad (DPAK) \qquad (DPAK) \qquad (IPAK) \qquad (IPB107N20N3 G R_{DS(on)} = 10.7 m\Omega R_{DS(on)} = 11.0 m\Omega \qquad (IPB110N20N3 LF_{R_{DS(on)} = 11.0 m\Omega} R_{DS(on)} = 11.0 m\Omega \qquad (IPB117N20NFD_{R_{DS(on)} = 11.7 m\Omega} R_{DS(on)} = 11.7 m\Omega \qquad (IRFS4127TRLPBF_{R_{DS(on)} = 22.0 m\Omega} R_{DS(on)} = 22.0 m\Omega \qquad (IRFS4227TRLPBF_{R_{DS(on)} = 22.0 m\Omega} R_{DS(on)} = 32.0 m\Omega \qquad (IPB320N20N3 G_{DS(on)} = 32.0 m\Omega R_{DS(on)} = 32.0 m\Omega R_{D$ | (DPAK) (DPAK) (PPAK) (PPAK) (PPAK) (PPAK)    DPAK (DPAK) (PPAK) |

<sup>&</sup>lt;sup>3)</sup> In development <sup>4)</sup> Part qualified according to AEC Q101 <sup>5)</sup> DirectFET™ L













## OptiMOS™ & StrongIRFET™ 200 V normal level

|                                                                                                      |                                         |                                |                                |                                     | ₩ 0-0                               |                                   |
|------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------|--------------------------------|-------------------------------------|-------------------------------------|-----------------------------------|
| $\begin{array}{c} R_{\text{DS(on), max.}} \\ @V_{\text{GS}} = 10 \text{ V} \\ [m\Omega] \end{array}$ | Bare Die<br>(R <sub>DS(on) typ.</sub> ) | DirectFET™                     | PQFN 3.3 x 3.3                 | SuperSO8                            | SO-8                                | TO-Leadless                       |
|                                                                                                      | IPC300N20N3                             |                                |                                |                                     |                                     |                                   |
| 4-10                                                                                                 | $R_{DS(on)}$ =9.2 m $\Omega$            |                                |                                |                                     |                                     |                                   |
| 4-10                                                                                                 | IPC302N20N3                             |                                |                                |                                     |                                     |                                   |
|                                                                                                      | $R_{DS(on)}$ =9.2 m $\Omega$            |                                |                                |                                     |                                     |                                   |
|                                                                                                      | IPC302N20NFD                            |                                |                                | BSC320N20NS3 G                      |                                     | IPT111N20NFD                      |
|                                                                                                      | RDS(on) = $9.4 \text{ m}\Omega$         |                                |                                | $R_{DS(on)}$ =32.0 m $\Omega$       |                                     | $R_{DS(on)}=11.1 \text{ m}\Omega$ |
|                                                                                                      |                                         |                                |                                | BSC350N20NSFD                       |                                     |                                   |
|                                                                                                      |                                         |                                |                                | $R_{DS(on)}$ =35.0 m $\Omega$       |                                     |                                   |
|                                                                                                      |                                         |                                |                                | BSC500N20NS3G                       |                                     |                                   |
|                                                                                                      |                                         |                                |                                | $R_{DS(on)}=50.0 \text{ m}\Omega$   |                                     |                                   |
| >25                                                                                                  |                                         | IRF6641TRPBF                   |                                | IRFH5020                            |                                     |                                   |
| ~25                                                                                                  |                                         | $R_{DS(on)}$ =59.9 m $\Omega$  |                                | $R_{DS(on)} = 55.0 \text{ m}\Omega$ |                                     |                                   |
|                                                                                                      |                                         |                                | BSZ900N20NS3 G                 | BSC900N20NS3 G                      | IRF7820TRPBF                        |                                   |
|                                                                                                      |                                         |                                | $R_{DS(on)}$ =90.0 m $\Omega$  | $R_{DS(on)}$ =90.0 m $\Omega$       | $R_{DS(on)} = 78.0 \text{ m}\Omega$ |                                   |
|                                                                                                      |                                         | IRF6785TRPBF                   | BSZ12DN20NS3 G                 | BSC12DN20NS3 G                      |                                     |                                   |
|                                                                                                      |                                         | $R_{DS(on)}$ =100.0 m $\Omega$ | $R_{DS(on)}$ =125.0 m $\Omega$ | $R_{DS(on)}$ =125.0 m $\Omega$      |                                     |                                   |
|                                                                                                      |                                         |                                | BSZ22DN20NS3 G                 | BSC22DN20NS3 G                      |                                     |                                   |
|                                                                                                      |                                         |                                | R=225 0 mO                     | R =225 0 mO                         |                                     |                                   |















| Ортімоз                                                                               | s''' & Strong                 | SIRFE I ''' 25                | u v normai                    | level                         |                                   |                                         |                                |                                |                               |
|---------------------------------------------------------------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-----------------------------------|-----------------------------------------|--------------------------------|--------------------------------|-------------------------------|
| $\begin{array}{c} R_{DS(on),max.} \\ @V_{GS} = 10 \text{ V} \\ [m\Omega] \end{array}$ | TO-252<br>(DPAK)              | TO-263<br>(D²PAK)             | TO-262<br>(I²PAK)             | TO-220                        | TO-247                            | Bare Die<br>(R <sub>DS(on) typ.</sub> ) | PQFN 3.3 x 3.3                 | SuperSO8                       | TO-Leadless                   |
|                                                                                       |                               | IPB200N25N3 G                 | IPI200N25N3 G                 | IPP200N25N3 G                 | IRF250P224                        |                                         |                                |                                |                               |
|                                                                                       |                               | $R_{DS(on)}$ =20.0 m $\Omega$ | $R_{DS(on)}$ =20.0 m $\Omega$ | $R_{DS(on)}$ =20.0 m $\Omega$ | $R_{DS(on)}=12.0 \text{ m}\Omega$ |                                         |                                |                                |                               |
| 10-25                                                                                 |                               |                               |                               | IPP220N25NFD                  | IRFP4768PBF                       | IPC302N25N3                             |                                |                                | IPT210N25NFD                  |
| 10-25                                                                                 |                               |                               |                               | $R_{DS(on)}$ =22.0 m $\Omega$ | $R_{DS(on)}$ =17.5 m $\Omega$     | $R_{DS(on)}=16.0 \text{ m}\Omega$       |                                |                                | $R_{DS(on)}$ =21.0 m $\Omega$ |
|                                                                                       |                               |                               |                               |                               | IRF250P225                        |                                         |                                |                                |                               |
|                                                                                       |                               |                               |                               |                               | $R_{DS(on)}$ =22.0 m $\Omega$     |                                         |                                |                                |                               |
|                                                                                       |                               | IRFS4229TRLPBF                |                               | IRFB4332PBF                   | IRFP4332PBF                       |                                         |                                | BSC600N25NS3 G                 |                               |
|                                                                                       |                               | $R_{DS(on)}$ =48.0 m $\Omega$ |                               | $R_{DS(on)}$ =33.0 m $\Omega$ | $R_{DS(on)}$ =33.0 m $\Omega$     |                                         |                                | $R_{DS(on)}$ =60.0 m $\Omega$  |                               |
|                                                                                       |                               |                               |                               |                               |                                   |                                         |                                | BSC670N25NSFD                  |                               |
| <b>&gt;2</b> E                                                                        |                               |                               |                               |                               |                                   |                                         |                                | $R_{DS(on)}$ =67.0 m $\Omega$  |                               |
| >25                                                                                   | IPD600N25N3 G                 | IPB600N25N3 G                 | IPI600N25N3 G                 | IRFB4229PBF                   | IRFP4229PBF                       |                                         | BSZ16DN25NS3 G                 | IRFH5025                       |                               |
|                                                                                       | $R_{DS(on)}$ =60.0 m $\Omega$ | $R_{DS(on)}$ =60.0 m $\Omega$ | $R_{DS(on)}$ =60.0 m $\Omega$ | $R_{DS(on)}$ =46.0 m $\Omega$ | $R_{DS(on)}$ =46.0 m $\Omega$     |                                         | $R_{DS(on)}$ =165.0 m $\Omega$ | $R_{DS(on)}$ =100.0 m $\Omega$ |                               |
|                                                                                       |                               |                               |                               | IPP600N25N3 G                 |                                   | IPC045N25N3                             | BSZ42DN25NS3 G                 | BSC16DN25NS3 G                 |                               |
|                                                                                       |                               |                               |                               | D =60.0 m0                    |                                   | D =1460 m0                              | D =42E 0 m0                    | D =16F 0 m0                    |                               |

## OptiMOS™ & StrongIRFET™ 300 V normal level









| $\begin{array}{c} R_{\text{DS(on), max.}} \\ @V_{\text{GS}} = 10 \text{ V} \\ [m\Omega] \end{array}$ | TO-263<br>(D²PAK)             | ТО-220                        | TO-247                        | SuperSO8                           |
|------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------|-------------------------------|------------------------------------|
|                                                                                                      | IPB407N30N                    | IPP410N30N                    | IRFP4868PBF                   |                                    |
| . 25                                                                                                 | $R_{DS(on)}$ =40.7 m $\Omega$ | $R_{DS(on)}$ =41.0 m $\Omega$ | $R_{DS(on)}$ =32.0 m $\Omega$ |                                    |
| >25                                                                                                  |                               | IRFB4137PBF                   | IRFP4137PBF                   | BSC13DN30NSFD                      |
|                                                                                                      |                               | $R_{DS(on)}$ =69.0 m $\Omega$ | $R_{DS(on)}$ =69.0 m $\Omega$ | $R_{DS(on)}=130.0 \text{ m}\Omega$ |













| Valta          | SOT-223                        | TSOP-6                                       | SOT-89                       | SC59                           | SOT-23                                 | SOT-323                         | SOT-363                                 | PQFN 2 x 2                         |
|----------------|--------------------------------|----------------------------------------------|------------------------------|--------------------------------|----------------------------------------|---------------------------------|-----------------------------------------|------------------------------------|
| Voltage<br>[V] |                                | 15UP-6                                       |                              |                                | 501-23                                 | 501-323                         | 501-363                                 | PQFNZXZ                            |
| -250           | BSP317P<br>4 Ω, -0.43 A, LL    |                                              | BSS192P<br>12 Ω, -0.19 A, LL | BSR92P<br>11 Ω, -0.14 A, LL    |                                        |                                 |                                         |                                    |
| 250            | BSP92P<br>12 Ω, -0.26 A, LL    |                                              |                              |                                |                                        |                                 |                                         |                                    |
|                | BSP321P<br>900 mΩ, -0.98 A, NL |                                              |                              |                                |                                        |                                 |                                         |                                    |
| -100           | BSP322P<br>800 mΩ, -1.0 A, LL  |                                              |                              |                                |                                        |                                 |                                         |                                    |
|                | BSP316P<br>1.8 Ω, -0.68 A, LL  |                                              |                              | BSR316P<br>1.8 Ω, -0.36 A, LL  |                                        |                                 |                                         |                                    |
|                | BSP612P<br>120 mΩ, 3 A, LL     |                                              |                              |                                | BSS83P<br>2 Ω, -0.33 A, LL             | BSS84PW<br>8 Ω, -0.15 A, LL     |                                         |                                    |
|                | BSP613P<br>130 mΩ, 2.9 A, NL   |                                              |                              |                                | BSS84P<br>8 Ω, -0.17 A, LL             |                                 |                                         |                                    |
| -60            | BSP170P<br>300 mΩ, -1.9 A, NL  |                                              |                              |                                |                                        |                                 |                                         |                                    |
|                | BSP171P<br>300 mΩ, -1.9 A, LL  |                                              |                              |                                |                                        |                                 |                                         |                                    |
| 5              | BSP315P<br>800 mΩ, -1.17 A, LL |                                              |                              | BSR315P<br>800 mΩ, -0.62 A, LL |                                        |                                 |                                         |                                    |
|                |                                | BSL303SPE<br>33 mΩ, -6.3 A, LL               |                              |                                | BSS308PE<br>80 mΩ, -2.1 A, LL, ESD     |                                 | BSD314SPE<br>140 mΩ, -1.5 A, LL, ESD    | IRFHS9301*<br>37 mΩ, -6.0 A, LL    |
|                |                                | IRFTS9342TRPBF*<br>40 mΩ, -5.8 A, LL         |                              |                                | BSS314PE<br>140 mΩ, -1.5 A,<br>LL, ESD |                                 |                                         |                                    |
|                |                                | BSL307SP<br>43 mΩ, -5.5 A, LL                |                              |                                | BSS315P<br>150 mΩ, -1.5 A, LL          |                                 |                                         | IRFHS9351*<br>170 mΩ, -2.3 A, L    |
| - 30           |                                | BSL305SPE<br>45 mΩ, -5.5 A, LL               |                              |                                |                                        |                                 |                                         |                                    |
|                |                                | BSL308PE<br>80 mΩ, -2.1 A, LL,<br>dual, ESD  |                              |                                |                                        |                                 |                                         |                                    |
|                |                                | BSL314PE<br>140 mΩ, -1.5 A, LL,<br>ESD, dual |                              |                                |                                        |                                 |                                         |                                    |
|                |                                | BSL207SP<br>41 mΩ, -6 A, SLL                 |                              |                                | IRLML2244* 1)<br>54 mΩ, 4.3 A, LL      |                                 |                                         |                                    |
| -20            |                                | BSL211SP<br>67 mΩ, -4.7 A, SLL               |                              |                                | IRLML2246*1)<br>135 mΩ, 2.6 A, LL      |                                 | BSV236SP<br>175 mΩ, -1.5 A, SLL         | IRLHS2242* 1)<br>31 mΩ, -7.2 A, SL |
|                |                                |                                              |                              |                                | BSS215P<br>150 mΩ, -1.5 A, SLL         | BSS223PW<br>1.2 Ω, -0.39 A, SLL | BSD223P<br>1.2 Ω, -0.39 A, SLL,<br>dual |                                    |

## Small Signal complementary











|               | Voltage<br>[V] | SOT-223 | TSOP-6                                                   | SOT-89 | SC59 | SOT-23 | SOT-323 | SOT-363                                                    |
|---------------|----------------|---------|----------------------------------------------------------|--------|------|--------|---------|------------------------------------------------------------|
| ary           | -20/20         |         | BSL215C N: 140 mΩ, 1.5 A, SLL P: 150 mΩ, 1.5 A, SLL      |        |      |        |         | BSD235C<br>N: 350 mΩ, 0.95 A, SLL<br>P: 1.2 Ω, 0.53 A, SLL |
| Complementary | 20/20          |         | BSL308C<br>N: 57 mΩ, 2.3 A, LL<br>P: 80 mΩ, -2.0 A, LL   |        |      |        |         |                                                            |
| Con           | -30/30         |         | BSL316C<br>N: 160 mΩ, 1.4 A, LL<br>P: 150 mΩ, -1.5 A, LL |        |      |        |         |                                                            |

#### Small Signal n-channel















| 1 | Teleco    | m  | h |
|---|-----------|----|---|
| н | IIIIIIIII | •• |   |
| н | HIIIIIII  | •• |   |
| п | HIIIIIII  | •• |   |

| Voltage<br>[V] | SOT-223                           | TSOP-6                             | SOT-89           | SC59                         | SOT-23                                                | SOT-323                       | SOT-363                        | PQFN 2 x 2                         |
|----------------|-----------------------------------|------------------------------------|------------------|------------------------------|-------------------------------------------------------|-------------------------------|--------------------------------|------------------------------------|
|                |                                   | BSL802SN                           |                  | BSR802N                      | IRLML6244*1)                                          |                               |                                | IRLHS6242*1)                       |
|                |                                   | 22 mΩ, 7.5 A, ULL<br>BSL202SN      |                  | 23 mΩ, 3.7 A, ULL<br>BSR202N | 21 mΩ, 6.3 A, LL<br>IRLML6246* 1)                     |                               |                                | 11.7 mΩ, 10.0 A, S<br>IRLHS6276*1) |
|                |                                   | 22 mΩ, 7.5 A, SLL                  |                  | 21 mΩ, 3.8 A, SLL            | 46 mΩ, 4.1 A, LL                                      |                               |                                | 45 mΩ, 4.5 A, SLL                  |
|                |                                   | BSL205N                            |                  |                              | BSS205N                                               |                               | BSD214SN                       |                                    |
|                |                                   | 50 mΩ, 2.5 A, SLL, dual            |                  |                              | 50 mΩ, 2.5 A, SLL                                     |                               | 140 mΩ, 1.5 A, SLL             |                                    |
|                |                                   | BSL806N<br>57 mΩ, 2.3 A, ULL, dual |                  |                              | BSS806NE<br>57 mΩ, 2.3 A, ULL, ESD                    |                               | BSD816SN<br>160 mΩ, 1.4 A, ULL |                                    |
| 20             |                                   | BSL207N                            |                  |                              | BSS806N                                               | BSS214NW                      | BSD235N                        |                                    |
|                |                                   | 70 mΩ, 2.1 A, SLL, dual            |                  |                              | 57 mΩ, 2.3 A, ULL                                     | 140 mΩ, 1.5 A, SLL            | 350 mΩ, 0.95 A, SLL,<br>dual   |                                    |
|                |                                   | BSL214N                            |                  |                              | BSS205N                                               | BSS816NW                      | BSD840N                        |                                    |
|                |                                   | 140 mΩ, 1.5 A, SLL,<br>dual        |                  |                              | 50 mΩ, 2.5 A, SLL                                     | 160 mΩ, 1.4 A, ULL            | 400 mΩ, 0.88 A, ULL,<br>dual   |                                    |
|                |                                   |                                    |                  |                              | BSS214N<br>140 mΩ, 1.5 A, SLL                         |                               |                                |                                    |
| 25             |                                   |                                    |                  |                              | IRFML8244*                                            |                               |                                |                                    |
|                |                                   | IRLTS6342*1)                       |                  | BSR302N                      | 24 mΩ, 5.8 A, NL<br>IRLML0030*                        |                               | BSD316SN                       | IRLHS6342*1)                       |
|                |                                   | 17.5 mΩ, 8.3 A, LL                 |                  | 23 mΩ, 3.7 A, LL             | 27 mΩ, 5.3 A, LL                                      |                               | 160 mΩ, 1.4A, LL               | 15.5 mΩ, 8.7 A, SL                 |
|                |                                   | IRFTS8342*                         |                  |                              | IRLML6344*1)                                          |                               |                                | IRLHS6376*1)                       |
|                |                                   | 19 mΩ. 8.2 A, NL                   |                  |                              | 29 mΩ, 5.0 A, LL                                      |                               |                                | 63 mΩ, 3.6 A, SLL                  |
|                |                                   | BSL302SN<br>25 mΩ, 7.1 A, LL       |                  |                              | BSS306N<br>57 mΩ, 2.3 A, LL                           |                               |                                |                                    |
| 30             |                                   | BSL306N                            |                  |                              | IRLML6346* 1)                                         |                               |                                |                                    |
|                |                                   | 57 mΩ, 2.3 A, LL, dual             |                  |                              | 63 mΩ, 3.4 A, LL                                      |                               |                                |                                    |
|                |                                   |                                    |                  |                              | IRLML2030*<br>100 mΩ, 1.4 A, LL                       |                               |                                |                                    |
|                |                                   |                                    |                  |                              | BSS316N                                               |                               |                                |                                    |
|                |                                   |                                    |                  |                              | 160 mΩ, 1.4 A, LL                                     |                               |                                |                                    |
| 55             |                                   |                                    |                  |                              | BSS670S2L                                             | BSS340NW                      | BSD340N                        |                                    |
|                | BSP318S                           | BSL606SN                           | BSS606N          | BSR606N                      | 650 mΩ, 0.54 A, LL<br>IRLML0060*                      | 400 mΩ, 0.88 A, LL<br>BSS138W | 400 mΩ, 1.4 A, LL<br>2N7002DW  | IRL60HS118*                        |
|                | 90 mΩ, 2.6 A, LL                  | 60 mΩ, 4.5 A, LL                   | 60 mΩ, 3.2 A, LL | 60 mΩ, 2.3 A, LL             | 92 mΩ, 2.7 A, LL                                      | 3.5 Ω, 0.28 A, LL             | 3 Ω, 0.3 A, LL, dual           | 17 mΩ, 18.5 A, LL                  |
|                | BSP320S                           |                                    |                  |                              | IRLML2060*                                            | SN7002W                       |                                |                                    |
|                | 120 mΩ, 2.9 A, NL                 |                                    |                  |                              | 480 mΩ, 1.2 A, LL                                     | 5 Ω, 0.23 A, LL               |                                |                                    |
|                | BSP295<br>300 mΩ, 1.8 A, LL       |                                    |                  |                              | BSS138N<br>3.5 Ω, 0.23 A, LL                          |                               |                                |                                    |
| <b>CO</b>      |                                   |                                    |                  |                              | BSS7728N                                              |                               |                                |                                    |
| 60             |                                   |                                    |                  |                              | 5 Ω, 0.2 A, LL                                        |                               |                                |                                    |
|                |                                   |                                    |                  |                              | SN7002N<br>5 Ω, 0.2 A, LL                             |                               |                                |                                    |
|                |                                   |                                    |                  |                              | 2N7002                                                |                               |                                |                                    |
|                |                                   |                                    |                  |                              | 3 Ω, 0.3 A, LL                                        |                               |                                |                                    |
|                |                                   |                                    |                  |                              | BSS159N<br>8 Ω, 0.13 A, depl.                         |                               |                                |                                    |
|                | BSP716N                           | BSL716SN                           |                  |                              | 612, 0.13 A, dept.                                    |                               |                                |                                    |
| 75             | 160 mΩ, 2.3 A, LL                 | 150 mΩ, 2.5 A, LL                  |                  |                              |                                                       |                               |                                |                                    |
| 80             |                                   |                                    |                  |                              |                                                       |                               |                                | IRL80HS120*<br>32 mΩ, 12.5 A, LL   |
|                | BSP373N                           | BSL373SN                           |                  |                              | IRLML0100*                                            |                               |                                | IRL100HS121*2)                     |
|                | 240 mΩ, 1.8 A, NL                 | 230 mΩ, 2.0 A, NL                  |                  |                              | 220 mΩ, 1.6 A, LL                                     |                               |                                | 42 mΩ, 11.0 A, LL                  |
|                | BSP372N                           | BSL372SN                           |                  |                              | BSS119N                                               |                               |                                |                                    |
|                | 230 mΩ, 1.8 A, LL                 | 220 mΩ, 2.0 A, LL                  |                  |                              | 6 Ω, 0.19 A, LL<br>V <sub>GS(th)</sub> 1.8 V to 2.3 V |                               |                                |                                    |
| 100            | BSP296N                           | BSL296SN                           |                  |                              | BSS123N                                               |                               |                                |                                    |
|                | 600 mΩ, 1.2 A, LL                 | 460 mΩ, 1.4 A, LL                  |                  |                              | 6 Ω, 0.19 A, LL                                       |                               |                                |                                    |
|                |                                   |                                    |                  |                              | V <sub>GS(th)</sub> 0.8 V to 1.8 V<br>BSS169          |                               |                                |                                    |
|                |                                   |                                    |                  |                              | 12 Ω, 0.09 A, depl.                                   |                               |                                |                                    |
|                | BSP297                            |                                    |                  |                              |                                                       |                               |                                |                                    |
| 200            | 1.8 Ω, 0.66 A, LL<br>BSP149       |                                    |                  |                              |                                                       |                               |                                |                                    |
|                | 3.5 Ω,0.14 A, depl.               |                                    |                  |                              |                                                       |                               |                                |                                    |
|                | BSP88                             |                                    | BSS87            |                              | BSS131                                                |                               |                                |                                    |
|                | 6 Ω, 0.35 A, 2.8 V rated<br>BSP89 |                                    | 6 Ω, 0.26 A, LL  |                              | 14 Ω, 0.1 A, LL                                       |                               |                                |                                    |
| 240            | 6 Ω, 0.35 A, LL                   |                                    |                  |                              |                                                       |                               |                                |                                    |
|                | BSP129                            |                                    |                  |                              |                                                       |                               |                                |                                    |
|                | 6 Ω, 0.05 A, depl.                |                                    |                  |                              | BSS139                                                |                               |                                |                                    |
| 250            |                                   |                                    |                  |                              | 30 Ω, 0.03 A, depl.                                   |                               |                                |                                    |
|                | BSP298<br>3 Ω, 0.5 A, NL          |                                    |                  |                              |                                                       |                               |                                |                                    |
|                | 3 Ω, 0.5 A, NL<br>BSP179          |                                    |                  |                              |                                                       |                               |                                |                                    |
| 400            | 24 Ω, 0.04 A, depl.               |                                    |                  |                              |                                                       |                               |                                |                                    |
|                | BSP324                            |                                    |                  |                              |                                                       |                               |                                |                                    |
|                | 25 Ω, 0.17 A, LL                  |                                    |                  |                              |                                                       |                               |                                |                                    |
| 500            | BSP299<br>4 Ω, 0.4 A, NL          |                                    |                  |                              |                                                       |                               |                                |                                    |
|                | BSP125                            |                                    | BSS225           |                              | BSS127                                                |                               |                                |                                    |
| 600            | 45 Ω, 0.12 A, LL                  |                                    | 45 Ω, 0.09 A, LL |                              | 500 Ω, 0.023 A, LL                                    |                               |                                |                                    |
|                | BSP135<br>60 Ω, 0.02 A, depl.     |                                    |                  |                              | BSS126<br>700 Ω, 0.007 A, depl.                       |                               |                                |                                    |
|                | BSP300                            |                                    |                  |                              | 100 12, 0.001 A, dept.                                |                               |                                |                                    |
| 800            | 20 Ω, 0.19 A, NL                  |                                    |                  |                              |                                                       |                               |                                |                                    |

### www.infineon.com/smallsignal

All products are qualified to Automotive AEC Q101 (except 2N7002) (except the parts marked with \*)

 $<sup>^{\</sup>mbox{\tiny 1)}}\,R_{\text{DS(on)}}$  specified at 4.5 V

<sup>2)</sup> In development

## Power p-channel MOSFETs











|                   |                                    | _                          |                                   |                                     |                                    |                                           |                                       |                                 |
|-------------------|------------------------------------|----------------------------|-----------------------------------|-------------------------------------|------------------------------------|-------------------------------------------|---------------------------------------|---------------------------------|
| Voltage<br>[V]    | TO-252<br>(DPAK)                   | DirectFET™                 | SOT-23                            | PQFN 3.3 x 3.3                      | SuperSO8                           | SO-8                                      | PQFN 2 x 2                            | TSOP-6                          |
|                   |                                    |                            |                                   |                                     |                                    | BSO201SP H                                |                                       |                                 |
|                   |                                    |                            |                                   |                                     |                                    | $R_{DS(on)} = 7.0 \text{ m}\Omega$        |                                       |                                 |
|                   |                                    |                            |                                   |                                     |                                    | BSO203SP H                                |                                       |                                 |
|                   |                                    |                            |                                   |                                     |                                    | $R_{DS(on)}$ =21.0 m $\Omega$             |                                       |                                 |
|                   |                                    |                            |                                   |                                     |                                    | BSO203P H                                 |                                       |                                 |
| -20               |                                    |                            |                                   |                                     |                                    | $R_{DS(on)}$ =21.0 m $\Omega$             |                                       |                                 |
|                   |                                    |                            |                                   |                                     |                                    |                                           | IRLHS2242TRPBF**                      | IRLTS2242                       |
|                   |                                    |                            | IRLML2244 <sup>2)</sup> ***       |                                     |                                    | BSO207P H                                 | R <sub>DS(on)</sub> =31.0 mΩ          | $R_{DS(on)}$ =39 m $\Omega$     |
|                   |                                    |                            | $R_{DS(on)} = 54 \text{ m}\Omega$ |                                     |                                    | $R_{DS(on)} = 45.0 \text{ m}\Omega$       |                                       |                                 |
|                   |                                    |                            | IRLML2246 <sup>2)</sup> ***       |                                     |                                    | BSO211P H                                 |                                       |                                 |
|                   |                                    |                            | $R_{DS(on)}=135 \text{ m}\Omega$  |                                     |                                    | $R_{DS(on)} = 67.0 \text{ m}\Omega$       |                                       |                                 |
|                   |                                    |                            | TCDS(on) 133 III12                |                                     | BSC030P03NS3 G                     | IRF9310                                   |                                       |                                 |
|                   |                                    |                            |                                   |                                     | $R_{DS(on)} = 3.0 \text{ m}\Omega$ | $R_{DS(on)}$ =4.6 m $\Omega$              |                                       |                                 |
|                   | IPD042P03L3 G                      |                            |                                   |                                     | BSC060P03NS3E G                    | IRF9317                                   |                                       |                                 |
|                   | $R_{DS(on)}$ =4.2 m $\Omega$       |                            |                                   |                                     | $R_{DS(on)}$ =6.0 m $\Omega$ ; ESD | R <sub>DS(on)</sub> =6.6 mΩ               |                                       |                                 |
|                   | IPD068P03L3 G                      |                            |                                   | BSZ086P03NS3 G                      |                                    | IRF9321                                   |                                       |                                 |
|                   | $R_{DS(on)}$ =6.8 m $\Omega$       |                            |                                   | $R_{DS(on)}$ =8.6 m $\Omega$        |                                    | $R_{DS(on)}=7.2 \text{ m}\Omega$          |                                       |                                 |
|                   | SPD50P03L G <sup>1)*</sup>         | IRF9395M                   |                                   | BSZ086P03NS3E G                     |                                    | BS0080P03NS 3 G                           |                                       |                                 |
|                   | $R_{DS(on)} = 7.0 \text{ m}\Omega$ | $R_{DS(on)}$ =7.0 mΩ; dual |                                   | $R_{DS(on)}$ =8.6 m $\Omega$        |                                    | $R_{DS(on)}$ =8.0 m $\Omega$              |                                       |                                 |
|                   |                                    |                            |                                   |                                     | BSC084P03NS3 G                     | BSO080P03NS3E G                           |                                       |                                 |
| TS                |                                    |                            |                                   |                                     | $R_{DS(on)}$ = 8.4 m $\Omega$      | $R_{DS(on)}$ =8.0 mΩ; ESD                 |                                       |                                 |
| 띥                 |                                    |                            |                                   |                                     | BSC084P03NS3E G                    | BSO080P03S H                              |                                       |                                 |
| P-channel MOSFETs |                                    |                            |                                   | BSZ120P03NS3 G                      | $R_{DS(on)}$ =8.4 mΩ; ESD          | R <sub>DS(on)</sub> =8.0 mΩ<br>BSO301SP H |                                       |                                 |
| <u> </u>          |                                    |                            |                                   | $R_{DS(on)} = 12.0 \text{ m}\Omega$ |                                    | $R_{DS(on)} = 8.0 \text{ m}\Omega$        |                                       |                                 |
| Ē                 |                                    |                            |                                   | BSZ120P03NS3E G                     |                                    | IRF9328                                   |                                       |                                 |
| - Ra              |                                    |                            |                                   | $R_{DS(on)}$ =12.0 m $\Omega$ ; ESD |                                    | $R_{DS(on)}=11.9 \text{ m}\Omega$         |                                       |                                 |
| 4                 |                                    |                            |                                   | 11(DS(on) 1210 11111, 200           |                                    | IRF9388TRPBF                              |                                       |                                 |
|                   |                                    |                            |                                   |                                     |                                    | R <sub>DS(on)</sub> =11.9 mΩ              |                                       |                                 |
|                   |                                    |                            |                                   |                                     | BSC130P03LS G                      | BSO130P03S H                              |                                       |                                 |
| -30               |                                    |                            |                                   |                                     | R <sub>DS(on)</sub> =13.0 mΩ       | $R_{DS(on)}=13.0 \text{ m}\Omega$         |                                       |                                 |
|                   |                                    |                            |                                   |                                     |                                    | IRF9358                                   |                                       |                                 |
|                   |                                    |                            |                                   |                                     |                                    | R <sub>DS(on)</sub> =16 mΩ; dual          |                                       |                                 |
|                   |                                    |                            |                                   | IRFHM9331 <sup>2)</sup>             |                                    | IRF9332                                   |                                       |                                 |
|                   |                                    |                            |                                   | $R_{DS(on)}=15 \text{ m}\Omega$     |                                    | R <sub>DS(on)</sub> =17.5 mΩ              |                                       |                                 |
|                   |                                    |                            |                                   |                                     |                                    | IRF9392TRPBF                              |                                       |                                 |
|                   |                                    |                            |                                   | BSZ180P03NS3 G                      |                                    | R <sub>DS(on)</sub> = 17.5 mΩ<br>IRF9333  |                                       |                                 |
|                   |                                    |                            |                                   | $R_{DS(on)} = 18.0 \text{ m}\Omega$ |                                    | $R_{DS(on)}=19.4 \text{ m}\Omega$         |                                       |                                 |
|                   |                                    |                            |                                   | BSZ180P03NS3E G                     |                                    | BSO200P03S H                              |                                       |                                 |
|                   |                                    |                            |                                   | $R_{DS(on)}$ =18.0 m $\Omega$ ; ESD |                                    | $R_{DS(on)} = 20.0 \text{ m}\Omega$       |                                       |                                 |
|                   |                                    |                            |                                   |                                     |                                    | BSO303SP H                                | IRFH9301TRPBF                         |                                 |
|                   |                                    |                            |                                   |                                     |                                    | $R_{DS(on)}$ =21.0 m $\Omega$             | R <sub>DS(on)</sub> =37.0 mΩ          |                                 |
|                   |                                    |                            | IRLML9301TRPBF                    |                                     |                                    | BSO303P H                                 | 55(011)                               |                                 |
|                   |                                    |                            | R <sub>DS(on)</sub> =64 mΩ        |                                     |                                    | $R_{DS(on)}$ =21.0 m $\Omega$ , dual      |                                       |                                 |
|                   |                                    |                            | IRLML9303TRPBF                    |                                     |                                    | IRF9362                                   | IRFHS9351TRPBF                        | IRFTS9342***                    |
|                   |                                    |                            | $R_{DS(on)}=165 \text{ m}\Omega$  |                                     |                                    | R <sub>DS(on)</sub> =21 mΩ; dual          | $R_{DS(on)}$ =170.0 m $\Omega$ , dual | $R_{DS(on)}=32 \text{ m}\Omega$ |
|                   |                                    |                            |                                   |                                     |                                    | IRF9335                                   |                                       |                                 |
|                   |                                    |                            |                                   |                                     |                                    | $R_{DS(on)}=59 \text{ m}\Omega$           |                                       |                                 |

## Power p-channel MOSFETs











| Voltage<br>[V] | TO-252<br>(DPAK)                              | TO-263<br>(D2PAK)                            | TO-220                                         | PQFN 3.3 x 3.3 | SuperSO8 | SO-8                          | PQFN 2 x 2 |
|----------------|-----------------------------------------------|----------------------------------------------|------------------------------------------------|----------------|----------|-------------------------------|------------|
|                | SPD30P06P G*                                  | SPB80P06P G*<br>R <sub>DS(on)</sub> =23.0 mΩ | SPP80P06P H* $R_{DS(on)}$ =23.0 mΩ             |                |          |                               |            |
|                | R <sub>DS(on)</sub> =75.0 mΩ                  | CDD4cDccD Ct                                 | CDD40D00D LIN                                  |                |          | DOOGLOOD!! OF                 |            |
| -60            | SPD18P06P G*                                  | SPB18P06P G*                                 | SPP18P06P H*                                   |                |          | BSO613SPV G*                  |            |
|                | R <sub>DS(on)</sub> =130.0 mΩ                 | $R_{DS(on)}$ =130.0 m $\Omega$               | $R_{DS(on)}$ =130.0 m $\Omega$                 |                |          | R <sub>DS(on)</sub> =130.0 mΩ |            |
| 2              | SPD09P06PL G*                                 |                                              |                                                |                |          |                               |            |
| 5              | R <sub>DS(on)</sub> =250.0 mΩ<br>SPD08P06P G* | SPB08P06P G*                                 | SPP08P06P H*                                   |                |          |                               |            |
|                | $R_{DS(on)} = 300.0 \text{ m}\Omega$          | $R_{DS(on)}$ =300.0 m $\Omega$               |                                                |                |          |                               |            |
| 5              | SPD15P10PL G*                                 | R <sub>DS(on)</sub> –300.0 11122             | R <sub>DS(on)</sub> =300.0 mΩ<br>SPP15P10PL H* |                |          |                               |            |
|                | $R_{DS(on)} = 200.0 \text{ m}\Omega$          |                                              | $R_{DS(on)} = 200.0 \text{ m}\Omega$           |                |          |                               |            |
| 2              | SPD15P10P G*                                  |                                              | SPP15P10P H*                                   |                |          |                               |            |
| -              | $R_{DS(on)}$ =240.0 m $\Omega$                |                                              | R <sub>DS(on)</sub> =240.0 mΩ                  |                |          |                               |            |
| -100           |                                               |                                              |                                                |                |          |                               |            |
|                | SPD04P10PL G*                                 |                                              |                                                |                |          |                               |            |
|                | $R_{DS(on)} = 850.0 \text{ m}\Omega$          |                                              |                                                |                |          |                               |            |
|                | SPD04P10P G*                                  |                                              |                                                |                |          |                               |            |
|                | $R_{DS(on)} = 1000.0 \text{ m}\Omega$         |                                              |                                                |                |          |                               |            |

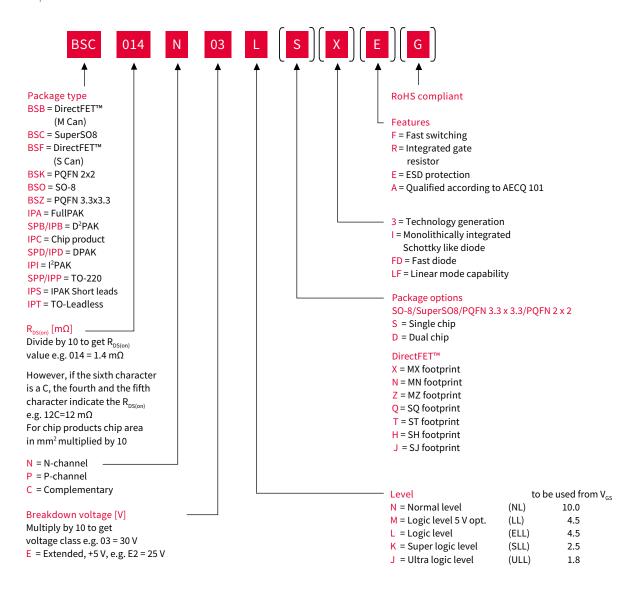
www.infineon.com/pchannel

<sup>1) 5-</sup>leg

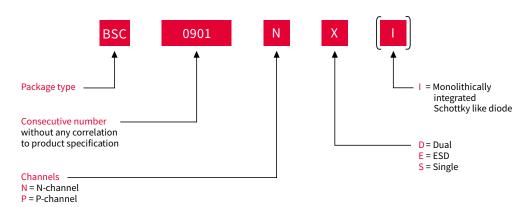
 $<sup>^{\</sup>scriptscriptstyle 2)}$  2.5  $V_{\scriptscriptstyle GS}$  capable

 $<sup>^{\</sup>star}$  Products are qualified to Automotive AEC Q101

<sup>\*\*</sup> $R_{\scriptscriptstyle DS(on)}$  specified at 4.5 V


<sup>\*\*\*</sup> R<sub>DS(on)</sub> max @V<sub>GS</sub>=4.5 V



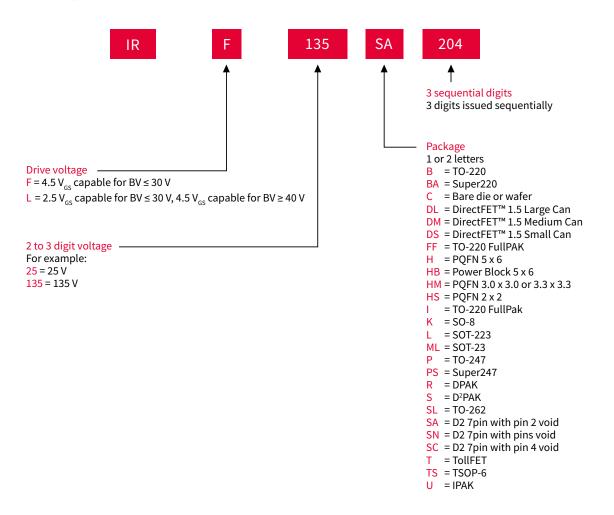

#### Power p-channel MOSFETs complementary Voltage [V] TO-252 (DPAK) TO-263 (D²PAK) TO-220 PQFN 3.3 x 3.3 SuperSO8 SO-8 BSZ15DC02KD H\* \*\* $N: 55 \text{ m}\Omega, 5.1 \text{ A}$ P: 150 mΩ, -3.2 A BSZ215C H\* \*\* -20/20 >50 mΩ Complementary N: 55 m $\Omega$ , 5.1 A P: 150 m $\Omega$ , -3.2 A BSO612CV G\* N: 0.12 Ω, 3.0 A P: 0.30 Ω, -2.0 A -60/60 11-30 Ω BSO615C G\* N: 0.11 Ω, 3.1 A P: 0.30 Ω, -2.0 A

# Naming system

## OptiMOS™




## OptiMOS™ 30 V




85

## Small Signal



## StrongIRFET™ (from May 2015 onwards)





# Infineon support for low voltage MOSFETs

## Useful links and helpful information

#### Further information, datasheets and documents

www.infineon.com/powermosfet-20V-30V www.infineon.com/powermosfet-40V-75V www.infineon.com/powermosfet-80V-100V www.infineon.com/powermosfet-120V-300V www.infineon.com/smallsignal www.infineon.com/pchannel

#### Evaluationboards and simulation models

www.infineon.com/motorcontrolapplicationkit www.infineon.com/to-leadless-evaluationboard

#### **Videos**

www.infineon.com/mediacenter

www.infineon.com/optimos-linearfet
www.infineon.com/depletion
www.infineon.com/complementary
www.infineon.com/baredie
www.infineon.com/optimos-latest-packages
www.infineon.com/optimos-strongirfet-family-selection

www.infineon.com/1kw-bldc-evaluationboard www.infineon.com/powermosfet-simulationmodels







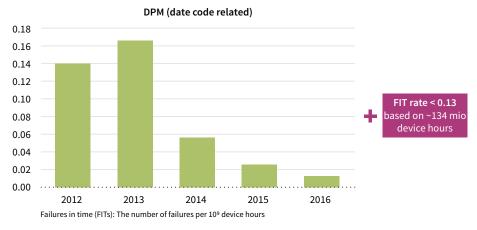






## CoolMOSTM

## Trusted leader in high voltage MOSFETs


The revolutionary CoolMOS™ power MOSFET family sets new standards in the field of energy efficiency. Our CoolMOS™ products offer a significant reduction of conduction, switching and driving losses and enable high power density and efficiency for superior power conversion systems. Especially, the latest state-of-the-art generation of high voltage power MOSFETs makes AC-DC power supplies more efficient, more compact, lighter and cooler than ever before. Each application has its own requirements and optimization criteria, which are reflected in the available technologies paired with innovative package solutions. Driving factors like efficiency, power density, controllability, EMI, layout resistance, commutation behavior and cost, cannot be fulfilled at the same time and lead to different technologies and solutions.

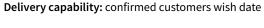
Designers will select the most suitable part based on:

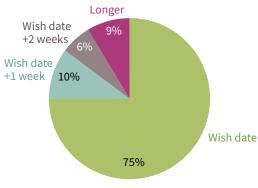
- > Efficiency: Reflects the switching, gate drive and on-state losses in hard switching topologies, such as power factor correction (PFC), where the turn-off and turn-on losses are fully reflected, whereas in soft switching topologies these losses are widely avoided.
- > Ease of use: Describes the effort needed for design-in of the part: ringing behavior, controllability of slopes dV/dt and dI/dt via gate resistor, as well as the EMI signature of the part fold into the ease-of-use category. Higher efficiency parts typically require higher effort for design-in. For example, using fast parts, the layout must be optimized by avoiding large areas in commutation and gate loops. Secondly, parasitic should be minimized. This can be easily done via bifilar arrangements and small capacitive coupling areas on jumping potentials, including coupling capacitances of magnetics. Infineon has developed an in-depth understanding of these topics and our engineers are happy to support your design.
- > Commutation (suitability in PFC, LLC and ZVS): Reflects the behavior at hard commutation on the body diode. The intrinsic damping circuits or reverse recovery charge reduction lower the overvoltage spike in the current cut-off phase. Some parts are suitable only for hard switching (PFC like) applications, for example 650 V CoolMOS™ C7, others, such as 600 V CoolMOS™ C7, have a body diode robust enough to serve as a broad liner for both PFC and LLC applications. In topologies exposed to repeated hard commutation, we recommend the CoolMOS™ CFD2 series, which is designed to have a fast body diode.

## CoolMOS™ quality – benchmark in short term and long term reliability

CoolMOS™ technology is legendary in the industry, differentiated by high quality and reliability. Our quality has been proven over the past years across billions of devices shipped with continuous improved DPM down to less than 0.10 DPM. On reliability, the same performance has been proven down to less than 0.13 FIT measured across ~340 million device hours. Infineon has implemented firm and proven measures from the beginning with design-for-quality program and continuous improvement in production. There is a constant proactive collaboration among technology, design, quality, reliability and manufacturing teams to achieve this result. This effort is above and beyond the fact that all Infineon sites are ISO/TS16949 certified.




CoolMOS™ comes with a DPM << 0.10 and FIT rate less than 0.13 www.infineon.com/coolmos




## CoolMOS™ supply chain – delivery reliability, flexibility and supply security

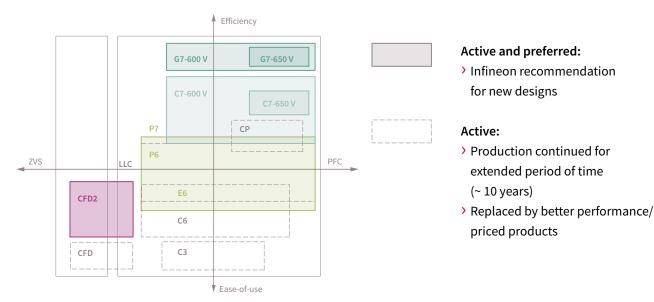
Our customers value CoolMOS™ not only for its technical merits but also for the outstanding delivery reliability: once a CoolMOS™ order date is committed, more than 96 percent of orders are shipped at or before the committed date. And CoolMOS™ orders are committed to more than 80 percent to the date that the customers request. Security of supply and flexibility to demand changes are focus targets and are enabled by a well balanced production network. For example more than 90 percent of our products are qualified for production in at least two back end locations and more than 80 percent of the volumes in two wafer fabs. This enables CoolMOS™ supply chain to react fast to changes in customer and market requirements.







≥ 96% of CoolMOS™ orders are shipped at committed date and ≥ 80% of wish dates can be met


The following pages provide help in the selection of the most suitable part for your application. The applications have been divided into high power (more than 150 W) and low power (less than 150 W) ones, because each segment comes with different requirements. Our nomenclature guides you through different optimization criteria, and will help to select and find the perfect matching part for your application.

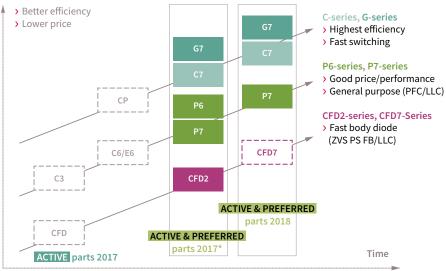
www.infineon.com/coolmos

# CoolMOS<sup>™</sup> for high power SMPS (>150 W)

Pushing the edge of silicon MOSFET performance

In high power SMPS, high voltage superjunction MOSFETs address applications such as server, telecom, TV, PC power, solar, UPS and industrial power supplies. In 2017, we recommend to our customers the design-in of the CoolMOS™ C7 and G7, CFD2, as well as P6/P7 product families, which come with the most attractive balance of performance and price.




The CoolMOS™ high power portfolio addresses the complete application landscape across PFC, LLC, and ZVS topologies with product families addressing different sub-segments in terms of efficiency and ease-of-use. The CoolMOS™ C7 and G7 product families target the highest efficiency segment and are the successors of CoolMOS™ CP. With the 600 V CoolMOS™ C7 and G7, we have been cutting switching losses by 50 percent. CoolMOS™ G7 offers even further reduction, reaching a performance close to GaN in hard switching applications. In contrast, CoolMOS™ P-series comes with a high efficiency but better ease-of-use, i.e., less ringing and voltage overshoot.

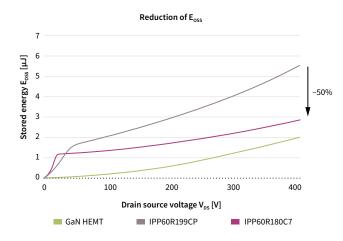
#### Active and preferred CoolMOS™ product families ACTIVE & PREFERRED

| Product name             | Voltage | Benefits                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CoolMOS™ C7              | 600 V   | <ul> <li>› Highest efficiency in PFC, up to 0.7 percent ahead of CoolMOS™CP</li> <li>› Fast switching up to 200 kHz from 50 percent reduced turn-off losses</li> <li>› Performance coming close to GaN in hard switching applications</li> <li>› Use in PFC and high-end LLC</li> </ul>                                                                             |
| CoolMOS™ C7              | 650 V   | <ul> <li>&gt; Best-in-class efficiency if additional breakdown voltage needed (650 V)</li> <li>&gt; Use in PFC and hard switching applications only, higher losses in resonant stages</li> </ul>                                                                                                                                                                    |
| CoolMOS™ P6 CoolMOS™ P7* | 600 V   | <ul> <li>General purpose part with excellent performance recommended for most designs in high power SMPS applications (100 W 3 kW)</li> <li>High efficiency combined with ease-of-use and low design-in effort</li> <li>Suitable for both soft and hard switching applications (PFC/LLC)</li> <li>Price/performance optimized for cost effective designs</li> </ul> |
| CoolMOS™ CFD2            | 650 V   | > Fast body diode with fastest recovery time on the market > Very low ringing and voltage overshoot for ease-of-use > Ahead of competitors in mid load to full load efficiency range > Designed for ZVS/LLC                                                                                                                                                         |

<sup>\*</sup> Preferred over P6, portfolio is incomplete

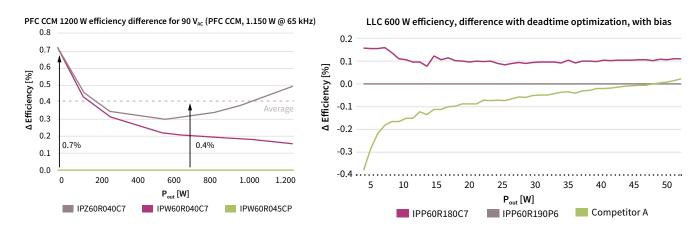
#### Evolution of the CoolMOS™ high power portfolio




- \* Existing series to be preferred until relevant parts of the new CoolMOS™ 7 series are available
- > The CoolMOS™ high power portfolio has evolved continually along three main lines of products:
  - C-series: highest efficiency and lowest switching losses are covered by the C-series. Our CoolMOS™ C7 can bring
    up to 0.7 percent efficiency gain over the current industry standard, CoolMOS™ CP
  - G-series: even higher efficiency in novel TO-Leadless (TOLL) package than CoolMOS™ C7 series, with ~15 percent reduced gate charge and switching losses
  - P-series: the general purpose segment requires high efficiency, but also good ease-of-use in terms of ringing, EMI and controllability via R<sub>G</sub>, as well as an attractive price. This segment is addressed with CoolMOS™ P7, offering performance and cost benefit over CoolMOS™ C3 and CoolMOS™ C6/E6/P6
  - CFD-series: topologies which require a fast body diode such as ZVS and LLC are addressed with the CoolMOS™
     CFD-series. The CoolMOS™ CFD2 comes with significant benefits in full load and the fastest reverse recovery time in the industry
- > Active (older) CoolMOS<sup>™</sup> product families to be continued in production for an extended period of time.
  - Older CoolMOS™ generations like C3, CP, C6 and CFD, will be continued for an extended period of time.
     In special cases, their properties offer an excellent fit to a particular design, while for the majority of applications the newer series offer higher customer value at lower price

#### Active CoolMOS™ product families ACTIVE

| Product name   | Voltage                                   | Benefits                                                                                                                                                                                 |
|----------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CoolMOS™ CP    | 500 V<br>600 V                            | <ul> <li>&gt; High efficiency, fast switching up to 100 kHz</li> <li>&gt; PFC as main application</li> <li>&gt; Replaced by C7 with better efficiency and better price</li> </ul>        |
| CoolMOS™ C6/E6 | 600 V<br>650 V                            | <ul> <li>&gt; General purpose use with good ease-of-use an low EMI</li> <li>&gt; PFC/LLC/FB applications</li> <li>&gt; Replaced by P6 with better efficiency and better price</li> </ul> |
| CoolMOS™ C3    | 500 V<br>600 V<br>650 V<br>800 V<br>900 V | General purpose use with excellent ease-of-use an low EMI     Premium price for highest ruggedness     PFC/LLC/FB general purpose use                                                    |
| CoolMOS™ CFD   | 600 V                                     | > Fast body diode part for ZVS and LLC > Replaced by CFD2 with better efficiency and better price                                                                                        |


# 600 V CoolMOS™ C7 series

Highest efficiency superjunction MOSFET for hard and soft switching applications (PFC and LLC)



The new Infineon 600 V CoolMOS<sup>TM</sup> C7 series offers approximately 50 percent reduction in turn-off losses ( $E_{oss}$ ) compared to the CoolMOS<sup>TM</sup> CP. C7 offers a GaN-like level of performance in PFC, TTF and other hard-switching topologies and extends the use of silicon MOSFETs to the next generation of highest efficiency power designs.

## CoolMOS™ C7 offers best-in-class performance in PFC and LLC topologies



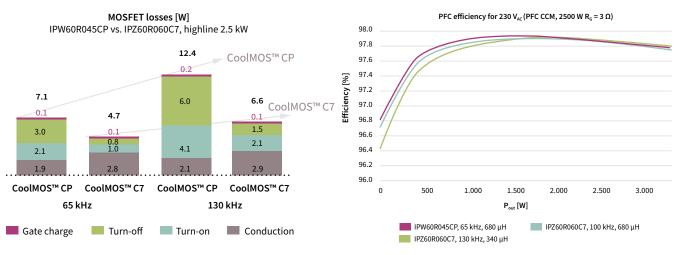
CoolMOS™ C7 offers gains of 0.3 percent to 0.7 percent in PFC stages versus its predecessor, CoolMOS™ CP. Further efficiency gains can be realized in highest power designs with the TO-247 4pin package. On average, CoolMOS™ C7 with TO-247 4pin package boosts efficiency by 0.4 percent. In the case of a 2.5 kW server PSU, for example, use of 600 V CoolMOS™ C7 MOSFETs in a TO-247 4pin package can result in energy cost reductions of approximately 10 percent. Furthermore, 600 V CoolMOS™ C7 is well suited for high-end LLC stages due to its rugged body diode that withstands slew rates up to 20 V/ns. Here, efficiency gains of CoolMOS™ C7 compared to CoolMOS™ P6 of approximately 0.1 percentage are observed.

## Customer benefits – higher efficiency or BOM cost reduction

#### Customers can use the high performance of 600 V CoolMOS™ C7 in two distinct ways:

- > In efficiency driven applications the reduced switching losses boost efficiency and translate into lower thermal losses and lower power consumption. Ideally, the CoolMOS™ C7 efficiency is further boosted by using a package with a Kelvin source (TO-247 4pin or ThinPAK 8x8).
- **BOM cost driven applications** can use the efficiency gains for increasing the switching frequency, which allows to reduce the cost of the magnetic components by up to 35 percent.

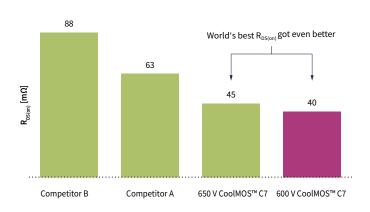
www.infineon.com/600V-C7


#### **Key features**

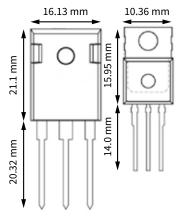
- Reduced switching loss parameters such as Q<sub>G</sub>, C<sub>oss</sub>, enabling higher switching frequency
- > 50% E<sub>oss</sub> reduction compared to older CoolMOS™ CP technology and close to GaN
- > Lowest  $R_{DS(on)}$  \* A in the world (<1 Ω.mm<sup>2</sup>)
- > Suitable for high-end resonant topologies

#### **Key benefits**

- Doubling the switching frequency will reduce the size and cost of magnetic components (e.g. 65 kHz-130 kHz)
- Increased efficiency in hard switching topologies such as PFC and TTF
- Smaller packages for same R<sub>DS(on)</sub> lead to power density benefits
- > Suitable for high-end LLC circuits


## Increasing switching frequencies without penalty




In designs based on 600 V CoolMOS<sup>TM</sup> C7 switching frequencies can be increased by up to two times with very limited penalty. This is possible due to the 50 percent reduction of turn-off losses in CoolMOS<sup>TM</sup> C7. Switching losses in a 600 V CoolMOS<sup>TM</sup> C7 based design at 130 kHz are lower than in a CoolMOS<sup>TM</sup> CP based design at 65 kHz (see figure above). A further loss reduction is achieved when the CoolMOS<sup>TM</sup> C7 is used in a package with Kelvin source (e.g. TO-247 4pin or ThinPAK 8x8): the higher full load efficiency provided by the 4pin package can be used to increase  $R_{DS(on)}$  by on step (e.g. from 40 to 70 m $\Omega$ ). As a result, light load switching losses decrease even further.

## New best-in-class package options

#### 600 V CoolMOS™ C7 comes with the lowest R<sub>DS(on)</sub> in TO-220/TO-262/TO-263



#### Customer benefit - space savings



The 600 V CoolMOS<sup>TM</sup> C7 offers new best-in-class  $R_{DS(on)}$  values in TO-220/TO-262/TO-263 packages – a 36 percent lower on-state resistance is realized compared to the nearest competitor. The smaller package offers a 50 percent cross section reduction compared to TO-247, opening ways towards higher power density. Also in TO-247 package, a new record in form of a 17 m $\Omega$  die is achieved.

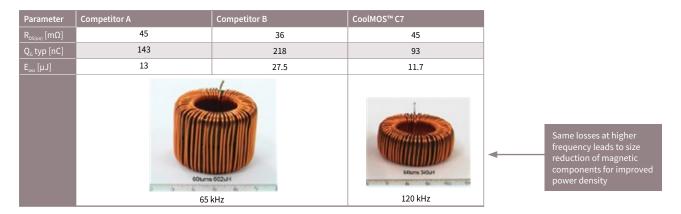
www.infineon.com/600V-C7

## 650 V CoolMOS™ C7 series

## Highest efficiency MOSFET for hard switching applications

The CoolMOS<sup>TM</sup> C7 series brings a new level of performance in hard switching applications such as PFC when additional 50 V of breakdown voltage is needed versus 600 V CoolMOS<sup>TM</sup> C7. It provides efficiency benefits across the whole load range through balancing a number of key parameters. The best-in-class  $R_{DS(on)}$  leads to increased full load efficiency and enables power density benefits by using smaller packages for the same  $R_{DS(on)}$ . The  $E_{oss}$  reduction brings efficiency benefits at light load and the low  $Q_G$  correlates to faster switching. The very low  $E_{oss}$  and  $Q_G$  are the two key parameters in enabling no efficiency loss, when moving up in switching frequency. This also enables power density benefits by reducing the size of the circuits magnetic components.

#### **Key features**


- Revolutionary best-in-class R<sub>DS(on)</sub>/package
- Reduced energy stored in output capacitance E<sub>oss</sub>
- > Low gate charge Q<sub>G</sub>

#### **Key benefits**

- > Lowest conduction loss/package
- Power density by use of smaller packages
- > Low switching losses
- > Enabler to power density by not losing efficiency at higher switching frequencies
- > Improved light load efficiency

## Power density – increased switching frequency

CoolMOS™ C7 is an enabler technology that gives customers the stepping stone to new higher switching frequency technologies like GaN but with the proven reliability of superjunction technology.



#### Power density with CoolMOS™ C7

The higher the switching frequency of an application goes, the more important the parameters, such as  $E_{oss}$  and  $Q_G$ , become due to losses of efficiency. The very low values of these parameters in CoolMOS<sup>TM</sup> C7 minimize losses in a PFC circuit – at 120 kHz the same efficiency can be reached as with the predecessor series at 65 kHz. This brings a benefit in power density because the sizes of magnetic components can be reduced.

www.infineon.com/650V-C7

## Best-in-class efficiency at 650 V in the industry

#### PFC 1200 W, efficiency difference @low line 90 V<sub>ac</sub> $R_{G (on/off)}$ =10 $\Omega$ , $f_{sw}$ =100 kHz 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 0 -0,1 -0,2 -0,3 -0,4 -0,5 -0,6 -0,7 -0,8 -0,9 -0,9 Difference [%] 45 mΩ 1.6% 200 400 800 1000 1200 600 Pout [W] IPW60R045CP IPP65R045C7 Competitor 2 Competitor 1 TO-220

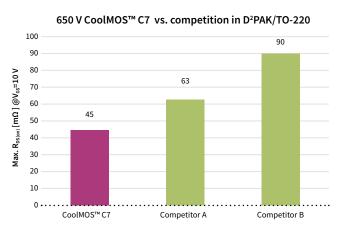
#### Measured PFC CMM efficiency (plug and play)

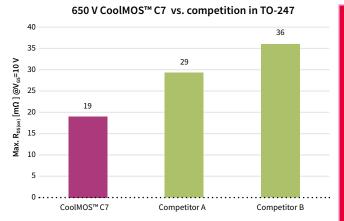
650 V CoolMOS™ C7 advantage enables the customer to:

 Improve efficiency with smaller footprint and enable higher switching frequency

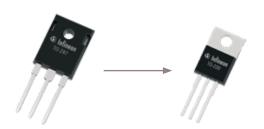







CoolMOS™ C7 offers the highest efficiency than competitor devices at the same R<sub>DS(on)</sub>, especially at light load, the difference is remarkable. The graph shows the high efficiency when switching at 100 kHz in PFC. When older technologies such as CoolMOS™ CP and competitor technologies reduce in efficiency, CoolMOS™ C7 remains high. Our customers make use of this in two ways:


- > Increasing power density CoolMOS™ C7 enables higher switching frequencies. This allows even smaller magnetic components in the circuit and thus, a significantly improved form factor
- > Reduced power losses some customers use CoolMOS™ C7 for their highest efficiency designs. 650 V CoolMOS™ C7 allows to reduce energy consumption and offers a total cost of ownership reduction

## World leading area effectiveness leading to power density benefits





- > Previous 45 mΩ CoolMOS™ CP in TO-247 (IPW60R045CP)
- Now 45 mΩ CoolMOS™ C7 in TO-220 (IPP65R045C7)



- World leading R<sub>DS(on)</sub> package
  - TO-247 package with a 34% lower  $R_{\mbox{\tiny DS(on)}}$  than the nearest competitor
  - TO-220/D<sup>2</sup>PAK with 29% lower R<sub>DS(on)</sub> than the nearest competitor
- The new R<sub>DS(on)</sub> values, as well as improving efficiency, mean a benefit in power density with the ability to now use smaller packages than ever before

www.infineon.com/650V-C7

# New 600 V and 650 V CoolMOS™ C7 Gold in TO-Leadless package (G7 series)

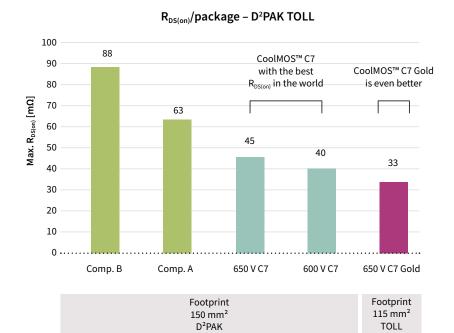
The perfect balance of high efficiency and ease-of-use

The combination of improved 650 V CoolMOS™ C7 and 600 V C7 technology (C7 Gold) plus the low parasitic inductance from both the package and 4pin Kelvin source option, and the improved thermal performance of the TOLL package all add up together to enable for the first time the possibility of using a surface mount (or SMD) solution in mid to high power boost or PFC. This leads to customer benefits in both power density and manufacturing cost reduction, all with high quality and an easy to use part. The 650 V C7 Gold is optimized for hard switching topologies such as power factor correction, boost circuits or two transistor forward. The 600 V C7 Gold gives excellent performance in resonant topologies, such as LLC, at the same time being suitable for hard switching topologies.

#### Key features of G7 technology

- > Best-in-class figure of merit:  $R_{DS(on)}\,x\;Q_{_G}\,and\;R_{DS(on)}\,x\;E_{oss}$
- ➤ World's lowest R<sub>DS(on)</sub>/package

#### Key features of TOLL package

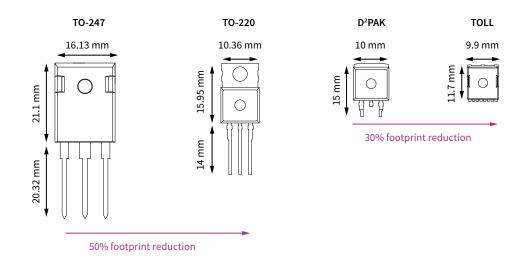

- > Space reduction versus D2PAK and TO-220
- MSL1 compliant, wave and reflow solderable
- Visual inspection due to grooved leads
- 4 pin option for Kelvin source connection, low parasitic inductance
- Thermal improvement over D<sup>2</sup>PAK and similar to TO-220

#### Key benefits of G7 technology

- > Higher system efficiency by lower switching losses
- > Improved performance and power density

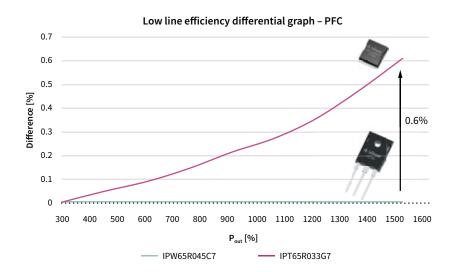
#### Key benefits of TOLL package

- > Improved power density
- > High quality and ease-of-use
- > Improved manufacturing
- > Improved efficiency and ease of use
- > Can be used in higher current applications




Infineon already has the best  $R_{DS(on)}$  in  $D^2PAK$ 

Now improved again with C7 Gold and TOLL package with smaller footprint.


www.infineon.com/c7-gold-toll

## Power density – package and R<sub>DS(on)</sub>



| Package inductance | 15 nH ———   | 10 nH       | 5 nH —      | 1 nH        |
|--------------------|-------------|-------------|-------------|-------------|
| 650 V CoolMOS™ C7  | IPW65R019C7 | IPP65R045C7 | IPB65R045C7 | IPT65R033G7 |
|                    | 19 mΩ       | 45 mΩ       | 45 mΩ       | 33 mΩ       |
| 600 V CoolMOS™ C7  | IPW60R017C7 | IPP60R040C7 | IPB60R040C7 | IPT60R028G7 |
|                    | 17 mΩ       | 40 mΩ       | 40 mΩ       | 28 mΩ       |

The parasitic source inductance that slows down the MOSFET and reduces the efficiency is linked to the length of the leads, with the long leaded TO-247 having the largest at 15 nH and the TO-Leadless having the smallest at 1 nH. The benefit of the C7 Gold technology also enables a low ohmic  $28 \text{ m}\Omega$ -33 m $\Omega$  part in the TO-Leadless package.



This chart illustrates the C7 Gold technology and TO-Leadless package efficiency improvements due to:

- >  $R_{DS(on)}$  (45 m $\Omega$  TO-247 vs. 33 m $\Omega$  for TO-Leadless)
- Gate charge Q<sub>G</sub> and energy stored in the output capacitor E<sub>oss</sub>
- The 4pin Kelvin source in the TO-Leadless package

All combined together to give a 0.6 percent higher efficiency power factor correction circuit.

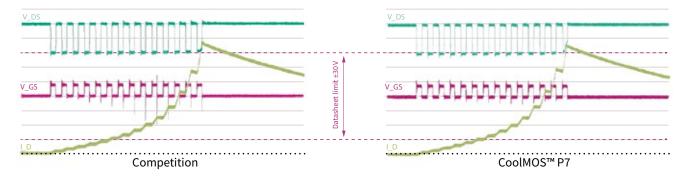
## New 600 V CoolMOS™ P7

## The perfect combination between high efficiency and ease-of-use

The 600 V CoolMOS™ P7 is a follower of the 600 V CoolMOS™ P6 as a general purpose part suitable for a variety of applications and power ranges. It combines the benefits of a fast switching superjunction MOSFET with excellent ease-of-use, outstanding robustness of body diode against hard commutation, and excellent ESD capability and can be used in hard switching topologies, as well as in resonant topologies such as LLC. Furthermore, as part of the P-series, it offers a price/performance benefit over older product families.

The optimized integrated gate resistor enables ease-of-use in the design process and the feature of an excellent ESD robustness helps to improve the quality in manufacturing at the same time, the low  $R_{DS(on)}$  and gate charge  $Q_G$  enable high efficiency in the various topologies.

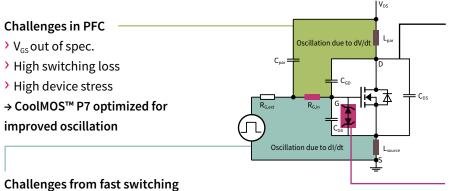
The 600 V CoolMOS<sup>m</sup> P7 has a wide variety of  $R_{DS(on)}$ s and packages to both industrial and consumer grade to make it suitable for applications such as server, telecom, PC, solar, lighting, adapters and TV.


#### **Key features**

- Suitable for hard and soft switching (PFC and LLC) due to an outstanding commutation ruggedness
- > Optimized balance between efficiency and ease-of-use
- Significant reduction of switching and conduction losses leading to low MOSFET temperature
- > Excellent ESD robustness > 2 kV (HBM) for all products
- > Better  $R_{DS(on)}/package$  products compared to competition enabled by a low  $R_{DS(on)}^*A$  (below  $1 \Omega^*mm^2$ )
- Large portfolio with granular R<sub>DS(on)</sub> selection qualified for a variety of industrial and standard grade applications

#### **Key benefits**

- Ease-of-use and fast design-in through low ringing tendency and usage across PFC and PWM stages
- Simplified thermal management due to low switching and conduction losses
- > Higher manufacturing quality due to >2 kV ESD protection
- Increased power density solutions enabled by using products with smaller footprint
- Suitable for a wide variety of applications and power ranges


## 600 V CoolMOS™ P7 ringing



600 V CoolMOS™ P7 is a very smooth switching device and offers better ringing behavior than competition.

www.infineon.com/600V-p7

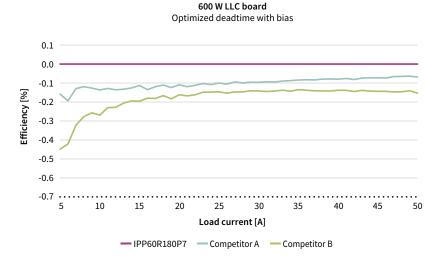
## 600 V CoolMOS™ P7 ease-of-use



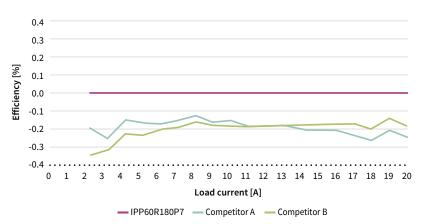
- > EMI and oscillations from high dI/dt
- → CoolMOS™ P7 with good controllability for ease-of-use

#### Challenges in LLC

Body diode hard commutation


- High voltage overshoot
- > High current spike
- > High device stress
- → CoolMOS™ P7 with good commutation ruggedness

#### Challenges in ESD:


Protecting device from electro static discharge damage in manufacturing

→ CoolMOS™ P7 offers an excellent **ESD** capability

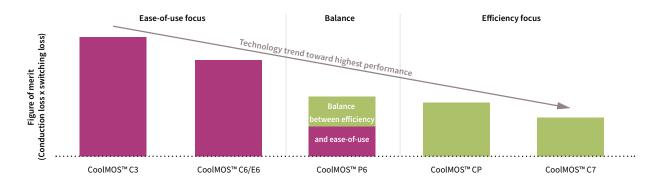
## 600 V CoolMOS™ P7 efficiency



#### 240 W PFC PC power Full unit efficiency low line 90 $V_{AC}$



www.infineon.com/600V-p7


The 600 V CoolMOS™ P7 enables high efficiency in both hard switching power factor correction circuit and resonant LLC circuit.

Its wide  $R_{DS(on)}$  range from 37 m $\Omega$  to 600 m $\Omega$ in both surface mount and through hole packages makes it suitable for a wide variety of applications.

## 600 V CoolMOS™ P6 series

## Superior efficiency combined with ease-of-use

600 V CoolMOS™ P6 is a general purpose part suitable for most high power applications, which require excellent performance, yet also a high level of ease-of-use in the design-in process. The successor for 600 V CoolMOS™ P6 is the 600 V CoolMOS™ P7 that has been released part by part throughout 2017. CoolMOS™ P6 is suitable for both soft and hard switching applications due to its good body diode ruggedness. Optimizations such as Q<sub>G</sub>, V<sub>th</sub>, E<sub>on</sub>, and E<sub>off</sub> enable its superior efficiency, while its ease-of-use feature is attributed to the optimized dV/dt (dI/dt) controllability, internal R<sub>G</sub>, and improved oscillation behavior. CoolMOS™ P6 achieves very low conduction and switching losses, especially in light load condition, enabling switching applications to work more efficient and be designed more compact, lighter and cooler. Moreover, with its granular portfolio, CoolMOS™ P6 addresses the specific needs of applications such as server, pc power, telecom rectifiers and consumer applications, offers one of the best price/performance ratio on the market today.



CoolMOS™ P6 is optimized for ease-of-use and addresses typical design challenges in high power SMPS while offering best-in-class efficiency on a level close to CoolMOS™ CP:

- > CoolMOS™ P6 offers good controllability for managing dV/dt (dI/dt) and EMI: with an external gate resistor R<sub>G,ext</sub> the switching speed can be controlled very well offering the power system designer high flexibility in balancing efficiency versus EMI
- > CoolMOS™ P6 is optimized for **improved oscillation**: parasitic capacitances and inductances in the PCB often lead to unstable designs. CoolMOS™ P6 comes with a moderate internal R<sub>G</sub> providing ease-of-use in the design-in process, yet without reducing switching speed and efficiency (CoolMOS™ P6 is at the level of CoolMOS™ CP)
- > CoolMOS™ P6 is suitable for LLC due to its rugged body diode: CoolMOS™ P6 has a commutation ruggedness sufficient for LLC applications. Combined with its best-in-class efficiency in LLC this makes CoolMOS™ P6 a premier choice for this topology

#### **Key features**

- > Reduced gate charge (Q<sub>G</sub>)
- Optimized V<sub>th</sub> for soft switching
- Good body diode ruggedness
- Optimized integrated R<sub>G</sub>
- > Improved dV/dt

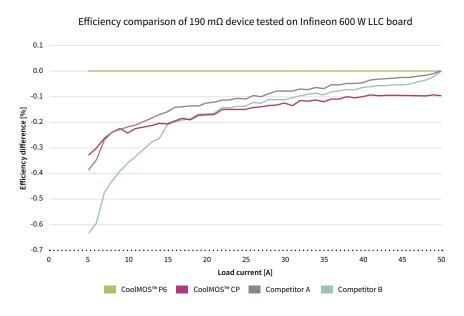
#### **Key benefits**

- > Improved efficiency in light load condition
- Better efficiency in soft switching applications due to earlier turn-off
- > Suitable for hard and soft switching topologies
- Excellent ease-of-use and good controllability of switching behavior
- > High robustness, better efficiency
- Outstanding quality and reliability

www.infineon.com/p6

## CoolMOS™ P6 is optimized for ease-of-use and addresses typical design challenges

# Challenges in PFC > V<sub>GS</sub> out of spec. > High switching losses > High device stress → CoolMOS™ P6 optimized for improved oscillation Challenges from fast switching > EMI and oscillations from high dI/dt

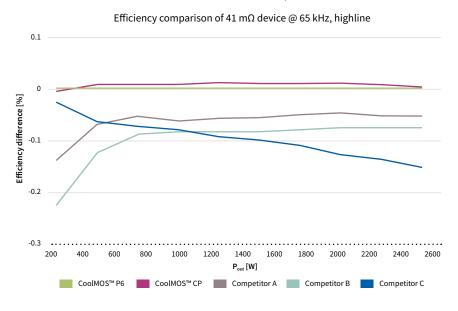

#### Challenges in LLC

- > Body diode hard commutation
- > High voltage overshoot
- > High current spike
- > High device stress
- → CoolMOS™ P6 with good commutation ruggedness

 $L_{par}$ : Layout parasitic inductance  $C_{par}$ : Layout parasitic capacitance

## LLC – CoolMOS™ P6 with best-in-class performance

→ CoolMOS™ P6 with good controllability for ease-of-use




CoolMOS<sup>TM</sup> P6 shows the best-inclass efficiency over full load range, especially at the light load conditions thanks to its low  $Q_G$  and higher  $V_{th}$ . Main competitor products are at the level of below CoolMOS<sup>TM</sup> P6 or lower than CoolMOS<sup>TM</sup> C6.

# CoolMOS™ P6 sets benchmark in LLC efficiency

- Low Q<sub>G</sub> improves the light load efficiency
- Higher V<sub>th</sub> improves efficiency due to lower turn-off losses

## PFC – CoolMOS™ P6 offers CP-like performance



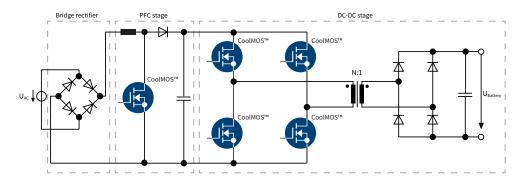
The efficiency of CoolMOS<sup>TM</sup> P6 is at the level of CoolMOS<sup>TM</sup> CP and well ahead of competitors while offering much better ease-of-use. This graph shows the PFC efficiency difference at highline for 41 m $\Omega$  device tested on 2500 W board.

- > CoolMOS™ P6 reaches similar performance as CoolMOS™ CP
- > CoolMOS™ P6 efficiency one step ahead of competitors










www.infineon.com/p6

# CoolMOS™ CFD2 series with fast body diode

Balance between efficiency and robustness with fast body diode

A recent trend in high power conversion is the move toward higher and higher power density. High power density can be achieved best by resonant switching topologies such as zero voltage or zero current switching (ZVS), which enable higher efficiency by eliminating the turn-on losses.



Example of a ZVS based power converter using CoolMOS™ CFD2

CoolMOS™ CFD2 is Infineon's latest series with an integrated fast body diode. It is the ideal choice for high power applications such as telecom and server markets, in which high efficiency levels need to be reached while not compromising on highest reliability and ease-of-use.

0.65

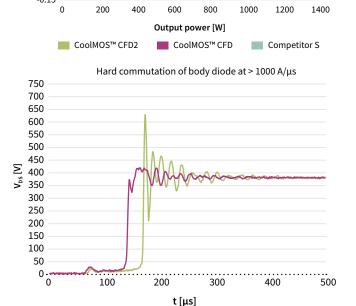
0.60 0.55 0.50

0.40 0.35

0.25 0.20 0.15

-0.05

-0.10


Efficiency [%]

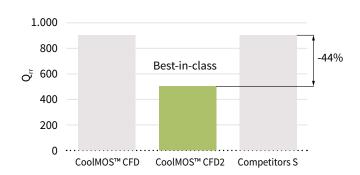
# Higher efficiency performance in mid-load to full-load conditions

CoolMOS™ CFD2 offers efficiency benefits of up to 0.6 percent over competing products in the critical range of mid-load to full-load conditions. This characteristic is found throughout parts of the CoolMOS™ CFD2 series and stems from reduced switching losses and the possibility to use lower external gate resistor values because of the smooth switching behavior.

## Highest ease-of-use for fast design-in

CoolMOS<sup>TM</sup> CFD2 comes with a very low voltage overshoot and minimal ringing behavior. Reduced gate spikes combined with the high safety margin of 200 V enable fast design-in without the need for additional ringing control. Furthermore, CoolMOS<sup>TM</sup> CFD2 offers good controllability through a broad range of  $R_{G, ext.}$  values. Even at very low external  $R_G$  values low ringing is observed. As a result, the broad range of suitable  $R_G$  values offers an additional lever to increase efficiency while still withstanding typical commutation conditions.

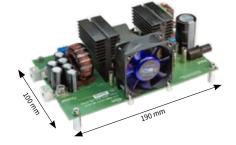



www.infineon.com/cfd2

# Highest reliability from lowest reverse recovery charge and reverse recovery time

Hard commutation prevails in ZVS topologies and requires a device with excellent fast body diode performance, mainly dependent on a low  $Q_{\rm rr}$  (reverse recovery charge) and  $T_{\rm rr}$  (reverse recovery time) as depicted in the graph on the left.

The fast reverse recovery of CoolMOS™ CFD2 offers designers the benefits of


- > Reduced stress on the device while body diode is not fully recovered and
- Extra safety margin for repetitive hard commutation in designs which translates into reduced design-in effort



## ZVS phase shift full-bridge evaluation board available

The ZVS phase shift full-bridge evaluation board (CoolMOS™ CFD2 IPW65R080CFD) represents the new developed ZVS DC-DC converter for telecom rectifiers with an output power of 2 kW.

| Specification        |                        |  |  |  |  |
|----------------------|------------------------|--|--|--|--|
| V <sub>in</sub>      | 300420 V <sub>DC</sub> |  |  |  |  |
| V <sub>in_nom</sub>  | 385 V <sub>DC</sub>    |  |  |  |  |
| V <sub>out_nom</sub> | 4556 V <sub>DC</sub>   |  |  |  |  |
| l <sub>out</sub>     | 50 A                   |  |  |  |  |
| P <sub>o</sub>       | 2 kW                   |  |  |  |  |
| f                    | 100 kHz                |  |  |  |  |

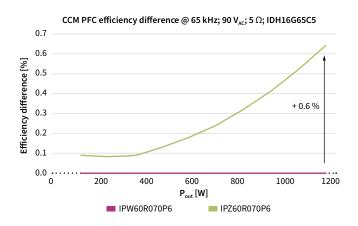


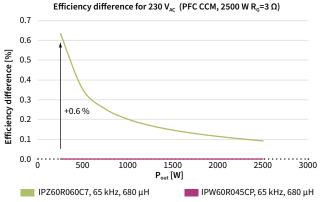
#### **Key benefits:**

- Full ZVS achieved even in the leading leg of the bridge starting from 25 percent load onwards
- Optimized primary and secondary delay times

#### **Target applications:**

- > Telecom rectifiers/SMPS
- > Industrial high power SMPS
- High power battery chargers


# CoolMOS™ in TO-247 4pin package


A new innovative package using Kelvin source concept



Infineon Technologies introduced the new TO-247 4pin package to get best switching performance out of the latest CoolMOC™ technologies. With new generations of power switches becoming faster and faster, the effect of the parasitic elements of package and board limit more and more the overall system performance. An effective measure to overcome this problem is to provide an additional connection to the source (Kelvin connection), that is used as a reference potential for the gate driving voltage, thereby eliminating the effect of voltage drops over the source inductance. The achievable efficiency improvement, resulting from faster switching transients, can, in fact, be significant.

## Benefits in efficiency of 4pin versus 3pin variants





Performance gain of 0.6% full load efficiency can be achieved if the same die is used in a 4pin versus a 3pin package

> Better full load efficiency

Lower full load losses with 4pin part allow for next 'smaller' MOSFET (60 m $\Omega$  instead of 45 m $\Omega$ ) enabling a customer to have BOM cost reduction from the smaller MOSFET R<sub>DS(on)</sub> with better low load efficiency:

- > Low BOM cost
- › Better light load efficiency

## Features and benefits of the 4pin package for CoolMOS™ C7

#### **Key features**

- 4<sup>th</sup> pin (Kelvin source)
- > Increased creepage distance between high voltage pins
- Gate signal optimization

#### **Key benefits**

- Reduces parasitic source inductance effects on the gate circuit enabling faster switching and increased efficiency
- Using benefits of Kelvin source efficiency to increase MOSFET R<sub>DS(on)</sub> and reduce BOM cost
- > Creepage distance meets 5000 m altitude requirement
- > Easier to design by customer

www.infineon.com/to247-4

# CoolMOS™ high power selection by application requirement and topology

## Highest efficiency – fastest switching (≥100 kHz)

#### **PFC**

600 V CoolMOS™ C7 650 V CoolMOS™ C7 600 V CoolMOS™ C7 Gold 650 V CoolMOS™ C7 Gold

500 V CoolMOS™ CP 600 V CoolMOS™ CP

### LLC

600 V CoolMOS™ C7 600 V CoolMOS™ C7 Gold

Partly: 650 V CoolMOS™ CFD2<sup>2)</sup>

N/A

## **ZVS PS**

650 V CoolMOS™ CFD2

N/A

## High efficiency - ease-of-use

#### **PFC**

600 V CoolMOS™ P7 600 V CoolMOS™ P6 Partly: 650 V CoolMOS™ C6¹)

600 V CoolMOS™ C6

#### LLC

600 V CoolMOS™ P7 600 V CoolMOS™ P6 Partly: 650 V CoolMOS™ CFD2<sup>2)</sup>

600 V CoolMOS™ C6

#### **ZVS PS**

650 V CoolMOS™ CFD2

600 V CoolMOS™ CFD

## **Automotive applications**

## PFC

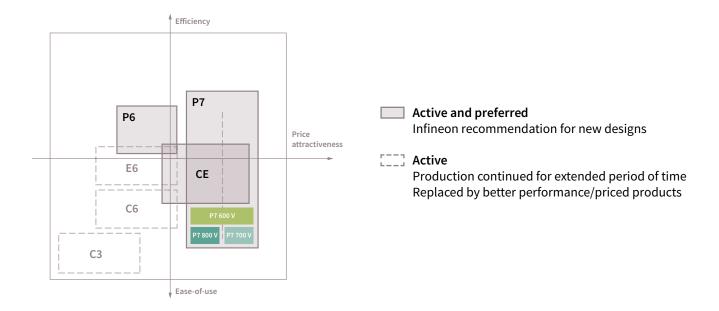
600 V CoolMOS™ CPA 800 V CoolMOS™ C3A

#### LLC

650 V CoolMOS™ CFDA

## **ZVS PS**

650 V CoolMOS™ CFDA


Active & preferred part
Active part

<sup>1)</sup> Where 650 V breakdown voltage is needed

 $<sup>^{\</sup>mbox{\tiny 2)}}$  Where fast body diode is needed

# CoolMOS<sup>™</sup> for low power SMPS (<150 W)

Efficiency accessible at an attractive price



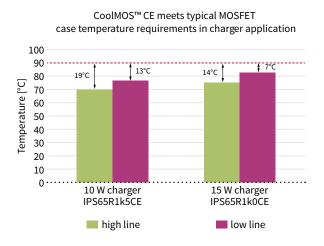
In low power SMPS, high voltage superjunction MOSFETs address applications such as smartphone/tablet chargers, notebook adapters, TV sets and LED lighting et al. Increasingly, customers replace standard MOSFETs by superjunction MOSFETs to benefit from higher efficiency and an attractive cost-down roadmap going forward. In many designs, a trade-off decision between highest efficiency, good ease-of-use (typically EMI), and an attractive cost position needs to be made. The CoolMOS™ portfolio for low SMPS offers a number of choices for power engineers.

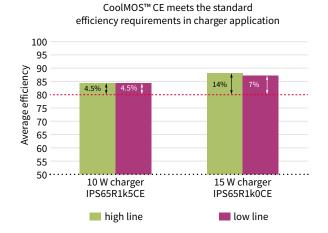
For new designs in low power SMPS design Infineon recommends CoolMOS™ P7, P6 and CoolMOS™ CE.

## 600 V/700 V/800 V CoolMOS™ P7 – latest technologies for SMPS low power applications

The CoolMOS™ P7 is targeting customers, who are price sensitive and at the same time are looking for high performance. The 700 V and 800 V CoolMOS™ P7 series target flyback based low power SMPS applications; while 600 V CoolMOS™ P7 can be used in both soft and hard switching topologies, including PFC, flyback, LLC, TTF, et al. They fully address market concerns in performance, ease-of-use, and price/performance ratio, delivering best-inclass performance with exceptional ease-of-use, while still not compromising the price/performance ratio. The 600 V CoolMOS™ P7 is designed to replace CoolMOS™ P6; for parts which are not ready yet with CoolMOS™ P7 – CoolMOS™ P6 is recommended for its high performance and ease-of-use. CoolMOS™ P7 is an advanced product which offers specific customer benefits.

## CoolMOS™ CE – efficiency, cost effectiveness and part availability in focus

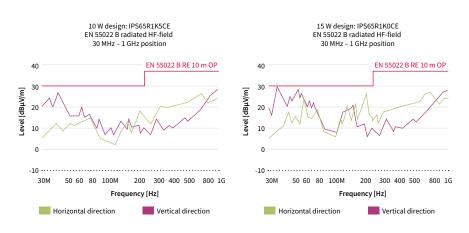

Good efficiency, ease-of-use, and EMI performance at an attractive cost position make the CoolMOS™ CE series the product of choice for many low power applications, such as flyback-based adapters, PFC, and LLC. CoolMOS™ CE offers benefits in efficiency and thermal behavior versus standard MOSFETs.


CoolMOS™ CE is designed for the consumer market and is developed to be easy to design-in.

www.infineon.com/coolmos

## CoolMOS™ CE series

## CoolMOS™ CE: application example smartphone charger






This figure shows the CoolMOS™ CE case temperature in 10 W and 15 W charger applications. The maximum MOSFET case temperature is required to be below 90°C. CoolMOS™ CE could easily meet this requirement while still offering enough margin required by design-in flexibilities.

This figure shows the CoolMOS™ CE efficiency performance in 10 W and 15 W charger applications.

CoolMOS™ CE could easily meet the 80 percent standard efficiency requirement while still offer enough margin required by design-in flexibilities.



This figure shows the CoolMOS™ CE EMI performance in 10 W and 15 W charger applications. Maximum EMI limits are indicated in the figure. CoolMOS™ CE could meet the EMI requirement thus offering design in flexibilities

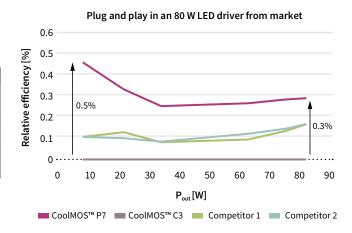
#### Further reasons to choose CoolMOS™ CE

| Non-technical benefits provided by CoolMOS™ CE |                                                                                                                                                                                                                   |  |  |  |  |
|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Product portfolio                              | We own a broad portfolio covering five voltage classes in both through-hole and SMD packages and exceed by more than three times our closest competitor                                                           |  |  |  |  |
| Capacity                                       | We own the world largest capacity for power devices, with three dedicated frontends, and four backends We secure supply during market upswing, for example from constant invests in our own production facilities |  |  |  |  |
| Lead time                                      | We understand consumer and lighting market's dynamics and offer lead time as short as 4-6 weeks                                                                                                                   |  |  |  |  |
| Delivery performance                           | Our supply chain performance is constantly more than or equal to 96 percent (keeping customer commit date)                                                                                                        |  |  |  |  |
| Quality                                        | Our field failure rates are as low as 0.1 PPM                                                                                                                                                                     |  |  |  |  |
| Design-in support                              | We have a large field application engineering team to provide professional and flexible support for your design                                                                                                   |  |  |  |  |

## New 800 V CoolMOS™ P7 series

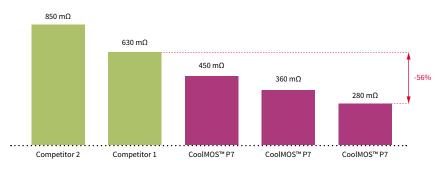
A new benchmark in efficiency and thermal performance

#### 800 V CoolMOS™ P7: overview


The latest 800 V CoolMOS<sup>™</sup> P7 series sets a new benchmark in 800 V superjunction technologies and combines best-in-class performance with state-of-the-art ease-of-use. This new product family is a perfect fit for flyback based low power SMPS applications, fully addressing market needs in performance, ease-of-use, and price/performance ratio. In addition, this product family could also be used in PFC stage for solar and consumer applications.

#### 800 V CoolMOS™ P7: best-in-class performance

CoolMOS<sup>TM</sup> P7 has been fully optimized in key parameters to deliver best-in-class efficiency and thermal performance, in addition, it also sets a new benchmark in lowest  $R_{DS(on)}$  in DPAK, enabling high power density and cost saving.


# Key parameter comparison for P7 and its superjunction competitors

| Parameter                           | P7   | Competitor 1 | Competitor 2 | C3   |
|-------------------------------------|------|--------------|--------------|------|
| TO-220 FullPAK $R_{DS(on)}[\Omega]$ | 0.45 | 0.45         | 0.4          | 0.45 |
| Q <sub>G</sub> [nC]                 | 24   | 29           | 43           | 64   |
| E <sub>oss</sub> [uJ]               | 2.7  | 6.3          | 4.9          | 6.1  |
| C <sub>iss</sub> [pF]               | 770  | 860          | 1813         | 1583 |
| C <sub>oss</sub> [pF]               | 14   | 35           | 24.7         | 32   |



As shown in table above, for key parameters related to performance, there is a significant improvement for CoolMOS<sup>TM</sup> P7 as compared to competitors: over 45 percent reduction in  $E_{oss}$ , and  $C_{oss}$  as well as significant improvement in  $C_{iss}$  and  $Q_c$ . These improvements lead to best-in-class efficiency and thermal performance as demonstrated by test results on an 80 W LED driver, bought on the market. CoolMOS<sup>TM</sup> P7 delivers 0.5 percent better efficiency at light load which helps to reduce standby power. At full load 6°C better thermal has been observed due to better efficiency of 0.3 percent.

#### Overview of lowest DPAK R<sub>DS(on)</sub> for 800 V superjunction MOSFET



# CoolMOS™ P7 sets a new benchmark in best-in-class DPAK R<sub>DS(on)</sub>

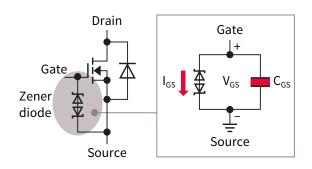
Customer benefits:

- High power density
- > Lower BOM cost
- Less production cost











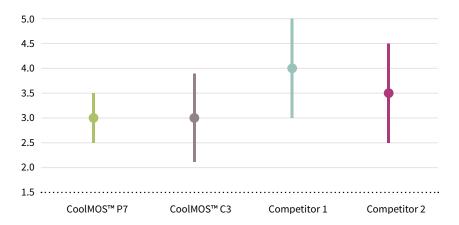

#### 800 V CoolMOS™ P7: state-of-the-art ease-of-use

CoolMOS™ P7 delivers exceptional ease-of-use. The integrated Zener diode ESD protection ensures ESD ruggedness up to class 2 for HBM mode, while V<sub>GS(th)</sub> optimization makes CoolMOS™ P7 easy to drive and to design-in. In addition, CoolMOS™ P7 is also EMI friendly.

#### CoolMOS™ P7 integrated Zener diode ESD protection

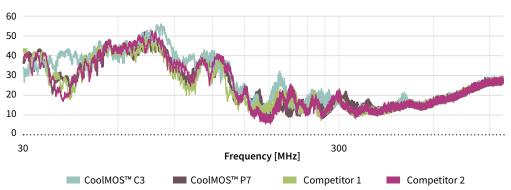


#### CoolMOS™ P7 ESD robustness


HBM:  $\rightarrow$  2  $\Omega$ -4.5  $\Omega$ : class 1C (1 kV-2 kV)

 $\rightarrow$  0.28 Ω-1.4 Ω: class 2 (2 kV-4 kV)

CDM: Class C3 (≥1 kV)


CoolMOS™ P7 integrated Zener diode reduces ESD related failures, thus improves quality and reliability. During the ESD event, V<sub>GS</sub> is clamped and current also mainly flows through the Zener diode, limiting the possibility to overstress gate oxide.

#### 800 V CoolMOS™ P7 V<sub>GS(th)</sub> and its deviation [V]



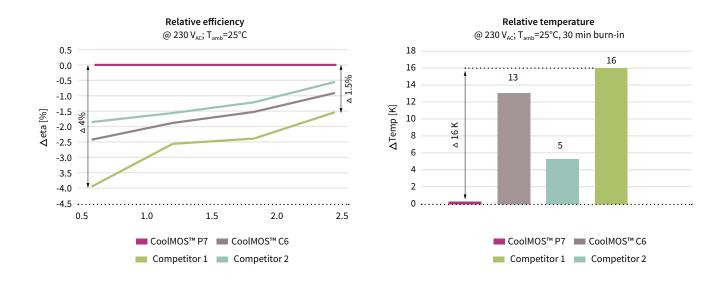
As compared to competitors  $V_{GS(th)}$  of 3 V, at the same time, it offers the lowest  $V_{GS(th)}$  deviation of  $\pm$ 0.5 V. The lowest  $V_{GS(th)}$  ensures CoolMOS<sup>TM</sup> P7 lowest driving losses, and helps to avoid linear mode operation. In addition, the best  $V_{GS(th)}$  tolerance guarantees best MOSFET consistency and thus, more design-in freedom.

#### 800 V CoolMOS™ exceptional EMI performance



EMI is a system level topic and the optimization should be done on system level. A plug and play test on an Infineon 45 W adapter reveals that CoolMOS™ P7 shows similar EMI performance as compared to market offers.

## New 700 V CoolMOS™ P7 series


#### Our answer for flyback topologies

The new 700 V CoolMOS™ P7 series has been developed to serve today's and especially tomorrow's trends in flyback topologies. The technology addresses the low power SMPS market, mainly focusing on mobile phone chargers and notebook adapters but suitable for power supplies used within lighting applications, home entertainment (TV, game consoles or audio), as well as auxiliary power supplies.

By combining customers feedback with over 20 years of superjunction MOSFET experience, 700 V CoolMOS™ P7 comes with fundamental performance gains compared to similar technologies used today. It enables best fit for target applications in terms of:

- > Efficiency and thermals
- > Ease-of-use
- > EMI behavior

700 V CoolMOS™ P7 convinces with outstanding efficiency gains of up to 4 percent and impressively up to 16 K lower device temperature against competition. Compared to previous 650 V CoolMOS™ C6 technology it offers 2.4 percent gain in efficiency and 12 K lower device temperature, measured at a flyback based charger application, operated at 140 kHz switching speed.

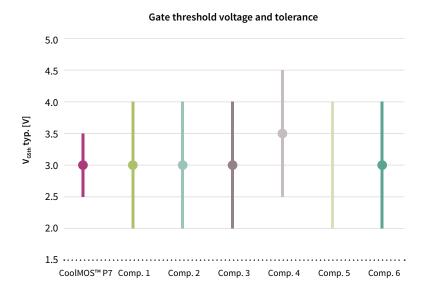


These measurements underpin that the new P7 platform is the right choice for high power density designs and very slim form factors. 700 V CoolMOS™ P7 results in best-in-class product performance, especially when operating at high switching frequencies.









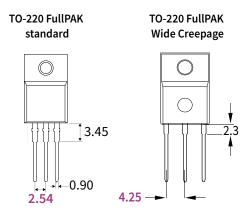





With the new technology, Infineon made it happen to lower the switching losses (E<sub>oss</sub>) in a range of 27 percent to 50 percent, whilst still fulfilling all required EMI regulations.



Keeping the ease-of-use in mind, Infineon kept an eye of launching the technology with a low V<sub>GS(th)</sub> of 3 V and a very narrow tolerance of ±0.5 V. This makes the P7 easy to design-in and enables the usage of lower gate source voltage, which makes it easy to drive and leads to less idle losses. To increase the ESD ruggedness up to HBM Class 2 level, 700 V CoolMOS™ P7 has an integrated Zener diode. This helps to support increased assembly yield, leads to less production related failures and finally manufacturing cost savings on customer side.


#### **Key features**

- > Extremely low FOM R<sub>DS(on)</sub> x E<sub>oss</sub>; lower Q<sub>G</sub>, E<sub>on</sub> and E<sub>off</sub>
- > Highly performant technology
  - Low switching losses (E<sub>oss</sub>)
  - Highly efficient
  - Excellent thermal behavior
- > Allowing high speed switching
- Integrated protection Zener diode
- ightarrow Optimized  $V_{GS(th)}$  of 3 V with very narrow tolerance of  $\pm 0.5$  V
- > Finely graduated portfolio

#### **Key benefits**

- > Cost competitive technology
- > Up to 2.4 percent efficiency gain and 12 K lower device temperature compared to C6 technology
- > Further efficiency gain at higher switching speed
- > Supporting less magnetic size with lower BOM costs
- > High ESD ruggedness up to HBM class 2 level
- > Easy to drive and design-in
- Enabler for smaller form factors and high power density designs
- > Excellent choice in selecting the best fitting product

# New TO-220 FullPAK Wide Creepage package for CoolMOS™



Wider creepage for applications susceptible to pollution


The TO-220 FullPAK Wide Creepage increases the creepage distance to 4.25 mm compared to 2.54 mm for a standard TO-220 package. It fully meets requirements of the EN60664-1 standard that requires at least 3.6 mm for open frame electrical power supplies, which are often found in LED TV, PC power, or industrial power supplies: in these applications, air vents in the external casing to allow some air flow, which will assist in cooling the internal components. This makes the inside susceptible to pollutants, such as dust particles. These pollutants reduce the effective creepage between pins. High voltage arcing can destroy the MOSFET used in SMPS, when the pollutants reduce the effective creepage distance.

The TO-220 FullPAK Wide Creepage reduces system cost by offering an alternative to frequently used approaches to increase creepage distance: the application of potting, the usage of sleeves, pre-bending of leads, and other workarounds come at an extra cost of estimated 2-5 USD cents. This cost and the additional process steps can be removed with the wide creepage package.

#### **Key benefits**

- > Wide creepage of 4.25 mm to avoid arcing even in polluted environment
- > Cost savings of 2-5 USD cent in creepage protection by removing additional process steps
- > Fully automated PCB assembly eliminating process variation
- > FullPAK benefit of isolation, lower package capacitances, lower EMI

# New SOT-223 package for cost reduction in low power applications



Cost reduction in low power applications

#### Cost improvement over DPAK

SOT-223 is an optimized package with cost benefit where Infineon shares the lowest package BOM with the customer.

#### Pin-to-pin DPAK replacement

SOT-223 is a one to one replacement of DPAK on footprint leading to a moderate temperature increase of 2-3°C.

#### **Key benefits**

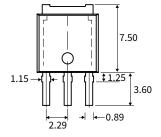
- Cost improvement over DPAK
- > With pin-to-pin compatibility
- > At almost no disadvantage in thermals and efficiency

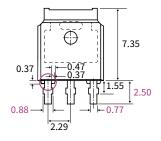
www.infineon.com/sot-223 www.infineon.com/to220-fp-widecreepage

# New TO-220 FullPAK Narrow Lead package for CoolMOS™

# 1.50 1.38 1.090 1.15 1.90 2.54 TO-220 FullPAK Narrow Lead

#### **Key benefits**


- > Package can be fully inserted into PCB without any issues
- > Meeting height challenges in adapter and charger applications
- Increased creepage distance


For charger and adapter applications with power over 20 W, TO-220 FullPAK is the preferred package because of its ease of handling and superior thermal performance. However, the need for height reduction in slim and semi-slim adapters forces manufactures to fully insert the TO-220 FullPAK into the PCB rather than up to its standoff. This often causes yield and reliability challenges due to:

- > Significantly increased hole size on PCB to accommodate wider standoff as compared to leg
- › Deceased effective creepage distance (shortest hole-to-hole distance)
- > Increased possibility to have solder short on PCB

With fully optimized lead geometry: 24 percent reduction in standoff width; 44 percent reduction in standoff height; 23 percent reduction in leg width, the TO-220 FullPAK Narrow Lead package can be fully inserted into the PCB without any of the challenges mentioned above.

# New IPAK Short Lead with ISO Standoff for CoolMOS™





#### **Key benefits**

- More effective cleaning in terms of residue removing, resulting in better assembly yield
- > Larger effective creepage distance between legs
- More suitable for charger application

The Infineon IPAK Short Lead with ISO Standoff package offers a well-defined mold feature at the bottom of the package body: it allows to fully insert the MOSFET into the PCB while still having a well-defined isolation distance of 0.37 mm (maximum value) between PCB and package body. This way, the residues between package and PCB can be effectively removed after cleaning, which improves yield and reduces cost. This feature also helps to increase the effective creepage distance between the legs. In addition, the optimized leg width and length makes this package more suitable for charger applications.

www.infineon.com/to220-fp-narrowlead www.infineon.com/ipak-sl-isostandoff

# CoolMOS™ automotive

# 600 V CoolMOS™ CPA and 650 V CoolMOS™ CFDA – automotive technology in pole position

Highest system performance in a size and weight constrained environment, outstanding and proven product quality and reliability, as well as 100 percent reliable delivery are the needs of our automotive customers. With the high voltage automotive MOSFET series, 600 V CoolMOS™ CPA and 650 V CoolMOS™ CFDA Infineon is perfectly prepared to take the challenges in the strongly growing automotive market. Based on the established 600 V CoolMOS™ CP and 650 V CoolMOS™ CFD2 series the 600 V CoolMOS™ CPA and 650 V CoolMOS™ CFDA provide all benefits of our fast switching superjunction MOSFETs. Special screening measures in front end, back end and mission-profile based qualification procedures ensure a quality level well beyond the formal requirements of the AEC Q101 standard.

While the 600 V CoolMOS™ CPA is the best choice for demanding hard switching applications, such as boost PFCs in on board chargers (OBC), the 650 V CoolMOS™ CFDA series targets resonant switching applications, such as the DC-DC stage of OBC's, as well as DC-DC converters. The integrated fast body diode of the 650 V CoolMOS™ CFDA enables lowest losses, soft commutation behavior with limited voltage overshoots, high commutation robustness, and low EMI levels in these resonant applications. This combination of highest efficiency and features, allowing an easy implementation of layout and design, gives the 650 V CoolMOS™ CFDA a clear advantage in comparison to competitor parts.

#### Common key features CoolMOS™ "A"

- > First 600 V/650 V automotive qualified high voltage technologies for automotive market
- > Compliant to AEC Q101 standard

#### Key features 600 V CoolMOS™ CPA

- ▶ Lowest R<sub>DS(on)</sub> per package
- Lowest gate charge value Q<sub>G</sub>

#### Key features 650 V CoolMOS™ CFDA

- Limited voltage overshoot during hard commutation – self-limiting dI/dt and dV/dt
- Low Q<sub>rr</sub> at repetitive commutation on body diode and low Q<sub>oss</sub>



#### Applications 600 V CoolMOS™ CPA

- Hard switching topologies
- > PFC boost stages in on-board charger
- Active clamp or two transistor forward in DC-DC converter

#### Applications 650 V CoolMOS™ CFDA

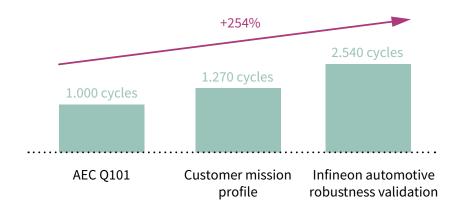
- Resonant switching topologies
- > LLC or full-bridge ZVS in DC-DC converter
- > HID lamp










www.infineon.com/cfda www.infineon.com/coolmos-automotive



### CoolMOS ™ automotive – benchmark in quality and reliability

Focus on top-notch quality and reliability without any compromise – that is the principle Infineon applies during development and qualification of all CoolMOS™ technologies. For our automotive grade derivatives the great quality levels of the industrial base technologies are further boosted by special screening measures in front end and back, as well as by extended qualification procedures. The Infineon robustness validation approach with extended stress-test procedures doubling the real application requirements is one of our key elements to ensure a quality level well beyond the formal requirements of the AEC Q101 standard. Aside from extended stress times on standard qualification tests, it comprises test procedures specially developed by Infineon to ensure highest quality of e.g. the power metallization of our devices. Usage of robust package technologies, 100 percent gate oxide screening, and top-notch production monitoring including yield screening measures, part average testing (PAT), statistical bin alarm (SBA), and pattern recognition procedures complete our package to guarantee highest automotive quality. This holistic approach results in an unrivalled quality position of our 600 V CoolMOS™ CPA and 650V CoolMOS™ CFDA.

#### Robustness validation - example for thermal cycling test

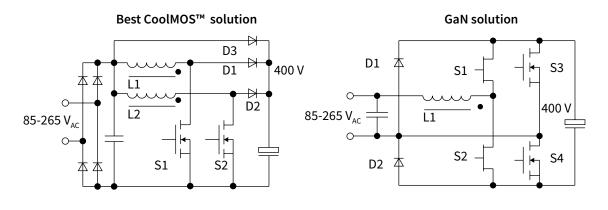


www.infineon.com/coolmos-automotive

#### CoolMOS™ automotive – ready to support future application trends

Driven by the CO<sub>2</sub> reduction initiatives, the market of plug in hybrid PHEV and pure EV is strongly growing. Higher ranges of the electric vehicles are realized by increasing the battery capacity and the energy efficiency of the used electric components. The used battery voltage classes tend to become standardized at 270 V, 480 V and 870 V with a trend towards the higher voltages, as this supports faster charging times and enables lighter cabling within the vehicle. Discrete high voltage components are used widely for on board charger (OBC) and DC-DC converter (LDC) applications, as price pressure more and more displaces module based solutions. The trend towards fast charging impacts on the power range demanded from OBC topologies. While in the past and still today a vast majority of OBC topologies are found in the range from 3.2 kW to 7.2 kW, the future trend goes to 11 kW or even up to 22 kW. This development, paired with a demand for high efficiency and power density at low system cost, is a strong driver for the usage of 3-phase solutions.

# Classic PFC stage for OBC OBC Vienna Rectifier for 3-phase PFC in OBC


While for the lower power OBC solutions classic PFC approaches are the well-established approaches in the market, the Vienna Rectifier is the optimal solution for the higher power levels. As a true 3-phase topology, it delivers full power if attached to a 3-phase input but is flexible enough to run on a single phase if required. The 3-level topology minimizes the filter effort compared to other solutions. By using the doubled frequency on the magnetic components it also helps to significantly reduce the size of the passives. As a 3-level topology, the Vienna Rectifier, followed by two paralleled DC-DC stages, furthermore leads to a relaxed voltage stress level on the power MOSFETs. This way, it enables to handle upcoming higher battery voltage levels. The  $R_{DS(on)}$ , required to yield a desired efficiency level in a Vienna Rectifier, is a function of applied switching frequency and demanded power level. With our 600 V CoolMOS<sup>TM</sup> CPA and 650 V CoolMOS<sup>TM</sup> CFDA portfolio, covering an  $R_{DS(on)}$  range from 48 m $\Omega$  to 660 m $\Omega$ , we are well prepared to support your next generation 3-phase Vienna Rectifier design. 650 V CoolMOS<sup>TM</sup> CFDA is, furthermore, the perfect choice for the PWM stage of your on board charger, as well as for your DC-DC converter solution. With CoolMOS<sup>TM</sup> you are ready to grab your share in the emerging high-power on board charger markets!

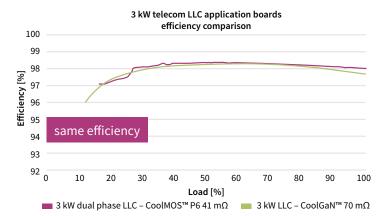
# Coming soon! Infineon 600 V CoolGaN™

Infineon has completed the qualification and released 600 V GaN transistor devices for server power, data center, and telecom applications (70 m $\Omega$  and 190 m $\Omega$  initially).

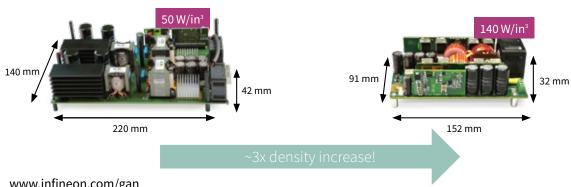
- > Highest efficiency PFC
- > Highest density in LLC and phase shift full-bridge with high efficiency
- > GaN application specific qualification above industry present practices leading to enhanced quality standards for wide-bandgap

#### 1. SMPS PFC stage: 600 V CoolGaN™ offers highest efficiency




#### 2. SMPS DC-DC stage: 600 V CoolGaN™ for the highest density

#### State-of-the-art 3 kW LLC


In ZVS applications, GaN devices switch faster than CoolMOS™, enabling much higher frequency and therefore higher power density for the same efficiency level

**Dual interleaved PFC** 

- > Reduced switching losses as well as gate losses
- > 10x lower charge (Qoss) means faster switching in ZVS applications



Full bridge totem pole (S1 and S2 are GaN devices)



www.infineon.com/gan



#### 3. No compromises on quality

The qualification of GaN switches requires a dedicated approach, well beyond existing silicon standards

- JEDEC qualification is insufficient
- > Application profiles are an integral part of the qualification
- > Failure models, based on accelerated test conditions, ensure that target lifetime and quality are met
- > Infineon sets next level of wide-bandgap quality



This thorough method allows prediction of useful life in customer application with target cumulative failure (FIT) rate.

#### **Conclusions**

GaN is the technology of choice for highly efficient, high density designs. Benefits can be achieved in several dimensions:

- > Higher density with lower losses and fast payback of system cost increase
- > With time GaN BOM cost trend is down and should be lower than closest high efficiency silicon based solution
- In LLC 3x or greater power density is achievable

We are now applying these models to other applications and will shortly be expanding our GaN product offering for a broader application range and product portfolio.

www.infineon.com/gan

#### 900 V CoolMOS™ C3 ACTIVE & PREFERRED $\begin{array}{c} R_{\text{DS(on)}} \\ [m\Omega] \end{array}$ TO-220 TO-262 TO-263 TO-220 FullPAK TO-247 (I<sup>2</sup>PAK) (D<sup>2</sup>PAK) (DPAK) 120 340 IPW90R120C3 IPP90R340C3 IPI90R340C3 IPB90R340C3 IPA90R340C3 IPW90R340C3 IPW90R500C3 500 IPP90R500C3 IPI90R500C3 IPA90R500C3 IPP90R800C3 IPI90R800C3 IPA90R800C3 IPW90R800C3 800 1000 IPP90R1K0C3 IPA90R1K0C3 IPW90R1K0C3 IPP90R1K2C3 IPI90R1K2C3 IPA90R1K2C3 IPW90R1K2C3 IPD90R1K2C3 1200

#### 800 V CoolMOS™ P7 ACTIVE & PREFERRED



| R <sub>DS(on)</sub> | TO -220     | TO-220 FullPAK | TO-247      | TO-252      | TO-251      | TO-251            | SOT-223     | TO-220 FullPAK |
|---------------------|-------------|----------------|-------------|-------------|-------------|-------------------|-------------|----------------|
| [mΩ]                |             |                |             | (DPAK)      | (IPAK)      | (IPAK Short Lead) |             | narrow lead    |
| 280                 | IPP80R280P7 | IPA80R280P7    | IPW80R280P7 | IPD80R280P7 |             |                   |             | IPAN80R280P7   |
| 360                 | IPP80R360P7 | IPA80R360P7    | IPW80R360P7 | IPD80R360P7 |             |                   |             | IPAN80R360P7   |
| 450                 | IPP80R450P7 | IPA80R450P7    |             | IPD80R450P7 |             |                   |             | IPAN80R450P7   |
| 600                 | IPP80R600P7 | IPA80R600P7    |             | IPD80R600P7 | IPU80R600P7 | IPS80R600P7       |             |                |
| 750                 | IPP80R750P7 | IPA80R750P7    |             | IPD80R750P7 | IPU80R750P7 | IPS80R750P7       |             |                |
| 900                 | IPP80R900P7 | IPA80R900P7    |             | IPD80R900P7 | IPU80R900P7 | IPS80R900P7       | IPN80R900P7 |                |
| 1200                | IPP80R1K2P7 | IPA80R1K2P7    |             | IPD80R1K2P7 | IPU80R1K2P7 | IPS80R1K2P7       |             |                |
| 1400                | IPP80R1K4P7 | IPA80R1K4P7    |             | IPD80R1K4P7 | IPU80R1K4P7 | IPS80R1K4P7       | IPN80R1K4P7 |                |
| 2000                |             |                |             | IPD80R2K0P7 | IPU80R2K0P7 | IPS80R2K0P7       | IPN80R2K0P7 |                |
| 2400                |             |                |             | IPD80R2K4P7 | IPU80R2K4P7 | IPS80R2K4P7       |             |                |
| 3300                |             |                |             | IPD80R3K3P7 | IPU80R3K3P7 |                   |             |                |
| 4500                |             |                |             | IPD80R4K5P7 | IPU80R4K5P7 |                   | IPN80R4K5P7 |                |

#### $800\ V\ CoolMOS^{\text{\tiny TM}}\ CE\quad \text{active\,\&\,preferred}$







|                          |        |                |        |             | 1           |                   |
|--------------------------|--------|----------------|--------|-------------|-------------|-------------------|
| R <sub>DS(on)</sub>      | TO-220 | TO-220 FullPAK | TO-247 | TO-252      | TO-251      | TO-251            |
| $R_{DS(on)}$ $[m\Omega]$ |        |                |        | (DPAK)      | (IPAK)      | (IPAK Short Lead) |
| 310                      |        | IPA80R310CE    |        |             |             |                   |
| 460                      |        | IPA80R460CE    |        |             |             |                   |
| 650                      |        | IPA80R650CE    |        |             |             |                   |
| 1000                     |        | IPA80R1K0CE    |        | IPD80R1K0CE | IPU80R1K0CE |                   |
| 1400                     |        | IPA80R1K4CE    |        | IPD80R1K4CE | IPU80R1K4CE |                   |
| 2800                     |        |                |        | IPD80R2K8CE | IPU80R2K8CE |                   |

#### 800 V CoolMOS™ C3 ACTIVE & PREFERRED











| R <sub>DS(on)</sub> | TO-220     | TO-262               | TO-263               | TO-220 FullPAK | TO-247     | TO-252     |
|---------------------|------------|----------------------|----------------------|----------------|------------|------------|
| [mΩ]                |            | (I <sup>2</sup> PAK) | (D <sup>2</sup> PAK) |                |            | (DPAK)     |
| 85                  |            |                      |                      |                | SPW55N80C3 |            |
| 290                 | SPP17N80C3 |                      | SPB17N80C3           | SPA17N80C3     | SPW17N80C3 |            |
| 450                 | SPP11N80C3 |                      |                      | SPA11N80C3     | SPW11N80C3 |            |
| 650                 | SPP08N80C3 | SPI08N80C3           |                      | SPA08N80C3     |            |            |
| 900                 | SPP06N80C3 |                      |                      | SPA06N80C3     |            | SPD06N80C3 |
| 1300                | SPP04N80C3 |                      |                      | SPA04N80C3     |            | SPD04N80C3 |
| 2700                | SPP02N80C3 |                      |                      | SPA02N80C3     |            | SPD02N80C3 |

#### 700 V CoolMOS™ P7 ACTIVE & PREFERRED









| R <sub>DS(on)</sub><br>[mΩ] | TO -220 | TO – 262<br>(I²PAK) | TO-251<br>(IPAK Short | TO-220 FullPAK | TO-247 | TO-252<br>(DPAK) | TO-220 FullPAK<br>narrow lead | TO-251<br>(IPAK Short Lead | SOT-223      |
|-----------------------------|---------|---------------------|-----------------------|----------------|--------|------------------|-------------------------------|----------------------------|--------------|
| []                          |         | (*******)           | Lead)                 |                |        | (211114)         |                               | w/ ISO Standoff)           |              |
| 360                         |         |                     | IPS70R360P7S          | IPA70R360P7S   |        | IPD70R360P7S     | IPAN70R360P7S                 | IPSA70R360P7S              | IPN70R360P7S |
| 450                         |         |                     |                       | IPA70R450P7S   |        |                  | IPAN70R450P7S                 | IPSA70R450P7S              |              |
| 600                         |         |                     | IPS70R600P7S          | IPA70R600P7S   |        | IPD70R600P7S     | IPAN70R600P7S                 | IPSA70R600P7S              | IPN70R600P7S |
| 750                         |         |                     |                       | IPA70R750P7S   |        |                  | IPAN70R750P7S                 | IPSA70R750P7S              |              |
| 900                         |         |                     | IPS70R900P7S          | IPA70R900P7S   |        | IPD70R900P7S     | IPAN70R900P7S                 | IPSA70R900P7S              | IPN70R900P7S |
| 1200                        |         |                     |                       |                |        |                  |                               | IPSA70R1K2P7S              |              |
| 1400                        |         |                     | IPS70R1K4P7S          |                |        | IPD70R1K4P7S     |                               | IPSA70R1K4P7S              | IPN70R1K4P7S |
| 2000                        |         |                     |                       |                |        |                  |                               | IPSA70R2K0P7S              |              |

| 700 V Coo | lMOS™ CE | ACTIVE & PREFERRED |
|-----------|----------|--------------------|
|-----------|----------|--------------------|







| R <sub>DS(on)</sub> | TO-220 | TO-220 FullPAK | TO-262               | TO-251             | TO-252      | TO-251 | TO-251            | SOT-223     | ThinPAK 5x6  |
|---------------------|--------|----------------|----------------------|--------------------|-------------|--------|-------------------|-------------|--------------|
| [mΩ]                |        | Wide Creepage  | (I <sup>2</sup> PAK) | (IPAK Short Lead   | (DPAK)      | (IPAK) | (IPAK Short Lead) |             |              |
|                     |        |                |                      | with ISO Standoff) |             |        |                   |             |              |
| 600                 |        | IPAW70R600CE   |                      | IPSA70R600CE       | IPD70R600CE |        | IPS70R600CE       |             |              |
| 950                 |        | IPAW70R950CE   | IPI70R950CE          | IPSA70R950CE       | IPD70R950CE |        | IPS70R950CE       |             |              |
| 1000                |        |                |                      |                    |             |        |                   | IPN70R1K0CE |              |
| 1400                |        |                |                      | IPSA70R1K4CE       | IPD70R1K4CE |        | IPS70R1K4CE       |             |              |
| 1500                |        |                |                      |                    |             |        |                   | IPN70R1K5CE |              |
| 2000                |        |                |                      | IPSA70R2K0CE       | IPD70R2K0CE |        | IPS70R2K0CE       |             |              |
| 2100                |        |                |                      |                    |             |        |                   | IPN70R2K1CE | IPL70R2K1CES |

www.infineon.com/c3 www.infineon.com/coolmos-700v www.infineon.com/coolmos-800v www.infineon.com/coolmos-900v www.infineon.com/ce

www.infineon.com/800v-p7 www.infineon.com/700v-p7

#### 

| 650 V                    | CoolMOS™ C  | 7 ACTIVE & PREFE  | RRED           |             | 2010        | Adapter PC Power | Skrver Telecom SMPS SMPS |
|--------------------------|-------------|-------------------|----------------|-------------|-------------|------------------|--------------------------|
| $R_{DS(on)}$ $[m\Omega]$ | TO-220      | TO-263<br>(D²PAK) | TO-220 FullPAK | TO-247      | TO-247 4pin | TO-252<br>(DPAK) | ThinPAK 8x8              |
| 19                       |             |                   |                | IPW65R019C7 | IPZ65R019C7 |                  |                          |
| 33                       |             |                   |                |             |             |                  |                          |
| 45                       | IPP65R045C7 | IPB65R045C7       | IPA65R045C7    | IPW65R045C7 | IPZ65R045C7 |                  |                          |
| 65                       | IPP65R065C7 | IPB65R065C7       | IPA65R065C7    | IPW65R065C7 | IPZ65R065C7 |                  |                          |
| 70                       |             |                   |                |             |             |                  | IPL65R070C7              |
| 95                       | IPP65R095C7 | IPB65R095C7       | IPA65R095C7    | IPW65R095C7 | IPZ65R095C7 |                  |                          |
| 99                       |             |                   |                |             |             |                  | IPL65R099C7              |
| 105                      |             |                   |                |             |             |                  |                          |
| 125                      | IPP65R125C7 | IPB65R125C7       | IPA65R125C7    | IPW65R125C7 |             |                  |                          |
| 130                      |             |                   |                |             |             |                  | IPL65R130C7              |
| 190                      | IPP65R190C7 | IPB65R190C7       | IPA65R190C7    | IPW65R190C7 |             | IPD65R190C7      |                          |
| 195                      |             |                   |                |             |             |                  | IPL65R195C7              |
| 225                      | IPP65R225C7 | IPB65R225C7       | IPA65R225C7    |             |             | IPD65R225C7      |                          |
| 230                      |             |                   |                |             |             |                  | IPL65R230C7              |

| 650 V                                                                     | 650 V CoolMOS™ CE ACTIVE & PREFERRED |                |        |                  |                  |                             |             |                               |  |  |  |  |
|---------------------------------------------------------------------------|--------------------------------------|----------------|--------|------------------|------------------|-----------------------------|-------------|-------------------------------|--|--|--|--|
| $\begin{array}{c} R_{\scriptscriptstyle DS(on)} \\ [m\Omega] \end{array}$ | TO-220                               | TO-220 FullPAK | TO-247 | TO-252<br>(DPAK) | TO-251<br>(IPAK) | TO-251<br>(IPAK Short Lead) | SOT-223     | TO-220 FullPAK<br>Narrow Lead |  |  |  |  |
| 400                                                                       |                                      | IPA65R400CE    |        | IPD65R400CE      |                  | IPS65R400CE                 |             |                               |  |  |  |  |
| 650                                                                       |                                      | IPA65R650CE    |        | IPD65R650CE      |                  | IPS65R650CE                 |             | IPAN65R650CE                  |  |  |  |  |
| 1000                                                                      |                                      | IPA65R1K0CE    |        | IPD65R1K0CE      |                  | IPS65R1K0CE                 |             |                               |  |  |  |  |
| 1500                                                                      |                                      | IPA65R1K5CE    |        | IPD65R1K5CE      |                  | IPS65R1K5CE                 | IPN65R1K5CE |                               |  |  |  |  |

| 650 V                                                                     | CoolMOS™(    | CFD2 ACTIVE & PF  | REFERRED          |                | Server       | Lighting  Lighting  Solar  O  T  T  T  T  T  T  T  T  T  T  T  T | ettability  Consumer  PC Power |
|---------------------------------------------------------------------------|--------------|-------------------|-------------------|----------------|--------------|------------------------------------------------------------------|--------------------------------|
| $\begin{array}{c} R_{\scriptscriptstyle DS(on)} \\ [m\Omega] \end{array}$ | TO-220       | TO-262<br>(I²PAK) | TO-263<br>(D²PAK) | TO-220 FullPAK | TO-247       | TO-252<br>(DPAK)                                                 | ThinPAK 8x8                    |
| 41                                                                        |              |                   |                   |                | IPW65R041CFD |                                                                  |                                |
| 80                                                                        |              |                   |                   |                | IPW65R080CFD |                                                                  |                                |
| 110                                                                       | IPP65R110CFD | IPI65R110CFD      | IPB65R110CFD      | IPA65R110CFD   | IPW65R110CFD |                                                                  |                                |
| 150                                                                       | IPP65R150CFD | IPI65R150CFD      | IPB65R150CFD      | IPA65R150CFD   | IPW65R150CFD |                                                                  |                                |
| 165                                                                       |              |                   |                   |                |              |                                                                  | IPL65R165CFD                   |
| 190                                                                       | IPP65R190CFD | IPI65R190CFD      | IPB65R190CFD      | IPA65R190CFD   | IPW65R190CFD |                                                                  |                                |
| 210                                                                       |              |                   |                   |                |              |                                                                  | IPL65R210CFD                   |
| 310                                                                       | IPP65R310CFD | IPI65R310CFD      | IPB65R310CFD      | IPA65R310CFD   | IPW65R310CFD |                                                                  |                                |
| 340                                                                       |              |                   |                   |                |              |                                                                  | IPL65R340CFD                   |
| 420                                                                       | IPP65R420CFD | IPI65R420CFD      | IPB65R420CFD      | IPA65R420CFD   | IPW65R420CFD | IPD65R420CFD                                                     |                                |
| 460                                                                       |              |                   |                   |                |              |                                                                  | IPL65R460CFD                   |
| 660                                                                       | IPP65R660CFD | IPI65R660CFD      | IPB65R660CFD      | IPA65R660CFD   | IPW65R660CFD | IPD65R660CFD                                                     |                                |
| 725                                                                       |              |                   |                   |                |              |                                                                  | IPL65R725CFD                   |
| 950                                                                       |              |                   |                   |                |              | IPD65R950CFD                                                     |                                |
| 1400                                                                      |              |                   |                   |                |              | IPD65R1K4CFD                                                     |                                |

www.infineon.com/c7-gold-toll www.infineon.com/coolmos-650v-700v www.infineon.com/c7 www.infineon.com/cfd2 www.infineon.com/ce

| 650 V                                                         | CoolMOS™    | C6 ACTIVE & PRE             | FERRED            |                   |                | Server      | Coccentry Adaptive Coccentry Coccent | PC Power Solar |
|---------------------------------------------------------------|-------------|-----------------------------|-------------------|-------------------|----------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| $\begin{array}{c} R_{\text{DS(on)}} \\ [m\Omega] \end{array}$ | TO-220      | TO-251<br>(IPAK Short Lead) | TO-262<br>(I²PAK) | TO-263<br>(D²PAK) | TO-220 FullPAK | TO-247      | TO-252<br>(DPAK)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ThinPAK 5x6    |
| 37                                                            |             |                             |                   |                   |                | IPW65R037C6 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 70                                                            |             |                             |                   |                   |                | IPW65R070C6 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 74                                                            | IPP65R074C6 |                             |                   |                   |                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 99                                                            | IPP65R099C6 |                             | IPI65R099C6       | IPB65R099C6       | IPA65R099C6    | IPW65R099C6 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 190                                                           | IPP65R190C6 |                             | IPI65R190C6       | IPB65R190C6       | IPA65R190C6    | IPW65R190C6 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 250                                                           |             |                             |                   |                   |                |             | IPD65R250C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |
| 280                                                           | IPP65R280C6 |                             | IPI65R280C6       | IPB65R280C6       | IPA65R280C6    | IPW65R280C6 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 380                                                           | IPP65R380C6 |                             | IPI65R380C6       | IPB65R380C6       | IPA65R380C6    |             | IPD65R380C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |
| 600                                                           | IPP65R600C6 |                             | IPI65R600C6       | IPB65R600C6       | IPA65R600C6    |             | IPD65R600C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |
| 650                                                           |             |                             |                   |                   |                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IPL65R650C6S   |
| 950                                                           |             | IPS65R950C6                 |                   |                   |                |             | IPD65R950C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |
| 1000                                                          |             |                             |                   |                   |                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IPL65R1K0C6S   |
| 1400                                                          |             | IPS65R1K4C6                 |                   |                   |                |             | IPD65R1K4C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |
| 1500                                                          |             |                             |                   |                   |                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IPL65R1K5C6S   |

| 650 V                    | 650 V CoolMOS™ E6 ACTIVE & PREFERRED |                             |                   |                   |                |             |                  |             |  |  |  |
|--------------------------|--------------------------------------|-----------------------------|-------------------|-------------------|----------------|-------------|------------------|-------------|--|--|--|
| $R_{DS(on)}$ $[m\Omega]$ | TO-220                               | TO-251<br>(IPAK Short Lead) | TO-262<br>(I²PAK) | TO-263<br>(D²PAK) | TO-220 FullPAK | TO-247      | TO-252<br>(DPAK) | ThinPAK 8x8 |  |  |  |
| 190                      | IPP65R190E6                          |                             |                   |                   | IPA65R190E6    | IPW65R190E6 |                  | IPL65R190E6 |  |  |  |
| 250                      |                                      |                             |                   |                   |                |             | IPD65R250E6      |             |  |  |  |
| 280                      | IPP65R280E6                          |                             | IPI65R280E6       | IPB65R280E6       | IPA65R280E6    | IPW65R280E6 |                  |             |  |  |  |
| 310                      |                                      |                             |                   |                   |                |             |                  | IPL65R310E6 |  |  |  |
| 380                      | IPP65R380E6                          |                             |                   |                   | IPA65R380E6    |             | IPD65R380E6      |             |  |  |  |
| 420                      |                                      |                             |                   |                   |                |             |                  | IPL65R420E6 |  |  |  |
| 600                      | IPP65R600E6                          | IPS65R600E6                 |                   |                   | IPA65R600E6    |             | IPD65R600E6      |             |  |  |  |
| 660                      |                                      |                             |                   |                   |                |             |                  | IPL65R660E6 |  |  |  |

| 650 V                                                         | CoolMOS™ C3 | ACTIVE            |                   |                | Adapter Lighting Solar | Contamer Server Toksom |
|---------------------------------------------------------------|-------------|-------------------|-------------------|----------------|------------------------|------------------------|
| $\begin{array}{c} R_{\text{DS(on)}} \\ [m\Omega] \end{array}$ | TO-220      | TO-262<br>(I²PAK) | TO-263<br>(D²PAK) | TO-220 FullPAK | TO-247                 | TO-252<br>(DPAK)       |
| 70                                                            |             |                   |                   |                | SPW47N65C3             |                        |
| 190                                                           | SPP20N65C3  |                   |                   | SPA20N65C3     |                        |                        |
| 280                                                           |             | SPI15N65C3        |                   | SPA15N65C3     |                        |                        |
| 380                                                           | SPP11N65C3  | SPI11N65C3        |                   | SPA11N65C3     |                        |                        |
| 600                                                           | SPP07N65C3  |                   |                   | SPA07N65C3     |                        |                        |

|                          | ' CoolMOS'<br>ial grade | ™ P7 ACTIVE & PI | REFERRED    |              |                  |                                 | SMPS        | Server Telecom Lig |
|--------------------------|-------------------------|------------------|-------------|--------------|------------------|---------------------------------|-------------|--------------------|
| $R_{DS(on)}$ $[m\Omega]$ | TO -220                 | TO-220 FullPAK   | TO-247      | TO-247 4pin  | TO-252<br>(DPAK) | TO-220 FullPAK<br>Wide Creepage | ThinPAK     | D²PAK              |
| 37                       |                         |                  | IPW60R037P7 | IPZA60R037P7 |                  |                                 |             |                    |
| 60                       | IPP60R060P7             | IPA60R060P7      | IPW60R060P7 | IPZA60R060P7 |                  |                                 |             | IPB60R060P7        |
| 65                       |                         |                  |             |              |                  |                                 | IPL60R065P7 |                    |
| 80                       | IPP60R080P7             | IPA60R080P7      | IPW60R080P7 | IPZA60R080P7 |                  |                                 | IPL60R085P7 | IPB60R080P7        |
| 99                       | IPP60R099P7             | IPA60R099P7      | IPW60R099P7 | IPZA60R099P7 |                  |                                 |             | IPB60R099P7        |
| 104                      |                         |                  |             |              |                  |                                 | IPL60R105P7 |                    |
| 120                      | IPP60R120P7             | IPA60R120P7      | IPW60R120P7 | IPZA60R120P7 |                  |                                 |             | IPB60R120P7        |
| 125                      |                         |                  |             |              |                  |                                 | IPL60R125P7 |                    |
| 180                      | IPP60R180P7             | IPA60R180P7      | IPW60R180P7 | IPZA60R180P7 | IPD60R180P7      |                                 |             | IPB60R180P7        |
| 185                      |                         |                  |             |              |                  |                                 | IPL60R185P7 |                    |
| 280                      | IPP60R280P7             | IPA60R280P7      |             |              | IPD60R280P7      |                                 |             | IPB60R280P7        |
| 285                      |                         |                  |             |              |                  |                                 | IPL60R285P7 |                    |
| 360                      | IPP60R360P7             | IPA60R360P7      |             |              | IPD60R360P7      |                                 |             | IPB60R360P7        |
| 365                      |                         |                  |             |              |                  |                                 | IPL60R365P7 |                    |
| 600                      | IPP60R600P7             | IPA60R600P7      |             |              | IPD60R600P7      |                                 |             |                    |

|                          | CoolMOS™<br>rd grade | P7 ACTIVE & PR | EFERRED |             |                  |                                 | Todatrial Server Todatrial Server Todatrial Company Todatrial Comp |              |  |
|--------------------------|----------------------|----------------|---------|-------------|------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|
| $R_{DS(on)}$ $[m\Omega]$ | TO -220              | TO-220 FullPAK | TO-247  | TO-247 4pin | TO-252<br>(DPAK) | TO-220 FullPAK<br>Wide Creepage | ThinPAK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SOT-223      |  |
| 180                      |                      | IPA60R180P7S   |         |             | IPD60R180P7S     | IPAW60R180P7S                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |  |
| 185                      |                      |                |         |             |                  |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |  |
| 280                      |                      | IPA60R280P7S   |         |             | IPD60R280P7S     | IPAW60R280P7S                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |  |
| 285                      |                      |                |         |             |                  |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |  |
| 360                      |                      | IPA60R360P7S   |         |             | IPD60R360P7S     | IPAW60R360P7S                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IPN60R360P7S |  |
| 365                      |                      |                |         |             |                  |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |  |
| 600                      |                      | IPA60R600P7S   |         |             | IPD60R600P7S     | IPAW60R600P7S                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IPN60R600P7S |  |

| 600 V                                                         | CoolMOS™ C | 7 Gold (G-seri        | es) ACTIVE & PREF | ERRED  |              |                   |             |
|---------------------------------------------------------------|------------|-----------------------|-------------------|--------|--------------|-------------------|-------------|
| $\begin{array}{c} R_{\text{DS(on)}} \\ [m\Omega] \end{array}$ | TO -220    | TO-Leadless<br>(TOLL) | TO-220 FullPAK    | TO-247 | TO-247 4 pin | TO -252<br>(DPAK) | ThinPAK 8x8 |
| 28                                                            |            | IPT60R028G7           |                   |        |              |                   |             |
| 50                                                            |            | IPT60R050G7           |                   |        |              |                   |             |
| 80                                                            |            | IPT60R080G7           |                   |        |              |                   |             |
| 102                                                           |            | IPT60R102G7           |                   |        |              |                   |             |
| 125                                                           |            | IPT60R125G7           |                   |        |              |                   |             |
| 150                                                           |            | IPT60R150G7           |                   |        |              |                   |             |

| 600 V                                                                     | CoolMOS™ C  | 7 ACTIVE & PREFERR | ED             |             |             | Solar PC Power   | Server Selection SMPS |
|---------------------------------------------------------------------------|-------------|--------------------|----------------|-------------|-------------|------------------|-----------------------|
| $\begin{array}{c} R_{\scriptscriptstyle DS(on)} \\ [m\Omega] \end{array}$ | TO-220      | TO-263<br>(D²PAK)  | TO-220 FullPAK | TO-247      | TO-247 4pin | TO-252<br>(DPAK) | ThinPAK 8x8           |
| 17                                                                        |             |                    |                | IPW60R017C7 | IPZ60R017C7 |                  |                       |
| 40                                                                        | IPP60R040C7 | IPB60R040C7        |                | IPW60R040C7 | IPZ60R040C7 |                  |                       |
| 60                                                                        | IPP60R060C7 | IPB60R060C7        | IPA60R060C7    | IPW60R060C7 | IPZ60R060C7 |                  |                       |
| 65                                                                        |             |                    |                |             |             |                  | IPL60R065C7           |
| 99                                                                        | IPP60R099C7 | IPB60R099C7        | IPA60R099C7    | IPW60R099C7 | IPZ60R099C7 |                  |                       |
| 104                                                                       |             |                    |                |             |             |                  | IPL60R104C7           |
| 120                                                                       | IPP60R120C7 | IPB60R120C7        | IPA60R120C7    | IPW60R120C7 |             |                  |                       |
| 125                                                                       |             |                    |                |             |             |                  | IPL60R125C7           |
| 180                                                                       | IPP60R180C7 | IPB60R180C7        | IPA60R180C7    | IPW60R180C7 |             | IPD60R180C7      |                       |
| 185                                                                       |             |                    |                |             |             |                  | IPL60R185C7           |

www.infineon.com/coolmos-600v www.infineon.com/c7 www.infineon.com/600v-p7 www.infineon.com/c7-gold-toll

| 600 V                    | CoolMOS™    | P6 ACTIVE & PI    | REFERRED       |             |             | Consumer         | Lighting  PC Power | Telecom SMPS SMPS |
|--------------------------|-------------|-------------------|----------------|-------------|-------------|------------------|--------------------|-------------------|
| $R_{DS(on)}$ $[m\Omega]$ | TO-220      | TO-263<br>(D²PAK) | TO-220 FullPAK | TO-247      | TO-247 4pin | TO-252<br>(DPAK) | ThinPAK 5x6        | ThinPAK 8x8       |
| 41                       |             |                   |                | IPW60R041P6 | IPZ60R041P6 |                  |                    |                   |
| 70                       |             |                   |                | IPW60R070P6 | IPZ60R070P6 |                  |                    |                   |
| 99                       | IPP60R099P6 |                   | IPA60R099P6    | IPW60R099P6 | IPZ60R099P6 |                  |                    |                   |
| 125                      | IPP60R125P6 |                   | IPA60R125P6    | IPW60R125P6 | IPZ60R125P6 |                  |                    |                   |
| 160                      | IPP60R160P6 | IPB60R160P6       | IPA60R160P6    | IPW60R160P6 |             |                  |                    |                   |
| 180                      |             |                   |                |             |             |                  |                    | IPL60R180P6       |
| 190                      | IPP60R190P6 | IPB60R190P6       | IPA60R190P6    | IPW60R190P6 |             |                  |                    |                   |
| 210                      |             |                   |                |             |             |                  |                    | IPL60R210P6       |
| 230                      | IPP60R230P6 | IPB60R230P6       | IPA60R230P6    | IPW60R230P6 |             |                  |                    |                   |
| 255                      |             |                   |                |             |             |                  |                    | IPL60R255P6       |
| 280                      | IPP60R280P6 | IPB60R280P6       | IPA60R280P6    | IPW60R280P6 |             |                  |                    |                   |
| 330/360                  | IPP60R330P6 | IPB60R330P6       | IPA60R330P6    | IPW60R330P6 |             |                  | IPL60R360P6S       |                   |
| 380                      | IPP60R380P6 | IPB60R380P6       | IPA60R380P6    |             |             | IPD60R380P6      |                    |                   |
| 600                      | IPP60R600P6 | IPB60R600P6       | IPA60R600P6    |             |             | IPD60R600P6      |                    |                   |
| 650                      |             |                   |                |             |             |                  | IPL60R650P6S       |                   |

| 600 V                    | CoolMOS™       | CE ACTIVE & PRE                 | FERRED |                  |                  | Comment LED                 | Adapt LCD TV | Chirgse PC Pomer              |
|--------------------------|----------------|---------------------------------|--------|------------------|------------------|-----------------------------|--------------|-------------------------------|
| $R_{DS(on)}$ $[m\Omega]$ | TO-220 FullPAK | TO-220 FullPAK<br>Wide Creepage | TO-247 | TO-252<br>(DPAK) | TO-251<br>(IPAK) | TO-251<br>(IPAK Short Lead) | SOT-223      | TO-220 FullPAK<br>Narrow Lead |
| 190                      |                | IPAW60R190CE                    |        |                  |                  |                             |              |                               |
| 280                      |                | IPAW60R280CE                    |        |                  |                  |                             |              |                               |
| 380                      |                | IPAW60R380CE                    |        |                  |                  |                             |              |                               |
| 400                      | IPA60R400CE    |                                 |        | IPD60R400CE      |                  | IPS60R400CE                 |              |                               |
| 460                      | IPA60R460CE    |                                 |        | IPD60R460CE      |                  | IPS60R460CE                 |              |                               |
| 600                      |                | IPAW60R600CE                    |        |                  |                  |                             |              |                               |
| 650                      | IPA60R650CE    |                                 |        | IPD60R650CE      |                  | IPS60R650CE                 |              | IPAN60R650CE                  |
| 800                      | IPA60R800CE    |                                 |        | IPD60R800CE      |                  | IPS60R800CE                 |              | IPAN60R800CE                  |
| 1000                     | IPA60R1K0CE    |                                 |        | IPD60R1K0CE      | IPU60R1K0CE      | IPS60R1K0CE                 | IPN60R1K0CE  |                               |
| 1500                     | IPA60R1K5CE    |                                 |        | IPD60R1K5CE      | IPU60R1K5CE      | IPS60R1K5CE                 | IPN60R1K5CE  |                               |
| 2100                     |                |                                 |        | IPD60R2K1CE      | IPU60R2K1CE      | IPS60R2K1CE                 | IPN60R2K1CE  |                               |
| 3400                     |                |                                 |        | IPD60R3K4CE      | IPU60R3K4CE      | IPS60R3K4CE                 | IPN60R3K4CE  |                               |

www.infineon.com/coolmos-600v www.infineon.com/p6 www.infineon.com/ce

| 600 V                    | CoolMOS™    | C6 ACTIVE & PR   | EFERRED           |                   |                | Server Telecom | Consumer Lighting So | PC Power  Adapter |
|--------------------------|-------------|------------------|-------------------|-------------------|----------------|----------------|----------------------|-------------------|
| $R_{DS(on)}$ $[m\Omega]$ | TO-220      | TO-251<br>(IPAK) | TO-262<br>(I²PAK) | TO-263<br>(D²PAK) | TO-220 FullPAK | TO-247         | TO-252<br>(DPAK)     | ThinPAK 5x6       |
| 41                       |             |                  |                   |                   |                | IPW60R041C6    |                      |                   |
| 70                       |             |                  |                   |                   |                | IPW60R070C6    |                      |                   |
| 74                       | IPP60R074C6 |                  |                   |                   |                |                |                      |                   |
| 99                       | IPP60R099C6 |                  |                   | IPB60R099C6       | IPA60R099C6    | IPW60R099C6    |                      |                   |
| 125                      | IPP60R125C6 |                  |                   | IPB60R125C6       | IPA60R125C6    | IPW60R125C6    |                      |                   |
| 160                      | IPP60R160C6 |                  |                   | IPB60R160C6       | IPA60R160C6    | IPW60R160C6    |                      |                   |
| 190                      | IPP60R190C6 |                  | IPI60R190C6       | IPB60R190C6       | IPA60R190C6    | IPW60R190C6    |                      |                   |
| 280                      | IPP60R280C6 |                  | IPI60R280C6       | IPB60R280C6       | IPA60R280C6    | IPW60R280C6    |                      |                   |
| 380                      | IPP60R380C6 |                  | IPI60R380C6       | IPB60R380C6       | IPA60R380C6    |                | IPD60R380C6          |                   |
| 520                      | IPP60R520C6 |                  |                   |                   | IPA60R520C6    |                | IPD60R520C6          |                   |
| 600                      | IPP60R600C6 | IPU60R600C6      |                   | IPB60R600C6       | IPA60R600C6    |                | IPD60R600C6          |                   |
| 950                      | IPP60R950C6 | IPU60R950C6      |                   | IPB60R950C6       | IPA60R950C6    |                | IPD60R950C6          |                   |
| 1400                     | IPP60R1K4C6 | IPU60R1K4C6      |                   |                   |                |                | IPD60R1K4C6          |                   |
| 1500                     |             |                  |                   |                   |                |                |                      | IPL60R1K5C6S      |
| 2000                     |             | IPU60R2K0C6      |                   |                   |                |                | IPD60R2K0C6          |                   |
| 2100                     |             |                  |                   |                   |                |                |                      | IPL60R2K1C6S      |
| 3300                     |             |                  |                   |                   |                |                | IPD60R3K3C6          |                   |

| 600 V                    | CoolMOS™ E  | ACTIVE & PREFERRI | ED                |                | Server      |                  | Solar Lighting |
|--------------------------|-------------|-------------------|-------------------|----------------|-------------|------------------|----------------|
| $R_{DS(on)}$ $[m\Omega]$ | TO-220      | TO-262<br>(I²PAK) | TO-263<br>(D²PAK) | TO-220 FullPAK | TO-247      | TO-252<br>(DPAK) | ThinPAK 8x8    |
| 190                      | IPP60R190E6 |                   |                   | IPA60R190E6    | IPW60R190E6 |                  |                |
| 280                      | IPP60R280E6 |                   |                   | IPA60R280E6    | IPW60R280E6 |                  |                |
| 380                      | IPP60R380E6 |                   |                   | IPA60R380E6    |             | IPD60R380E6      |                |
| 450                      | IPP60R450E6 |                   |                   | IPA60R450E6    |             | IPD60R450E6      |                |
| 520                      | IPP60R520E6 |                   |                   | IPA60R520E6    |             | IPD60R520E6      |                |
| 600                      | IPP60R600E6 |                   |                   | IPA60R600E6    |             | IPD60R600E6      |                |
| 750                      | IPP60R750E6 |                   |                   | IPA60R750E6    |             | IPD60R750E6      |                |

| 600 V                                                         | CoolMOS™   | C3 ACTIVE        |                             |                   |                   | Adapter 1 1    | Lighting Solar Solar | 551VVI TOLOGO    |
|---------------------------------------------------------------|------------|------------------|-----------------------------|-------------------|-------------------|----------------|----------------------|------------------|
| $\begin{array}{c} R_{\text{DS(on)}} \\ [m\Omega] \end{array}$ | TO-220     | TO-251<br>(IPAK) | TO-251<br>(IPAK Short Lead) | TO-262<br>(I²PAK) | TO-263<br>(D²PAK) | TO-220 FullPAK | TO-247               | TO-252<br>(DPAK) |
| 70                                                            |            |                  |                             |                   |                   |                | SPW47N60C3           |                  |
| 100                                                           |            |                  |                             |                   |                   |                | SPW35N60C3           |                  |
| 160                                                           | SPP24N60C3 |                  |                             |                   |                   |                | SPW24N60C3           |                  |
| 190                                                           | SPP20N60C3 |                  |                             | SPI20N60C3        | SPB20N60C3        | SPA20N60C3     | SPW20N60C3           |                  |
| 280                                                           | SPP15N60C3 |                  |                             |                   |                   | SPA15N60C3     | SPW15N60C3           |                  |
| 380                                                           | SPP11N60C3 |                  |                             | SPI11N60C3        | SPB11N60C3        | SPA11N60C3     | SPW11N60C3           |                  |
| 600                                                           | SPP07N60C3 | SPU07N60C3       |                             | SPI07N60C3        | SPB07N60C3        | SPA07N60C3     |                      | SPD07N60C3       |
| 750                                                           | SPP06N60C3 |                  |                             |                   |                   | SPA06N60C3     |                      | SPD06N60C3       |
| 950                                                           | SPP04N60C3 | SPU04N60C3       |                             |                   | SPB04N60C3        | SPA04N60C3     |                      | SPD04N60C3       |
| 1400                                                          | SPP03N60C3 | SPU03N60C3       | SPS03N60C3                  |                   |                   | SPA03N60C3     |                      | SPD03N60C3       |
| 3000                                                          | SPP02N60C3 | SPU02N60C3       | SPS02N60C3                  |                   |                   |                |                      |                  |
| 6000                                                          |            | SPU01N60C3       |                             |                   |                   |                |                      |                  |

www.infineon.com/coolmos-600v www.infineon.com/c6e6 www.infineon.com/c3

Adapter Lighting Solar Consumer Server Telecom

#### 600 V CoolMOS™ CP ACTIVE TO-220 TO-220 FullPAK TO-247 TO-252 TO-262 ThinPAK 8x8 $R_{\scriptscriptstyle DS(on)} \\ [m\Omega]$ (DPAK) (I<sup>2</sup>PAK) (D<sup>2</sup>PAK) IPW60R045CP 45 IPW60R075CP 75 IPW60R099CP IPI60R099CP IPB60R099CP IPP60R099CP 99 IPI60R125CP IPB60R125CP IPP60R125CP IPA60R125CP IPW60R125CP 125 IPP60R165CP IPA60R165CP IPW60R165CP IPI60R165CP IPB60R165CP 165 IPP60R199CP IPA60R199CP IPW60R199CP IPI60R199CP IPB60R199CP IPL60R199CP 199 IPP60R250CP IPA60R250CP 250 IPP60R299CP IPA60R299CP IPW60R299CP IPI60R299CP IPB60R299CP IPL60R299CP 299 IPP60R385CP IPA60R385CP IPD60R385CP IPI60R385CP IPB60R385CP IPL60R385CP 385

| 500 V                    | CoolMOS™    | CE ACTIVE & PRI | EFERRED     |                  |                  |                             |             |                               |
|--------------------------|-------------|-----------------|-------------|------------------|------------------|-----------------------------|-------------|-------------------------------|
| $R_{DS(on)}$ $[m\Omega]$ | TO-220      | TO-220 FullPAK  | TO-247      | TO-252<br>(DPAK) | TO-251<br>(IPAK) | TO-251<br>(IPAK Short Lead) | SOT-223     | TO-200 FullPAK<br>Narrow Lead |
| 190                      | IPP50R190CE | IPA50R190CE     | IPW50R190CE |                  |                  |                             |             |                               |
| 280                      | IPP50R280CE | IPA50R280CE     | IPW50R280CE | IPD50R280CE      |                  |                             |             |                               |
| 380                      | IPP50R380CE | IPA50R380CE     |             | IPD50R380CE      |                  |                             |             |                               |
| 500                      | IPP50R500CE | IPA50R500CE     |             | IPD50R500CE      |                  |                             |             | IPAN50R500CE                  |
| 650                      |             | IPA50R650CE     |             | IPD50R650CE      |                  |                             | IPN50R650CE |                               |
| 800                      |             | IPA50R800CE     |             | IPD50R800CE      |                  |                             | IPN50R800CE |                               |
| 950                      |             | IPA50R950CE     |             | IPD50R950CE      | IPU50R950CE      |                             | IPN50R950CE |                               |
| 1400                     |             |                 |             | IPD50R1K4CE      | IPU50R1K4CE      |                             | IPN50R1K4CE |                               |
| 2000                     |             |                 |             | IPD50R2K0CE      | IPU50R2K0CE      |                             | IPN50R2K0CE |                               |
| 3000                     |             |                 |             | IPD50R3K0CE      | IPU50R3K0CE      |                             | IPN50R3K0CE |                               |

| 500 V                    | CoolMOS™ C3 | ACTIVE            |                   |                | -\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\phi}\)-\(\frac{1}{\ |                  |
|--------------------------|-------------|-------------------|-------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| $R_{DS(on)}$ $[m\Omega]$ | TO-220      | TO-262<br>(I²PAK) | TO-263<br>(D²PAK) | TO-220 FullPAK | TO-247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TO-252<br>(DPAK) |
| 70                       |             |                   |                   |                | SPW52N50C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |
| 110                      |             |                   |                   |                | SPW32N50C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |
| 190                      | SPP21N50C3  | SPI21N50C3        | SPB21N50C3        | SPA21N50C3     | SPW21N50C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |
| 280                      | SPP16N50C3  |                   | SPB16N50C3        | SPA16N50C3     | SPW16N50C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |
| 380                      | SPP12N50C3  | SPI12N50C3        | SPB12N50C3        | SPA12N50C3     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
| 600                      | SPP08N50C3  | SPI08N50C3        |                   | SPA08N50C3     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SPD08N50C3       |
| 950                      | SPP04N50C3  |                   | SPB04N50C3        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SPD04N50C3       |
| 1400                     |             |                   |                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SPD03N50C3       |
| 3000                     |             |                   |                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SPD02N50C3       |

| 500 V                                                                     | CoolMOS™ C  | P ACTIVE       |             |                  |                   |                   |                             |  |
|---------------------------------------------------------------------------|-------------|----------------|-------------|------------------|-------------------|-------------------|-----------------------------|--|
| $\begin{array}{c} R_{\scriptscriptstyle DS(on)} \\ [m\Omega] \end{array}$ | TO-220      | TO-220 FullPAK | TO-247      | TO-252<br>(DPAK) | TO-262<br>(I²PAK) | TO-263<br>(D²PAK) | TO-251<br>(IPAK Short Lead) |  |
| 140                                                                       | IPP50R140CP | IPA50R140CP    | IPW50R140CP |                  | IPI50R140CP       | IPB50R140CP       |                             |  |
| 199                                                                       | IPP50R199CP | IPA50R199CP    | IPW50R199CP |                  | IPI50R199CP       | IPB50R199CP       |                             |  |
| 250                                                                       | IPP50R250CP | IPA50R250CP    | IPW50R250CP |                  | IPI50R250CP       | IPB50R250CP       |                             |  |
| 299                                                                       | IPP50R299CP | IPA50R299CP    | IPW50R299CP |                  | IPI50R299CP       | IPB50R299CP       |                             |  |
| 350                                                                       | IPP50R350CP | IPA50R350CP    | IPW50R350CP |                  | IPI50R350CP       |                   |                             |  |
| 399                                                                       | IPP50R399CP | IPA50R399CP    | IPW50R399CP | IPD50R399CP      | IPI50R399CP       |                   |                             |  |
| 520                                                                       | IPP50R520CP | IPA50R520CP    |             | IPD50R520CP      |                   |                   | IPS50R520CP                 |  |

www.infineon.com/coolmos-600V www.infineon.com/coolmos-500V www.infineon.com/500v-ce

# CoolMOS™ automotive

| 650 V Coo     | lMOS™ CFD                                                          | A ACTIVE & PREFER                                  | RRED                        |                             |                             | Autometive                       | DC-AC Lighting |
|---------------|--------------------------------------------------------------------|----------------------------------------------------|-----------------------------|-----------------------------|-----------------------------|----------------------------------|----------------|
| Product type  | $R_{DS(on)}$ @ $T_J = 25$ °C $V_{GS} = 10 \text{ V}$ [m $\Omega$ ] | I <sub>D,max.</sub> @ T <sub>J</sub> = 25°C<br>[A] | I <sub>D_puls,max</sub> [A] | V <sub>GS(th),min-max</sub> | Q <sub>G,typ.</sub><br>[nC] | R <sub>th,JC,max.</sub><br>[K/W] | Package        |
| IPD65R420CFDA | 420                                                                | 8.7                                                | 27                          | 3.54.5                      | 32                          | 1.5                              | TO-252         |
| IPD65R660CFDA | 660                                                                | 6                                                  | 17                          | 3.54.5                      | 20                          | 2                                | TO-252         |
| IPB65R110CFDA | 110                                                                | 31.2                                               | 99.6                        | 3.54.5                      | 11                          | 0.45                             | TO-263         |
| IPB65R150CFDA | 150                                                                | 22.4                                               | 72                          | 3.54.5                      | 86                          | 0.64                             | TO-263         |
| IPB65R190CFDA | 190                                                                | 17.5                                               | 57.2                        | 3.54.5                      | 68                          | 0.83                             | TO-263         |
| IPB65R310CFDA | 310                                                                | 11.4                                               | 34.4                        | 3.54.5                      | 41                          | 1.2                              | TO-263         |
| IPB65R660CFDA | 660                                                                | 6                                                  | 17                          | 3.54.5                      | 20                          | 2                                | TO-263         |
| IPP65R110CFDA | 110                                                                | 31.2                                               | 99.6                        | 3.54.5                      | 11                          | 0.45                             | TO-220         |
| IPP65R150CFDA | 150                                                                | 22.4                                               | 72                          | 3.54.5                      | 86                          | 0.64                             | TO-220         |
| IPP65R190CFDA | 190                                                                | 17.5                                               | 57.2                        | 3.54.5                      | 68                          | 0.83                             | TO-220         |
| IPP65R310CFDA | 310                                                                | 11.4                                               | 34.4                        | 3.54.5                      | 41                          | 1.2                              | TO-220         |
| IPP65R660CFDA | 660                                                                | 6                                                  | 17                          | 3.54.5                      | 20                          | 2                                | TO-220         |
| IPW65R048CFDA | 48                                                                 | 63.3                                               | 228                         | 3.54.5                      | 27                          | 0.25                             | TO-247         |
| IPW65R080CFDA | 80                                                                 | 43.3                                               | 127                         | 3.54.5                      | 16                          | 0.32                             | TO-247         |
| IPW65R110CFDA | 110                                                                | 31.2                                               | 99.6                        | 3.54.5                      | 11                          | 0.45                             | TO-247         |
| IPW65R150CFDA | 150                                                                | 22.4                                               | 72                          | 3.54.5                      | 86                          | 0.64                             | TO-247         |
| IPW65R190CFDA | 190                                                                | 17.5                                               | 57.2                        | 3.54.5                      | 68                          | 0.83                             | TO-247         |

| 600 V Cool   | lMOS™ CPA                                                              | ACTIVE & PREFERRE                                  | D                              |                                    |                             |                                 | Mobility Dc.AC Lighting |
|--------------|------------------------------------------------------------------------|----------------------------------------------------|--------------------------------|------------------------------------|-----------------------------|---------------------------------|-------------------------|
| Product type | $R_{DS(on)}$ @ $T_J = 25$ °C<br>$V_{GS} = 10 \text{ V}$<br>$[m\Omega]$ | I <sub>D,max.</sub> @ T <sub>J</sub> = 25°C<br>[A] | I <sub>D_puls,max</sub><br>[A] | V <sub>GS(th),min-max</sub><br>[V] | Q <sub>G,typ.</sub><br>[nC] | R <sub>thJC,max.</sub><br>[K/W] | Package                 |
| IPB60R099CPA | 105                                                                    | 31                                                 | 93                             | -20 20                             | 60                          | 0.5                             | TO-263                  |
| IPB60R199CPA | 199                                                                    | 16                                                 | 51                             | -20 20                             | 32                          | 0.9                             | TO-263                  |
| IPB60R299CPA | 299                                                                    | 11                                                 | 34                             | -20 20                             | 22                          | 1.3                             | TO-263                  |
| IPP60R099CPA | 105                                                                    | 31                                                 | 93                             | -20 20                             | 60                          | 0.5                             | TO-220                  |
| IPW60R045CPA | 45                                                                     | 60                                                 | 230                            | -20 20                             | 150                         | 0.29                            | TO-247                  |
| IPW60R075CPA | 75                                                                     | 39                                                 | 130                            | -20 20                             | 87                          | 0.4                             | TO-247                  |
| IPW60R099CPA | 105                                                                    | 31                                                 | 93                             | -20 20                             | 60                          | 0.5                             | TO-247                  |
| IPI60R099CPA | 105                                                                    | 31                                                 | 93                             | -20 20                             | 60                          | 0.5                             | TO-262                  |

www.infineon.com/coolmos-600v www.infineon.com/coolmos-650v www.infineon.com/coolmos-automotive www.infineon.com/cfda



#### SOT-223

|             |        |      |       |        |         | $R_{\scriptscriptstyle DS(on)}$ | [mΩ]    |         |         |                |           |
|-------------|--------|------|-------|--------|---------|---------------------------------|---------|---------|---------|----------------|-----------|
| Voltage [V] | Series | 0-59 | 60-89 | 90-149 | 150-199 | 200-299                         | 300-400 | 401-600 | 601-899 | 900-1500       | >1500     |
| 500         | CE     |      |       |        |         |                                 |         |         | 650/800 | 950/1400       | 2000/3000 |
| 600         | P7     |      |       |        |         |                                 | 360     | 600     |         |                |           |
| 600         | CE     |      |       |        |         |                                 |         |         |         | 1000/1500      | 2100/3400 |
| 650         | CE     |      |       |        |         |                                 |         |         |         | 1500           |           |
| 700         | P7     |      |       |        |         |                                 | 360     | 600     |         | 900/1400       |           |
| 700         | CE     |      |       |        |         |                                 |         |         |         | 1000/1500/2100 |           |
| 800         | P7     |      |       |        |         |                                 |         |         |         | 900/1400       | 2000/4500 |



#### TO-247

| 10-241      |            |       |       |        |         |              |         |         |         |           | . 0   |
|-------------|------------|-------|-------|--------|---------|--------------|---------|---------|---------|-----------|-------|
|             |            |       |       |        |         | $R_{DS(on)}$ | [mΩ]    |         |         |           |       |
| Voltage [V] | Series     | 0-59  | 60-89 | 90-149 | 150-199 | 200-299      | 300-400 | 401-600 | 601-899 | 900-1500  | >1500 |
|             | CE         |       |       |        | 190     | 280          |         |         |         |           |       |
| 500         | C3         |       | 70    | 110    | 190     | 280          |         |         |         |           |       |
|             | СР         |       |       | 140    | 199     | 250/299      | 350/399 |         |         |           |       |
|             | P7         | 37    | 60/80 | 99/120 | 180     |              |         |         |         |           |       |
|             | C6         | 41    | 70    | 99/125 | 160/190 | 280          |         |         |         |           |       |
|             | <b>C</b> 7 | 17/40 | 60    | 99/120 | 180     |              |         |         |         |           |       |
| 600         | E6         |       |       |        | 190     | 280          |         |         |         |           |       |
|             | P6         | 41    | 70    | 99/125 | 160/190 | 230/280      | 330     |         |         |           |       |
|             | C3         |       | 70    | 100    | 160/190 | 280          | 380     |         |         |           |       |
|             | СР         | 45    | 75    | 99/125 | 165/199 | 250/299      |         |         |         |           |       |
|             | C6         | 37    | 70    | 99     | 190     | 280          |         |         |         |           |       |
|             | C7         | 19/45 | 65    | 95/125 | 190     |              |         |         |         |           |       |
| 650         | CFD2       | 41    | 80    | 110    | 150/190 |              | 310     | 420     | 660     |           |       |
|             | E6         |       |       |        | 190     | 280          |         |         |         |           |       |
|             | C3         |       | 70    |        |         |              |         |         |         |           |       |
| 800         | P7         |       |       |        |         | 280          | 360     |         |         |           |       |
|             | C3         |       | 85    |        |         | 290          |         | 450     |         |           |       |
| 900         | С3         |       |       | 120    |         |              | 340     | 500     | 800     | 1000/1200 |       |



#### TO-247 4pin

|             |            |       |       |        |         | $R_{DS(on)}$ | [mΩ]    |         |         |          |       |
|-------------|------------|-------|-------|--------|---------|--------------|---------|---------|---------|----------|-------|
| Voltage [V] | Series     | 0-59  | 60-89 | 90-149 | 150-199 | 200-299      | 300-400 | 401-600 | 601-899 | 900-1500 | >1500 |
|             | P7         | 37    | 60/80 | 99/120 | 180     |              |         |         |         |          |       |
| 600         | <b>C</b> 7 | 17/40 | 60    | 99     |         |              |         |         |         |          |       |
|             | P6         | 41    | 70    | 99/125 |         |              |         |         |         |          |       |
| 650         | <b>C</b> 7 | 19/45 | 65    | 95     |         |              |         |         |         |          |       |



#### IPAK

|             |        |      |       |        |         |                     |         |         |         |               | W                      |
|-------------|--------|------|-------|--------|---------|---------------------|---------|---------|---------|---------------|------------------------|
|             |        |      |       |        |         | R <sub>DS(on)</sub> | [mΩ]    |         |         |               |                        |
| Voltage [V] | Series | 0-59 | 60-89 | 90-149 | 150-199 | 200-299             | 300-400 | 401-600 | 601-899 | 900-1500      | >1500                  |
| 500         | СР     |      |       |        |         |                     |         |         |         | 950/1400      | 2000/3000              |
|             | C6     |      |       |        |         |                     |         | 600     |         | 950/1400      | 2000                   |
| 600         | CE     |      |       |        |         |                     |         |         |         | 1000/1500     | 2100                   |
|             | C3     |      |       |        |         |                     |         | 600     |         | 950/1400      | 3000/6000              |
| 800         | P7     |      |       |        |         |                     |         | 600     | 750     | 900/1200/1400 | 2000/2400<br>3300/4500 |
|             | CE     |      |       |        |         |                     |         |         |         | 1000/1400     | 2800                   |



#### **IPAK Short Lead**

|             |            |      |       |        |         | R <sub>DS(on)</sub> | [mΩ]    |         |         |               |           |
|-------------|------------|------|-------|--------|---------|---------------------|---------|---------|---------|---------------|-----------|
| Voltage [V] | Series     | 0-59 | 60-89 | 90-149 | 150-199 | 200-299             | 300-400 | 401-600 | 601-899 | 900-1500      | >1500     |
| 500         | СР         |      |       |        | Ì       |                     |         | 520     |         |               |           |
| 600         | CE         |      |       |        |         |                     | 400     | 460     | 650/800 | 1000/1500     | 2100/3400 |
| 600         | C3         |      |       |        |         |                     |         |         |         | 1400          | 3000      |
|             | C6         |      |       |        |         |                     |         |         |         | 950/1400      |           |
| 650         | CE         |      |       |        |         |                     | 400     |         | 650     | 1000/1500     |           |
|             | <b>E</b> 6 |      |       |        |         |                     |         | 600     |         |               |           |
| 700         | P7         |      |       |        |         |                     | 360/600 |         |         | 900/1400      |           |
| 700         | CE         |      |       |        |         |                     |         | 600     |         | 950/1400      | 2000      |
| 800         | P7         |      |       |        |         |                     |         | 600     | 750     | 900/1200/1400 | 2000/2400 |



#### **IPAK Short Lead with ISO Standoff**

|             |        |      |       |        |         | $R_{DS(on)}$ | [mΩ]    |         |         |               |       |
|-------------|--------|------|-------|--------|---------|--------------|---------|---------|---------|---------------|-------|
| Voltage [V] | Series | 0-59 | 60-89 | 90-149 | 150-199 | 200-299      | 300-400 | 401-600 | 601-899 | 900-1500      | >1500 |
| 700         | P7     |      |       |        |         |              | 300     | 450/600 | 750     | 900/1200/1400 | 2000  |
| 700         | CE     |      |       |        |         |              |         | 600     |         | 950/1400      | 2000  |



#### DPAK

|             |            |      |       |        |         |                     |         |             |         |               | 47                     |
|-------------|------------|------|-------|--------|---------|---------------------|---------|-------------|---------|---------------|------------------------|
|             |            |      |       |        |         | R <sub>DS(on)</sub> | [mΩ]    |             |         |               |                        |
| Voltage [V] | Series     | 0-59 | 60-89 | 90-149 | 150-199 | 200-299             | 300-400 | 401-600     | 601-899 | 900-1500      | >1500                  |
|             | CE         |      |       |        |         | 280                 | 380     | 500         | 650/800 | 950/1400      | 2000/3000              |
| 500         | C3         |      |       |        |         |                     |         | 600         |         | 950/1400      | 3000                   |
|             | СР         |      |       |        |         |                     | 399     | 520         |         |               |                        |
|             | P7         |      |       |        | 180     | 280                 | 360     | 600         |         |               |                        |
|             | C6         |      |       |        |         |                     | 380     | 520/600     |         | 950/1400      | 2000/3300              |
|             | C7         |      |       |        | 180     |                     |         |             |         |               |                        |
| 600         | CE         |      |       |        |         |                     | 400     | 460         | 650/800 | 1000/1500     | 2100/3400              |
| 800         | <b>E</b> 6 |      |       |        |         |                     | 380     | 450/520/600 | 750     |               |                        |
|             | P6         |      |       |        |         |                     | 380     | 600         |         |               |                        |
|             | C3         |      |       |        |         |                     |         | 600         | 750     | 950/1400      |                        |
|             | CP         |      |       |        |         |                     | 385     |             |         |               |                        |
|             | C6         |      |       |        |         | 250                 | 380     | 600         |         | 950/1400      |                        |
|             | C7         |      |       |        | 190     | 225                 |         |             |         |               |                        |
| 650         | CE         |      |       |        |         |                     | 400     |             | 650     | 1000/1500     |                        |
|             | E6         |      |       |        |         |                     | 250     | 380         | 600     |               |                        |
|             | CFD2       |      |       |        |         |                     |         | 420         | 660     | 950/1400      |                        |
| 700         | P7         |      |       |        |         |                     | 360     | 600         |         | 900/1400      |                        |
| 100         | CE         |      |       |        |         |                     |         | 600         |         | 950/1400      | 2000                   |
| 000         | P7         |      |       |        |         | 280                 | 360     | 450/600     | 750     | 900/1200/1400 | 2000/2400<br>3300/4500 |
| 800         | C3         |      |       |        |         |                     |         |             |         | 900/1300      | 2700                   |
|             | CE         |      |       |        |         |                     |         |             |         | 1000/1400     | 2800                   |
| 900         | C3         |      |       |        |         |                     |         |             |         | 1200          |                        |



#### I<sup>2</sup>PAK

|             |        |      |       |        |         | $R_{DS(on)}$ | [mΩ]    |         |         |          |       |
|-------------|--------|------|-------|--------|---------|--------------|---------|---------|---------|----------|-------|
| Voltage [V] | Series | 0-59 | 60-89 | 90-149 | 150-199 | 200-299      | 300-400 | 401-600 | 601-899 | 900-1500 | >1500 |
| 500         | C3     |      | ĺ     |        | 190     |              | 380     | 600     |         |          |       |
| 500         | СР     |      |       | 140    | 199     | 250/299      | 350/399 |         |         |          |       |
|             | C6     |      |       |        | 190     | 280          | 380     |         |         |          |       |
| 600         | C3     |      |       |        | 190     |              | 380     | 600     |         |          |       |
|             | СР     |      |       | 99/125 | 165/199 | 250/299      | 385     |         |         |          |       |
|             | C6     |      |       | 99     | 190     | 280          | 380     | 600     |         |          |       |
|             | CFD2   |      |       | 110    | 150/190 |              | 310     | 420     | 660     |          |       |
| 650         | E6     |      |       |        |         | 280          |         |         |         |          |       |
|             | C3     |      |       |        |         | 280          | 380     |         |         |          |       |
| 700         | CE     |      |       |        |         |              |         |         |         | 950      |       |
| 800         | C3     |      |       |        |         |              |         |         | 650     |          |       |
| 900         | C3     |      |       |        |         |              | 340     | 500     | 800     | 1200     |       |



#### $D^2PAK$

|             |            |      |       |        |         | R <sub>DS(on)</sub> | [mΩ]    |         |         |          |       |
|-------------|------------|------|-------|--------|---------|---------------------|---------|---------|---------|----------|-------|
| Voltage [V] | Series     | 0-59 | 60-89 | 90-149 | 150-199 | 200-299             | 300-400 | 401-600 | 601-899 | 900-1500 | >1500 |
| 500         | C3         |      |       |        | 190     | 280                 | 380     |         |         | 950      |       |
| 500         | CP         |      |       | 140    | 199     | 250/299             |         |         |         |          |       |
|             | P7         |      | 60/80 | 99/120 | 180     | 280                 | 360     |         |         |          |       |
|             | C6         |      |       | 99/125 | 160/190 | 280                 | 380     | 600     |         | 950      |       |
| 600         | <b>C</b> 7 | 40   | 60    | 99     | 120/180 |                     |         |         |         |          |       |
| 600         | P6         |      |       |        | 160/190 | 230/280             | 330/380 | 600     |         |          |       |
|             | C3         |      |       |        | 190     |                     | 380     | 600     |         | 950      |       |
|             | CP         |      |       | 99/125 | 165/199 | 250/299             | 385     |         |         |          |       |
|             | C6         |      |       | 99     | 190     | 280                 | 380     | 600     |         |          |       |
| 650         | C7         | 45   | 65    | 95/125 | 190     | 225                 |         |         |         |          |       |
| 650         | CFD2       |      |       | 110    | 150/190 |                     |         | 420     | 660     |          |       |
|             | <b>E</b> 6 |      |       |        |         | 280                 |         |         |         |          |       |
| 800         | C3         |      |       |        |         | 290                 |         |         |         |          |       |
| 900         | C3         |      |       |        |         |                     | 340     |         |         |          |       |



#### TO-220 FullPAK

|             |            |      |       |        |         | R <sub>DS(on)</sub> | [mΩ]    |             |         |               |       |
|-------------|------------|------|-------|--------|---------|---------------------|---------|-------------|---------|---------------|-------|
| Voltage [V] | Series     | 0-59 | 60-89 | 90-149 | 150-199 | 200-299             | 300-400 | 401-600     | 601-899 | 900-1500      | >1500 |
|             | CE         |      |       |        | 190     | 280                 | 380     | 500         | 650/800 | 950           |       |
| 500         | C3         |      |       |        | 190     | 280                 | 380     | 600         |         |               |       |
|             | СР         |      |       | 140    | 199     | 250/299             | 350/399 | 520         |         |               |       |
|             | P7         |      | 60/80 | 99/120 | 180     | 280                 | 360     | 600         |         |               |       |
|             | C6         |      |       | 99/125 | 160/190 | 280                 | 380     | 520/600     |         | 950           |       |
|             | C7         |      | 60    | 99/120 | 180     |                     |         |             |         |               |       |
| 600         | CE         |      |       |        |         |                     | 400     | 460         | 650/800 | 1000/1500     |       |
| 600         | E6         |      |       |        | 190     | 280                 | 380     | 450/520/600 | 750     |               |       |
|             | P6         |      |       | 99/125 | 160/190 | 230/280             | 330/380 | 600         |         |               |       |
|             | C3         |      |       |        | 190     | 280                 | 380     | 600         | 750     | 950/1400      |       |
|             | СР         |      |       | 125    | 165/199 | 250/299             | 385     |             |         |               |       |
|             | C6         |      |       | 99     | 190     | 280                 | 380     | 600         |         |               |       |
|             | <b>C</b> 7 | 45   | 65    | 95/125 | 190     | 225                 |         |             |         |               |       |
| 650         | CE         |      |       |        |         |                     | 400     |             | 650     | 1000/1500     |       |
| 650         | CFD2       |      |       | 110    | 150/190 |                     | 310     | 420         | 660     |               |       |
|             | E6         |      |       |        | 190     | 280                 | 380     | 600         |         |               |       |
|             | C3         |      |       |        | 190     | 280                 | 380     | 600         |         |               |       |
| 700         | P7         |      |       |        |         |                     | 360     | 450/600     | 750     | 900           |       |
|             | P7         |      |       |        |         | 280                 | 360     | 450/600     | 750     | 900/1200/1400 |       |
| 800         | C3         |      |       |        |         | 290                 |         | 450         | 650     | 900/1300      | 2700  |
|             | CE         |      |       |        |         |                     | 310     | 460         | 650     | 1000/1400     |       |
| 900         | C3         |      |       |        |         |                     | 340     | 500         | 800     | 1000/1200     |       |



#### TO-220 FullPAK Narrow Lead

|             |        |      | $R_{DS(on)}[m\Omega]$ |        |         |         |         |         |           |          |       |
|-------------|--------|------|-----------------------|--------|---------|---------|---------|---------|-----------|----------|-------|
| Voltage [V] | Series | 0-59 | 60-89                 | 90-149 | 150-199 | 200-299 | 300-400 | 401-600 | 601-899   | 900-1500 | >1500 |
| 500         | CE     |      |                       |        |         |         |         | 500     |           |          |       |
| 600         | CE     |      |                       |        |         |         |         |         | 650 / 800 |          |       |
| 650         | CE     |      |                       |        |         |         |         |         | 650       |          |       |
| 700         | P7     |      |                       |        |         |         | 360     | 450/600 | 750       | 900      |       |
| 800         | P7     |      |                       |        |         | 280     | 360     | 450     |           |          |       |



#### **TO-Leadless**

|             |        |       | $R_{	extstyle 	$ |         |         |         |         |         |         |          |       |  |
|-------------|--------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|---------|---------|---------|---------|----------|-------|--|
| Voltage [V] | Series | 0-59  | 60-89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 90-149  | 150-199 | 200-299 | 300-400 | 401-600 | 601-899 | 900-1500 | >1500 |  |
| 600         | G7     | 28/50 | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 102/125 | 150     |         |         |         |         |          |       |  |
| 650         | G7     | 33    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 105     | 195     |         |         |         |         |          |       |  |

\*CoolMOS™ C7 Gold (G-series)



#### TO-220

|             |            |      |       |        |         | R <sub>DS(on)</sub> | [mΩ]    |             |         |               | /     |
|-------------|------------|------|-------|--------|---------|---------------------|---------|-------------|---------|---------------|-------|
| Voltage [V] | Series     | 0-59 | 60-89 | 90-149 | 150-199 | 200-299             | 300-400 | 401-600     | 601-899 | 900-1500      | >1500 |
|             | CE         |      |       |        | 190     | 280                 | 380     | 500         |         |               |       |
| 500         | С3         |      |       |        | 190     | 280                 | 380     | 600         |         | 950           |       |
|             | СР         |      |       | 140    | 199     | 250/299             | 350/399 | 520         |         |               |       |
|             | P7         |      | 60/80 | 99/120 | 180     | 280                 | 360     | 600         |         |               |       |
|             | C6         |      | 74    | 99/125 | 160/190 | 280                 | 380     | 520/600     |         | 950/1400      |       |
|             | <b>C</b> 7 | 40   | 60    | 99/120 | 180     |                     |         |             |         |               |       |
| 600         | E6         |      |       |        | 190     | 280                 | 380     | 450/520/600 | 750     |               |       |
|             | P6         |      |       | 99/125 | 160/190 | 230/280             | 330/380 | 600         |         |               |       |
|             | C3         |      |       |        | 160/190 | 280                 | 380     | 600         | 750     | 950/1400      | 3000  |
|             | СР         |      |       | 99/125 | 165/199 | 250/299             | 385     |             |         |               |       |
|             | C6         |      | 74    | 99     | 190     | 280                 | 380     | 600         |         |               |       |
|             | <b>C</b> 7 | 45   | 65    | 95/125 | 190     | 225                 |         |             |         |               |       |
| 650         | CFD2       |      |       | 110    | 150/190 |                     | 310     | 420         | 660     |               |       |
|             | <b>E</b> 6 |      |       |        | 190     | 280                 | 380     | 600         |         |               |       |
|             | C3         |      |       |        | 190     |                     | 380     | 600         |         |               |       |
| 800         | P7         |      |       |        |         | 280                 | 360     | 450/600     | 750     | 900/1200/1400 |       |
| 800         | С3         |      |       |        |         | 290                 |         | 450         | 650     | 900/1300      | 2700  |
| 900         | C3         |      |       |        |         |                     | 340     | 500         | 800     | 1000/1200     |       |



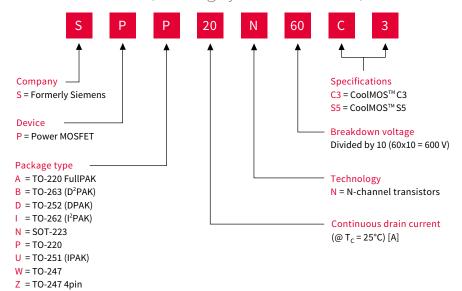
#### TO-220 FullPAK Wide Creepage

|             |        |      | $R_{DS(on)}\left[m\Omega ight]$ |        |         |         |         |         |         |          |       |
|-------------|--------|------|---------------------------------|--------|---------|---------|---------|---------|---------|----------|-------|
| Voltage [V] | Series | 0-59 | 60-89                           | 90-149 | 150-199 | 200-299 | 300-400 | 401-600 | 601-899 | 900-1500 | >1500 |
| 600         | P7     |      |                                 |        | 180     | 280     | 360     | 600     |         |          |       |
| 600         | CE     |      |                                 |        | 190     | 280     | 380     | 600     |         |          |       |
| 700         | CE     |      |                                 |        |         |         |         | 600     |         | 950      |       |

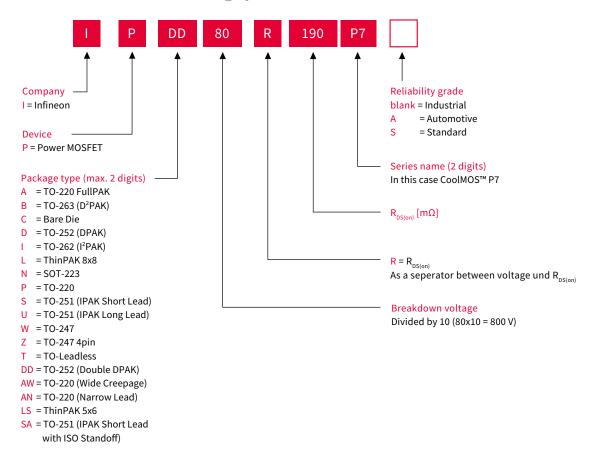


#### ThinPAK 5x6

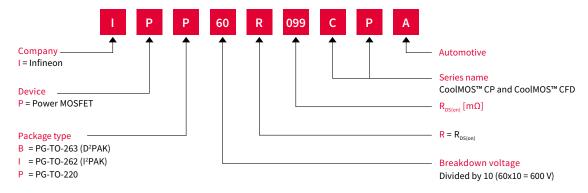
|             |        |      | $R_{DS(on)}[m\Omega]$ |        |         |         |         |         |         |           |       |
|-------------|--------|------|-----------------------|--------|---------|---------|---------|---------|---------|-----------|-------|
| Voltage [V] | Series | 0-59 | 60-89                 | 90-149 | 150-199 | 200-299 | 300-400 | 401-600 | 601-899 | 900-1500  | >1500 |
| 600         | C6     |      |                       |        |         |         |         |         |         | 1500      | 2100  |
| 600         | P6     |      |                       |        |         |         | 360     |         | 650     |           |       |
| 650         | C6     |      |                       |        |         |         |         |         | 650     | 1000/1500 |       |
| 700         | CE     |      |                       |        |         |         |         |         |         |           | 2100  |




#### ThinPAK 8x8


|             |            |      | $R_{DS(on)}\left[m\Omega ight]$ |         |         |         |         |         |         |          |       |
|-------------|------------|------|---------------------------------|---------|---------|---------|---------|---------|---------|----------|-------|
| Voltage [V] | Series     | 0-59 | 60-89                           | 90-149  | 150-199 | 200-299 | 300-400 | 401-600 | 601-899 | 900-1500 | >1500 |
|             | P7         |      | 65/85                           | 105/125 | 185     | 285     | 365     |         |         |          |       |
| 600         | <b>C</b> 7 |      | 65                              | 104/125 | 185     |         |         |         |         |          |       |
|             | P6         |      |                                 |         | 180     | 210/255 |         |         |         |          |       |
|             | СР         |      |                                 |         | 199     | 299     | 385     |         |         |          |       |
|             | <b>C</b> 7 |      | 70                              | 99/130  | 195     | 230     |         |         |         |          |       |
| 650         | CFD2       |      |                                 |         | 165     | 210     | 340     | 460     | 725     |          |       |
|             | E6         |      |                                 |         | 190     |         | 310     | 420     | 660     |          |       |

# Naming system


Power MOSFETs (naming system until 2005)



Power MOSFETs (naming system from 2005 onwards)



#### Automotive MOSFETs





# Infineon support for high voltage MOSFETs

## Useful links and helpful information

#### Further information, datasheets and documents

www.infineon.com/coolmos-500V www.infineon.com/coolmos-600V www.infineon.com/coolmos-650V-700V www.infineon.com/coolmos-latest-packages www.infineon.com/coolmos-800V www.infineon.com/coolmos-900V www.infineon.com/coolmos-automotive www.infineon.com/coolmos-family-selection

#### **Evaluationboards and simulation models**

www.infineon.com/coolmos-boards www.infineon.com/powermosfet-simulationmodels

#### **Videos**

www.infineon.com/mediacenter













## Silicon Carbide

#### Improve efficiency and solution costs

Silicon Carbide (SiC) devices belong to the so-called wide band gap semiconductor group, which offers a number of attractive characteristics for high voltage power semiconductors when compared to commonly used Silicon (Si). In particular, the much higher breakdown field strength and thermal conductivity of Silicon Carbide allow creating devices, which by far outperform the corresponding Si ones, and enable efficiency levels unattainable otherwise. The Infineon portfolio of SiC devices covers 600 V and 650 V to 1200 V Schottky diodes, in 2016 the revolutionary CoolSiC™ MOSFET was announced.

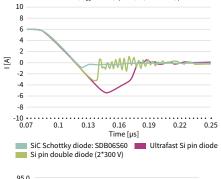
#### CoolSiC™ Silicon Carbide Schottky diodes

The differences in material properties between Silicon Carbide and Silicon limit the fabrication of practical Silicon unipolar diodes (Schottky diodes) to a range up to 100 V–150 V, with relatively high on-state resistance and leakage current. In SiC material Schottky diodes can reach a much higher breakdown voltage. Infineon offers products up to 1200 V in discrete packages and up to 1700 V in modules.

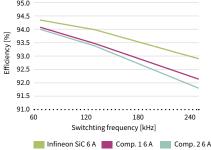
#### **Features**

- No reverse recovery charge
- Purely capacitive switching
- High operating temperature (T<sub>i.max</sub> 175°C)

#### **Advantages**


- Low turn-off losses
- Reduction of CoolMOS™ or IGBT turn-on loss
- Switching losses independent from load current, switching speed and temperature

#### **Benefits**


- System efficiency improvement compared to Si diodes
- Reduced cooling requirements
- Enabling higher frequency/increased power density
- Higher system reliability due to lower operating temperature
- Reduced EMI

#### **Applications**

- Server
- Telecom
- Solar
- **>** UPS
- Energy storage, chargers
- PC power
- Motor drives
- Lighting



T=125°C, V<sub>cc</sub>= 400 V, I<sub>c</sub>=6 A, di/dt=200 A/us



#### Reverse recovery charge of SiC Schottky diodes versus Si pin diodes

The majority carrier characteristics of the device imply no reverse recovery charge and the only contribution to the switching losses comes from the tiny displacement charge of capacitive nature. In the same voltage range, Silicon devices show a bipolar component resulting in much higher switching losses. The graph shows the comparison between various 600 V devices.

Improved system efficiency (PFC in CCM mode operation, full load, low line) The fast switching characteristics of the SiC diodes provide clear efficiency improvements at system level. The performance gap between SiC and highend Silicon devices increases with the operating frequency.

www.infineon.com/sic

Infineon is the world's first SiC discrete power supplier. Long market presence and experience enable Infineon to deliver highly reliable, industry-leading SiC performance. With over 10 years pioneering experience in developing and manufacturing SiC diodes, Infineon's latest CoolSiC™ Schottky diodes generation 5 family sets benchmark in quality, efficiency and reliability.

## CoolSiC™ Schottky diodes 650 V

#### CoolSiC™ Schottky diodes 650 V G6

The new CoolSiC™ Schottky diode 650 V G6 product family is built over the strong characteristics of the previous generation G5, fully leveraging technology and process innovation to propose the best efficiency and price/performance products to date.

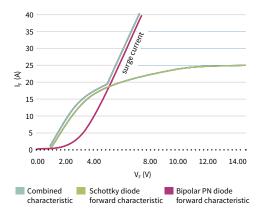
The established CoolSiC™ Schottky diodes G5 product family has been optimized regarding all key aspects including junction structure, substrate and die attach. It represents a well-balanced product family which offers state of the art performance and high surge current capability at competitive cost level.

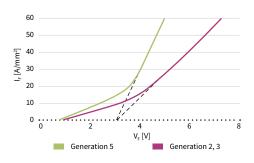
#### Innovation: optimized junction, substrate and die attach

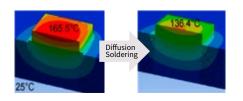
Infineon SiC Schottky diode generation 5 is optimized with regard to all key aspects relevant for high power and high efficiency SMPS applications.



#### Junction: merged PN structure


On the junction level, it has an optimized merged PN structure. Compared to competitors, Infineon's SiC diode has additional P doped area, together with the N doped EPI layer, it forms a PN junction diode. Thus it is a combination of Schottky diode and PN Junction diode. Under normal conditions it works like a standard Schottky diode. Under abnormal conditions such as lighting, AC line drop-out, it works like a PN Junction diode. At high current level, the PN Junction diode has significantly lower  $V_{\rm F}$  than Schottky diode, this leads to less power dissipation, thus significantly improving the surge current capability.


#### Substrate: thin wafer technology


On the substrate level, Infineon introduced thin wafer technology, at the later stage of our SiC diode production thin wafer process is used to reduce the wafer thickness by about 2/3, this significantly reduces the substrate resistance contribution thus improve both  $V_{\rm F}$  and thermal performance.

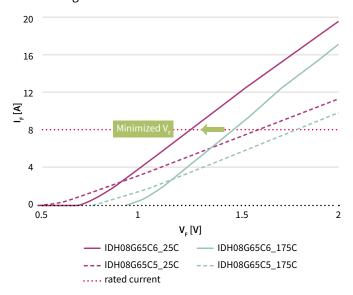
#### Die attach: diffusion soldering

On the backside, package level diffusion soldering is introduced, which significantly improves the thermal path between lead frame and the diode, enhancing the thermal performance. With the same chip size and power dissipation, the junction temperature is reduced by 30°C.



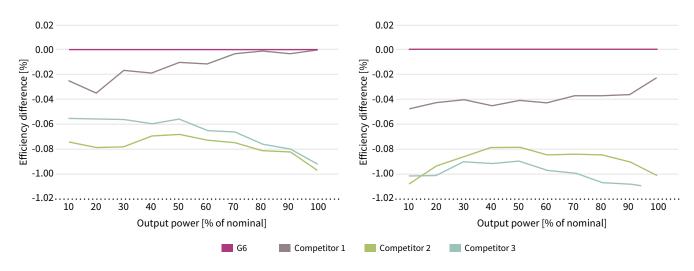





 $R_{thJC}$ =2.0 K/W

 $R_{thJC}$ =1.5 K/W

www.infineon.com/sic


Backside & packagin

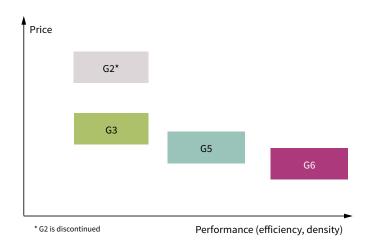
On the top of these technologies, the CoolSiC<sup>™</sup> Schottky diodes G6 product family introduces a novel and proprietary Schottky metal system. This contributes to lower the VF (forward voltage) to levels difficult to match by competition, determining a measurable decrease of the conduction losses.



Infineon's CoolSiC<sup>TM</sup> Schottky diodes offer the optimum efficiency and ruggedness. Lower  $V_F$  means lower conduction loss and lower  $Q_c$  means lower switching loss.  $Q_c \times V_F$  is the figure of merit for efficiency and a comparison indicates that the latest generation 6 boasts the lowest  $Q_c \times V_F$  on the market. Infineon's CoolSiC<sup>TM</sup> Schottky diodes offer a surge current robustness far better than the one offered by the most efficient products. Thus, under abnormal conditions this surge current capability offers excellent device robustness.

#### Efficiency comparison




In terms of efficiency, the 8 A G6 device has been tested in CCM PFC. The maximum output power is 3.5 kW. The left figure shows the relative efficiency at 65 KHz, while the right figure shows the relative efficiency at 130 kHz. This shows that Infineon's CoolSiC™ Schottky diode G6 delivers better efficiency over the full load range, keeping this advantage at 130 kHz, therefore meeting the needs of those designers who want to increase the switching frequencies in their designs to attain more power density.

www.infineon.com/coolsic-g6

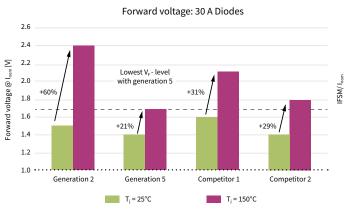


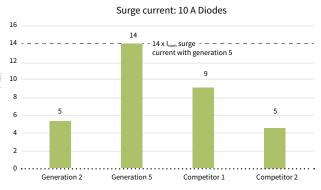
#### The best price performance

CoolSiC™ Schottky diodes G6 are the outcome of Infineon's continuous technological and process improvements, enabling the design and development of SiC, getting more price competitive and increasing performance across generations. As a result, G6 is Infineon's best price/performance CoolSiC™ Schottky diode generation, offering the best efficiency per dollar. In addition, Infineon offers the peace of mind of dealing with an industry leader. Customers can leverage the Infineon acknowledged quality and proven supply chain reliability. They can benefit from "one-stop-shop" advantages and maximize system performance, combining CoolSiC™ Schottky diodes with the superjunction MOSFETs of the CoolMOS™ 7 family such as 600 V C7, 650 V C7, 650 V C7, 650 V G7 and 600 V P7.

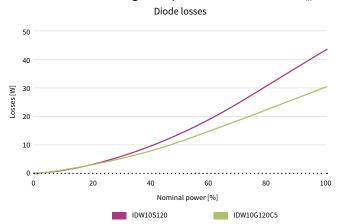


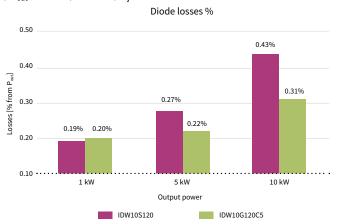
#### CoolSiC<sup>™</sup> Schottky diodes 1200 V G5: best price/performance


By using hybrid Si IGBT/SiC diode sets, designers of industrial applications will gain flexibility for system optimization compared to Silicon only based solution. System improvements by higher efficiency, higher output power or higher switching frequency are enabled by SiC diodes. In the new CoolSiC™ Schottky diodes 1200 V G5 technology, the zero reverse recovery charge comes with a reduction of forward voltage and extended surge current capability compared to previous generation. The ultra-low forward voltage, even at high operating temperature, results in 30 percent static loss gain versus previous generation during full-load condition. Implementing generation 5 CoolSiC™ diodes in combination with Infineon's 1200 V HighSpeed 3 IGBT, designers can achieve outstanding system level performance and reliability.


#### Key features generation 5 versus generation 2

- Low forward voltage (V<sub>F</sub>)
- Mild positive temperature dependency of V<sub>F</sub>
- Extended surge current capability up to 14 times nominal current
- > Up to 40 A rated diode


# Key benefits 1200 V generation 5 versus 1200 V generation 2


- Up to 30% lower static losses
- Reduced cooling requirements through lower diode losses and lower case temperatures
- > High system reliability by extended surge current





#### Front-end booster stage of a photovoltaic inverter: V<sub>in</sub> = 500 V, V<sub>out</sub> = 800 V, 20 kHz, T<sub>i</sub> = 125°C





#### Infineon system solution examples for booster stage with 1200 V components\*

| Inverter function | SiC diode    | IGBT        | IGBT driver  | Microcontroller |
|-------------------|--------------|-------------|--------------|-----------------|
| Boost             | IDH08G120C5  | IKW15N120H3 | 1ED020l12-F2 | XMC400          |
| Boost             | IDH10G120C5  | IKW25N120H3 | 1ED020I12-F2 | XMC400          |
| Boost             | IDW10G120C5B | IKW40N120H3 | 1ED020I12-F2 | XMC400          |

#### www.infineon.com/sic

 $<sup>^{\</sup>star}\text{As}$  rule of thumb for boost design: 3 kW for a 10 A SiC diode or 30 A Si diode



# CoolSiC™ Silicon Carbide MOSFET – Revolution to rely on

Infineon's CoolSiC™ technology enables radical new product designs

Silicon Carbide (SiC) opens up new degrees of freedom for designers to harness never before seen levels of efficiency and system flexibility. In comparison to traditional silicon (Si) based switches like IGBTs and MOSFETs, the SiC MOSFET offers a series of advantages. These include, the lowest gate charge and device capacitance levels seen in 1200 V switches, no reverse recovery losses of the internal commutation proof body diode, temperature independent low switching losses, and threshold-free on-state characteristics. Based on volume experience and compatibility know-how, Infineon introduces the revolutionary SiC technology which enables radical new product designs. CoolSiC™ MOSFET first products are targeted for photovoltaic inverters, battery charging and energy storage.

# Unique SiC MOSFET characteristics over traditional 1200 V silicon devices

- > Low Q<sub>G</sub> and intrinsic capacitances
- > Zero reverse recovery losses of body diode
- Temperature independent switching losses
- Threshold-free on-state characteristic compared to IGBT

#### **Benefits**

- > Best-in-class system performance
- > Efficiency improvement and reduced cooling effort

- Significant reduction in junction temperature for longer lifetime and higher reliability
- Enables higher frequency operation for reduction in system cost and shrink
- Allows for increase in power density
- 2-level topologies can replace 3-level with same efficiency for lower complexity and cost
- > Ease of design and implementation
- Excellent for hard switching and resonant switching topologies like LLC and ZVS

#### CoolSiC<sup>™</sup> MOSFET

| Sales product  | R <sub>DS(on)</sub> | V <sub>DS</sub> | Package     |
|----------------|---------------------|-----------------|-------------|
| IMW120R045M1** | 45 mOhm             | 1200 V          | TO-247 3pin |
| IMZ120R045M1** | 45 mOhm             | 1200 V          | TO-247 4pin |

TO-247 4pin package contains an additional connection to the source (Kelvin connection) that is used as a reference potential for the gate driving voltage, thereby eliminating the effect of voltage drops over the source inductance. The result is even lower switching losses than for TO-247 3pin version, especially at higher currents and higher switching frequencies.

www.infineon.com/coolsic-mosfet

<sup>\*\*</sup> Release in 2017



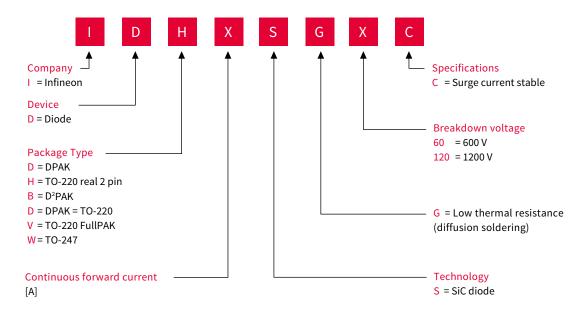
| CoolSiC               | CoolSiC™ Schottky diodes 650 V G6 ACTIVE & PREFERRED |                    |        |          |           |             |  |  |  |  |  |
|-----------------------|------------------------------------------------------|--------------------|--------|----------|-----------|-------------|--|--|--|--|--|
| l <sub>F</sub><br>[A] | TO-220 R2L                                           | TO-247<br>Dual Die | TO-247 | DPAK DML | D²PAK R2L | ThinPAK 8x8 |  |  |  |  |  |
| 4                     | IDH04G65C6                                           |                    |        |          |           |             |  |  |  |  |  |
| 6                     | IDH06G65C6                                           |                    |        |          |           |             |  |  |  |  |  |
| 8                     | IDH08G65C6                                           |                    |        |          |           |             |  |  |  |  |  |
| 10                    | IDH10G65C6                                           |                    |        |          |           |             |  |  |  |  |  |
| 12                    | IDH12G65C6                                           |                    |        |          |           |             |  |  |  |  |  |
| 16                    | IDH16G65C6                                           |                    |        |          |           |             |  |  |  |  |  |
| 20                    | IDH20G65C6                                           |                    |        |          |           |             |  |  |  |  |  |

| I <sub>F</sub><br>[A] | TO-220 R2L | TO-247<br>Dual Die | TO-247     | DPAK DML | D²PAK R2L  | ThinPAK 8x8 |
|-----------------------|------------|--------------------|------------|----------|------------|-------------|
| 2                     | IDH02G65C5 |                    |            |          | IDK02G65C5 | IDL02G65C5  |
| 3                     | IDH03G65C5 |                    |            |          | IDK03G65C5 |             |
|                       | IDH04G65C5 |                    |            |          | IDK04G65C5 | IDL04G65C5  |
|                       | IDH05G65C5 |                    |            |          | IDK05G65C5 |             |
|                       | IDH06G65C5 |                    |            |          | IDK06G65C5 | IDL06G65C5  |
|                       | IDH08G65C5 |                    |            |          | IDK08G65C5 | IDL08G65C5  |
| 9                     | IDH09G65C5 |                    |            |          | IDK09G65C5 |             |
| 10                    | IDH10G65C5 |                    | IDW10G65C5 |          | IDK10G65C5 | IDL10G65C5  |
| 12                    | IDH12G65C5 |                    | IDW12G65C5 |          | IDK12G65C5 | IDL12G65C5  |
| 16                    | IDH16G65C5 |                    | IDW16G65C5 |          |            |             |
| 20                    | IDH20G65C5 | IDW20G65C5B        | IDW20G65C5 |          |            |             |
| 24                    |            | IDW24G65C5B        |            |          |            |             |
| 30/32                 |            | IDW32G65C5B        | IDW30G65C5 |          |            |             |
| 40                    |            | IDW40G65C5B        | IDW40G65C5 |          |            |             |

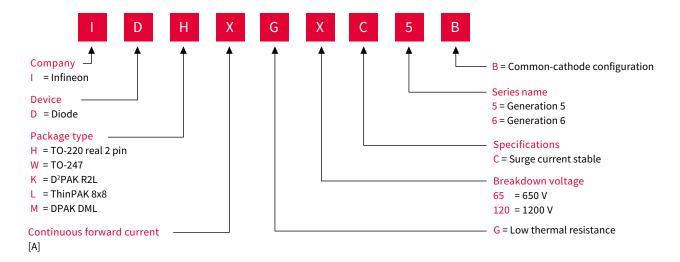
www.infineon.com/sic



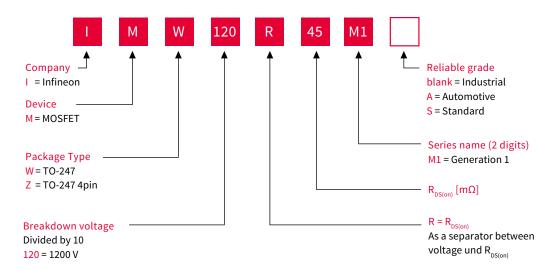
| CoolSiC™              | Schottky diodes | 650 V G3 ACTIV     | 1      |            | Server Telecom Solar | Ups Ughting PC Power |
|-----------------------|-----------------|--------------------|--------|------------|----------------------|----------------------|
| l <sub>F</sub><br>[A] | TO-220 R2L      | TO-247<br>Dual Die | TO-247 | DPAK DML   | D²PAK                | ThinPAK 8x8          |
| 3                     | IDH03SG60C      |                    |        | IDD03SG60C |                      |                      |
|                       | IDH04SG60C      |                    |        | IDD04SG60C |                      |                      |
|                       | IDH05SG60C      |                    |        | IDD05SG60C |                      |                      |
| 6                     | IDH06SG60C      |                    |        | IDD06SG60C |                      |                      |
| 8                     | IDH08SG60C      |                    |        | IDD08SG60C |                      |                      |
|                       | IDH09SG60C      |                    |        | IDD09SG60C |                      |                      |
| 10                    | IDH10SG60C      |                    |        | IDD10SG60C |                      |                      |
| 12                    | IDH12SG60C      |                    |        | IDD12SG60C |                      |                      |


| CoolSiC™ S            | chottky diodes | s 1200 V G5 ACT    | IVE & PREFERRED |             | Storage Charger Solar | UPS SMPS Drives Drives The Control of the Control o |
|-----------------------|----------------|--------------------|-----------------|-------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I <sub>F</sub><br>[A] | TO-220 R2L     | TO-247<br>Dual Die | TO-247          | DPAK DML    | TO220-2 R2L           | DPAK R2L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2                     |                |                    |                 | IDM02G120C5 | IDH02G120C5           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5                     |                |                    |                 | IDM05G120C5 | IDH05G120C5           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8                     |                |                    |                 | IDM08G120C5 | IDH08G120C5           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10                    |                | IDW10G120C5B       |                 | IDM10G120C5 | IDH10G120C5           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15/16                 |                | IDW15G120C5B       |                 |             | IDH16G120C5           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20                    |                | IDW20G120C5B       |                 |             | IDH20G120C5           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 30                    |                | IDW30G120C5B       |                 |             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 40                    |                | IDW40G120C5B       |                 |             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

<sup>&</sup>quot;B" refers to common-cathode configuration


www.infineon.com/sic

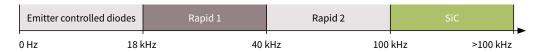
# Naming system


### CoolSiC™ Schottky diodes G2 and G3



#### CoolSiC™ Schottky diodes G5 and G6




#### CoolSiC™ MOSFET



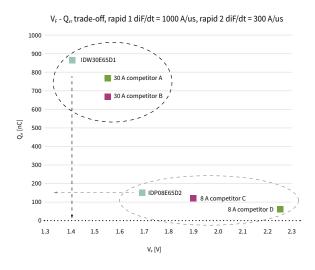
# Silicon power diodes

#### Filling the gap between SiC diodes and emitter controlled diodes

The rapid diode family complements Infineon's existing high power 600 V/650 V diode portfolio by filling the gap between SiC diodes and previously released emitter controlled diodes. They represent a perfect cost/performance balance and target high efficiency applications switching between 18 kHz and 100 kHz. rapid 1 and rapid 2 diodes are optimized to have excellent compatibility with CoolMOS™ and high speed IGBTs (Insulated Gate Bipolar Transistor) such as the TRENCHSTOP™ 5 and HighSpeed 3.



#### The rapid 1 diode family

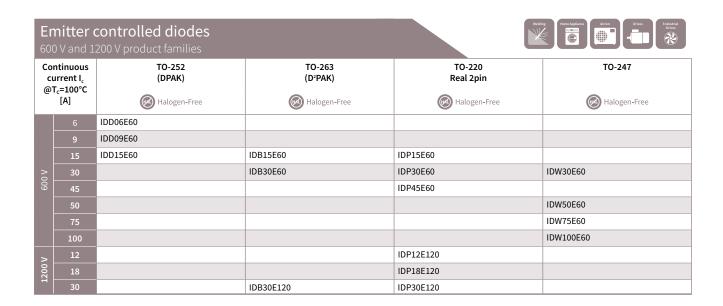

Rapid 1 is forward voltage drop ( $V_F$ ) optimized to address low switching frequency applications between 18 kHz and 40 kHz, for example air conditioner and welder PFC stages.

- > 1.35 V temperature-stable forward voltage (V<sub>F</sub>)
- Lowest peak reverse recovery current (I<sub>rm</sub>)
- > Reverse recovery time (t<sub>rr</sub>) < 100 ns
- > High softness factor

#### The rapid 2 diode family

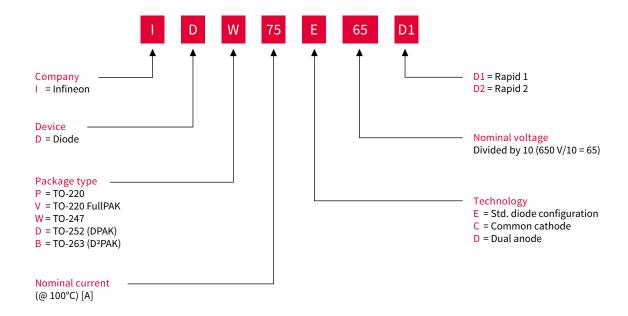
Rapid 2 is  $Q_{rr/trr}$  optimized hyperfast diode to address high speed switching applications between 40 kHz and 100 kHz, typically found in PFCs in high efficiency switch mode power supplies (SMPS) and welding machines.

- > Lowest reverse recovery charge (Q<sub>rr</sub>): V<sub>E</sub> ratio for best-in-class performance
- Lowest peak reverse recovery current (I<sub>rm</sub>)
- > Reverse recovery t<sub>rr</sub> < 50 ns
- > High softness factor




www.infineon.com/rapiddiodes www.infineon.com/ultrasoftdiodes




| Rapid 1 (                            |              |                   |                          |              | The section of the se |  |  |
|--------------------------------------|--------------|-------------------|--------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Continuous<br>current I <sub>c</sub> | TO-220       | TO-220<br>FullPAK | TO-220<br>Common Cathode | TO-247       | TO-247<br>Common Cathode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| @T <sub>c</sub> =100°C<br>[A]        | Halogen-Free | Halogen-Free      | Halogen-Free             | Halogen-Free | Halogen-Free                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 8                                    | IDP08E65D1   |                   |                          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 15                                   | IDP15E65D1   |                   |                          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 20                                   |              | IDV20E65D1        |                          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 30                                   | IDP30E65D1   |                   |                          | IDW30E65D1   | IDW30C65D1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| 40                                   |              |                   |                          | IDW40E65D1   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 60                                   |              |                   |                          |              | IDW60C65D1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| 75                                   |              |                   |                          |              | IDW75D65D1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| 80                                   |              |                   |                          |              | IDW80C65D1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |

| Rapid 2 o                            |              |                   |                          | AC-OC UPS Welding |                          |
|--------------------------------------|--------------|-------------------|--------------------------|-------------------|--------------------------|
| Continuous<br>current I <sub>c</sub> | TO-220       | TO-220<br>FullPAK | TO-220<br>Common Cathode | TO-247            | TO-247<br>Common Cathode |
| @T <sub>c</sub> =100°C<br>[A]        | Halogen-Free | Halogen-Free      | Halogen-Free             | Halogen-Free      | Halogen-Free             |
| 8                                    | IDP08E65D2   | IDV08E65D2        |                          |                   |                          |
| 15                                   | IDP15E65D2   | IDV15E65D2        |                          | IDW15E65D2        |                          |
| 20                                   | IDP20E65D2   |                   | IDP20C65D2               |                   | IDW20C65D2               |
| 30                                   | IDP30E65D2   | IDV30E65D2        | IDP30C65D2               |                   | IDW30C65D2               |
| 40                                   | IDP40E65D2   |                   |                          | IDW40E65D2        |                          |
| 80                                   |              |                   |                          |                   | IDW80C65D2               |



## Naming system

### Silicon power diodes





# Infineon support for SiC discretes and Si diodes Useful links and helpful information

### Further information, datasheets and documents

www.infineon.com/sic www.infineon.com/rapiddiodes www.infineon.com/ultrasoftdiodes

### **Videos**

www.infineon.com/mediacenter





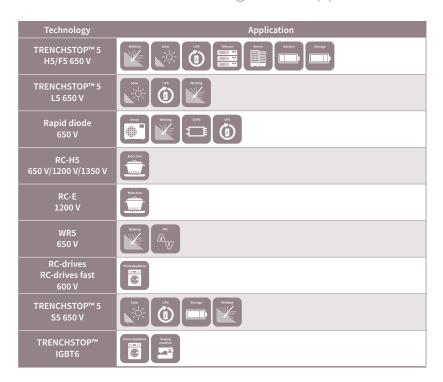




### Discrete IGBTs

Market leadership through groundbreaking innovation and application focus

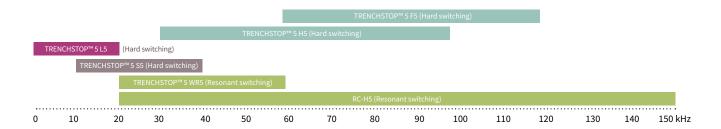
Striving for the highest standards in performance and quality, Infineon offers comprehensive application specific discrete IGBTs.


### Overview discrete IGBTs

### **Product portfolio**

|                                                        | TO-252<br>(DPAK)      | TO-263<br>(D²PAK)                  | TO-220 | TO-220<br>FullPAK | TO-247 | TO-247 4pin | TO-247PLUS |  |  |  |
|--------------------------------------------------------|-----------------------|------------------------------------|--------|-------------------|--------|-------------|------------|--|--|--|
| Package options                                        | A                     |                                    |        |                   |        |             | 11/1/1     |  |  |  |
| Voltage class                                          | 600 V, 650 V, 1100 V, | 1200 V, 1350 V, 1600               | V      |                   |        |             |            |  |  |  |
| Configuration                                          | DuoPack (with diod    | DuoPack (with diode), single IGBTs |        |                   |        |             |            |  |  |  |
| Continuous collector<br>current T <sub>c</sub> = 100°C | 2 A – 120 A           |                                    |        |                   |        |             |            |  |  |  |

New products are application specific developed to achieve highest value.


### New best-in-class technologies and applications



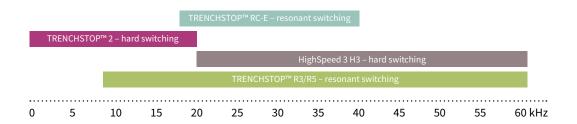
www.infineon.com/igbtdiscretes

### 650 V TRENCHSTOP™ 5 IGBT

In terms of switching and conduction losses, there is no other IGBT on the market that can match the performance of the TRENCHSTOP™ 5. Wafer thickness has been reduced by more than 25 percent, which enables a dramatic improvement in both switching and conduction losses, whilst providing an increased breakthrough voltage of 650 V. Based on TRENCHSTOP™ 5 IGBT technology, Infineon has developed six different product families optimized for specific applications, allowing designers to optimize for high efficiency, system cost or reliability demands of the market. The quantum leap of efficiency improvement provided by the TRENCHSTOP™ 5 IGBT families opens up new opportunities for designers to explore.



| TRENCHSTOP™ 5 L5    | Best-in-class IGBT low $V_{cE(sat)}$ IGBT $V_{cE(sat)}$ IGBT – 1.05 $V$ Best trade-off $V_{cE(sat)}$ $V_{ss}$ $E_{ts}$ for frequencies below 20 kHz                                                                                                       | Solar, welding, UPS, PFC  > Ultra low frequency converters  > 3-level inverter type I NPC 1 and NPC 2  > Modified HERIC inverter  > AC output (Aluminum/Magnesium welding) |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TRENCHSTOP™ 5 S5    | Best-in-class ease-of-use IGBT Elimination of:  > Collector-emitter snubber capacitor and gate capacitor in low inductance designs (<100 nH) > Softer switching than TRENCHSTOP™ 5 H5                                                                     | Solar, welding, UPS, battery charger  > Medium frequency converters  > Multilevel inverter stages  > Output stages  > PFC                                                  |
| TRENCHSTOP™ 5 H5/F5 | Best-in-class high frequency IGBT  > Bridge to superjunction MOSFET performance  > Highest efficiency, especially under light load conditions                                                                                                             | Solar, welding, UPS  > High frequency converters  > Multilevel inverter stages  > Output stages  > PFC                                                                     |
| TRENCHSTOP™ 5 R5    | Price/performance optimized application specific IGBT                                                                                                                                                                                                     | Induction heating – RC-H5 Half-bridge topologies in induction cooking appliances and other resonant switching applications                                                 |
| TRENCHSTOP™ 5 WR5   | Price optimized application specific IGBT for zero current switching (ZCS) $ \hbox{Optimized full rated hard switching turn-off typically found in welding   } \hbox{Excellent $R_c$ controllability   } \hbox{Soft recovery plus low $Q_n$ for diode } $ | Welding, PFC  > Medium frequency converters  > Zero-voltage switching  > PFC                                                                                               |


### Overview of 1200 V IGBT families

Infineon's 1200 V TRENCHSTOP™ 2 IGBT technology combines trench top-cell and field stop concepts to offer significant improvement of static as well as dynamic performance of the device.

The combination of IGBT with a soft recovery emitter controlled diode further minimizes the turn-on losses. The highest efficiency is reached due to the best compromise between switching and conduction losses.

The 1200 V HighSpeed 3 discrete IGBTs provides the lowest losses and highest reliability for switching above 20 kHz. Transition to fast switching high speed devices allows reduction in the size of the active components (25 kHz – 70 kHz). The smaller size of the components allows high power density designs with less system costs.

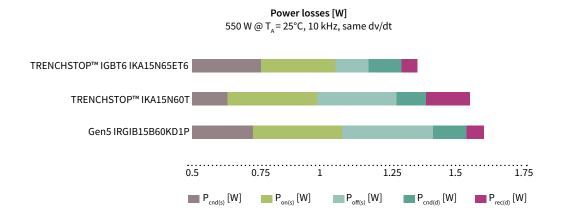
The RC-H5 family is the latest generation in the RC-H series of reverse conducting IGBT. With a monolithically integrated diode, they offer optimized performance for resonant switching applications such as induction cooking. R5 devices are also available in 1350 V blocking voltage.



| RC-H5          | World famous TRENCHSTOP™ RC-H products<br>High performance and low losses                                                                    | Induction cooking Resonant switching Medium to high frequency converters |  |  |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--|--|
| RC-E           | New TRENCHSTOP™ RC-E<br>Price versus performance leader                                                                                      | Induction cooking Resonant switching Low to medium power cookers         |  |  |
| TRENCHSTOP™ 2  | Best-in-class 1200 V IGBT  > Outstanding efficiency  > Lowest conduction and switching losses  > Market proven and recognized quality leader | Motor control, drives, solar, UPS<br>Low frequency converters            |  |  |
| HighSpeed 3 H3 | High speed/high power IGBT  > First tail-less/low loss IGBT on market  > Market proven and recognized quality leader                         | Solar, UPS, welding<br>Medium frequency converters                       |  |  |

www.infineon.com/600V-1200V-trenchstop www.infineon.com/highspeed3 www.infineon.com/rch5 www.infineon.com/rc-e

## TRENCHSTOP™ IGBT6 650 V trench and field-stop IGBT for low power motor drives


Motor drives up to 1 kW are used in a wide variety of applications from home appliance fans and compressors to commercial sewing machines and pumps. The market for these products demands longer lifetimes, high reliability and high efficiency. Therefore these compact motors require power electronics with the lowest losses and best thermal performance.

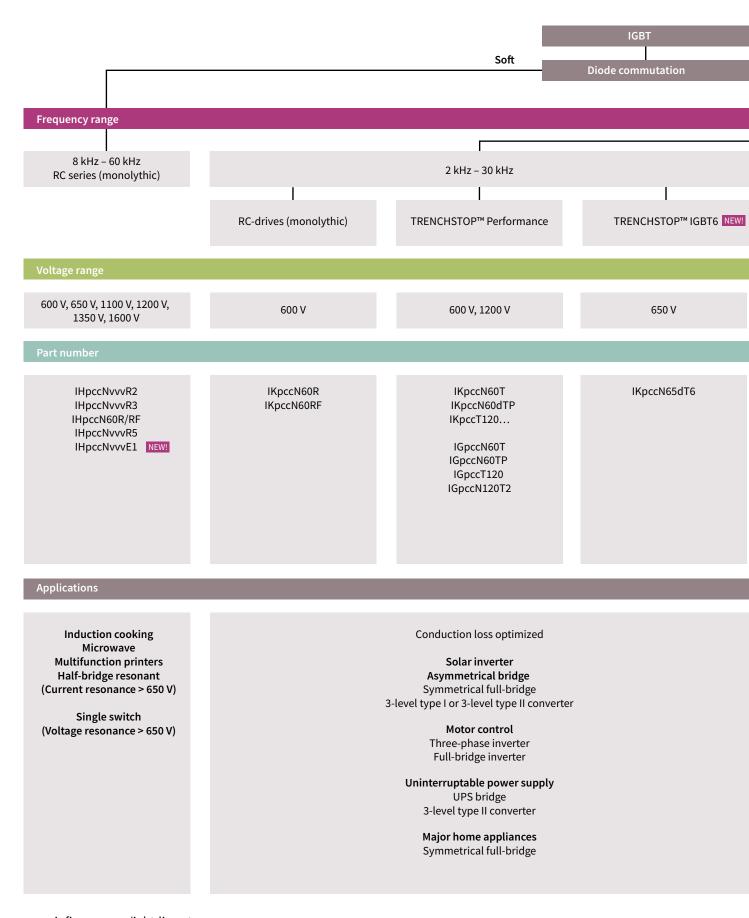
The TRENCHSTOP™ IGBT6 family of discrete devices has been designed to meet these specific requirements of motor drives. It has been optimized for the lowest switching losses, especially important in systems with higher switching frequencies up to 30 kHz. Additionally the IGBTs are co-packed with the soft, fast recovery rapid 1 anti-parallel diodes for the lowest total losses.

With a higher blocking voltage at 650 V, and short circuit rating, TRENCHSTOP™ IGBT6 is a key contributor to robust motor designs.

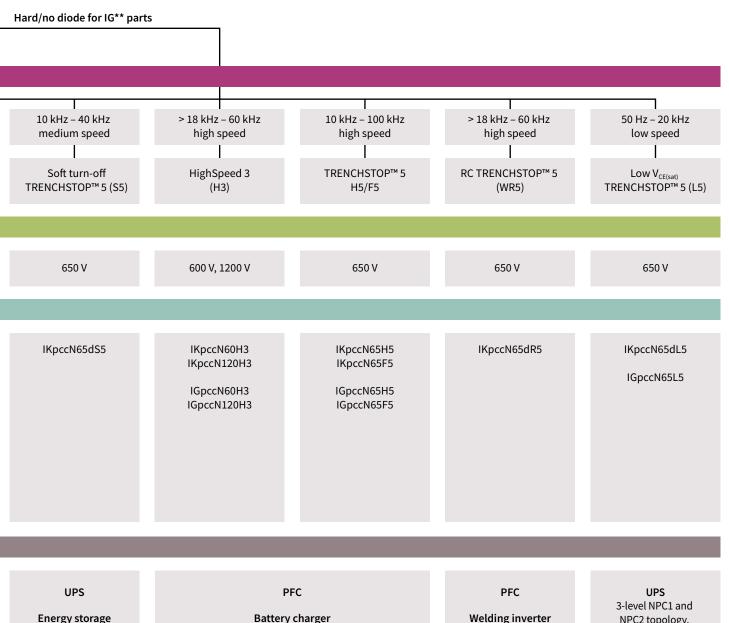
The devices are offered in TO-220 FullPAK packages for the required isolation, as well as DPAK for a more compact surface mount solution.

- > Optimized for small drives requiring best-in-class efficiency
- > Up to 20 percent reduction in total losses
- > Lowest switching losses for better heat management and easier design-in



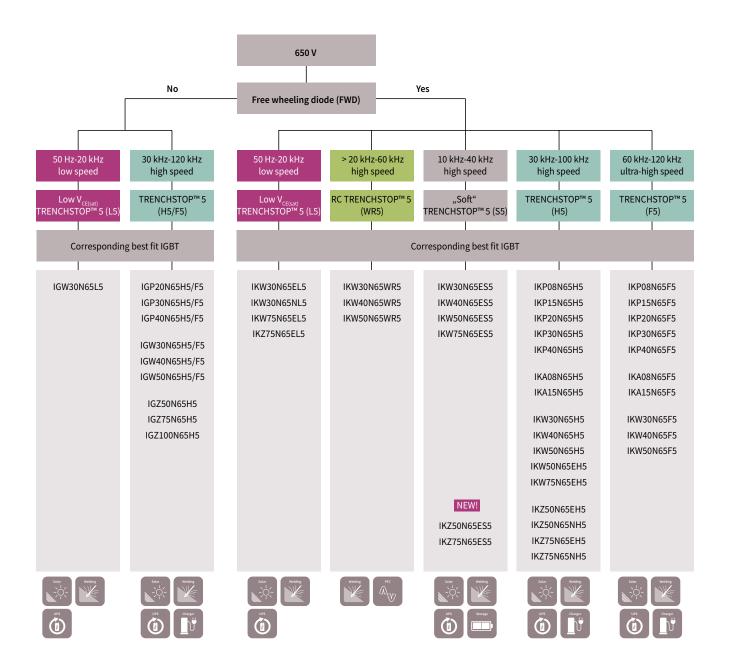

### **Key features**

- Lowest V<sub>CE(sat)</sub> and V<sub>F</sub>
- > 650 V blocking voltage
- 3 μsec short-circuit protection capability
- > Optimized for switching frequencies from 8–30 kHz


### **Key benefits**

- Good thermal performance, especially at higher frequencies
- Low losses to meet energy efficiency requirements
- > Increased design margin and reliability
- > Leading price/performance

### IGBT selection tree




www.infineon.com/igbtdiscretes



**Energy storage Battery charger** Welding inverter NPC2 topology, Full-brigde inner switches **Battery charger** Welding Half-bridge Two transistor forward Solar UPS Welding 3-level NPC1 and NPC2 topology, **Solar Inverter** Solar inner switches **Energy storage** Welding AC output **SMPS** (Al/Mag welding) Air conditioning HVDC (Telecom/data centers)

### TRENCHSTOP™ 5 selection tree



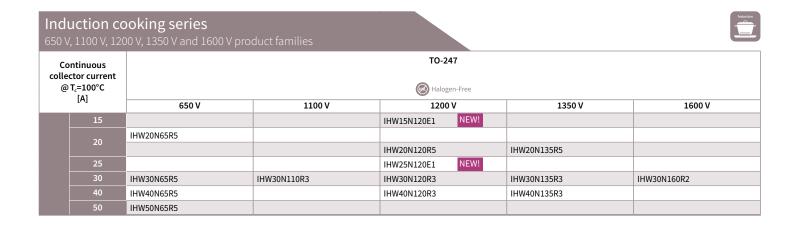
### TRENCHSTOP™ and RC-drives



IKA15N65ET6\*








| 600 \          | / product fa                                      | ımily            |                         |                   |              |                                |                   |                              |                                       |
|----------------|---------------------------------------------------|------------------|-------------------------|-------------------|--------------|--------------------------------|-------------------|------------------------------|---------------------------------------|
| colle          | ntinuous<br>ctor current<br>T <sub>c</sub> =100°C | TO-251<br>(IPAK) | TO-252<br>(DPAK)        | TO-263<br>(D²PAK) | TO-220       | TO-262<br>(I <sup>2</sup> PAK) | TO-220<br>FullPAK | TO-247                       | TO-247PLUS/<br>Super 247<br>(TO247AA) |
|                | [A]                                               | Halogen-Free     | Halogen-Free            | Halogen-Free      | Halogen-Free | Halogen-Free                   | Halogen-Free      | Halogen-Free                 | Halogen-Free                          |
|                | 4                                                 | IGU04N60T        |                         |                   |              |                                |                   |                              |                                       |
|                | 6                                                 |                  | IGD06N60T               |                   | IGP06N60T    |                                |                   |                              |                                       |
|                | 10                                                |                  |                         | IGB10N60T         | IGP10N60T    |                                |                   |                              |                                       |
| GBT            | 15                                                |                  |                         | IGB15N60T         | IGP15N60T    |                                |                   |                              |                                       |
| Single IGBT    | 30                                                |                  |                         | IGB30N60T         |              |                                |                   | IGW30N60T<br>IGW30N60TP NEV  | N!                                    |
| S              | 40                                                |                  |                         |                   |              |                                |                   | IGW40N60TP NEV               | V!                                    |
|                | 50                                                |                  |                         | IGB50N60T         | IGP50N60T    |                                |                   | IGW50N60T<br>IGW50N60TP NEV  | N!                                    |
|                | 75                                                |                  |                         |                   |              |                                |                   | IGW75N60T                    |                                       |
|                | 3                                                 |                  | IKD03N60RF              |                   |              |                                |                   |                              |                                       |
|                | 4                                                 |                  | IKD04N60RF<br>IKD04N60R |                   | IKP04N60T    |                                |                   |                              |                                       |
|                | 6                                                 |                  | IKD06N60RF<br>IKD06N60R | IKB06N60T         | IKP06N60T    |                                | IKA06N60T         |                              |                                       |
|                | 10                                                |                  | IKD10N60RF<br>IKD10N60R | IKB10N60T         | IKP10N60T    |                                | IKA10N60T         |                              |                                       |
| IGBT and diode | 15                                                |                  | IKD15N60RF<br>IKD15N60R | IKB15N60T         | IKP15N60T    |                                | IKA15N60T         |                              |                                       |
| and            | 20                                                |                  |                         | IKB20N60T         | IKP20N60T    |                                |                   | IKW20N60T                    |                                       |
| IGBT           | 30                                                |                  |                         |                   |              |                                |                   | IKW30N60T<br>IKW30N60DTP NEV | N!                                    |
|                | 40                                                |                  |                         |                   |              |                                |                   | IKW40N60DTP NEV              | W!                                    |
|                | 50                                                |                  |                         |                   |              |                                |                   | IKW50N60T<br>IKW50N60DTP NEV | N!                                    |
|                | 75                                                |                  |                         |                   |              |                                |                   | IKW75N60T                    |                                       |
|                | 100                                               |                  |                         |                   |              |                                |                   |                              | IKQ100N60T                            |
|                | 120                                               |                  |                         |                   |              |                                |                   |                              | IKQ120N60T                            |

### TRENCHSTOP™ IGBT6 TO-252 (DPAK) TO-262 (I<sup>2</sup>PAK) Continuous TO-251 TO-263 TO-220 TO-220 TO-247 collector current (IPAK) (D<sup>2</sup>PAK) FullPAK @ T<sub>c</sub>=100°C Halogen-Free Malogen-Free Halogen-Free Halogen-Free [A] 6 IKD06N65ET6 IKA08N65ET6\* IKA10N65ET6\*

 $<sup>^{\</sup>star}$  Limited by maximum junction temperature. Applicable for TO-220 standard package.

|             | NCHSTO                                | Industrial Drives  CAV  Dri | VES SOIM SOIM SOIM SOIM SOIM SOIM SOIM SOI |                   |              |                                |                   |             |               |  |
|-------------|---------------------------------------|-----------------------------|--------------------------------------------|-------------------|--------------|--------------------------------|-------------------|-------------|---------------|--|
|             | ontinuous                             | TO-251<br>(IPAK)            | TO-252<br>(DPAK)                           | TO-263<br>(D²PAK) | TO-220       | TO-262<br>(I <sup>2</sup> PAK) | TO-220<br>FullPAK | то          | TO-247        |  |
|             | ctor current<br>T <sub>c</sub> =100°C |                             | Halogen-Free                               | Halogen-Free      | Halogen-Free | Halogen-Free                   |                   | Mal         | ogen-Free     |  |
|             | [A]                                   |                             |                                            |                   |              |                                |                   | TRENCHSTOP™ | TRENCHSTOP™ 2 |  |
|             | 8                                     |                             |                                            |                   |              |                                |                   | IGW08T120   |               |  |
| Single IGBT | 15                                    |                             |                                            |                   |              |                                |                   | IGW15T120   |               |  |
| gle I       | 25                                    |                             |                                            |                   |              |                                |                   | IGW25T120   |               |  |
| Sing        | 40                                    |                             |                                            |                   |              |                                |                   | IGW40T120   |               |  |
|             | 60                                    |                             |                                            |                   |              |                                |                   | IGW60T120   |               |  |
|             | 8                                     |                             |                                            |                   |              |                                |                   | IKW08T120   |               |  |
| Pack        | 15                                    |                             |                                            |                   |              |                                |                   | IKW15T120   | IKW15N120T2   |  |
| DuoPack     | 25                                    |                             |                                            |                   |              |                                |                   | IKW25T120   | IKW25N120T2   |  |
|             | 40                                    |                             |                                            |                   |              |                                |                   | IKW40T120   | IKW40N120T2   |  |



|         | hSpeed 3<br>/ product far                          |                  |                  |                   |              | Tol                            | Weiding Solar     | SHOW SHOW    |
|---------|----------------------------------------------------|------------------|------------------|-------------------|--------------|--------------------------------|-------------------|--------------|
| colle   | ontinuous<br>ctor current<br>T <sub>c</sub> =100°C | TO-251<br>(IPAK) | TO-252<br>(DPAK) | TO-263<br>(D²PAK) | TO-220       | TO-262<br>(I <sup>2</sup> PAK) | TO-220<br>FullPAK | TO-247       |
|         | [A]                                                |                  | Halogen-Free     | Halogen-Free      | Halogen-Free | Halogen-Free                   | Halogen-Free      | Halogen-Free |
|         | 20                                                 |                  |                  | IGB20N60H3        | IGP20N60H3   |                                |                   | IGW20N60H3   |
|         | 30                                                 |                  |                  | IGB30N60H3        | IGP30N60H3   |                                |                   | IGW30N60H3   |
|         | 40                                                 |                  |                  |                   |              |                                |                   | IGW40N60H3   |
| IGBT    | 50                                                 |                  |                  |                   |              |                                |                   | IGW50N60H3   |
|         | 60                                                 |                  |                  |                   |              |                                |                   | IGW60N60H3   |
|         | 75                                                 |                  |                  |                   |              |                                |                   | IGW75N60H3   |
|         | 100                                                |                  |                  |                   |              |                                |                   | IGW100N60H3  |
|         | 20                                                 |                  |                  | IKB20N60H3        | IKP20N60H3   |                                |                   | IKW20N60H3   |
|         | 30                                                 |                  |                  |                   |              |                                |                   | IKW30N60H3   |
| Pacl    | 40                                                 |                  |                  |                   |              |                                |                   | IKW40N60H3   |
| DuoPack | 50                                                 |                  |                  |                   |              |                                |                   | IKW50N60H3   |
|         | 60                                                 |                  |                  |                   |              |                                |                   | IKW60N60H3   |
|         | 75                                                 |                  |                  |                   |              |                                |                   | IKW75N60H3   |

|         | <b>hSpeed</b> 3<br>V product fa |                  |                  | Tel               | ecom Weiding Solar | SMPS SCHOOL SCHO |                   |              |
|---------|---------------------------------|------------------|------------------|-------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|
| colle   | ontinuous<br>ctor current       | TO-251<br>(IPAK) | TO-252<br>(DPAK) | TO-263<br>(D²PAK) | TO-220             | TO-262<br>(I <sup>2</sup> PAK)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TO-220<br>FullPAK | TO-247       |
| (0)     | T <sub>c</sub> =100°C<br>[A]    |                  | Halogen-Free     | Halogen-Free      | Halogen-Free       | Halogen-Free                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Halogen-Free      | Halogen-Free |
|         | 15                              |                  |                  |                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | IGW15N120H3  |
| IGBT    | 25                              |                  |                  |                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | IGW25N120H3  |
|         | 40                              |                  |                  |                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | IGW40N120H3  |
| S.      | 15                              |                  |                  |                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | IKW15N120H3  |
| DuoPack | 25                              |                  |                  |                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | IKW25N120H3  |
| ۵۵      | 40                              |                  |                  |                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | IKW40N120H3  |

www.infineon.com/rc-e www.infineon.com/highspeed3

### TRENCHSTOP™ 5 F5 and H5

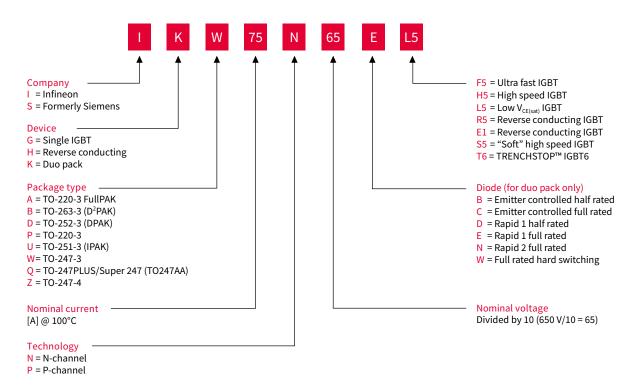




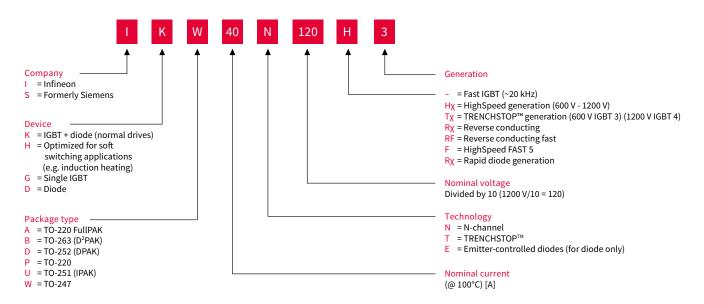




| 650     | V product f                  | amily            |                  |                   |               |                                |                   |                              |                            |
|---------|------------------------------|------------------|------------------|-------------------|---------------|--------------------------------|-------------------|------------------------------|----------------------------|
| colle   | ontinuous<br>ctor current    | TO-251<br>(IPAK) | TO-252<br>(DPAK) | TO-263<br>(D²PAK) | TO-220        | TO-262<br>(I <sup>2</sup> PAK) | TO-220<br>FullPAK | TO-247                       | TO-247 4pin                |
| (@      | T <sub>c</sub> =100°C<br>[A] |                  | Halogen-Free     | Halogen-Free      | Halogen-Free  | Halogen-Free                   | Halogen-Free      | Halogen-Free                 | Halogen-Free               |
|         | 20                           |                  |                  |                   | IGP20N65F5/H5 |                                |                   |                              |                            |
|         | 30                           |                  |                  |                   | IGP30N65F5/H5 |                                |                   |                              |                            |
| IGBT    | 40                           |                  |                  |                   | IGP40N65F5/H5 |                                |                   | IGW40N65F5/H5                |                            |
| 9       | 50                           |                  |                  |                   |               |                                |                   | IGW50N65F5/H5                | IGZ50N65H5                 |
|         | 75                           |                  |                  |                   |               |                                |                   | IGW75N65H5                   | IGZ75N65H5                 |
|         | 100                          |                  |                  |                   |               |                                |                   |                              | IGZ100N65H5                |
|         | 8                            |                  |                  |                   | IKP08N65F5/H5 |                                | IKA08N65F5/H5     |                              |                            |
|         | 15                           |                  |                  |                   | IKP15N65F5/H5 |                                | IKA15N65F5/H5     |                              |                            |
|         | 20                           |                  |                  |                   | IKP20N65H5/F5 |                                |                   |                              |                            |
| DuoPack | 30                           |                  |                  |                   | IKP30N65H5/F5 |                                |                   | IKW30N65H5                   |                            |
| Nop     | 40                           |                  |                  |                   | IKP40N65F5/H5 |                                |                   | IKW40N65F5/H5                |                            |
|         | 50                           |                  |                  |                   |               |                                |                   | IKW50N65F5/H5<br>IKW50N65EH5 | IKZ50N65EH5<br>IKZ50N65NH5 |
|         | 75                           |                  |                  |                   |               |                                |                   | IKW75N65EH5                  | IKZ75N65NH5<br>IKZ75N65EH5 |


### TRENCHSTOP™ 5 L5 low V<sub>CE(sat)</sub> TO-251 (IPAK) Continuous TO-247 TO-252 TO-263 TO-262 TO-220 TO-247 4pin TO-220 FullPAK collector current (DPAK) (D<sup>2</sup>PAK) (I<sup>2</sup>PAK) @T<sub>c</sub>=100°C Malogen-Free Malogen-Free Malogen-Free Malogen-Free Halogen-Free Malogen-Free Malogen-Free [A] IGW30N65L5 IKW30N65EL5 IKW30N65NL5 IKW75N65EL5 IKZ75N75EL5

|                              | ENCHST<br>V product f        | OP™ 5 WR5<br>amily |                  |                   |              |                                | Wedding PFC       |              |              |
|------------------------------|------------------------------|--------------------|------------------|-------------------|--------------|--------------------------------|-------------------|--------------|--------------|
| Continuous collector current |                              | TO-251<br>(IPAK)   | TO-252<br>(DPAK) | TO-263<br>(D²PAK) | TO-220       | TO-262<br>(I <sup>2</sup> PAK) | TO-220<br>FullPAK | TO-247       | TO-247 4pin  |
| @                            | T <sub>c</sub> =100°C<br>[A] |                    | Halogen-Free     | Halogen-Free      | Halogen-Free | Halogen-Free                   | Halogen-Free      | Halogen-Free | Halogen-Free |
| 충                            | 30                           |                    |                  |                   |              |                                |                   | IKW30N65WR5  |              |
| DuoPack                      | 40                           |                    |                  |                   |              |                                |                   | IKW40N65WR5  |              |
|                              | 50                           |                    |                  |                   |              |                                |                   | IKW50N65WR5  |              |


|         | ENCHST<br>V product f        | OP™ 5 S5<br>amily |                  |                   |              | Storage Social Model (1)       |                   |              |                  |
|---------|------------------------------|-------------------|------------------|-------------------|--------------|--------------------------------|-------------------|--------------|------------------|
| colle   | ontinuous<br>ctor current    | TO-251            | TO-252<br>(DPAK) | TO-263<br>(D²PAK) | TO-220       | TO-262<br>(I <sup>2</sup> PAK) | TO-220<br>FullPAK | TO-247       | TO-247 4pin      |
| (4)     | T <sub>c</sub> =100°C<br>[A] |                   | Halogen-Free     | Halogen-Free      | Halogen-Free | Halogen-Free                   | Halogen-Free      | Halogen-Free | Halogen-Free     |
| ,       | 30                           |                   |                  |                   |              |                                |                   | IKW30N65ES5  |                  |
| Pack    | 40                           |                   |                  |                   |              |                                |                   | IKW40N65ES5  |                  |
| DuoPack | 50                           |                   |                  |                   |              |                                |                   | IKW50N65ES5  | IKZ50N65ES5 NEW! |
|         | 75                           |                   |                  |                   |              |                                |                   | IKW75N65ES5  | IKZ50N65ES5 NEW! |

## Naming system

IGBT (products launched after 03/2013)



IGBT (products launched before 03/2013)





## Infineon support for discrete IGBTs

## Useful links and helpful information

### Further information, datasheets and documents

www.infineon.com/igbt www.infineon.com/igbtdiscretes www.infineon.com/discrete-automotive-igbt www.infineon.com/latest-discrete-packages

### **Evaluationboards and simulation models**

www.infineon.com/eval-TO-247-4pin www.infineon.com/coolsic-evaluationboard www.infineon.com/igbtdiscrete-simulationmodels

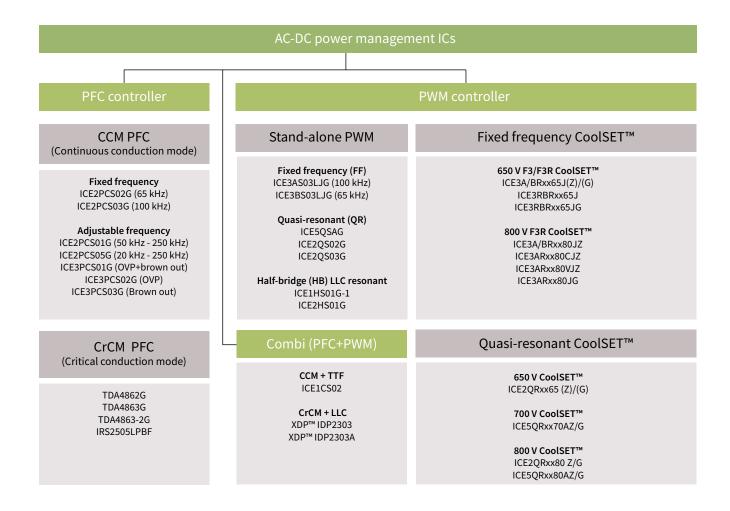
### **Videos**

www.infineon.com/mediacenter



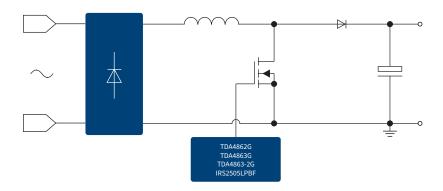












## Power management ICs

Technology leadership in power supply



### Power factor correction and combo controller

### Critical conduction mode PFC ICs

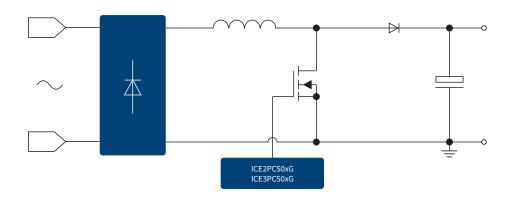


### TDA4862G

Power factor controller (PFC) IC for high-power factor and active harmonic filter

- > IC for sinusoidal line-current consumption
- > Power factor approaching 1
- Controls boost converter as an active harmonics filter
- > Internal start-up with low current consumption
- Zero current detector for discontinuous operation mode
- > High current totem pole gate driver
- > Trimmed +/-1.4% internal reference
- > Undervoltage lock out with hysteresis
- Very low start-up current consumption
- > Pin compatible with world standard
- Output overvoltage protection
- > Current sense input with internal low pass filter
- Totem pole output with active shutdown during UVLO
- > Junction temperature range -40°C to +150°C
- > Available in DIP-8 and SO-8 packages

### TDA4863G/TDA4863-2G


Power factor controller IC for high-power factor and low THD additional features to TDA4862

- > Reduced tolerance of signal levels
- > Improved light load behavior
- Open loop protection
- > Current sense input with leading edge blanking LEB
- > Undervoltage protection
- > SO-8 package

### IRS25051 PBF

- > Critical-conduction mode PFC control
- > High PF and ultra-low THD
- > Wide load and line range
- > Regulated and programmable DC bus voltage
- > No secondary winding required
- MOSFET cycle-by-cycle over-current protection
- > DC bus over-voltage protection
- > Low EMI gate drive
- > Ultra-low start-up current
- > 20.8 V internal zener clamp on V<sub>cc</sub>
- > Excellent ESD and latch immunity
- > RoHS compliant
- > 5pin SOT-23 package

### Continuous conduction mode PFC ICs



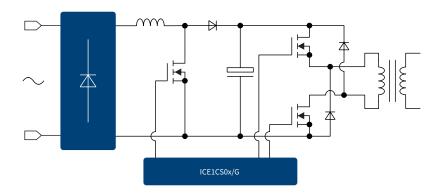
### 2<sup>nd</sup> generation continuous conduction mode (CCM) Power factor correction IC features

- > Fulfills class D requirements of IEC 61000-3-2
- > Lowest count of external components
- › Adjustable and fixed switching frequencies
- > Frequency range from 20 kHz to 250 kHz
- > Versions with brown out protection available
- > Wide input range supported
- > Enhanced dynamic response during load jumps
- > Cycle by cycle peak current limiting
- Integrated protections OVP, OCP
- > DIP-8 and DSO-8
- > Lead free, RoHS compliant

### 2<sup>nd</sup> generation continuous conduction mode (CCM) power factor correction IC product portfolio

| Product    | Frequency – f <sub>sw</sub> | Current drives | Package |
|------------|-----------------------------|----------------|---------|
| ICE2PCS01G | 50 kHz-250 kHz              | 2.0 A          | DSO-8   |
| ICE2PCS02G | 65 kHz                      | 2.0 A          |         |
| ICE2PCS03G | 100 kHz                     | 2.0 A          |         |
| ICE2PCS05G | 20 kHz-250 kHz              | 2.0 A          |         |

### 3<sup>rd</sup> generation continuous conduction mode (CCM) Power factor correction IC features


- > Fulfills class D requirements of IEC 61000-3-2
- > Integrated digital voltage loop compensation
- > Boost follower function
- > Bulk voltage monitoring signals, brown out
- > Multi protections such as double OVP
- > Fast output dynamic response during load jump
- > External synchronization
- > Extra low peak current limitation threshold
- > SO-8 and SO-14
- > Lead free, RoHS compliant

### Fixed frequency PWM IC and CoolSET™ product portfolio

| Product    | Frequency – f <sub>sw</sub> | Current drives | Features      | Package |
|------------|-----------------------------|----------------|---------------|---------|
| ICE3PCS01G | Adjustable                  | 0.75 A         | OVP+Brown out | SO-14   |
| ICE3PCS02G |                             | 0.75 A         | OVP           | SO-8    |
| ICE3PCS03G |                             | 0.75 A         | Brown out     | SO-8    |

| CCM PFC by feature             | ICE2PCS01G<br>ICE2PCS05G | ICE2PCS02G<br>ICE2PCS03G | ICE3PCS03G | ICE3PCS02G | ICE3PCS01G |
|--------------------------------|--------------------------|--------------------------|------------|------------|------------|
| Digital control voltage loop   |                          | -                        | ✓          | ✓          | ✓          |
| Variable frequency             | ✓                        | -                        | ✓          | ✓          | ✓          |
| Synchronous frequency          |                          | _                        | ✓          | ✓          | ✓          |
| Open loop protection           | ✓                        | ✓                        | ✓          | ✓          | ✓          |
| Low peak current limit         | -1 V                     | -1 V                     | -0.4 V     | -0.4 V     | -0.2 V     |
| Brown out protection           | -                        | ✓                        | ✓          | -          | ✓          |
| Over voltage protection        | ✓                        | ✓                        | ✓          | ✓          | ✓          |
| Second over voltage protection |                          | -                        |            | ✓          | ✓          |
| PFC enable function            |                          | ✓                        |            |            |            |
| Boost follower mode            |                          | ✓                        |            |            |            |
| 5 V regulator                  |                          |                          | -          |            | ✓          |

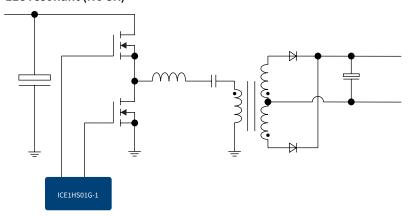
## Combination of continuous conduction mode PFC with two-transistor forward PWM IC



- > Pre-short protection
- > Trimmed reference voltage +/-2.5% (+/-2% at 25°C)
- > BiCMOS technology for wider V<sub>cc</sub> range

### Power factor correction block

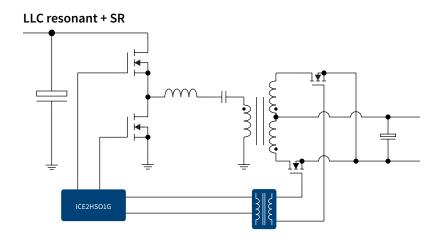
- > Fulfills class D requirements of IEC 61000-3-2
- > Fixed switching frequency (sync. to half PWM freq.)
- > AC brown out protection
- Average current control
- > Max. duty cycle of 95%
- Enhanced dynamic response for fast load response
- > Unique soft start to limit start up current
- Over voltage protection


### Pulse-width-modulation block

- > Fixed switching frequency
- > Option for external control synchronization
- > Built in soft start for higher reliability
- > Max. duty cycle 47% or 60%
- > Overall tolerance of current limiting < +/-5%
- > Internal leading edge blanking
- > Slope compensation
- > Fast, soft switching totem pole gate drive (2 A)
- > Pb-free lead plating and RoHS compilant
- > All protection features available

| Product  | Frequency – f <sub>sw</sub> | Current drives | Package |
|----------|-----------------------------|----------------|---------|
| ICE1CS02 | PFC=65 kHz<br>PWM=130 kHz   | 2.0 A          | DIP-16  |

### Resonant LLC half-bridge controller IC


### LLC resonant (No SR)

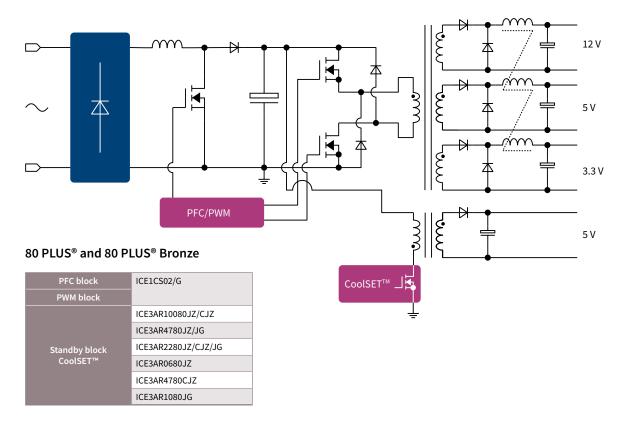


- > Novel and simple design (12 components + HB driver)
- > Minimum operating frequency is adjustable externally
- > Burst mode operation for output voltage regulation during no load and/or bus over-voltage
- > Multiple protections in case fault
- > Input voltage sense for brown out protection
- > Open loop/over load fault detection by FB pin with auto-restart and adjustable blanking/restart time
- > Frequency shift for over-current protection
- > Lead free, RoHS compliant package
- > DSO-8 package

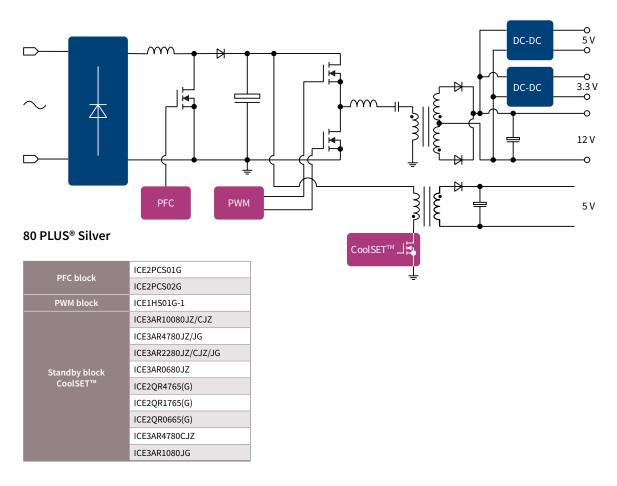
| Product     | Frequency – f <sub>sw</sub> | Dead time | Current drives | Package |
|-------------|-----------------------------|-----------|----------------|---------|
| ICE1HS01G-1 | 30 kHZ~600 kHz              | 380 ns    | 1.5 A          | DSO-8   |

## Resonant LLC half-bridge controller IC with integrated synchronized rectifier control



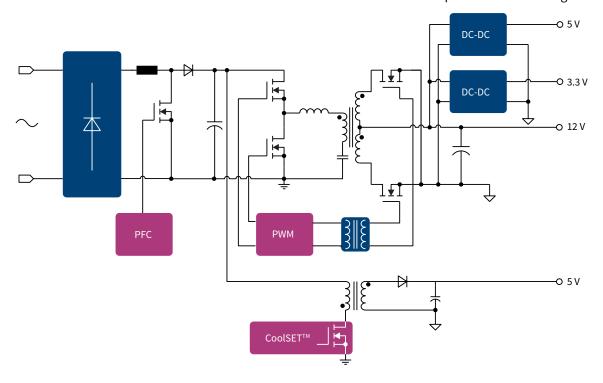

- > Novel LLC/SR operation mode and controlled by primary side Controller
- > Multiple protections for SR operation
- > Tight tolerance control
- > Accurate setting of switching frequency and dead time
- > Simple system design
- Optimized system efficiency
- > Multiple Converter protections: OTP, OLP, OCP, latch-off enable
- > External disable for either SR switching or HB switching
- > Lead free, RoHS compliant package
- > DSO-20 package

| Product   | Frequency - f <sub>sw</sub> | Dead time   | Current drives | Package |
|-----------|-----------------------------|-------------|----------------|---------|
| ICE2HS01G | 30 kHz~1 MHz                | 100~1000 ns | 0.3 A          | DSO-20  |




| LLC half-bridge controller IC                  | ICE1HS01G-1         | ICE2HS01G                |
|------------------------------------------------|---------------------|--------------------------|
| Package                                        | DSO-8               | DSO-20                   |
| Switching frequency range                      | up to 600 kHz       | up to 1 MHz              |
| LLC softstart                                  | ✓                   | ✓                        |
| LLC burst mode                                 | ✓                   | ✓                        |
| Adjustable minium frequency                    | ✓                   | ✓                        |
| Over load/open loop protection                 | ✓                   | ✓                        |
| Mains under-voltage protection with hysteresis | ✓                   | ✓                        |
| Over current protection                        | 2-level             | 3-level                  |
| Drive signal for synchronous rectification     | -                   | ✓                        |
| Adjustable dead time                           | -                   | ✓                        |
| External latch-off and OTP                     | -                   | ✓                        |
| Target application                             | LCD-TV, audio, etc. | Server, PC, LCD-TV, etc. |

### Climate saver 80 PLUS® and 80 PLUS® Bronze




### Climate saver 80 PLUS® Silver



### Climate saver 80 PLUS® Gold Climate saver 80 PLUS® Platinum

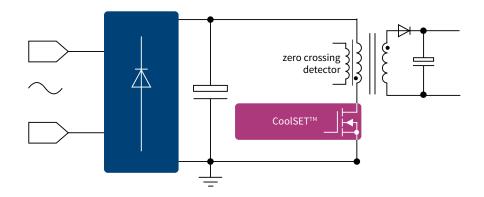
### Certification for Infineon's PC power reference design



### 80 PLUS® Gold

|                           | ICE3PCS01G          |
|---------------------------|---------------------|
| PFC block                 | ICE3PCS02G          |
|                           | ICE3PCS03G          |
| PWM block                 | ICE2HS01G           |
|                           | ICE3AR10080JZ/CJZ   |
|                           | ICE3AR4780JZ/JG     |
|                           | ICE3AR2280JZ/CJZ/JG |
| Standby block<br>CoolSET™ | ICE3AR0680JZ        |
|                           | ICE3BR2280JZ        |
|                           | ICE3BR0680JZ        |
|                           | ICE3AR4780CJZ       |
|                           | ICE3AR1080JG        |

### 80 PLUS® Platinum


Certification for Infineon's PC power reference design

|               | ICE3PCS01G    |
|---------------|---------------|
| PFC block     | ICE3PCS02G    |
|               | ICE3PCS03G    |
| PWM block     | ICE2HS01G     |
|               | ICE2QR4780Z/G |
| Standby block | ICE2QR2280Z   |
| CoolSET™      | ICE2QR0680Z   |
|               | ICE2QR2280G-1 |
|               | ICE2QR1080G   |

www.infineon.com/pcpower www.infineon.com/acdc www.infineon.com/coolset

### Isolated AC-DC

### 5<sup>th</sup> generation quasi-resonant PWM IC and CoolSET<sup>™</sup> features



- > Integrated CoolMOS™ in both 700 V and 800 V MOSFET with cascode configuration
- > Digital frequency reduction with reducing load
- > Novel quasi-resonant to minimize the spread of switching frequency between low and high line AC input
- > Selectable active burst mode entry/exit profile
- > Auto restart mode for line over voltage protection

- > Auto restart mode for brown out protection
- > Auto restart mode for V<sub>cc</sub> under voltage/over voltage protection
- > Auto restart mode for open-loop and output overload protection
- Auto restart mode for over-temperature protection with hysteresis
- › Auto restart mode for output over voltage
- > Auto restart mode for CS pin short to ground protection

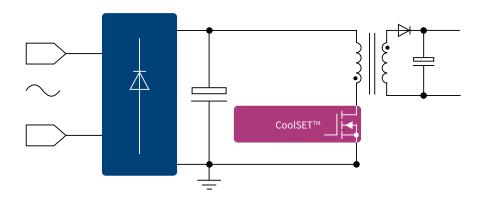
- Limited charging current during V<sub>cc</sub> pin short to ground protection
- > Peak power limitation with input voltage compensation
- Minimum switching frequency limitation (no audible noise on power units on/off)
- > DSO package (Controller) and DIP-7/DSO-12 (CoolSET™)





### 5<sup>th</sup> generation QR CoolSET™

| Output power <sup>1)</sup><br>85 V <sub>AC</sub> ~300 V <sub>AC</sub><br>T <sub>a</sub> =50°C |           | 15 W         | 23 W         | 27 W         | 32 W         | 44 W~46 W    |
|-----------------------------------------------------------------------------------------------|-----------|--------------|--------------|--------------|--------------|--------------|
| R <sub>DS(on</sub>                                                                            | max       | 4.83 Ω       | 2.33 Ω       | 1.73 Ω       | 1.23 Ω       | 0.78 Ω       |
| 700 V                                                                                         | DIP-7     | ICE5QR4770AZ | ICE5QR2270AZ |              | ICE5QR1070AZ |              |
| 700 V                                                                                         | DSO-16/12 | ICE5QR4770AG |              |              |              |              |
| 800 V                                                                                         | DIP-7     | ICE5QR4780AZ | ICE5QR2280AZ |              |              | ICE5QR0680AZ |
| 800 V                                                                                         | DSO-16/12 |              |              | ICE5QR1680AG |              | ICE5QR0680AG |


### 2<sup>nd</sup> Generation QR CoolSET™

| Output power <sup>1)</sup><br>85 V <sub>AC</sub> ~300 V <sub>AC</sub><br>T <sub>a</sub> =50°C |           | 14 W~15 W       | 20 W~21 W                    | 23 W~26 W   | 31 W~34 W    | 38 W~42 W     |
|-----------------------------------------------------------------------------------------------|-----------|-----------------|------------------------------|-------------|--------------|---------------|
| R <sub>DS(on)</sub> max                                                                       |           | 5.18 Ω ~ 5.44 Ω | 2.62 Ω                       | 1.96 Ω      | 1.05 Ω~1.1 Ω | 0.71 Ω~0.75 Ω |
|                                                                                               | DIP-7     | ICE2QR4765Z     |                              | ICE2QR1765Z |              | ICE2QR0665Z   |
| 650 V                                                                                         | DIP-8     | ICE2QR4765      |                              | ICE2QR1765  |              | ICE2QR0665    |
|                                                                                               | DSO-16/12 | ICE2QR4765G     |                              | ICE2QR1765G |              | ICE2QR0665G   |
|                                                                                               | DIP-7     | ICE2QR4780Z     | ICE2QR2280Z                  |             |              | ICE2QR0680Z   |
| 800 V                                                                                         | DSO-16/12 | ICE2QR4780G     | ICE2QR2280G<br>ICE2QR2280G-1 |             | ICE2QR1080G  |               |

### www.infineon.com/coolset

 $<sup>^{1)}</sup>$  Calculated maximum output power in an open frame design at  $T_a$ =50°C,  $T_j$ =125°C and without copper area as heat sink

### Fixed frequency PWM IC and CoolSET™ features



- > Active burst mode to achieve the lowest standby power requirements < 50 mW
- > Optional latched off mode (L) to increase robustness and safety of the system
- › Adjustable blanking window for high load jumps to increase reliability

- > DCM, CCM
- > Startup cell switched off after start-up
- > 65 kHz/100 kHz/130 kHz internally fixed switching frequency
- > Over-temperature, over voltage, short-winding, overload and openloop, V<sub>cc</sub> under voltage, brown out protections, fast AC reset, input overvoltage protection
- > Fixed softstart time
- Overall tolerance of current limiting < +/-5%
- > Internal leading edge blanking time
- > Max. duty cycle 72%
- > DIP, DSO and FullPAK packages





### Fixed frequency PWM IC and CoolSET™ 650 V

| 85 V <sub>A</sub> | P <sub>out</sub> 1)<br>85 V <sub>AC</sub> 265 V <sub>AC</sub> |                          | 11 W-12 W 13 W-14 W 18 W |              | 24 W~25 W     | 34 W         | 39 W~40 W     |
|-------------------|---------------------------------------------------------------|--------------------------|--------------------------|--------------|---------------|--------------|---------------|
|                   | R <sub>DS(on)</sub>                                           | 6.5 Ω                    | 4.7 Ω                    | 3.0 Ω        | 1.7 Ω         | 1.0 Ω        | 0.6 Ω         |
| Package           | PWM Only                                                      | 650 V Depletion CoolMOS™ |                          |              |               |              |               |
| DIP-7             |                                                               |                          | ICE3RBR4765JZ            |              | ICE3RBR1765JZ |              | ICE3RBR0665JZ |
| DIP-8             |                                                               | ICE3B0365J               | ICE3BR4765J              | ICE3A1065ELJ | ICE3BR1765J   | ICE3A2065ELJ | ICE3BR0665J   |
| DSO-8             | ICE3AS03LJG<br>ICE3BS03LJG                                    |                          |                          |              |               |              |               |
| DSO-12            |                                                               |                          | ICE3RBR4765JG            |              | ICE3RBR1765JG |              | ICE3RBR0665JG |

### Fixed frequency PWM IC and CoolSET™ 800 V

| P <sub>out</sub> 1)<br>85 V <sub>AC</sub> 265 V <sub>AC</sub> | 11 W                            | 16 W                                           | 22 W                                                           | 30 W          | 37 W          | 43 W                                          |  |  |  |
|---------------------------------------------------------------|---------------------------------|------------------------------------------------|----------------------------------------------------------------|---------------|---------------|-----------------------------------------------|--|--|--|
| R <sub>DS(on)</sub>                                           | 10.0 Ω                          | 4.7 Ω                                          | 2.2 Ω                                                          | 1.5 Ω         | 1.0 Ω         | 0.6 Ω                                         |  |  |  |
| Package                                                       |                                 | 800 V Depletion CoolMOS™                       |                                                                |               |               |                                               |  |  |  |
| DIP-7                                                         | ICE3AR10080JZ<br>ICE3AR10080CJZ | ICE3AR4780JZ<br>ICE3AR4780VJZ<br>ICE3AR4780CJZ | ICE3AR2280JZ<br>ICE3AR2280CJZ<br>ICE3AR2280VJZ<br>ICE3BR2280JZ | ICE3AR1580VJZ | ICE3AR1080VJZ | ICE3AR0680JZ<br>ICE3AR0680VJZ<br>ICE3BR0680JZ |  |  |  |
| DSO-12                                                        |                                 | ICE3AR4780JG                                   | ICE3AR2280JG                                                   |               | ICE3AR1080JG  |                                               |  |  |  |

### www.infineon.com/coolset

 $<sup>^{\</sup>mbox{\tiny 1)}}$  Output power assume 76~83% efficiency.  $T_a = 50 ^{\circ} C, \, T_j = 125 ^{\circ} C$  and no copper area

### Fixed frequency PWM IC

| FF PWM IC                                        | ICE3AS03LJG    | ICE3BS03LJG |  |  |  |
|--------------------------------------------------|----------------|-------------|--|--|--|
| Package                                          | DSO-8          |             |  |  |  |
| Operating temperature                            | -25°C          | ~130°C      |  |  |  |
| Switching frequency                              | 100 kHz        | 65 kHz      |  |  |  |
| Max V <sub>cc</sub> voltage                      | 2              | 7 V         |  |  |  |
| V <sub>cc</sub> on/off threshold                 | 18 V/          | 10.5 V      |  |  |  |
| Soft start time                                  | 10 ms          | 20 ms       |  |  |  |
| Gate drive capability                            | -0.17 A/0.39 A |             |  |  |  |
| Jitter feature for low EMI                       | ✓              |             |  |  |  |
| Modulated gate drive                             |                | ✓           |  |  |  |
| Active burst mode                                |                | ✓           |  |  |  |
| Over load/open loop                              | Auto restart   |             |  |  |  |
| V <sub>cc</sub> under voltage/short opto-coupler | Auto           | restart     |  |  |  |
| Short winding/short diode                        | Latch-off      |             |  |  |  |
| V <sub>cc</sub> over voltage                     | Late           | ch-off      |  |  |  |
| Over temperature                                 | Latch-off      |             |  |  |  |
| External protection enable pin                   | Late           | :h-off      |  |  |  |

### Quasi-resonant PWM IC

| Feature                                                 | ICE5QSAG                                                                                    | ICE2QS02G                                                                                         | ICE2QS03G                                                                     |
|---------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Package                                                 | DSO-8                                                                                       | DSO-8                                                                                             | DSO-8                                                                         |
| Switching scheme                                        | Novel QR with 10 zero crossing counters                                                     | QR with 7 zero crossing counters                                                                  | QR with 7 zero crossing counters                                              |
| Operating temperature                                   | -40°C~129°C                                                                                 | -25°C~130°C                                                                                       | -25°C~130°C                                                                   |
| Startup cell                                            | Cascode                                                                                     | -                                                                                                 | ✓                                                                             |
| V <sub>cc</sub> on/off                                  | 16 V/10 V                                                                                   | 12 V/11 V                                                                                         | 18 V/10.5 V                                                                   |
| Power saving during standby                             | Yes, active burst mode in QR switching<br>2-level selectable burst mode<br>entry/exit level | -                                                                                                 | Yes, active burst mode 52 kHz                                                 |
| Digital frequency reduction for high average efficiency | ✓                                                                                           | ✓                                                                                                 | ✓                                                                             |
| OLP blanking time                                       | Fixed                                                                                       | Adjustable                                                                                        | Fixed                                                                         |
| Auto restart timer                                      | Through V <sub>cc</sub> charging/discharging                                                | Setting with external components                                                                  | Through $V_{cc}$ charging/discharging                                         |
| Maximum input power limitation                          | V <sub>in</sub> pin voltage dependent                                                       | Adjustable through ZC resistor                                                                    | Adjustable through ZC resistor                                                |
| V <sub>cc</sub> under voltage protection                | Yes with auto restart                                                                       | Yes with latch                                                                                    | Yes with auto restart                                                         |
| Adjustable output overvoltage protection                | Yes with auto restart                                                                       | Yes with latch                                                                                    | Yes with latch                                                                |
| Adjustable line input overvoltage protection            | ✓                                                                                           | -                                                                                                 | -                                                                             |
| Brownout feature                                        | ✓                                                                                           | ✓                                                                                                 | -                                                                             |
| V <sub>cc</sub> and CS pin short to ground protection   | ✓                                                                                           | -                                                                                                 | -                                                                             |
| Target application                                      | Home Appliances, set-top-box, AUX<br>SMPS                                                   | AUX power supply to V <sub>cc</sub> eg. LCD TV<br>multi/main, audio main,<br>PDP TV multi/address | Self-power supply to $V_{\text{cc}}$ eg. smart meter, industrial applications |



### Quasi-resonant CoolSET™

|                                              | 2 <sup>nd</sup> generation<br>ICE2QRxxxxZ/G | 2 <sup>nd</sup> generation<br>ICE2QRxx80G-1 | 5 <sup>th</sup> generation<br>ICE5QRxxxxAZ/G        |  |
|----------------------------------------------|---------------------------------------------|---------------------------------------------|-----------------------------------------------------|--|
| Switching scheme                             | QR with 7 zero o                            | Novel QR with 10 zero crossing counters     |                                                     |  |
| Integrated MOSFET                            | 650 V and 800 V                             | 800 V                                       | 700 V and 800 V                                     |  |
| High voltage start-up cell                   | Y                                           | es                                          | Cascode                                             |  |
| Power saving during standby                  | Active burst mo                             | ode F <sub>sw</sub> @ 52 kHz                | 2 level selectable active burst mode quasi-resonant |  |
| V <sub>cc</sub> on/off threshold (typ.)      | 18 V/10.5 V 18 V/9.85 V                     |                                             | 16 V/10 V                                           |  |
| Adjustable output over voltage protection    | Yes (                                       | Yes (Auto restart)                          |                                                     |  |
| V <sub>cc</sub> over/undervoltage protection | Yes (Aut                                    | o restart)                                  | Yes (Auto restart)                                  |  |
| Overload/open loop protection                | Yes (Auto restart)                          |                                             | Yes (Auto restart)                                  |  |
| Over temperature protection                  | Yes (Aut                                    | Yes (Auto restart with hysteresis)          |                                                     |  |
| Adjustable line input overvoltage protection |                                             | Yes (Auto restart)                          |                                                     |  |
| Brown out                                    |                                             | Yes (Auto restart)                          |                                                     |  |
| CS pin short to ground                       |                                             | Yes (Auto restart)                          |                                                     |  |
| V <sub>cc</sub> pin short to ground          | -                                           |                                             | Yes (No start-up)                                   |  |
| Package                                      | DIP-7<br>DIP-8<br>DSO-16/12                 | DIP-7<br>DSO-16/12                          | DIP-7<br>DSO-16/12                                  |  |



### Fixed frequency CoolSET™

| Fixed frequency Coolse                           |                                         |                                     |                                                           |                                                                                                    |  |  |
|--------------------------------------------------|-----------------------------------------|-------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------|--|--|
|                                                  |                                         | 650 V Co                            | olSET™                                                    |                                                                                                    |  |  |
|                                                  | F3 (Jitter)<br>ICE3Bxx65J(G)            | F3 (Latch & Jitter)<br>ICE3Axx65ELJ | F3R<br>ICE3BRxx65J(G)                                     | F3R<br>ICE3RBRxx65JZ<br>ICE3RBRxx65JG*                                                             |  |  |
| Package                                          | DIP-8, DSO-16/12                        | DIP-8                               | DIP-8, DSO-16/12                                          | DIP-7, DSO-16/12                                                                                   |  |  |
| Output power range 1)                            | 11 W~12 W                               | 18 W~34 W                           | 13 W~40 W                                                 | 13 W~40 W                                                                                          |  |  |
| MOSFET (rugged avalanche capability)             |                                         | 650                                 | 0 V                                                       |                                                                                                    |  |  |
| Min. operating temperature                       |                                         | -25°C                               |                                                           | -40°C                                                                                              |  |  |
| Switching frequency                              | 67 kHz                                  | 100 kHz                             | 65 kHz                                                    | 65 kHz                                                                                             |  |  |
| Max V <sub>cc</sub> voltage                      |                                         | 27                                  | 'V                                                        |                                                                                                    |  |  |
| V <sub>cc</sub> on/off threshold                 | 18 V/10.3 V                             |                                     | 18 V/10.5 V                                               |                                                                                                    |  |  |
| Jitter feature for low EMI                       | √ (by CSOFTS)                           |                                     | ✓                                                         |                                                                                                    |  |  |
| Modulated gate drive                             | -                                       | ✓                                   |                                                           |                                                                                                    |  |  |
| Soft start time                                  | by CSOFTS                               | 20 ms                               |                                                           |                                                                                                    |  |  |
| Active burst mode selection                      |                                         | 1 level                             |                                                           |                                                                                                    |  |  |
| Over load/open loop                              |                                         | Auto r                              | estart                                                    |                                                                                                    |  |  |
| V <sub>cc</sub> under voltage/short opto-coupler |                                         | Auto r                              | estart                                                    |                                                                                                    |  |  |
| V <sub>cc</sub> over voltage                     | Auto restart                            | Latch                               | Auto i                                                    | restart                                                                                            |  |  |
| Over temperature                                 | Auto restart                            | Latch                               | Auto                                                      | restart                                                                                            |  |  |
| External protection enable pin                   | -                                       | Latch                               | Auto                                                      | restart                                                                                            |  |  |
| Brown out                                        |                                         |                                     | -                                                         |                                                                                                    |  |  |
| Input OVP                                        |                                         | -                                   | -                                                         |                                                                                                    |  |  |
| Fast AC reset                                    |                                         |                                     | -                                                         |                                                                                                    |  |  |
| Slope compensation for CCM mode                  |                                         |                                     |                                                           |                                                                                                    |  |  |
| Product available                                | ICE3B0365J<br>ICE3B0565J<br>ICE3B0565JG | ICE3A1065ELJ<br>ICE3A2065ELJ        | ICE3BR4765J<br>ICE3BR1765J<br>ICE3BR0665J<br>ICE3BR4765JG | ICE3RBR4765JZ<br>ICE3RBR1765JZ<br>ICE3RBR0665JZ<br>ICE3RBR4765JG<br>ICE3RBR1765JG<br>ICE3RBR0665JG |  |  |

### www.infineon.com/coolset

 $<sup>^{\</sup>mbox{\tiny 1)}}$  Output power assume 76~83% efficiency.  $T_a$  =50°C,  $T_j$  =125°C and no copper area



|                                                              |                              | 800 V CoolSET™                                   |                                              |                                                                                   |  |
|--------------------------------------------------------------|------------------------------|--------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------|--|
| F3R 800 V<br>ICE3ARxx80JZ                                    | F3R 800 V<br>ICE3BRxx80JZ    | F3R CCM 800 V<br>ICE3ARxx80CJZ                   | F3R 800 V<br>ICE3ARxx80JG                    | F3R 800 V<br>ICE3ARxx80VJZ                                                        |  |
| DIP-7                                                        | DI                           | P-7                                              | DSO-16/12                                    | DIP-7                                                                             |  |
| 11 W~                                                        | 43 W                         | 11 W~22 W                                        | 15 W~32 W                                    | 16 W~43 W                                                                         |  |
|                                                              |                              | 800 V                                            |                                              |                                                                                   |  |
|                                                              | -25°C                        |                                                  | -40°                                         | C                                                                                 |  |
| 100 kHz                                                      | 65 kHz                       | 100 kHz                                          | 100 kHz                                      | 100 kHz                                                                           |  |
| ·                                                            |                              | 27 V                                             |                                              |                                                                                   |  |
|                                                              |                              | 17 V/10.5 V                                      |                                              |                                                                                   |  |
|                                                              |                              | ✓                                                |                                              |                                                                                   |  |
|                                                              |                              | YES (with 50 $\Omega$ gate turn-on resistor)     |                                              |                                                                                   |  |
|                                                              |                              | 10 ms                                            |                                              |                                                                                   |  |
| 4 lev                                                        | vels .                       | 3 levels                                         | 4 lev                                        | els                                                                               |  |
|                                                              |                              | Auto restart                                     |                                              |                                                                                   |  |
|                                                              |                              | Auto restart                                     |                                              |                                                                                   |  |
|                                                              |                              | Auto restart                                     |                                              |                                                                                   |  |
|                                                              |                              | Auto restart with hysteresis                     |                                              |                                                                                   |  |
| Auto re                                                      | estart                       | Latch                                            | Auto restart                                 | -                                                                                 |  |
|                                                              | · ·                          | /                                                |                                              | -                                                                                 |  |
|                                                              |                              |                                                  |                                              | ✓                                                                                 |  |
| _                                                            |                              | ✓                                                | _                                            |                                                                                   |  |
|                                                              |                              |                                                  |                                              |                                                                                   |  |
| ICE3AR10080JZ<br>ICE3AR4780JZ<br>CE3AR2280JZ<br>ICE3AR0680JZ | ICE3BR2280JZ<br>ICE3BR0680JZ | ICE3AR10080CJZ<br>ICE3AR4780CJZ<br>ICE3AR2280CJZ | ICE3AR4780JG<br>ICE3AR2280JG<br>ICE3AR1080JG | ICE3AR4780VJZ<br>ICE3AR2280VJZ<br>ICE3AR0680VJZ<br>ICE3AR1080VJZ<br>ICE3AR1580VJZ |  |

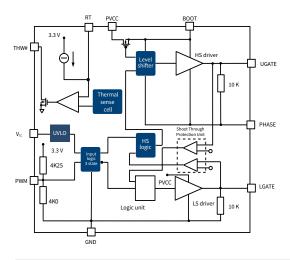
### Non-isolated DC-DC

### MOSFET gate driver IC

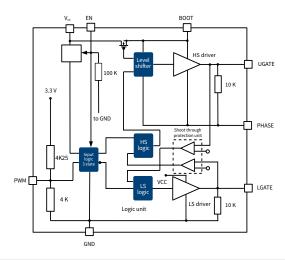
The OptiMOS™ driver products PX3517 and PX3519 are high speed drivers, designed to drive a wide range of dual high-side and low-side n-channel power MOSFETs in applications such as computing and telecom point-of-load (POL).

Combining the new devices with the Primarion™/Infineon digital multi-phase controllers IC family and Infineon n-channel MOSFETs, the new devices form a complete core-voltage regulator solution for advanced micro and graphic processors as well as point-of-load applications.

To tailor the efficiency of the system based on the customer conditions and needs, the OptiMOS™ driver devices provide the capability of driving the high-side gate and low-side gate with a variable gate driving voltage ranging from 4.5 V up to 8 V.


### **General features**

- > High frequency operation up to 1.2 MHz
- > Wide  $V_{cc}$  input voltage range from 4.5 V to 8 V
- Capability to drive MOSFET at 50 A continuous current per phase
- Wide input voltage range: up to 16 V
- > Low power dissipation


- > Includes bootstrap diode
- > Adaptive shoot through protection
- > Compatible with standard + 3.3 V PWM controller ICs
- Tri-state PWM input functionality
- > RoHS compliant

### **Application diagrams**

PX3517 offers a thermal warning report function.



PX3519 features a gate disable pin (EN) for low power consumption.

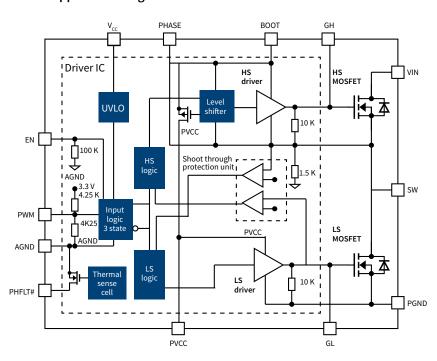


| Gate driver                                         | PX3517                  | PX3519                  |  |  |
|-----------------------------------------------------|-------------------------|-------------------------|--|--|
| Package                                             | 3x3 mm TDSON-10         | 3x3 mm VDSON-8          |  |  |
| RoHS compliant                                      | ✓                       | ✓                       |  |  |
| Max. junction temperature                           | -40°C to 125°C          | -40°C to 125°C          |  |  |
| Supply voltage and driving voltage, V <sub>cc</sub> | +4.5 V to 8 V           | +4.5 V to 8 V           |  |  |
| Boot to GND                                         | 30                      | 30                      |  |  |
| PWM inputs                                          | Tri-state compatibility | Tri-state compatibility |  |  |
| Quiescent current I <sub>Q</sub>                    | 660 μΑ                  | 780 μΑ                  |  |  |
| Features                                            | Thermal warning         | Driver enable pin       |  |  |

www.infineon.com/optimosdriver

### Integrated power stages

### TDA21231 – 5x5 high performance driver+MOS


### **Features**

- > Recommended input voltage 4.5 V to 16 V
- > Low-side source-down for lowest parasitics and max. performance
- > Fast switching technology for 500 kHz to 1 MHz high-switching frequencies

### **Benefits**

- > More than 95% peak efficiency
- > Thermal warning
- > Remote driver disable function
- > Integrated bootstrap diode (no need of ext. diode) with refresh circuit

### **DrMOS** application diagram



|                              | TDA21231        |
|------------------------------|-----------------|
| Input voltage range          | 4.5 V to 16 V   |
| Peak efficiency              | > 95%           |
| Heavy load efficiency @ 40 A | > 95%           |
| PWM interface                | 3.3 V           |
| Max. average load current    | 55 A            |
| Temperature monitor and OTP  | Thermal warning |
| RoHS compliant               | yes             |

www.infineon.com/drmos

### Integrated power stages

### 40 A, 50 A and 60 A with integrated current sense

Infineon's integrated Power Stage family contains a synchronous buck gate driver IC which is co-packed with control and synchronous MOSFETs and a Schottky diode to further improve efficiency. The package is optimized for PCB layout, heat transfer, driver/MOSFET control timing, and minimal switch node ringing when layout guidelines are followed. The paired gate driver and MOSFET combination enables higher efficiency at lower output voltages required by cutting edge CPU, GPU, ASIC and DDR memory designs. The IR3555 integrated power stages internal MOSFET current sense algorithm with integrated temperature compensation achieves superior current sense accuracy versus best-in-class controller based inductor DCR sense methods. Up to 1.0 MHz switching frequency enables high performance transient response, allowing miniaturization of output inductors, as well as input and output capacitors while maintaining industry leading efficiency. The IR3555 is optimized for CPU core power delivery in server applications. The ability to meet the stringent requirements of the server market also makes the IR3555 ideally suited for powering GPU, ASIC, DDR memory, and other high current designs.

### **Features**

- > Integrated driver, Schottky diode, control MOSFET and synchronous MOSFET
- > 5 mV/A on-chip MOSFET current sensing with temperature compensated reporting
- > Input voltage (V<sub>in</sub>) range of 4.5 V to 15 V
- > V<sub>cc</sub> and VDRV supply of 4.5 V to 7 V
- > Output voltage range from 0.25 V up to 5.5 V
- > Output current capability of 60 A
- Operation up to 1.0 MHz
- > V<sub>cc</sub> undervoltage lockout (UVLO)
- > 8 mV/°C temperature analog output and thermal flag pull-up to 3.3 V
- Over-temperature protection (OTP)
- > Cycle-by-cycle self-preservation overcurrent protection (OCP)
- MOSFET phase fault detection and flag
- > Preliminary overvoltage protection (Pre-OVP)
- > Compatible with 3.3 V tri-state PWM input
- > Body-Braking<sup>™</sup> load transient support through PWM tri-state
- > Diode emulation mode (DEM) for improved light load efficiency
- > Efficient dual sided cooling
- > Small 6x6x0.9 mm<sup>3</sup> PQFN package

### **Applications**

- > High frequency, high current, low profile DC-DC converters
- > Voltage regulators for CPUs, GPUs, ASICs, and DDR memory arrays

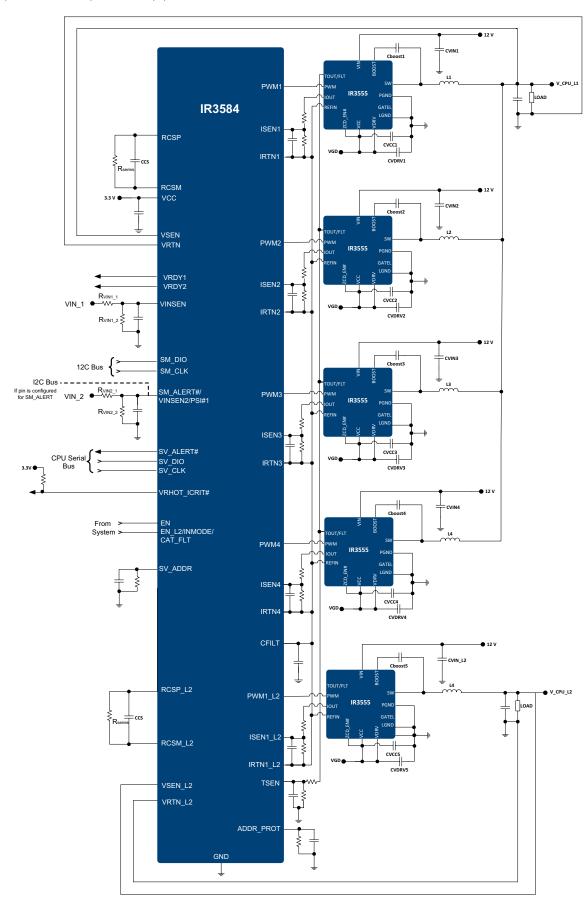
| Part type | I <sub>out</sub><br>[A] | Package   |
|-----------|-------------------------|-----------|
| IR3555    | 60                      | Over-mold |
| IR3556    | 55                      | Over-mold |
| IR3557    | 45                      | Over-mold |
| IR3578    | 50                      | Exposed   |
| IR3579    | 60                      | Exposed   |

www.infineon.com/integrated-powerstages

### Digital controllers

### Point-of-load power management

Infineon's digital multi-phase and multi-rail controllers provide power for today's medium and high current PoL applications used in telecom/datacom and server and storage environments. Infineon's digital controller family enables OEMs and ODMs to improve efficiency and total cost of ownership while increasing power density and optimizing the total system footprint of the voltage regulator. The PX7247, PX7241, PX7143, PX7242 and PX7141 are the first products out of our fourth generation digital controller family and support up to two rails with 1-6 phases on individual rails. The I²C/ PMBus™ interface connects the digital controllers to the application system and provides real time telemetry information, monitoring and control capabilities. The digital controllers are fully configurable through our PowerCode™ graphical user interface that allows for easy to use and simplified design optimization.


### Multiple-phase configurations are supported for best power optimization

| Feature                     |                         | Controller family                |                                  |                                  |                                  |                                  |                                  |                                  |                                  |
|-----------------------------|-------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
| Configurable output rails   |                         | Dual/single rail                 | Dual rail                        | Single rail                      | Dual rail                        | Single rail                      | Single rail                      | Dual rail                        | Dual rail                        |
| Part No.                    | PMBus™                  | PX7247HDN                        | PX7241HDN                        | PX7143HDM                        | PX7242HDM                        | PX7141HDM                        | IR3580                           | IR3581                           | IR3584                           |
| Phase                       | Main                    | 6+1                              | 3+3                              | 3 ph                             | 1+1                              | 1 ph                             | 8 ph                             | 6+1                              | 4+1                              |
| configuration               | Sub configura-<br>tions | 6+0, 5+1, 5+0,<br>4+1            | 3+2, 3+1, 2+2,<br>2+1            | 2 ph                             | -                                | -                                | NA                               | NA                               | NA                               |
| V <sub>out_max</sub>        |                         | 5 V                              | 5 V                              | 5 V                              | 5 V                              | 5 V                              | 3.3 V                            | 3.3 V                            | 3.3 V                            |
| Switching frequ             | ency                    | Up to 2 MHz                      |
| Operating temperature range |                         | 0°C85°C                          | 0°C85°C                          | 0°C85°C                          | 0°C85°C                          | 0°C85°C                          | 0°C125°C                         | 0°C125°C                         | 0°C125°C                         |
| VQFN package                |                         | 48-lead<br>(6x6)<br>0.4 mm pitch | 48-lead<br>(6x6)<br>0.4 mm pitch | 40-lead<br>(5x5)<br>0.4 mm pitch | 40-lead<br>(5x5)<br>0.4 mm pitch | 40-lead<br>(5x5)<br>0.4 mm pitch | 48-lead<br>(6x6)<br>0.4 mm pitch | 48-lead<br>(6x6)<br>0.4 mm pitch | 40-lead<br>(5x5)<br>0.4 mm pitch |

### Advantages of a digital controller

Protection features include a set of sophisticated overvoltage, undervoltage, over-temperature, and overcurrent protections. PX7247, PX7241, PX7143, PX7242 and PX7141 also detect and protect against an open circuit on the remote sensing inputs. These attributes provide a complete and advanced protection feature set for microprocessor, DSP, FPGA or ASIC power systems. Accurate current sense telemetry is achieved through internal calibration that measures and corrects current sense offset error sources upon startup. Programmable temperature compensation provides accurate current sense information even when using DCR current sense.

### Typical multiphase application circuit





# Infineon support for Power ICs

Useful links and helpful information

#### Further information, datasheets and documents

www.infineon.com/acdc
www.infineon.com/coolset
www.infineon.com/optimosdriver
www.infineon.com/integrated-powerstages
www.infineon.com/drmos
www.infineon.com/digital-controller
www.infineon.com/lighting-ics
www.infineon.com/isoface
www.infineon.com/eicedriver
www.infineon.com/2EDN
www.infineon.com/supirbuck

#### Videos and eLearnings

www.infineon.com/mediacenter

www.infineon.com/industrial-transceivers
www.infineon.com/industrial-voltage-regulators
www.infineon.com/industrial-dcdc-converters
www.infineon.com/profet
www.infineon.com/novalithic
www.infineon.com/bridges
www.infineon.com/shields-for-arduino
www.infineon.com/ipol
www.infineon.com/analog-ipol
www.infineon.com/xdp
www.infineon.com/ipm

www.infineon.com/2EDN-elearning











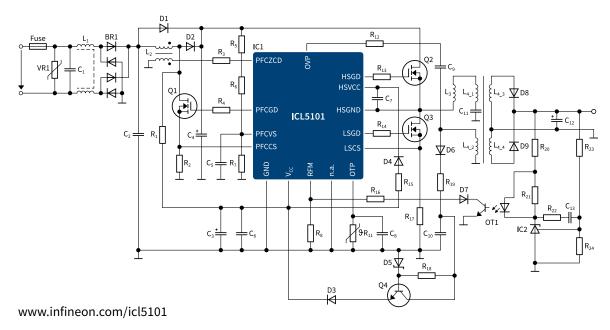




# LED driver ICs for general lighting

## Professional lighting

Infineon's innovative multi-mode LED driver ICs deliver high efficiency, high power factor and low harmonics to LED lighting applications while supporting dimming levels down to one percent. The high level of integration simplifies designs by reducing the need for external components. The XDP™ digital power technology supports quick design and simplifies logistics handling, hence saving effort and cost.


### ICL5101- resonant controller with PFC for LED driver

The ICL5101 integrates a half-bridge controller with a PFC stage in a single package. The high level of integration assures a low count of external components, enabling small form factor designs ideal for compact power supplies in lighting applications, such as LED driver. All operation parameters of the IC are adjustable by simple resistors, this being the ideal choice for affordable and reliable configuration. A comprehensive set of protection features including an adjustable external over temperature protection and capacitive load protection, ensures the detection of fault conditions to increase the system safety.

#### Features and benefits

- > Secondary-side constant voltage or constant current control
- > PFC in CCM mode during nominal load and DCM mode in low-load condition down to 0.1% for operation without audible noise
- > High-power quality with PF > 0.96, THD < 10%
- > Highest efficiency of up to 95% due to resonant topology
- > Allows secondary-side IC dimming down to 1%
- > PFC/LLC combo IC allows the best matching of PFC stage and LLC stage timing control
- > Supports a wide input voltage range from 90 V-305 V
- > Ultra-fast time-to-light < 200 ms
- > Complete set of protection features including external thermal protection

#### Typical application schematic



## New ICL5102 - High performance PFC + resonant controller for LCC and LLC

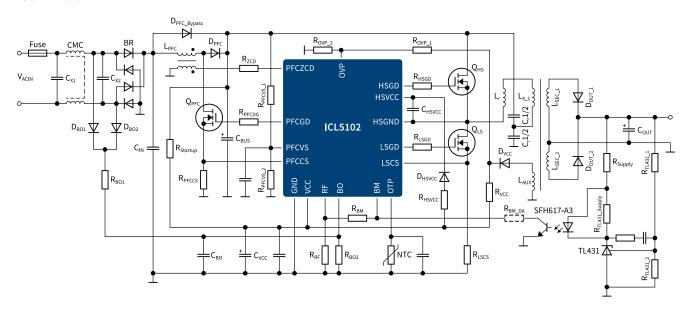
#### Features and benefits

#### > Small form factor LED driver and low BOM

The high level of integration assures a low count of external components, enabling small form factor designs ideal for compact and slim line power supplies for lighting, such as LED driver for indoor and outdoor applications

#### > High performance, digital PFC and advanced HB driver

The high performance digital PFC stage achieves power factor of 99 %, through operation in CrCM and DCM mode, in a frequency range of 22 kHz to 500 kHz. This supports stable operation even at low load conditions down to 0.1 % of the nominal power without audible noise


#### > Fast time-to-light and low standby

With startup current of less than 100  $\mu$ A the controller provides very fast time-to-light within less than 300 ms. While standby the controller changes into active burst mode which reduces power consumption to less than 300 mW

#### > Safety first

The controller has a comprehensive set of protection features built in to increase the system safety. It monitors in the run mode the complete system regarding bus over- and undervoltage, open loop, overcurrent of PFC and/or inverter, output overvoltage, over temperature and capacitive load operation

#### Typical application schematic

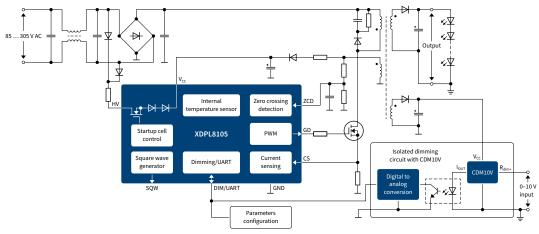


| Туре            | Description <sup>1)</sup>                                     | Ordering code |
|-----------------|---------------------------------------------------------------|---------------|
| ICL5102         | PFC and resonant controller for LCC and LLC                   | SP001609012   |
| EVALEDICL5102E2 | PFC/LLC-CC constant current evaluation board 130 W LED driver | t.b.a.        |

#### XDP™ LED

The digital IC family XDP™ digital power is the first all-in-one package solutions that integrates a digital power controller with key peripherals to simplify your innovations. XDP™ LED is tailor-made for LED lighting applications.

## XDPL8105 - Digital flyback controller IC for LED driver


The XDPL8105 is a high performance microcontroller based digital single-stage flyback controller with power factor correction (PFC) for constant output current LED driver. The IC is available in a DSO-8 package and supports a wide feature set, requiring a minimum of external components. The digital engine offers the possibility to configure operation parameters and protection modes, which helps to ease the design phase and allow a reduce number of hardware variants. Accurate primary side output current control is implemented to eliminate the need for secondary side feedback circuitry.

#### Features and benefits

- > Smooth operation with extended dimming capability
- > Shorter product development at less hardware variants
- Low BOM
- Cost optimized dimming
- Supports AC and DC input
- > AC input voltage 90 V<sub>AC</sub>-305 V<sub>AC</sub>
- > Highly accurate primary side control output current typ. +/-3 %
- > Configurable output current with no BOM change
- > Efficiency up to 91 %

- > High power quality, typical power factor up to 0.99 and THD <10 %
- > Integrated 600 V startup cell
- Internal temperature guard with adaptive thermal management
- > All relevant error conditions are monitored and protected
  - Undervoltage
  - Overvoltage
  - Open load
  - Output shorted

#### Typical application schematic



#### Order information for XDPL8105

| Туре                                   | Description                                                           | Ordering code                                         |  |
|----------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------|--|
| XDPL8105                               | Digital flyback controller IC                                         | SP001639446                                           |  |
| REF-XDPL8105-CDM10V                    | 40 W reference design with CDM10V isolated 0 V-10 V dimming interface | SP001649474                                           |  |
| System simulation design creation tool | MS Excel based software tool                                          | http://www.infineon.com/XDPL8105                      |  |
| .dp interface Gen2                     | Interface board to PC                                                 | http://www.hitex.com/dp                               |  |
| .dp vision                             | Graphical user interface to configure parameters during development   | http://download.hitex.de/dpvisioncustomerdistribution |  |
| XDP™ GUI builder                       | Parameter configuration tool                                          | http://www.infineon.com/XDPL8105                      |  |

www.infineon.com/xdpl8105

## XDPL8220 - The simple and innovative entry point to smart lighting\*

Modern LED technology offers many advanced possibilities for lighting applications. The digital and configurable LED driver IC XDPL8220 enables the lighting industry to realize essential features for smart lighting and increases the benefits to the end user and the manufacturers.

#### Features and benefits

#### > Flexibility saves efforts and cost

The digital core of the XDPL8220 enables a variety of systems based on the same device. Its advanced control algorithms provide the possibility to realize lighting Electronic Control Gear (ECG) for constant current or constant voltage mode in the same circuit.

#### > Essentially now low frequency flicker

The modern two stage architecture offered by the XDPL8220 significantly eases the implementation of up and coming flicker standards by eliminating the low frequency variation from the mains supply and guaranteeing a stable output.

- > Low stand-by power facilitates permanent operation of the ECG
  Supporting a standby power of less than 70 mW, the XDPL8220 significantly reduces the non-active power consumption while still reacting to external events or user requests.
- Intelligent temperature management protects longevity of luminaries
  Any over temperature of external components, measured via an external NTC resistor, managed intelligently by gradually reducing the output current until the over temperature situation is resolved. As last resort when the temperature still exceeds the limit the device will shut down.
- > Small BOM due to integration and primary side control

The primary side control saves extra components especially an optocoupler, thus reducing cost and effort and increasing reliability. The digital control loop saves the parts and efforts for external loop compensation. With its integrated functionality the XDPL8220 enables an increase of the feature set without external parts.

#### Order information for XDPL8220

| Туре     | Description                                            | Ordering code |
|----------|--------------------------------------------------------|---------------|
| XDPL8220 | Digital dual-stage PFC and flyback lighting controller | SP001398160   |

## Linear current regulators

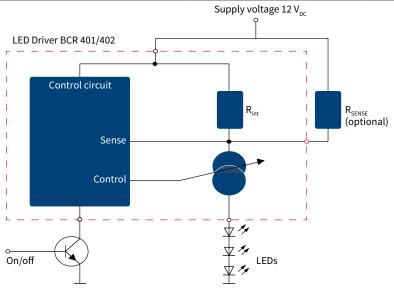
### BCR401W/BCR402W/BCR401U/BCR402U/BCR405U/BCR205W

The BCR40x family is the smallest size and lowest cost series of LED drivers. These products are perfectly suited for driving low power LEDs in general lighting applications. Thanks to AEC-Q101 qualification, it may also be used in automotive applications such as brake lights or interior.

#### The advantage versus resistor biasing is:

- > Long lifetime of LEDs due to constant current in each LED string
- Homogenous LED light output independent of LED forward voltage binning, temperature increase and supply voltage variations
- > See application note AN182 for details on replacing resistors

#### The advantage versus discrete semiconductors is:


- > Reduced part count and assembly effort
- > Pretested output current
- > Defined negative temperature co-efficient protection

#### Features and benefits:

- > Output current from 10 mA to 65 mA (adjustable by external resistor)
- > Supply voltage up to 18 V (BCR401W, BCR402W) and up to 40 V (BCR401U, BCR402U, BCR405U)
- > Reduction of output current at high temperature, contributing to long lifetime LED systems
- > Ease-of-use
- > Very small form factor packages with up to 750 mW max. power handling capability

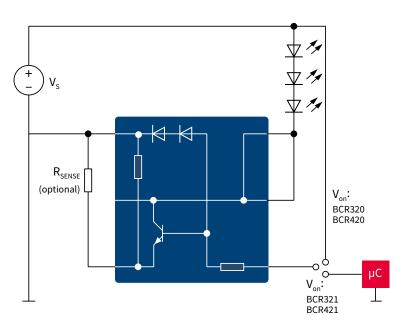
#### Low-power LED driver ICs (5 mA-65 m A)

| Product type | Group                          | Topology | V <sub>s</sub> (min.)<br>[V] | V <sub>s</sub> (max.)<br>[V] | I <sub>out</sub> (typ.)<br>[mA] | I <sub>out</sub> (max.)<br>[mA] | Dimming | Package | P <sub>tot</sub> (max.)<br>[ mW] |
|--------------|--------------------------------|----------|------------------------------|------------------------------|---------------------------------|---------------------------------|---------|---------|----------------------------------|
| BCR205W      | LED controller                 | Linear   | 1.8                          | 18                           | 0.5                             | ext. switch                     | No      | SOT343  | 100                              |
| BCR401U      | LED drivers for low-power LEDs | Linear   | 1.4+V <sub>fLED</sub>        | 40                           | 10.0                            | 65                              | Digital | SC74    | 750                              |
| BCR401W      | LED drivers for low-power LEDs | Linear   | 1.2+V <sub>fLED</sub>        | 18                           | 10.0                            | 60                              | Digital | SOT343  | 500                              |
| BCR402U      | LED drivers for low-power LEDs | Linear   | 1.4+V <sub>fLED</sub>        | 40                           | 20.0                            | 65                              | Digital | SC74    | 750                              |
| BCR402W      | LED drivers for low-power LEDs | Linear   | 1.4+V <sub>fLED</sub>        | 18                           | 20.0                            | 60                              | Digital | SOT343  | 500                              |
| BCR405U      | LED drivers for low-power LEDs | Linear   | 1.4+V <sub>fLED</sub>        | 40                           | 50.0                            | 65                              | Digital | SC74    | 750                              |



www.infineon.com/bcr

### BCR320U/BCR321U/BCR420U/BCR421U/BCR450


The BCR32x and BCR42x LED drivers are dedicated linear regulators for 0.5 W LEDs with a maximum output current of 250 mA. They are optimized in terms of cost, size and feature set for medium power LEDs in general lighting applications. Thanks to AEC-Q101 qualification, it may also be used in automotive applications such as brake lights or interior.

#### Features and benefits

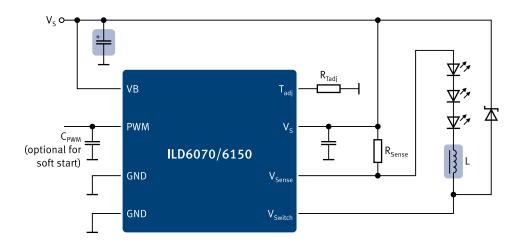
- > Output current from 10 mA up to 300 mA for BCR32x (200 mA for BCR42xU), adjustable by external resistor
- > Supply voltage up to 40 V for BCR42x (24 V for BCR32x)
- > Direct Microcontroller interface for PWM dimming with BCR321U/BCR421U
- > Reduction of output current at high temperature, contributing to long lifetime LED systems
- > Ease-of-use
- > Very small form factor packages with up to 1.000 mW max. power handling capability

#### Medium- and high-power LED driver ICs (65 mA-500 mA)

| Product type | Group                          | Topology | V <sub>s</sub> (min.)<br>[V] | V <sub>s</sub> (max.)<br>[V] | I <sub>out</sub> (typ.)<br>[mA] | I <sub>out</sub> (max.)<br>[mA] | Dimming | Package | P <sub>tot</sub> (max.)<br>[ mW] |
|--------------|--------------------------------|----------|------------------------------|------------------------------|---------------------------------|---------------------------------|---------|---------|----------------------------------|
| BCR320U      | LED drivers for mid-power LEDs | Linear   | 1.4+V <sub>fLED</sub>        | 24+V <sub>fLED</sub>         | 250                             | 300                             | Digital | SC74    | 1000                             |
| BCR321U      | LED drivers for mid-power LEDs | Linear   | 1.4+V <sub>fLED</sub>        | 24+V <sub>fLED</sub>         | 250                             | 300                             | Digital | SC74    | 1000                             |
| BCR420U      | LED drivers for mid-power LEDs | Linear   | 1.4+V <sub>fLED</sub>        | 40+V <sub>fLED</sub>         | 150                             | 200                             | Digital | SC74    | 1000                             |
| BCR421U      | LED drivers for mid-power LEDs | Linear   | 1.4+V <sub>fLED</sub>        | 40+V <sub>fLED</sub>         | 150                             | 200                             | Digital | SC74    | 1000                             |
| BCR450       | LED controller                 | Linear   | 3.0                          | 27                           | 70                              | ext. switch                     | Digital | SC74    | 500                              |



#### DC-DC switch mode LED driver ICs


## ILD1151/ILD4001/ILD4035/ILD2111/IRS25411/ILD6070/ILD6150

The ILD series are switch mode LED driver ICs for high power LEDs. They combine protection features that contribute to the lifetime of LEDs with the flexibility in output current range from 150 mA up to multiple amperes. The new ILD series include LED driver ICs with integrated power stage as well as with external MOSFET achieving up to 98 percent driver efficiency across a wide range of general lighting applications.

#### **Features and benefits**

- > Wide input voltage range
- Scalability in output current from 150 mA up to multiple amperes
- > Alternative dimming concepts: digital or analog
- > Overvoltage and overcurrent protection
- Smart thermal protection for ILD6070, ILD6150, ILD4035 and ILD2111 contributing to longer LED lifetime
- > ILD1151 supports boost, buck-boost and SEPIC topologies

|         | V <sub>s</sub> (min.)<br>[V] | V <sub>s</sub> (max).<br>[V] | I <sub>out</sub> (typ.)<br>[mA] | I <sub>out</sub> (max.)<br>[mA] | Package  | Dimming            | Topology                     | f <sub>sw</sub>                                                | Features                                                                                                                                                     |
|---------|------------------------------|------------------------------|---------------------------------|---------------------------------|----------|--------------------|------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ILD1151 | 4.5                          | 45                           | 90.0                            | 3.000                           | SSOP-14  | Analog/<br>digital | Boost,<br>buckboost<br>SEPIC | Adjustable<br>100 kHz-500<br>kHz                               | Multi topology controller, constant current or constant voltage mode, overvoltage, overcurrent, short on GND protection                                      |
| ILD4001 | 4.5                          | 42                           | 10.0                            | 3.000                           | SC74     | Analog/<br>digital | Hysteretic<br>buck           | < 500 kHz                                                      | Thermal protection, scalable by external switch                                                                                                              |
| ILD4035 | 4.5                          | 40                           | 350                             | 400                             | SC74     | Analog/<br>digital | Hysteretic<br>buck           | < 500 kHz                                                      | Smart thermal protection, over-voltage, over-current protection                                                                                              |
| ILD2111 | 2.5                          | 600                          | 10                              | 3000                            | DSO-8    | Analog,<br>PWM     | Hysteretic<br>buck           | Preset<br>operation<br>window with<br>output ripple<br>control | Output current setting via simple resistor (LEDset like)     Internal and external adaptive temperature guard     Digitally configurable profection features |
| ILD6070 | 4.5                          | 60                           | 700                             | 700                             | DSO-8-27 | Analog/<br>digital | Hysteretic<br>buck           | < 1000 kHz                                                     | Integrated switch rated up to 700 mA, PWM or analog dimming, adjustable over temperature protection, overcurrent protection                                  |
| ILD6150 | 4.5                          | 60                           | 1.500                           | 1.500                           | DSO-8-27 | Analog/<br>digital | Hysteretic<br>buck           | < 1000 kHz                                                     | Integrated switch rated up to 1.500 mA,<br>PWM or analog dimming, adjustable over<br>temperature protection, overcurrent<br>protection                       |

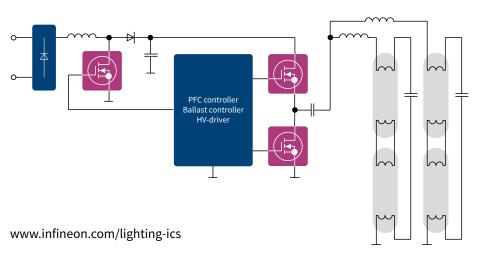


www.infineon.com/bcr

### Ballast control IC for fluorescent lamp

Ballast control ICs from Infineon integrate all functions required to operate FL lamps such as preheat, ignition and run-mode and protection features.

- > Integrated high performance PFC stage
- > Intelligent digital/mixed signal power control
- > Integrated high voltage half-bridge driver
- > All parameters set using only resistors
- > Highly accurate timing and frequency control over a wide temperature range
- > Different types for single, series and parallel lamps


#### **Features**

- Able to handle lamp chokes with higher saturation behavior
- Separate adjustable levels of lamp overload and rectifier effect detection
- > Adjustment of the preheat time
- No high voltage capacitor required for detection of lamp removal (capacitive mode operation)
- Automatically restarts by surge and inverter overcurrent events
- Self-adapting dead time adjustment of the half-bridge driver

#### **Benefits**

- Optimized lamp choke size and reduced BOM costs
- Dramatically reduced time for key tests such as end of life detection, preheat/ignition timeout and pre-run operation modes
- > Suitable for dimming and multi-power ballasts
- Enables ballast compatibility with a wider range of lamp types
- Flexible support of both current and voltage mode preheating
- > Reduced BOM costs
- Intelligent discrimination between surge and halfbridge overcurrent events
- Meets standards for emergency lighting (according to DIN VDE 0108)
- > Eases design of multi-power ballasts and reduces EMI
- > Enhanced reliability of ballasts

| Function                      | ICB2FL03G         | ICB2FL02G                   | ICB2FL01G                   |  |
|-------------------------------|-------------------|-----------------------------|-----------------------------|--|
| Capacitive load protection    | Activated         | Deactivated                 | Activated                   |  |
| Suitable for dimming          |                   | ✓                           | ✓                           |  |
| Max. adjustable run frequency | 140 kHz           | 140 kHz                     | 120 kHz                     |  |
| Package                       | SO-16 small body  | SO-19 wide body             | SO-19 wide body             |  |
| Driver capability             | 650 V             | 900 V                       | 900 V                       |  |
| Lamp connection               | Single and series | Single, series and parallel | Single, series and parallel |  |



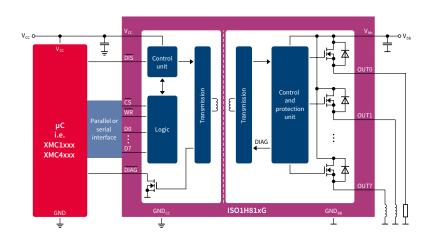
# ISOFACE™

# Galvanic isolated high-side switches and input ICs

Our ISOFACE™ product family provides robust and intelligent galvanic isolation for industrial control applications such as programmable logic controllers, sensor input modules, control panels and general control equipment. The output switches are compact in design, enabling robust and reliable operation at low system cost. Ideal for high speed applications, input ICs are equally robust, reliable and compact – also offering superior EMI robustness and diagnostics.

#### Isolated output switches




#### **Key features**

- > Integrated galvanic isolation (500 V)
- > Eight channels (0.6 or 1.2 A, each)
- > Inductive load switching
- Diagnostic feedback (over-temperature, over-load)
- > Serial and parallel MCU interface

#### **Key benefits**

- > Robust and reliable
- Compact system solution
- > Lower system cost
- > System status feedback
- Directly interfacing with all MPUs and MCUs

#### Typical block diagram isolated output switch

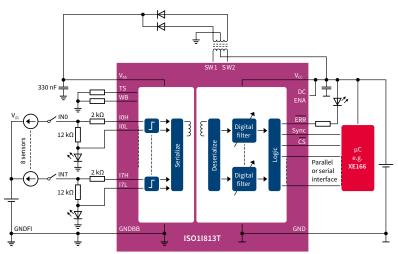


|                   | Product overview                                                              | ISO1H801G   | ISO1H811G   | ISO1H812G   | ISO1H815G   | ISO1H816G   |
|-------------------|-------------------------------------------------------------------------------|-------------|-------------|-------------|-------------|-------------|
|                   | V <sub>bb</sub> operational range: 11 V to 35 V                               | ✓           | ✓           | ✓           | ✓           | ✓           |
| Switch            | Max. continuous load current per channel                                      | 0.6 A       | 0.6 A       | 0.6 A       | 1.2 A       | 1.2 A       |
| Switch            | Load current increase by using outputs in parallel                            | ✓           | ✓           | ✓           | ✓           | ✓           |
|                   | Inductive clamping energy per channel: 1 Joule                                | ✓           | ✓           | ✓           | ✓           | ✓           |
| C:taufaaa         | Туре                                                                          | Parallel    | Parallel    | Serial      | Parallel    | Serial      |
| μC interface      | Nominal voltages                                                              | 5 V         | 3.3 V / 5 V | 3.3 V / 5 V | 3.3 V / 5 V | 3.3 V / 5 V |
|                   | Isolation voltage: V <sub>ISO</sub> = 500 V<br>UL508 and EN 61131-2 certified | <b>√</b>    | <b>√</b>    | <b>√</b>    | <b>√</b>    | ✓           |
| Safety features   | Active current limitation                                                     | ✓           | ✓           | ✓           | ✓           | ✓           |
|                   | Thermal shut-down                                                             | ✓           | ✓           | ✓           | ✓           | ✓           |
|                   | Common output disable pin                                                     | ✓           | ✓           | ✓           | ✓           | ✓           |
| Diagnostics       | Over-temperature                                                              |             | ✓           | ✓           | ✓           | ✓           |
| feedback          | V <sub>bb</sub> under-voltage                                                 |             | ✓           | ✓           | ✓           | ✓           |
| Package DSO-36    | (16x14mm)                                                                     | ✓           | ✓           | ✓           | ✓           | ✓           |
| Infineon ordering | ; code                                                                        | SP000722122 | SP000413798 | SP000413800 | SP000555576 | SP000555578 |

www.infineon.com/isoface

#### Isolated digital input ICs




#### **Key features**

- > Integrated galvanic isolation (500 V)
- > Eight channels (IEC type 1/2/3)
- > Up to 500 kHz sampling speed
- > Programmable input filters
- Channel-specific diagnostics (wire-break, under-voltage)

#### **Key benefits**

- > Robust and reliable
- Compact system solution
- High-speed applications
- > Superior EMI robustness
- > System status feedback
- Valuable maintenance support

#### Typical block diagram digital input switch





#### ISOFACE ™ reference design with microcontroller XMC™

The EMI-tested reference design is a complete and proven template for product design and shortens development time:

- > Layout proposal which meets IEC 61131-2 (zone C) requirements
- Optimized bill-of-materials
- > Example firmware

Ordering code: SP0012831904

| Pro                                          | duct overview                 | ISO1I811T   | ISO1I813T                        |
|----------------------------------------------|-------------------------------|-------------|----------------------------------|
| Input characteristics   IEC type: I, II, III |                               | ✓           | ✓                                |
|                                              | Input status LED              | ✓           | ✓                                |
|                                              | Max. sampling frequency       | 125 kHz     | 500 kHz                          |
|                                              | Deglitching filter setting    | Hard wired  | Software, individual per channel |
|                                              | Synchronous data acquisition  | -           | ✓                                |
| μ <b>C</b> interface                         | 3.3 V/5 V                     | ✓           | ✓                                |
|                                              | Serial and parallel           | ✓           | ✓                                |
| Safety features                              | 500 V isolation voltage       | ✓           | ✓                                |
|                                              | Wire break, channel-specific  | -           | ✓                                |
|                                              | V <sub>bb</sub> under-voltage | -           | ✓                                |
| Support for external V                       | , supply                      | -           | ✓                                |
| Package TSSOP-48 (8x                         | :12.5 mm)                     | ✓           | ✓                                |
| Infineon ordering cod                        | e                             | SP000876494 | SP000876504                      |

# Integrated point-of-load converters

The IR MOSFET™ IPOL based on former SupIRBuck™ family of integrated POL converters combine a controller and MOSFETs in a single package to deliver high power densities with reduced component count and improved performance for best-in-class efficiency over the entire load range.



#### Constant on-time IR MOSFET™ IPOL

The IR MOSFET™ IPOL product family features Infineon's constant on-time with enhanced stability engine to offer simplicity (no compensation), reduced component count and light load efficiency.

| Part number | I <sub>out</sub><br>[A] | V <sub>in</sub> max.<br>[V] | f <sub>sw</sub><br>[MHz] | Package<br>[mm] | Selectable OCP |
|-------------|-------------------------|-----------------------------|--------------------------|-----------------|----------------|
| IR3883      | 3                       | 14                          | 0.8                      | 3x3             | ✓              |

# PMBus™ digital IR MOSFET™ IPOL

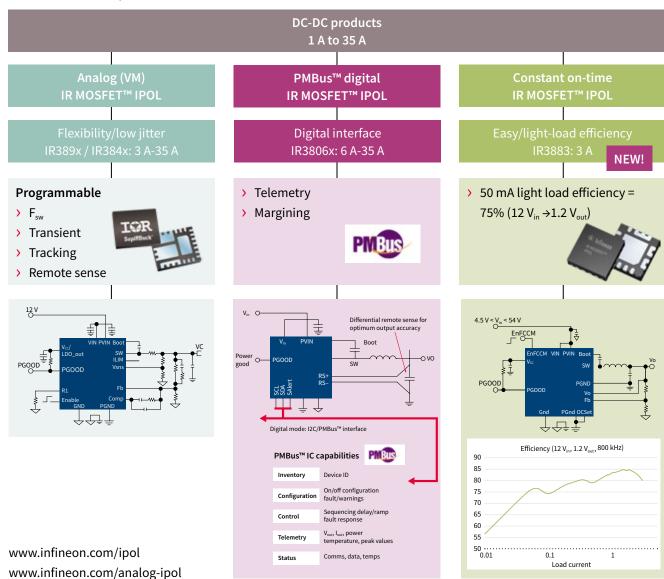
Converters that offer all the benefits of an analog voltage mode engine with the addition of a PMBus™ digital interface. Easy-to-use IR PowIRCenter software allows configuration, monitoring and control of an entire power system.



| Part<br>number | I <sub>out</sub><br>[A] | V <sub>in</sub> max.<br>[V] | f <sub>sw</sub><br>[MHz] | Package<br>[mm] | PMBus™<br>commands |
|----------------|-------------------------|-----------------------------|--------------------------|-----------------|--------------------|
| IR38064        | 35                      | 21                          | 0.2-1.5                  | 5x7             | 66                 |
| IR38063        | 25                      | 21                          | 0.2-1.5                  | 5x7             | 66                 |
| IR38062        | 15                      | 21                          | 0.2-1.5                  | 5x7             | 66                 |
| IR38060        | 6                       | 21                          | 0.2-1.5                  | 5x6             | 66                 |

#### **Key features**

> 66 PMBus™ commands


## Voltage mode IR MOSFET™ IPOL

The voltage mode engine offers high output voltage accuracy and robust, predictable performance. A patented PWM modulation scheme in the latest (3<sup>rd</sup>) generation virtually eliminates jitter allowing much higher closed-loop bandwidths (as much as 1/6 of the switching frequency) and more than 1 MHz switching frequency for less capacitor and to deliver the smallest voltage regulator solutions.

| Part   | Current | Feature                       |  |
|--------|---------|-------------------------------|--|
| IR3846 | 35 A    | _                             |  |
| IR3847 | 25 A    | Remote sense<br>Single output |  |
| IR3448 | 15 A    | Single output                 |  |
| IR3895 | 15 A    |                               |  |
| IR3899 | 9 A     |                               |  |
| IR3898 | 6 A     | Single output                 |  |
| IR3887 | 4 A     |                               |  |
| IR3823 | 3 A     |                               |  |
| IR3892 | 6 A+6 A | Dual output                   |  |
| IR3891 | 4 A+4 A | Dual output                   |  |



## Point-of-load products - how to choose



# CAN transceivers

## Proven quality for power management applications

Our CAN transceivers provide proven quality, reliable track records and high robustness in automation applications. Features include excellent electromagnetic performance and low levels of electromagnetic interference (EMI). They are also designed for ISO compliance. While our IFX1050G, IFX1050 GVIO and IFX1040SJ devices are optimized for high-speed CAN communication the new IFX1051 transceiver family addresses the upcoming CAN FD (flexible data rate) markets beyond 1Mbit/s.

#### **Key features**

- > Transmission rates up to 2 Mbit/s ISO11898 compliant
- > Low-power modes
- > Receive-only mode
- > Standby/sleep mode
- > Bus wake up
- > Thermal protection
- > CAN FD compliance

#### **Key benefits**

- > Low current consumption
- > Thermal protection
- ) Low power modes
- > Excellent EMI performance and EMI robustness
- > Standby/sleep mode
- > Pin-to-pin replacements for industry-standard parts

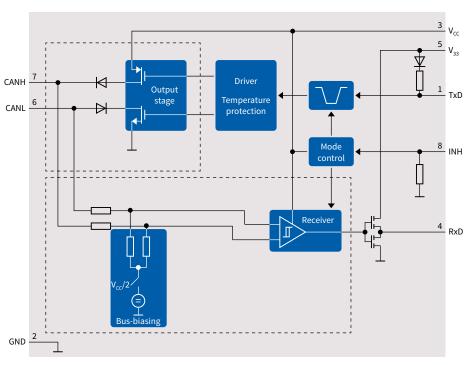
#### **Product portfolio**

| Product number | Package  | Transceiver type | ISO compliance         | Transmission rate (max.) |
|----------------|----------|------------------|------------------------|--------------------------|
| IFX1050G       | PG-DSO-8 | High speed CAN   | ISO11898-2             | 1 Mbps                   |
| IFX1050GVIO    | PG-DSO-8 | High speed CAN   | ISO11898-2             | 1 Mbps                   |
| IFX1040SJ      | PG-DSO-8 | High speed CAN   | ISO11898-2, ISO11898-5 | 1 Mbps                   |
| IFX1051SJ      | PG-DSO8  | CAN FD           | ISO 11898-2            | 2 Mbps                   |
| IFX1051LE      | PG-TSON8 | CAN FD           | ISO 11898-2            | 2 Mbps                   |

#### CAN FD transceiver

In addition to the classic CAN transceiver portfolio, Infineon is also offering a CAN FD transceiver. By using two reserved bits in the protocol, CAN-FD will boost the baudrate of CAN systems. The so-called "Bit-Rate-Switch" (BRS) bit increases the bit rate within the CAN data field from 1 to 2Mbit/s whereas the so-called "Extended-Data-Length" (EDL) bit increased "payload" from 8 bytes to 64 bytes resulting in higher bandwith.

The Infineon CAN FD transceiver IFX1051, being designed for HS CAN networks in industrial applications, acts as an interface between the physical bus layer and the CAN protocol controller: it drives the signals to the bus and protects the microcontroller against interferences generated within the network. Based on the high symmetry of the CANH and CANL signals, the IFX1051 provides a very low level of electromagnetic emission (EME) within a wide frequency range.


#### IFX1051 key features

- > Fully compatible to ISO 11898-2
- > Wide common mode range for EMI
- > Very low EME
- > Excellent ESD robustness
- > Guaranteed loop delay symmetry to support CAN FD data frames up to 2 MBit/s
- > VIO input for voltage adaption to the microcontroller supply
- > Extended supply range on  $V_{\text{cc}}$  and VIO supply
- > CAN short circuit proof to ground, battery and V<sub>cc</sub>
- > TxD time-out function with very long TxD timeout timing
- > Low CAN bus leakage current in power-down state
- > Overtemperature protection
- > Protected against transients
- > Receive-only mode
- > Green product (RoHS compliant)
- > Two package options: tiny package PG-TSON-8 or standard package PG-DSO-8

- > IFX1051 key benefits
- Cost efficient replacement to industry market standard device \*1051
- > High speed communication up to 2 MBit/s
- > Wide temperature range



#### CAN FD IFX1051 block diagramm



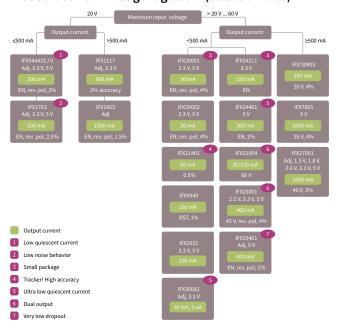
# Voltage regulators

# Energy-efficient voltage regulators and trackers

Our linear voltage regulators and trackers help to reduce energy consumption, extending operating time and minimizing operating costs across all kinds of systems. The wide supply voltage range, low quiescent current, rich protective feature set and choice of packages make our devices the perfect fit across a broad application spectrum, apart from automation systems as well for heath care, traffic, power tools, lighting and many other multi-market systems. Our trackers are ideal as additional supplies for off-board loads to increase system reliability.

#### **Key features**

- > Input voltage up to 60 V
- > Output current up to 1.5 A
- > Output voltage adjustable or fixed to specific values
- > Quiescent current down to 5 μA
- Overload, overtemperature, short-circuit and reverse-polarity protection
- > Low current consumption
- > Extended temperature range -40°C ... +125°C


#### **Key benefits**

- Pin-to-pin compatibility with industry-standard parts
- > Very low dropout voltage
- Trackers for optimized heat distribution and external protection
- > Trackers for maximum system cost reduction
- > Small robust packages

#### Infineon microcontroller families and industrial voltage regulators

| Microcontroller family | Input voltage [V]  | Input current (max.) [mA] | Voltage regulator                                    |
|------------------------|--------------------|---------------------------|------------------------------------------------------|
| XMC1000 family         | 1.8 5.5            | <100                      | IFX54211/IFX2931/IFX4949/IFX25001/IFX544xx/ IFX30081 |
| XMC4000 family         | 3.3                | <500/300                  | IFX1763/IFX544xx/IFX1117/IFX30081                    |
| XC8xx                  | 3.3 5.0            | 200                       | IFX20001/IFX30081/IFX21401/IFX4949/IFX544xx          |
| XE166/XC2000           | 1.5 and 3.3 or 5.0 | 100                       | IFX25401/IFX24401/IFX2931/IFX4949/IFX1763/IFX54441   |
| TriCore™               | 1.5 3.3            | >400                      | IFX27001/IFX8117/IFX91041/IFX80471/IFX25001/IFX1117  |

#### Industrial linear voltage regulator (selection tree)



www.infineon.com/industrial-voltage-regulators

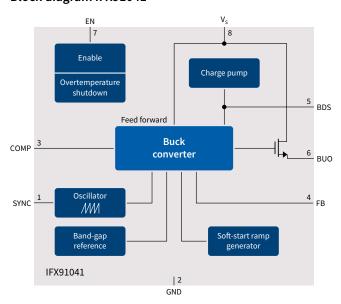
# DC-DC converters

Robust range of converters for the widest application spectrum

Our high-efficiency switching regulators and controllers help to reduce energy consumption. In addition to extending the operating time of battery powered systems, they also significantly improve the thermal budget of the application. Overall, this translates into minimal operating costs. For your design flexibility, they are available as adjustable voltage variants as well as with dedicated fixed output voltage values.

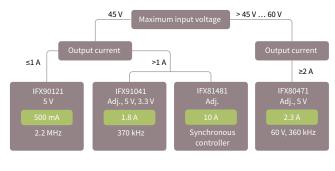
#### **Key features**

- > Input voltage up to 60 V
- > Output currents going from 500 mA up to 10 A
- > Switching frequencies ranging from 100 kHz to 2.2 MHz
- > Shutdown quiescent current down to below 2 μA
- > Current limitation and overtemperature protection
- > Enable feature


#### **Key benefits**

- > High-efficiency regulation
- Only a few external components needed for stable regulation
- Perfectly suited for regulation in pre-/post-regulation power supply architectures

#### **DC-DC** converters


| Part number    | V <sub>Q</sub><br>(multiple) | Output current type | Output current<br>[A] | Product features                                                                                 | Package    |
|----------------|------------------------------|---------------------|-----------------------|--------------------------------------------------------------------------------------------------|------------|
| IFX81481ELV    | Adjustable                   | Buck controller     | 10.0                  | 10 A synchronous DC-DC adjustable step down controller;<br>f = 100 kHz-700 kHz, N                | PG-SSOP-14 |
| IFX90121EL V50 | 5.0 V                        | Buck converter      | 0.5                   | $V_{\mbox{\scriptsize in}}$ up to 45 V, 2.2 MHz step-down regulator with low quiescent current   | PG-SSOP-14 |
| IFX80471SK V   | Adjustable                   | Buck controller     | 2.3                   | $V_{in}$ up to 60 V; $V_{Q}$ adjustable from 1.25 V up to 15 V; external MOSFET                  | PG-DSO-14  |
| IFX80471SK V50 | 5.0 V                        | Buck controller     | 2.3                   | V <sub>in</sub> up to 60 V; external MOSFET                                                      | PG-DSO-14  |
| IFX91041EJV    | Adjustable                   | Buck converter      | 1.8                   | $V_{\scriptscriptstyle \mathbb{Q}}$ adjustable from 0.6 V up to 16 V; tolerance 2% up to 1000 mA | PG-DSO-8   |
| IFX91041EJ V33 | 3.3 V                        | Buck converter      | 1.8                   | $V_{\rm Q}$ fixed to 3.3 V; tolerance 2% up to 1000 mA                                           | PG-DSO-8   |
| IFX91041EJ V50 | 5.0 V                        | Buck converter      | 1.8                   | $\rm V_{\scriptscriptstyle Q}$ fixed to 5.0 V; tolerance 2% up to 1000 mA                        | PG-DSO-8   |

#### Block diagram IFX91041



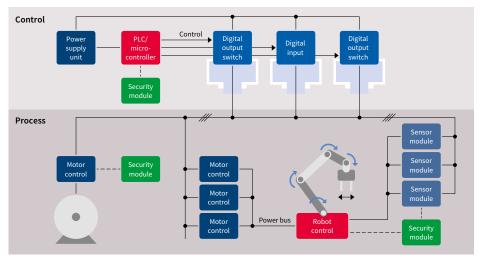
#### www.infineon.com/industrial-dcdc-converters

#### Industrial DC-DC buck regulators (selection tree)



# Industrial PROFET™

# Protected high-side switches

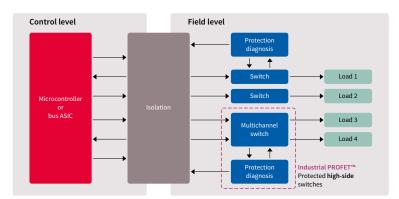

The well-established high-side switch Industrial PROFET™ products were designed for targeting a variety of industrial applications which include all types of resistive, inductive and capacitive loads. Due to their outstanding energy robustness, they are perfectly suitable for switching even higher inductive loads and driving relays. Their main application areas include high-voltage applications (VBAT up to 58 V), high-speed PWM applications (up to 1 kHz) and they are most notably capable of switching higher inductances smoothly. Industrial PROFET™ can be applied to drive any kind of sensor units, indicators, displays, LEDs, relays, valves and magnetic actuators or replace electromechanical relays, fuses and discrete circuits. Industrial PROFET™ are also the perfect match for applications with long wiring or any other kind of inductive loads or applications with space constraints.

#### **Key applications**

- > Industrial automation
- > Programmable Logic Controller (PLC)
- Digital I/O modules
- > Robotics
- > Building and home management
- Solar applications
- Wind energy systems

- > Smart grid
- Medical
- > E-bikes
- Motor control and drives
- > Power supplies

#### Industrial automation system diagram




#### System benefits

- Right fit for digital output switches, motor or robot control, protected switching of decentralized loads like sensors or auxiliary supply
- Suitable for all types of complex loads including high inductances (high EAS)
- Outstanding robustness & reliability as required by industrial mission profiles
- Thermally optimized products with low R<sub>DS(on)</sub> to deal with the high ambient temperatures and limited or even no cooling
- > Diagnosis & protection for safe system operation
- Small & compact design for higher integration and applications with space constraints

www.infineon.com/industrial-profet

#### PLC - Programmable Logic Controller digital output modules



#### System benefits

- > Suitable for all types of complex loads including high inductances (EAS) as PLC manufacturers cannot predict how the end customer will use the digital outputs
- > Outstanding robustness & reliability as required by industrial mission profiles
- > Thermally optimized products with low R<sub>DS(on)</sub> to deal with

the high ambient temperatures within I/O modules with limited or even no cooling

- > Diagnosis & protection for safe system operation
- > Small & compact design for higher Integration
- > Addressing the I/O modules quasi standard currents 2 A & 0.5 A, but also lower currents as within micro-PLCs

| Product       | Number of channels | R <sub>DS(on)</sub> (typ) | Nominal<br>load cur- | E <sub>AS</sub> | Recommended operating voltage range | I <sub>L(SC)</sub> (typ) | Diagnosis         | Package  |
|---------------|--------------------|---------------------------|----------------------|-----------------|-------------------------------------|--------------------------|-------------------|----------|
|               |                    | [mΩ]                      | rent<br>[A]          | [mJ]            | [V]                                 | [A]                      |                   |          |
| ITS4060S-SJ-N | 1                  | 50                        | 3.10                 | 900 @ 1.50 A    | 5.00 34.00                          | 17.0                     | n/a               | DSO-8    |
| ISP772T       | 1                  | 50                        | 2.60                 | 900 @ 1.50 A    | 5.00 34.00                          | 17.0                     | n/a               | DSO-8    |
| ITS428L2      | 1                  | 60                        | 7.00                 | 190 @ 7.00 A    | 4.75 41.00                          | 22.0                     | Digital           | TO252-5  |
| ITS4100S-SJ-N | 1                  | 70                        | 2.40                 | 870 @ 1.00 A    | 5.00 34.00                          | 10.0                     | n/a               | PG-DSO-8 |
| ISP762T       | 1                  | 70                        | 2.00                 | 870 @ 1.00 A    | 5.00 34.00                          | 10.0                     | n/a               | DSO-8    |
| ITS4200S-ME-O | 1                  | 150                       | 1.10                 | 700 @ 0.50 A    | 11.00 45.00                         | 1.4                      | n/a               | SOT223-4 |
| ITS4141N      | 1                  | 150                       | 1.10                 | 700 @ 0.50 A    | 12.00 45.00                         | 1.4                      | n/a               | SOT223-4 |
| ITS4141D      | 1                  | 150                       | 1.10                 | 12,000 @ 0.50 A | 12.00 45.00                         | 1.4                      | n/a               | TO-252-5 |
| ITS4200S-ME-P | 1                  | 150                       | 2.20                 | 160 @ 1.00 A    | 11.00 45.00                         | 3.0                      | n/a               | SOT223-4 |
| ITS4142N      | 1                  | 150                       | 2.20                 | 160 @ 1.00 A    | 12.00 45.00                         | 3.0                      | n/a               | SOT223-4 |
| ITS4200S-ME-N | 1                  | 160                       | 1.20                 | 500 @ 0.50 A    | 5.00 34.00                          | 1.5                      | n/a               | DSO-8    |
| ISP452        | 1                  | 160                       | 1.20                 | 500 @ 0.50 A    | 5.00 34.00                          | 1.5                      | n/a               | SOT223-4 |
| ITS4200S-SJ-D | 1                  | 150                       | 1.70                 | 125 @ 1.00 A    | 6.00 52.00                          | 6.5                      | Digital           | DSO-8    |
| ISP752R       | 1                  | 200                       | 1.70                 | 125 @ 1.00 A    | 6.00 52.00                          | 6.5                      | Digital           | DSO-8    |
| ISP752T       | 1                  | 200                       | 1.70                 | 125 @ 1.00 A    | 6.00 52.00                          | 6.5                      | n/a               | DSO-8    |
| ITS4300S-SJ-D | 1                  | 250                       | 0.80                 | 800 @ 0.30 A    | 5.00 34.00                          | 1.2                      | Digital           | DSO-8    |
| ISP742RI      | 1                  | 350                       | 0.80                 | 800 @ 0.30 A    | 5.00 34.00                          | 1.2                      | Digital, inverted | DSO-8    |
| ITS41K0S-ME-N | 1                  | 1000                      | 0.55                 | 1000 @ 0.15 A   | 4.90 60.00                          | 0.9                      | n/a               | SOT223-4 |
| ITS4140N      | 1                  | 1000                      | 0.55                 | 1000 @ 0.15 A   | 4.90 60.00                          | 0.9                      | n/a               | SOT223-4 |
| ITS5215L      | 2                  | 90                        | 2 x 2.00             | 178 @ 3.50 A    | 5.50 40.00                          | 15.0                     | Digital           | DSO-12   |
| ITS42K5D-LD-F | 2                  | 2500                      | 2 x 0.25             | Freewheeling    | 4.50 45.00                          | 0.6                      | Digital           | TSON-10  |
| ITS724G       | 4                  | 90                        | 4 x 2.00             | 120 @ 3.30 A    | 5.50 40.00                          | 15.0                     | Digital           | DSO-20   |
| ITS716G       | 4                  | 140                       | 4 x 1.00             | 76 @ 2.30 A     | 5.50 40.00                          | 9.0                      | Digital           | DSO-20   |
| ITS711L1      | 4                  | 200                       | 4 x 1.00             | 150 @ 1.90 A    | 5.00 35.00                          | 7.5                      | Digital           | DSO-20   |
| ITS42008-SB-D | 8                  | 200                       | 8 x 0.60             | 10,000 @ 625 mA | 11.00 45.00                         | 3.0                      | Digital           | DSO-36   |
| ITS4880R      | 8                  | 200                       | 8 x 0.60             | 10,000 @ 625 mA | 11.00 45.00                         | 3.0                      | Digital           | DSO-36   |

#### Industrial PROFET™ evaluation board plus samples:

- > ITS4060S-SJ-N, ITS4100S-SJ-N, ITS4200S-SJ-D,
- > ITS4300S-SJ-D, ITS4200S-ME-N, ITS4200S-ME-O,
- > ITS4200S-ME-P, ITS41K0S-ME-N

Order: INDPROFETEVALBOARDTOBO1

#### Additional evaluation boards:

- > ITS42008, DEMOBOARDITS42008TOBO1
- > ITS42K5D-LD-F, DEMOBOARDITS42K5DTOBO1

www.infineon.com/industrial-profet

# HITFETTM

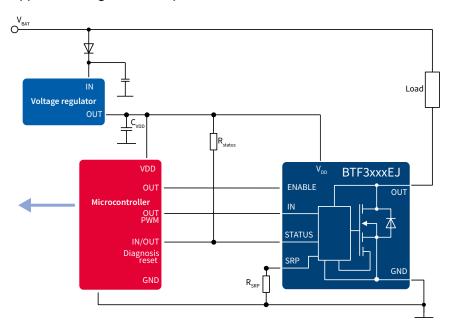
#### Protected low-side switches

HITFET<sup>TM</sup> stands for highly integrated temperature protected MOSFET. These well-established low-side switches offer a compelling feature set with protection against over temperature, short circuit and overload conditions as well as ESD robustness. The HITFET<sup>TM</sup>+ family is the new generation based on a new technology, enabling a significant shrink compared to the existing HITFET<sup>TM</sup> portfolio (up to 50 percent shrink). This new generation consists of standard and fully featured protected low-side switches (35 m $\Omega$  to 125 m $\Omega$ ) in the TO252-3 and TDSO-8 packages. HITFET<sup>TM</sup>+ devices address a wide range of applications including resistive, inductive and resistive loads.

#### **Key features**

- > Low-side switches with integrated protection features
- > Scalable in  $R_{DS(on)}$  ranges from 490 m $\Omega$  down to 14 m $\Omega$
- Adjustable slew rate control (BTFxxx)
- > Thermal shutdown with auto-restart or latch behavior
- > Status feedback via
  - Increased input current (HITFET™ 2<sup>nd</sup> gen.)
  - Digital read out via SRP (BTF3050TE)
  - Via STATUS pin (BTF3xxxEJ)

#### **Key benefits**


- ightarrow High design flexibility with scalable  $R_{ exttt{DS(on)}}$  and package
- Driving applications with high switching speed requirements up to 25 kHz (e.g. valve, solenoid)
- > Easy to design-in
- > Choice of packages to match individual application needs

#### **Key applications**

- > Industrial automation (see page 198)
- > Programmable logic controller (PLC) (see page 199)
- > Digital I/O modules
- > Building and home management
- > All kind of solenoid or valve driving
- > Power modules
- Solar power inverters

See also pages 198/199.

#### Application diagramm example for HITFET™+



| Product type | Product<br>family | Channels | R <sub>DS(on)</sub> @25°C<br>[mW] | Nominal load<br>current<br>[A] | EAS [mJ]  | Operating<br>voltage range<br>[V] | IL <sub>(SD)</sub><br>(typ)<br>[A] | IL <sub>(LIM)</sub> (typ) [A] | I <sub>L(LIM)_TRIGGER</sub> (typ) [A] | Diagnosis         | Package                      |
|--------------|-------------------|----------|-----------------------------------|--------------------------------|-----------|-----------------------------------|------------------------------------|-------------------------------|---------------------------------------|-------------------|------------------------------|
| BTS3035EJ    | HITFET+           | 1        | 28                                | 5.00                           | 105 @ 5 A | up to 31                          | _                                  | 20.00                         | -                                     | STATUS pin        | TDSO-8                       |
| BTS3035TF    | HITFET+           | 1        | 30                                | 5.00                           | 106@5A    | up to 31                          | -                                  | 20.00                         | -                                     | -                 | TO252-3 (DPAK 3-leg)         |
| BTF3035EJ*   | HITFET+           | 1        | 28                                | 5.00                           | 95 @ 5 A  | up to 32                          | -                                  | 14.00                         | 41.00                                 | STATUS pin        | TDSO-8                       |
| BTF3050TE    | HITFET+           | 1        | 40                                | 3.00                           | 120 @ 3 A | up to 28                          | -                                  | 8.00                          | 30.00                                 | through SRP pin   | TO252-5 (DPAK 5-leg)         |
| BTS3050EJ    | HITFET+           | 1        | 40                                | 4.00                           | 62 @ 3 A  | up to 31                          | -                                  | 15.00                         | -                                     | STATUS pin        | TDSO-8                       |
| BTS3050TF    | HITFET+           | 1        | 44                                | 4.00                           | 64 @ 4 A  | up to 31                          | _                                  | 15.00                         | -                                     | _                 | TO252-3 (DPAK 3-leg)         |
| BTF3050EJ*   | HITFET+           | 1        | 40                                | 4.00                           | 62 @ 4 A  | up to 32                          | _                                  | 10.00                         | 29.00                                 | STATUS pin        | TDSO-8                       |
| BTS3060TF    | HITFET+           | 1        | 50                                | 3.00                           | 55 @ 3 A  | up to 35                          | _                                  | 10.50                         | -                                     | _                 | TO252-3 (DPAK 3-leg)         |
| BTS3080EJ    | HITFET+           | 1        | 64                                | 3.00                           | 35 @ 3 A  | up to 31                          | -                                  | 10.00                         | -                                     | STATUS pin        | TDSO-8                       |
| BTS3080TF    | HITFET+           | 1        | 69                                | 3.00                           | 38 @ 3 A  | up to 31                          | _                                  | 10.00                         | -                                     | _                 | TO252-3 (DPAK 3-leg)         |
| BTF3080EJ*   | HITFET+           | 1        | 64                                | 3.00                           | 33 @ 3 A  | up to 32                          | -                                  | 7.00                          | 18.00                                 | STATUS pin        | TDSO-8                       |
| BTS3125EJ    | HITFET+           | 1        | 100                               | 2.00                           | 30 @ 2 A  | up to 31                          | -                                  | 7.00                          | -                                     | STATUS pin        | TDSO-8                       |
| BTS3125TF    | HITFET+           | 1        | 108                               | 2.00                           | 24 @ 2 A  | up to 31                          | -                                  | 7.00                          | -                                     | -                 | TO252-3 (DPAK 3-leg)         |
| BTF3125EJ*   | HITFET+           | 1        | 100                               | 2.00                           | 23 @ 2 A  | up to 32                          | -                                  | 5.00                          | 12.00                                 | STATUS pin        | TDSO-8                       |
| BTS3018TC    | HITFET            | 1        | 14                                | 6.00                           | 1900      | up to 36                          | -                                  | 30.00                         | -                                     | through input pin | TO263-3-2 (TO220-3<br>(SMD)) |
| BTS141TC     | HITFET            | 1        | 25                                | 5.10                           | 4000      | up to 36                          | -                                  | 25.00                         | -                                     | through input pin | TO263-3-2 (TO220-3<br>(SMD)) |
| BTS3028SDL   | HITFET            | 1        | 28                                | 5.00                           | 350       | up to 36                          | -                                  | 18.00                         | -                                     | through input pin | TO252-3 (DPAK 3-leg)         |
| BTS3028SDR   | HITFET            | 1        | 28                                | 5.00                           | 350       | up to 36                          | -                                  | 18.00                         | -                                     | through input pin | TO252-3 (DPAK 3-leg)         |
| BTS133TC     | HITFET            | 1        | 40                                | 3.80                           | 2000      | up to 36                          | _                                  | 21.00                         | _                                     | through input pin | TO263-3-2 (TO220-3 (SMD))    |
| BTS3046SDL   | HITFET            | 1        | 46                                | 3.60                           | 140       | up to 36                          | -                                  | 10.00                         | -                                     | through input pin | TO252-3 (DPAK 3-leg)         |
| BTS3046SDR   | HITFET            | 1        | 46                                | 3.60                           | 140       | up to 36                          | -                                  | 10.00                         | -                                     | through input pin | TO252-3 (DPAK 3-leg)         |
| BTS117TC     | HITFET            | 1        | 80                                | 3.50                           | 1000      | up to 36                          | -                                  | 7.00                          | -                                     | through input pin | TO263-3-2 (TO220-3 (SMD))    |
| BTS3104SDL   | HITFET            | 1        | 104                               | 2.00                           | 50        | up to 36                          | _                                  | 6.00                          | _                                     | through input pin | TO252-3 (DPAK 3-leg)         |
| BTS3104SDR   | HITFET            | 1        | 104                               | 2.00                           | 50        | up to 36                          | -                                  | 6.00                          | -                                     | through input pin | TO252-3 (DPAK 3-leg)         |
| AUIPS2041L   | HITFET            | 1        | 100                               | 1.40                           | -         | up to 35                          | 5.00                               | -                             | -                                     | -                 | SOT-223                      |
| AUIPS2051L   | HITFET            | 1        | 250                               | 0.90                           | -         | up to 35                          | 1.80                               | -                             | -                                     | -                 | SOT-223                      |
| AUIPS2052G   | HITFET            | 2        | 250                               | 0.90                           | -         | up to 35                          | 1.80                               | -                             | -                                     | -                 | SO-8 (DSO-8)                 |
| BTS3408G     | HITFET            | 2        | 480                               | 0.55                           | 800       | up to 36                          | -                                  | 1.00                          | -                                     | through input pin | DSO-8                        |
| BSP75N       | HITFET            | 1        | 490                               | 0.70                           | 550       | up to 36                          | -                                  | 1.00                          | -                                     | through input pin | SOT-223                      |

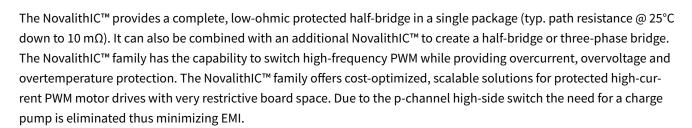
#### Low-side switch shield with BTF3050TE

The low-side switch shield from Infineon consists out of three BTF3050TE low-side switches of the HITFET™+ family providing three independent power channels that can be controlled via the input pins. The shield is compatible with microcontroller boards using the Arduino form factor, for example the corresponding ARM® powered XMC™ microcontroller kits from Infineon and supports fast and easy prototyping of applications with BTF3050TE.

#### **Key features**

- > PWM up to 14 kHz (10 percent duty cycle)
- > Driver circuit with logic level inputs
- Fault feedback
- Protection e.g. against overtemperature and overcurrent
- Able to switch all kinds of resistive, inductive and capacitive loads

#### **Operating conditions**


- > Nominal voltage range 8 V 18 V
- > Nominal current 3 A (typ.) DC



# Half- and H-bridges

## Motor control design made easy

## Half-bridges

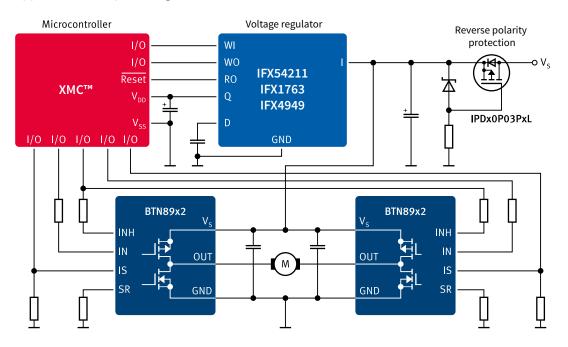


#### **Basic features**

- > Low quiescent current
- Capable for high PWM frequency
- > Logic level input
- > Adjustable slew rate
- > Cross-current protection

#### **Protection features**

- > Overtemperature shutdown
- Overvoltage (lockout or smart clamp)
- > Undervoltage
- ) Overcurrent


#### **Diagnostic features**

- Overtemperature
- ) Overvoltage
- ) Overcurrent
- Current sense and status

#### NovalithIC™ product overview

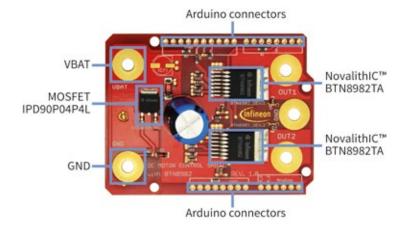
| Product<br>number | Operating range<br>[V] | $R_{DS(on)}$ path (typ.) $[m\Omega]$ | I <sub>D(lim)</sub> (typ.)<br>[A] | l <sub>α</sub> (typ.)<br>[μΑ] | Switch time (typ.)<br>[μs] | Diagnosis  | Protection | Package     |
|-------------------|------------------------|--------------------------------------|-----------------------------------|-------------------------------|----------------------------|------------|------------|-------------|
| BTN8962TA         | 5.5 40.0               | 14.2                                 | 42                                | 7                             | 0.25                       | OT, OC, CS | UV, OT, OC | PG-TO-263-7 |
| BTN8982TA         | 5.5 40.0               | 10.0                                 | 70                                | 7                             | 0.25                       | OT, OC, CS | UV, OT, OC | PG-TO-263-7 |

#### Application example for high-current PWM motor drives



#### www.infineon.com/novalithic




#### DC motor control shield with BTN8982TA for Arduino

The DC motor control shield is capable of driving two uni-directional DC motors (half-bridge configuration) or one bi-directional DC motor (H-bridge configuration). The implemented half-bridge NovalithIC™ BTN8982TA can be controlled by a PWM via the IN pin. Interfacing to a microcontroller is made easy by the integrated driver IC which features logic level inputs, diagnosis with current sense, slew rate adjustment, dead time generation and protection against overtemperature, undervoltage, overcurrent and short circuit.

#### **Features**

- ➤ Compatible with microcontroller boards using the Arduino form factor, e.g. Infineon's XMC<sup>™</sup> microcontroller kits
- > Capable of high frequency PWM, e.g. 30 kHz
- Adjustable slew rates for optimized EMI by changing external resistor
- > Driver circuit with logic level inputs
- > Diagnosis with current sense

- > Operating conditions
- > Brushed DC motor control up to 250 W continuous load
- > 8-18 V nominal input voltage (max. 6-40 V)
- Average motor current 30 A restricted due to PCB (BTN8982TA current limitation @ 55 A min.)



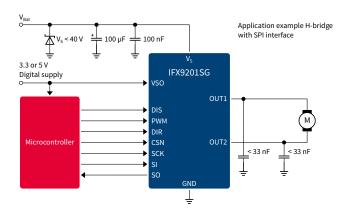
# H-bridge

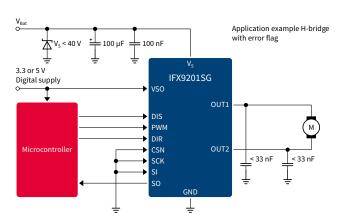
IFX9201SG is a general purpose 6 A H-bridge designed for the control of small DC motors and inductive loads. The outputs can be pulse width modulated at frequencies up to 20 kHz – that enables operation above the human sonic range – by means of PWM/DIR control. While the signal at the DIR input defines the direction of the DC motor, the PWM signal controls the duty cycle. For load currents above the current limitation threshold (8 A typ.) the H-bridge switches into chopper current limitation mode.

#### Key features and benefits

- > Up to nominal 36 V supply voltage
- Short circuit, over-temperature protection and undervoltage shutdown
- Detailed SPI diagnosis or simple error flag
- > Simple design with few external components
- Small and robust PG-DSO-12-17 package




A ready to use evaluation kit. It is fully populated with all electronic components and equipped with the H-bridge IFX9201 combined with an ARM® Cortex®-M0 CPU.




#### **Product summary**

| Product number | Operating<br>voltage<br>[V] | Current limit<br>(min.)<br>[A] | Quiescent current<br>(typ.)<br>[μΑ] | Operating range<br>[A] | $R_{	exttt{DS(on)}}$ (typ./switch) $[m\Omega]$ | Packages          | R <sub>thJC</sub> (max.)<br>[K/W] |
|----------------|-----------------------------|--------------------------------|-------------------------------------|------------------------|------------------------------------------------|-------------------|-----------------------------------|
| IFX9201SG      | 5.036                       | 6.0                            | 10.0                                | 70                     | 7                                              | PG-DSO-12 (power) | 2.0                               |

#### **Block diagram**





www.infineon.com/bridges www.infineon.com/h-bridge-kit-2go

# Stepper drivers

# Cost-efficient, durable and reliable

The TLE4726G, TCA3727G and TLE8444SL are designed to drive bipolar stepper motors, DC motors and other inductive loads that operate on a constant current. The TLE4726G and TCA3727G have integrated control logic and power output stages for two bipolar windings.

#### **Key features**

- > Full to half-step operation
- > Protected bipolar power stages
- > Implemented current control
- > Error flag for diagnosis
- Overtemperature protection

#### **Applications**

- > ATM
- > Franking machines
- > Vending machine
- Idle speed control
- > Printer
- Toys



#### Stepper drivers product overview

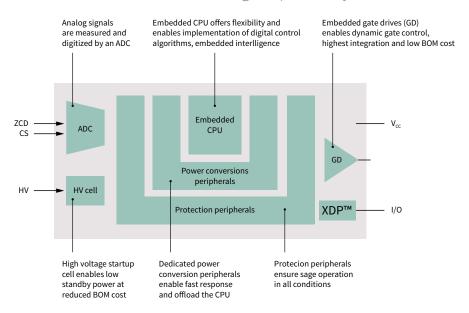
| Product<br>number | I <sub>L(NOM)</sub> | I <sub>L(lim)</sub> | Ι <sub>α</sub><br>[μΑ] | $V_{S(op)}$ | Step<br>operations | Protection         | Diagnostic<br>interface | Highlights                                                 | Package   |
|-------------------|---------------------|---------------------|------------------------|-------------|--------------------|--------------------|-------------------------|------------------------------------------------------------|-----------|
| TCA3727G          | 2x0.75              | 2x1.5               | 200                    | 5-50        | Full to mini-step  | ОТ                 | -                       | High operating voltage, low quiescent current with inhibit | PG-DSO-24 |
| TLE4726G          | 2x0.75              | 2x1.5               | 200                    | 5–50        | Full to mini-step  | ОТ                 | -                       | High operating voltage, low quiescent current with inhibit | PG-DSO-24 |
| TLE8444SL         | 4x0.50              | 4x0.90              | 1                      | 1-18        | Full to half-step  | SC, OT, OV, UV, OL | Status flag             | Open load detection in on-state                            | SSOP-24-7 |

CS = Current sense SC = Short circuit
OC = Overcurrent UV = Undervoltage
OT = Overtemperature OL = Open-load

# XDP™ digital power

## Simplify innovation

Power supply development migrates from analog to digital design to achieve smaller form factors and higher efficiency. Infineon has introduced the category brand XDP™ digital power to include the next generation of ICs, that will highlight Infineon's digital power competence. The digital IC families XDP™ LED and XDP™ SMPS are the first all-in-one package solutions that integrate a digital power controller with key peripherals and simplify your innovations.


#### Key benefits of a digital switched mode power supply

- > Technical enhancement and cost saving go hand-in-hand
- > Firmware gives flexibility over fixed analog design
- > Cost saving and faster time to market increase competitiveness

#### Your advantage

- > More flexibility through digital approach
- > Simplify the management of product variation
- > Shorten development cycles down by 70 percent
- > Offer room for customer innovation and own IP
- Advanced energy efficiency
- > Reduced system cost and BOM

### Software controlled XDP™ digital power system



#### The value added

For lighting market customers, XDP™ LED helps to cope with the paradigm shift of LED requirements and to solve actual lighting challenges. For power supply customers in the mid-performance sector XDP™ SMPS helps to comply with energy efficiency criteria and provides a much better stand-by management.

www.infineon.com/xdp

# .dp Vision

# This GUI simplifies your design

.dp Vision is a graphical user interface (GUI) for parameter configuration and programming of Infineon XDP™ digital power ICs for evaluation purposes. With .dp Vision software, parameters of XDP™ products can be easily adapted to application needs, .dp Vision supports the configuration of the following parameters: Hardware configuration, protections, temperature guard, startup and shutdown, control loop, dimming, multimode, enhanced PFC, fine tuning. The XDP™ device will be connected via USA to a computer using the .dp interface generation 2 hardware, which is a galvanic isolated and certified interface board.

#### **Key features**

- Set parameter and protection behavior for .dp products
- > Test parameters temporarily
- > Burn parameters permanently
- > Automatic update of firmware on .dp interface gen2
- Online update functionality keeps .dp Vision up to date
- Assistant functionality to guide a user through a typical parametrization flow

#### Your advantage

- Comfortable parameter setting without changing components on hardware
- Maximum flexibility for adapting application behavior via parameters
- > Optimize system performance
- > Reduced R&D efforts

#### **Applications**

- > Generic framework for all .dp digital power devices
- Application add-on packages will add the support of new products to .dp Vision



.dp Vision and .dp Interface board available via www.hitex.com/dp

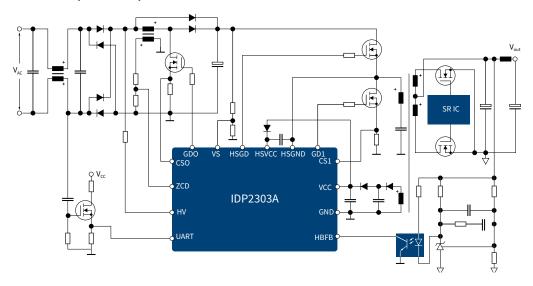
#### System requirements

| Туре             | Requirements                                                                                                             |
|------------------|--------------------------------------------------------------------------------------------------------------------------|
| Operating system | Windows XP 32-bit/64-bit; Windows 7 32-bit/64-bit; Windows 8 32-bit/64-bit; Windows 8.1 32-bit/64-bit with USB connector |
| RAM              | 2 GB                                                                                                                     |
| CPU              | Intel Celeron 1.1 GHz                                                                                                    |
| Graphics         | Integrated graphic card                                                                                                  |

# XDP™ SMPS IDP2303(A) – digital multi-mode PFC+LLC combo controller

The IDP2303 and IDP2303A are high performance digital combo controllers with integrated drivers and 600 V depletion cell designed for boost PFC and half-bridge LLC targeting switched mode power supplies (SMPS) from 75 W to 300 W.

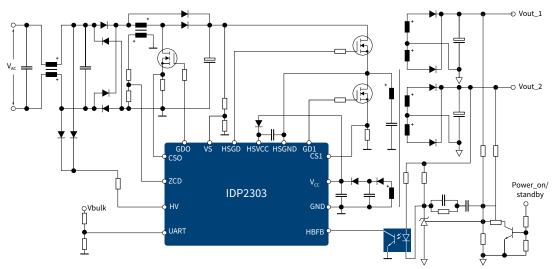
- > Support non-AUX operation with lowest standby performance and startup cell
- > Support multi-mode PFC operation for optimized efficiency curve
- > Configurable frequency setting for LLC soft-start and normal operation
- > Synchronous PFC and LLC burst mode control with soft-start to prevent acoustic noise
- > Excellent dynamic response by adaptive LLC burst mode
- > Configurable and comprehensive protections for PFC/LLC/IC temp
- > IEC62368-1 certified active X-cap discharge function
- > Flexible IC parameter setting with digital UART interface supports PSU platform approach


#### **Key benefits**

- > Low BOM count due to high integration of digital control
- No auxiliary power supply needed
- > Easy design of system schematic and PCB layout
- > Small form factor design
- > Higher system reliability
- > Shorter development cycles and higher design and production flexibility






#### IDP2303A - power adapter



www.infineon.com/idp2303



#### IDP2303 - embedded PSU



## Target applications

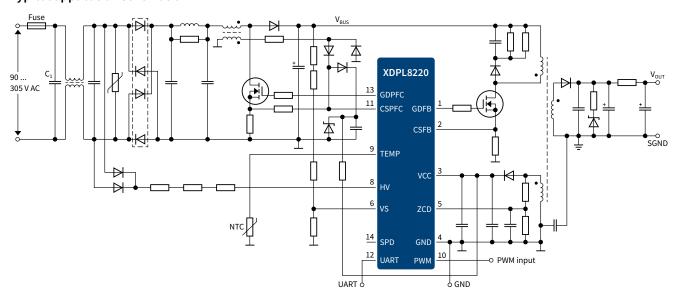
- > LCD TV power supply
- > General SMPS
- > Power adapter

#### XDP™ LED

# XDPL8220 - the simple and innovative entry point to smart lighting

The digital core of the XDPL8220 controller enables a variety of systems based on the same device. Its advanced control algorithms provide the possibility to realize lighting Electronic Control Gear (ECG) for constant current or constant voltage mode in the same circuit. The power limitation mode keeps the light on while it optimally utilizes the components capabilities. The device is adaptable to the target application, by providing a comprehensive parameter set for adjustment of operating constraints.

#### Power conversion with solid performance and more


- > Input voltage range 90 V<sub>AC</sub> −305 V<sub>AC</sub>
- > Efficiency > 90 percent
- > Power factor > 0.9
- > THD < 15 percent compliant with IEC 61000-3-2 class C
- Device selects optimum between quasi-resonant or discontinuous conduction mode
- > Dimming via current amplitude reduction
- Digital parameter setting
- Constant current, constant voltage and limited power modes simultaneously available
- > Flicker free dual stage topology
- > External temperature sensor
- Stand-by power < 70 mW</p>

- > Smooth temperature management
  - All relevant error conditions are monitored and protected under voltage
  - Over voltage
  - Open-load
  - Output shorted

#### **Key benefits**

- > Flexibility saves efforts and cost
- > Essentially no low frequency flicker
- Low stand-by power facilitates permanent operation of the ECG
- Intelligent temperature management protects longevity of luminaries
- > Small BOM due to integration and primary side control

#### Typical application schematic



www.infineon.com/xdpl8220



# Infineon support for XDP™ digital power

Simplify innovation

#### Further information, datasheets and documents

www.infineon.com/xdpl8105 www.infineon.com/xdpl8220 www.infineon.com/idp2303 www.infineon.com/xdp www.hitex.com/dp

#### **Videos**

www.infineon.com/mediacenter



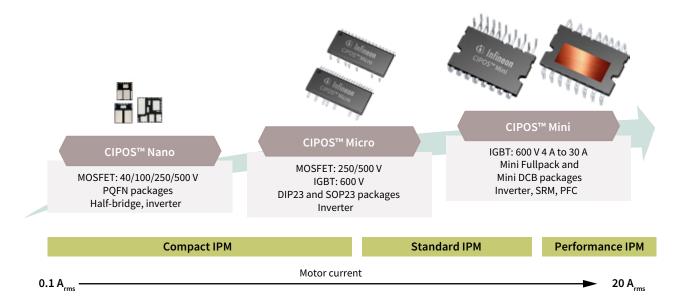






XDP™ digital power support

# CIPOS™ IPM family

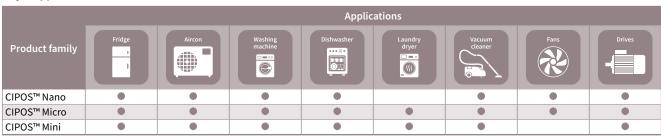

Control Integrated Power System (CIPOS™) Intelligent Power Modules (IPM)

Depending on the level of integration and power to be handled, Infineon offers a variety of IPMs, with different semiconductors in different packages and different voltage and current classes. These IPMs are separated into Compact, Standard and Performance families.

The CIPOS™ IPMs are families of highly integrated, compact power modules designed to drive motors in applications ranging from home appliances, to fans, pumps and general purpose drives.

Infineon's energy-efficient IPMs integrate the latest power semiconductor and control IC technology leveraging Infineon's advanced IGBTs, MOSFETs, next-generation gate driver ICs and state-of-the-art thermo-mechanical technology.

#### **Product lineup**




#### **Key benefits**

- Shorter time-to-market
- → Improved manufacturability
- Increased reliability
- Reduced space

# Reduced system cost

#### **Major applications**



www.infineon.com/ipm

# CIPOS™ Nano

### 3-phase or half-bridge driver with MOSFETs

CIPOS™ Nano is a family of highly integrated, ultra-compact, power modules for high efficiency appliance and light industrial applications, including compressor drives for refrigeration, pumps for heating and water circulation, air-conditioning fans, dishwashers, and automation systems. By utilizing an innovative packaging solution, the CIPOS™ Nano family delivers a new benchmark in device size, offering up to a 60 percent smaller footprint than existing 3-phase motor control power IPMs.

CIPOS™ Nano products comprise of a series of fully integrated 3-phase or half-bridge surface-mount motor control circuit solutions. The new alternative approach utilizes PCB copper traces to dissipate heat from the module, providing cost savings through a smaller package design and even eliminating the need for an external heat sink.

#### **Key features**

- Smallest IPMs on the market
- > Integrated gate driver IC and bootstrap functionality
- > Suitable for sinusoidal or trapezoidal modulation
- → Low R<sub>DS(on)</sub> Trench FREDFET
- Under-voltage lockout for all channels
- Matched propagation delay for all channels
- Optimized dV/dt for loss and EMI trade offs
- > 3.3 V input logic compatible
- Active high HIN and LIN
- → Isolation 1500 V<sub>RMS</sub>, 1 minute

#### **Key benefits**

- Cost savings from smaller footprint and reduced PCB space
- Easy implementation of 2 or 3-phase motor drives with half-bridge IPMs
- Half-bridge IPMs distribute heat dissipation and enable elimination of heat sink
- > Same PCB footprint to address multiple application markets ( $100 \, V_{AC} 230 \, V_{AC}$ )

# CIPOS™ Micro

## Solution for low power motor drive applications

CIPOS™ Micro is a family of compact IPMs for low power motor drive applications including fans, pumps, air purifiers and refrigerator compressor drives.

It offers a cost effective power solution by leveraging industry standard footprints and processes compatible with various PCB substrates. The family features rugged and efficient high voltage FREDFET MOSFETs specifically optimized for variable frequency drives with voltage ratings of 250 V, 500 V and 600 V IGBTs. These devices are paired with the most advanced high voltage driver ICs tuned to achieve optimal balance between EMI and switching losses. CIPOS™ Micro family offers DC current ratings ranging up to 6 A to drive motors up to 100 W without heatsink and up to 300 W with heatsink, and are available in both through-hole and surface mount package options.

#### **Key features**

- > Integrated bootstrap functionality
- Under-voltage lockout for all channels
- Matched propagation delay for all channels
- > Optimized dV/dt for loss and EMI trade off
- Advanced input filter with shoot-through protection
- > Separate low-side emitter pins for single or leg-shunt current sensing
- 3.3 V logic compatible
- $\,\,$  Up to 1900  $\rm V_{RMS}$  , 1 min isolation (UL certified: file number E252584)
- > UL certified NTC thermistor for temperature feedback available
- Various lead forms available including through-hole and surface mounted

#### Key benefits

- > Ease of design and short time-to-market
- Compact package with three lead form options available
- Wide range of current and voltage ratings in the same package
- Wide range of modules for 110 V<sub>AC</sub> or
   230 V<sub>AC</sub> applications in the same footprint
- Simplified design and manufacturing
- > Lower losses than similar modules in the market
- > Heat sink-less operation possible

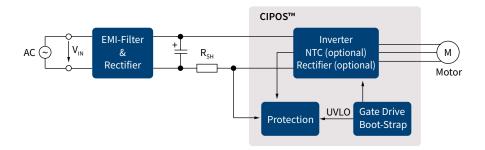
# CIPOS™ Mini

## Broad range of applications from PFC to inverter

CIPOS™ Mini modules integrate various power and control components to increase reliability, and to optimize PCB size and system costs. This simplifies the power design and reduces significantly time-to-market.

CIPOS™ Mini modules are designed to control AC motors in variable speed drives for applications from 4 A up to 30 A such as air conditioning, washing machines, refrigerators, vacuum cleaners, compressors and industrial drives up to 3 kW.

The package concept is specially adapted to power applications that need good thermal conduction and electrical isolation, but also EMI-safe control, innovative FAULT indication and overload protection. The feature of Infineon's reverse conducting IGBTs or TRENCHSTOP™ IGBT is used with a new optimized Infineon SOI gate driver IC for excellent electrical performance.


#### **Key features**

- Dual-in-line transfer molded package with DCB or Fullpack substrate
- > Current rating from 4 A to 30 A, power rating up to 3 kW
- Optimized for home appliances and motor drives
- Rugged SOI gate driver IC technology
- Advanced protection features
- UL1577 certified

#### **Key benefits**

- High integration (bootstrap circuit, thermistor) for easy design and system space saving
- Single platform possible from 4 A to 30 A
- Enhanced robustness of the advanced IGBT and gate driver
   IC technology
- High power density
- Two kinds of substrates provide cost efficient solution for home appliances
- UL certified thermistor

#### Block diagram for CIPOS™





### IPM lineup

| Family                | Package dimension | ns [mm]                   | Motor I <sub>rms</sub> range                | Topology                                                                         | Lineup                                                                 | Product PN                                                                             |
|-----------------------|-------------------|---------------------------|---------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| CIPOS™ Nano           | 12 x 12 x 0.9     | <b>,</b>                  | 0.1 A <sub>rms</sub> - 1.2 A <sub>rms</sub> | 3-phase inverter                                                                 | 250 V MOSFET 0.45 $\Omega$ , 1.05 $\Omega$ , 2.2 $\Omega$              | IRSM836-0x4MA                                                                          |
|                       |                   |                           |                                             |                                                                                  | 500 V MOSFET 1.7 $\Omega$ , 2.2 $\Omega$ , 4.0 $\Omega$ , 6.0 $\Omega$ | IRSM836-0x5MA                                                                          |
|                       | 8 x 9 x 0.9       | Ť                         | 0.4 A <sub>rms</sub> – 2 A <sub>rms</sub>   | Half-bridge                                                                      | 250 V MOSFET 0.15 Ω                                                    | IRSM808-204MH                                                                          |
|                       |                   |                           |                                             |                                                                                  | 500 V MOSFET 0.8 $\Omega$ , 1.7 $\Omega$                               | IRSM807-105MH<br>IRSM807-045MH                                                         |
|                       | 7 x 8 x 0.9       | Ī                         | 1 A <sub>rms</sub> - 10 A <sub>rms</sub>    | Low voltage                                                                      | 40 V MOSFET 4.5 m $\Omega$                                             | IRSM005-800MH                                                                          |
|                       |                   | Sandard.                  |                                             | half-bridge                                                                      | 100 V MOSFET 21 mΩ                                                     | IRSM005-301MH                                                                          |
| iMOTION™<br>Smart IPM | 12 x 12 x 0.9     | A.                        | 0.2 A <sub>rms</sub> - 0.5 A <sub>rms</sub> | fully integrated 3-phase<br>inverter (Power stage +<br>gate driver + controller) | 500 V MOSFET 1.7 $\Omega$ , 2.2 $\Omega$ , 4.0 $\Omega$ , 6.0 $\Omega$ | IRDM983-025MB<br>IRDM982-035MB<br>IMM001T-0x5M                                         |
| CIPOS™ Micro          | 29 x 12 x 2.9     | 0                         | 0.1 A <sub>rms</sub> - 2.0 A <sub>rms</sub> | 3-phase inverter                                                                 | 250 V MOSFET 0.45 Ω, 1.05 Ω, 2.4 Ω                                     | IRSM5y5-0x4zA                                                                          |
|                       |                   |                           |                                             |                                                                                  | 500 V MOSFET 1.3 Ω, 1.7 Ω, 2.2 Ω, 4.0 Ω, 6.0 Ω                         | IRSM5y5-0x5zA                                                                          |
|                       | 739               |                           |                                             |                                                                                  | 600 V IGBT 4 A                                                         | IRSM5y6-076zA                                                                          |
| CIPOS™ Mini           | 36 x 21 x 3.1     |                           | Up to 13 A <sub>rms</sub>                   | 3-phase inverter                                                                 | 600 V IGBT<br>4 A/6 A/10 A/15 A/20 A/30 A                              | IGCM04F60yA<br>IGCM06F60yA<br>IKCM10L60yA<br>IKCM15L60yA<br>IKCM20L60yA<br>IKCM30F60yA |
|                       | 110               | 4                         |                                             |                                                                                  | 600 V IGBT<br>10 A/15 A                                                | IKCM10H60yA<br>IKCM15H60yA                                                             |
|                       | 36 x 21 x 3.1     | x 3.1                     | Up to 20 A <sub>rms</sub>                   | 3-phase inverter                                                                 | 600 V IGBT<br>15/20/30 A                                               | IKCM15L60yD<br>IKCM20L60yD<br>IKCM30F60yD                                              |
|                       |                   | Up to 10 A <sub>rms</sub> |                                             | 2-phase asymmetric inverter for SRM                                              | 600 V IGBT<br>15/20 A                                                  | IKCM15R60GD<br>IKCM20R60GD                                                             |
|                       | HHIIIIII          | THE REAL PROPERTY.        | Up to 16 A <sub>rms</sub>                   | 2-phase interleaved PFC                                                          | 650 V IGBT<br>20/30 A                                                  | IFCM20T65GD<br>IFCM30T65GD                                                             |
|                       | All Same          |                           | Up to 24 A <sub>rms</sub>                   | 3-phase interleaved PFC                                                          | 650 V IGBT<br>20/30 A                                                  | IFCM20U65GD<br>IFCM30U65GD                                                             |
|                       |                   | Up to 10 A <sub>rms</sub> |                                             | 3-phase inverter + PFC                                                           | 600 V IGBT<br>10/15 A                                                  | IFCM10S60GD<br>IFCM10P60GD<br>IFCM15S60GD<br>IFCM15P60GD                               |

x =current rating y = 0 (with thermistor) Y = 1 (without thermistor) z = D (through-hole) or P (SMD)

# Industrial and general purpose gate driver ICs

### The expert's choice

Leveraging the application expertise and advanced technologies of Infineon, the industrial and general purpose gate driver ICs are well suited for many applications such as industrial motor drives, solar inverters, UPS, switch mode power supplies, lighting and major home appliances. Infineon offers a comprehensive portfolio of industrial and general purpose gate driver ICs with a variety of configurations, voltage classes, isolation levels, protection features, and package options. These flexible gate driver ICs are complementary to Infineon IGBTs, MOSFETs, SiC JFET and other power switches in discrete gate drive applications or as part of integrated power modules.

# 1EDN MOSFET EiceDRIVER™ family

Rugged, cool and fast, 1-channel low-side 4/8 A gate driver ICs

#### 1EDN family overview

1-channel MOSFET gate driver ICs are the crucial link between control ICs and powerful MOSFET and GaN switching devices. Gate driver ICs enable high system level efficiencies, excellent power density and consistent system robustness.

#### 1EDN family: fast, precise, strong and compatible

- > Highly efficient SMPS enabled by 5 ns short slew rates and ± 5 ns propagation delay precision for fast MOSFET and GaN switching
- > Separate source and sink outputs simplify the application design
- > Industry standard packages and pinout ease system design upgrades

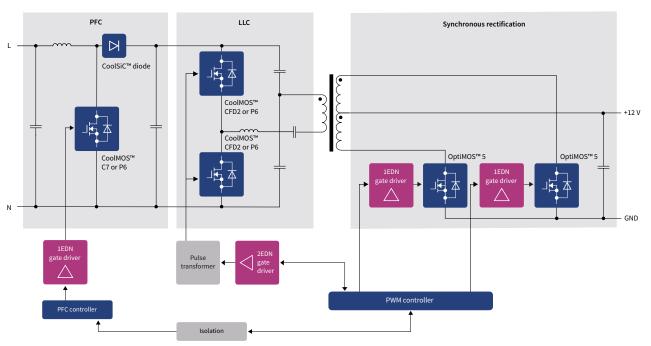
#### 1EDN family: the new reference in ruggedness and low power dissipation

- > -10 V robustness of control and enable inputs provides crucial safety margin when driving pulse transformers
- > 5 A reverse output current robustness eliminates the need for Schottky switching diodes when driving MOSFETs in TO-220 and TO-247 packages
- > Cool driver ICs thanks to true rail-to-rail low impedance output stages
- > 4 V and 8 V UVLO (Under Voltage Lock Out) options for instant MOSFET protection during start-up and under abnormal conditions

#### **Applications**

- **>** PFC
- > Synchronous rectification
- > DC-DC converters
- Telecom bricks
- > Power tools
- Industrial SMPS
- Motor control
- > Wireless charging




www.infineon.com/1edn

| Ρı | roduct features                                                                                |
|----|------------------------------------------------------------------------------------------------|
| >  | 4 A source/8 A sink current<br>6 ns rise/5 ns fall times<br>± 5 ns propagation delay precision |
| >  | True rail-to-rail low impedance output stages                                                  |
|    | 4 V and 8 V UVLO options<br>19 ns propagation delay                                            |
| >  | -10 V robustness of inputs                                                                     |
| >  | 5 A reverse output current robustness                                                          |
| >  | Industry standard pinout and packages                                                          |

|  | Product benefits                                               |
|--|----------------------------------------------------------------|
|  | > Fast Miller plateau transition > Precise timing              |
|  | > Low power dissipation in driver IC                           |
|  | > Fast and reliable MOSFET turn-off, independent of control IC |
|  | > Increased GND-bounce robustness                              |
|  | > Saves switching diodes                                       |
|  | > Straight forward design upgrades                             |
|  |                                                                |

| Application benefits                                                                                              |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| High power efficiency     in hard switching PFC with SiC diode     in half-bridges and synchronous rectifications |  |  |  |  |  |  |  |
| <ul><li>Cooler driver IC operation</li><li>Higher MOSFET drive capability</li></ul>                               |  |  |  |  |  |  |  |
| Instant MOSFET protection during start-up and under abnormal operation                                            |  |  |  |  |  |  |  |
| > Crucial safety margin to drive pulse transformer                                                                |  |  |  |  |  |  |  |
| <ul><li>Increases power density</li><li>BOM savings</li></ul>                                                     |  |  |  |  |  |  |  |
| > Short time-to-market                                                                                            |  |  |  |  |  |  |  |

# Application overview 800 W switched mode power supply



# **Product portfolio**

| Packa | ige         | UVLO | Product name | Orderable part number | Pinout                                   |
|-------|-------------|------|--------------|-----------------------|------------------------------------------|
| A     |             | 4 V  | 1EDN7511B    | 1EDN7511BXUSA1        | VDD 1 6 IN+                              |
|       | SOT-23 6pin | 8 V  | 1EDN8511B    | 1EDN8511BXUSA1        | OUT_SRC 2 1EDN 5 IN-<br>OUT_SNK 3 4 GND  |
|       | SOT-23 5pin | 4 V  | 1EDN7512B    | 1EDN7512BXTSA1        | VDD 1 5 OUT GND 2 1EDN IN+ 3 4 IN-       |
|       | WSON 6pin   | 4 V  | 1EDN7512G    | 1EDN7512GXTMA1        | IN- 1 6 IN+ GND 2 1EDN 5 OUT GND 3 4 VDD |

# 2EDN MOSFET EiceDRIVER™ family

Rugged, cool and fast, 2-channel low-side 5 A Driver IC

# 2EDN family overview

2-channel MOSFET Driver ICs are the crucial link between digital control ICs and powerful MOSFET and GaN switching devices. MOSFET Driver ICs enable high system level efficiencies, excellent power density and consistent system robustness.

# 2EDN family: fast, precise, strong and compatible

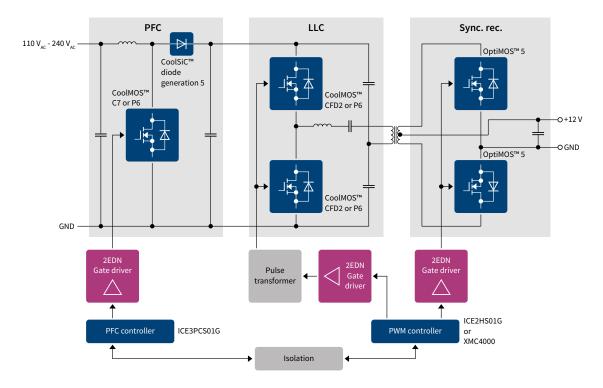
- > Highly efficient SMPS enabled by 5 ns short slew rates and 10 ns propagation delay precision for fast MOSFET and GaN switching
- Numerous deployment options due to two 5 A channels. 1 ns channel-to-channel accuracy to use two channels in parallel
- > Industry standard packages and pinout ease system design upgrades

# 2EDN family: the new reference in ruggedness and low power dissipation

- > 4 V and 8 V UVLO (Under Voltage Lock Out) options for instant MOSFET protection under abnormal conditions
- -10 V robustness of control and enable inputs provides crucial safety margin when driving pulse transformers or driving MOSFETs in TO-220 and TO-247 packages
- > 5 A reverse output current robustness eliminates the need for Schottky switching diodes and reduces bill-of-material
- Cool driver ICs from true rail-to-rail low impedance output stages

# **Applications**

- Server
- Telecom
- DC-DC converters
- > Bricks
- > Power tools
- Industrial SMPS
- Motor control
- Solar




| Product features                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>5 A souce/sink current</li> <li>5 ns rise/fall times</li> <li>&lt;10 ns propagation delay precision</li> </ul> |
| > True rail-to-rail low impedance output stages                                                                         |
| <ul> <li>4 V and 8 V UVLO options</li> <li>19 ns propagation delay for both control and<br/>enable inputs</li> </ul>    |
| > -10 V robustness of control and enable inputs                                                                         |
| > 5 A reverse output current robustness                                                                                 |
| <ul> <li>2 independent channels</li> <li>Excellent 1 ns channel-to-channel accuracy</li> </ul>                          |
| > Industry standard pinout and packages                                                                                 |
|                                                                                                                         |

| 1 | Product benefits                                                                                     |
|---|------------------------------------------------------------------------------------------------------|
|   | <ul><li>&gt; Fast Miller plateau transition</li><li>&gt; Precise timing</li></ul>                    |
|   | › Low power dissipation in driver IC                                                                 |
| ) | <ul> <li>Fast and reliable MOSFET turn-off, independent<br/>of control IC</li> </ul>                 |
|   | > Increased GND-bounce robustness                                                                    |
|   | > Saves switching diodes                                                                             |
|   | <ul> <li>Option to increase drive current by truly<br/>concurrent switching of 2 channels</li> </ul> |
|   | > Straight forward design upgrades                                                                   |

|  | Application benefits                                                                                                                                 |
|--|------------------------------------------------------------------------------------------------------------------------------------------------------|
|  | <ul> <li>&gt; High power efficiency</li> <li>in hard switching PFC with SiC diode</li> <li>in half-bridges and synchronous rectifications</li> </ul> |
|  | <ul><li>Cooler driver IC operation</li><li>Higher MOSFET drive capability</li></ul>                                                                  |
|  | > Instant MOSFET protection under abnormal operation                                                                                                 |
|  | > Crucial safety margin to drive pulse transformer                                                                                                   |
|  | <ul><li>Increases power density</li><li>BOM savings</li></ul>                                                                                        |
|  | › One IC covering many applications                                                                                                                  |
|  | > Short time-to-market                                                                                                                               |

# Application overview 800 W 130 kHz switched mode power supply



# **Product portfolio**

| Package    |            | UVLO | Inputs   | Product name | Orderable part number |
|------------|------------|------|----------|--------------|-----------------------|
|            |            | 4 V  | Direct   | 2EDN7524F    | 2EDN7524FXTMA1        |
|            |            |      | Inverted | 2EDN7523F    | 2EDN7523FXTMA1        |
| 223        | DSO 8pin   |      | Direct   | 2EDN7424F    | 2EDN7424FXTMA1        |
|            |            | 9.1/ | Direct   | 2EDN8524F    | 2EDN8524FXTMA1        |
|            |            | 8 V  | Inverted | 2EDN8523F    | 2EDN8523FXTMA1        |
|            | TSSOP 8pin | 4 V  | Direct   | 2EDN7524R    | 2EDN7524RXUMA1        |
| 20.2810    |            |      | Inverted | 2EDN7523R    | 2EDN7523RXUMA1        |
|            |            |      | Direct   | 2EDN7424R    | 2EDN7424RXUMA1        |
| مترد متراء |            | 8 V  | Direct   | 2EDN8524R    | 2EDN8524RXUMA1        |
|            |            |      | Inverted | 2EDN8523R    | 2EDN8523RXUMA1        |
| May        | WSON 8pin  | 4.1/ | Direct   | 2EDN7524G    | 2EDN7524GXTMA1        |
|            | W3ON OPIN  | 4 V  | Inverted | 2EDN7523G    | 2EDN7523GXTMA1        |

# Industry standard pinout configuration



# The slew-rate control EiceDRIVER™ with reinforced isolation



1200 V single-channel isolated driver family with dynamic slew-rate control

The new SRC EiceDRIVER™ family, which includes 1EDS20I12SV, 1EDU20I12SV, and 1EDI20I12SV, serves the latest generation of highly efficient low-EMI electric drive systems, with lower EMI and improved efficiency. Based on the Infineon coreless transformer technology, it is the first high voltage isolated gate driver on the market with dynamic slew-rate control (SRC), which allows on-the-fly dV/dt control of electric drives through precise gate current control, providing the best trade-off between minimum power dissipation and minimum EMI depending on operating conditions. To turn on the IGBT, the driver works as an adjustable current source in conjunction with an external PMOS transistor and a sense resistor. To turn off the IGBT, the driver uses a 2 A MOSFET output stage.

Several important and advanced protection functions are integrated. The driver includes desaturation protection for IGBTs and overcurrent protection for sense IGBTs via the fault status output pin. Two ready-state output pins indicate proper driver power supply level and normal driver operation. Two-level turn-off with adjustable timing and voltage protects against excessive overvoltage in case of the IGBT operating at overcurrent or a short circuit.

The 1EDx20I12SV family is tailored for industrial drive applications such as those using 1200 V power modules for currents up to 900 A like the EconoDUAL<sup>m</sup> 3. The "S" version 1EDS20I12SV provides reinforced galvanic isolation certification according to VDE 0884-10 and UL 1577. The "U" version 1EDU20I12SV is UL 1577 certified with a  $V_{iso}$  rating of 5000 V for 1 minute. The "I" version 1EDI20I12SV provides functional isolation.

The driver meets today's long-term stability requirements for industrial applications. It is offered in a DSO-36 package with a package width of 300 mil. It is RoHS compliant, green, and halogen-free.

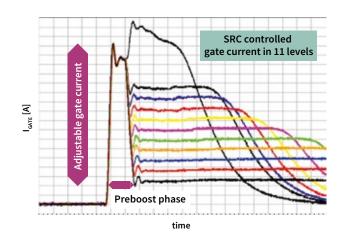
# **Key features**

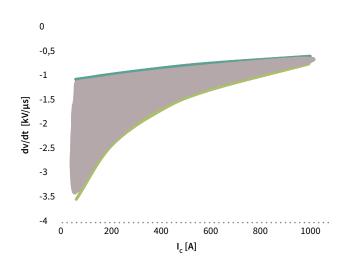
- > 1200 V single-channel IGBT driver
- > Precise dynamic gate current control
- > Unique: selective short circuit protection for 3-level inverters
- > Overcurrent protection for sense IGBTs and conventional IGBTs
- > DESAT, soft turn-off, two-level turn-off
- > Drive power modules up to 900 A

#### **Applications**

- > AC and brushless DC motor drives
- High-voltage DC-DC converters
- > UPS systems
- > Servo drives




www.infineon.com/gatedriver


# 1EDS-SRC driver board with EconoDUAL™ 3 power module



Feature – real-time gate current control

Effect – gate turn-on tunable across a very large dV/dt range:





# **Benefits**

- > Low EMI during low load conditions and high efficiency during high load conditions
- > Reduction or elimination of dV/dt filter









# EiceDRIVER™ 1ED Compact gate driver IC family

1200 V galvanically isolated single-channel gate driver ICs

Infineon's new EiceDRIVER™ 1EDC Compact 300 mil family is recognized under UL 1577 with an insulation test voltage of V<sub>ISO</sub> = 3000 V(rms) for 1 s. The functional isolated EiceDRIVER™ 1EDI Compact 150 mil and 300 mil families are also available. The EiceDRIVER™ 1ED compact family is the perfect driver for superjunction MOSFETs such as CoolMOS™, IGBTs, silicon carbide (SiC) MOSFETs such as CoolSiC™, and IGBT modules.

#### **Product features**

- > Provide DSO-8 300 mil wide body package with 8 mm creepage distance
- > Up to 10 A typical peak rail-to-rail output
- > Suitable for operation at high ambient temperature
- > Separate source and sink outputs or active miller clamp
- > More than 100 kV/μs CMTI
- Optimized pin out for low inductance power supply

| 1EDI Compact 150 mil |               | 1EDI60I12AF                  | 1EDI40I12AF                  | 1EDI20I12AF                  | 1EDI05I12AF                  | 1EDI60N12AF                  | 1EDI20N12AF                  | 1EDI30I12MF  | 1EDI20I12MF  | 1EDI10I12MF  |
|----------------------|---------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|--------------|--------------|--------------|
| 1EDI Compact 300 mil |               | 1EDI60I12AH                  | 1EDI40I12AH                  | 1EDI20I12AH                  | 1EDI05I12AH                  | 1EDI60H12AH                  | 1EDI20H12AH                  | 1EDI30I12MH  | 1EDI20I12MH  | 1EDI10I12MH  |
| 1EDC Compact 300 mil |               | 1EDC60I12AH                  | 1EDC40I12AH                  | 1EDC20I12AH                  | 1EDC05I12AH                  | 1EDC60H12AH                  | 1EDC20H12AH                  | 1EDC30I12MH  | 1EDC20I12MH  | 1EDC10I12MH  |
| Tpy. output current  |               | 10 A/-9.4 A                  | 7.5 A/-6.8 A                 | 4 A/-3.5 A                   | 1.3 A/-0.9 A                 | 10 A/-9.4 A                  | 4 A/-3.5 A                   | 5.9 A/-6.2 A | 4.4 A/-4.1 A | 2.2 A/-2.3 A |
| Output configuration |               |                              |                              |                              |                              |                              |                              |              |              |              |
| Output co            | nfiguration   | √                            | √                            | √                            | √                            | √                            | √                            | Δ            | Δ            | Δ            |
|                      | agation delay | √<br>300 ns                  | √<br>300 ns                  | √<br>300 ns                  | √<br>300 ns                  | √<br>125 ns                  | √<br>125 ns                  | Δ<br>300 ns  | Δ<br>300 ns  | Δ<br>300 ns  |
|                      |               | √<br>300 ns<br>2.85 V/2.75 V | √<br>125 ns<br>2.85 V/2.75 V | √<br>125 ns<br>2.85 V/2.75 V |              | _            |              |

√ Separate sink/source outputs

Δ Active miller clamp













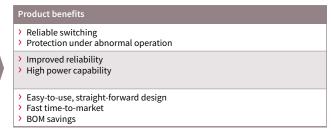











www.infineon.com/gatedriver www.infineon.com/1EDcompact

# IRS2890DS

New 600 V half-bridge gate driver with overcurrent protection

The new IRS2890DS provides typical 0.22 A source and 0.48 A sink currents in 14-Lead SOIC package for IGBT and MOS-FETs. The IRS2890DS integrates over current protection, fault reporting and bootstrap FET.

# Product features Advanced input filter Deadtime and cross-conduction prevention logic Fully operational to +600 V off-set voltage Logic operational for VS of -8 V Operational for transient negative VS -50 V with a 50 ns pulse width Integrated bootstrap FET Integrated comparator (with 0.5 V ± 5 % Reference) for overcurrent protection Fault and enable multifunction pin

















# 2ED2304S06F

The 2ED2304S06F is a high voltage, high speed power MOSFET and IGBT half bridge driver. Based on the used SOI-technology there is an excellent ruggedness and noise immunity. No parasitic thysistor structures are present in the device. Hence, no parasitic latch up may occur at all temperature and voltage conditions. Additionally, the offline online clamping function provides an inherent protection of the parasitic turn-on by floating gate conditions when IC is not supplied.

### **Product features**

- > Floating channel designed for bootstrap operation
- > Thin-film-SOI-technology
- > Fully operational to +600 V
- > Integrated ultra-fast bootstrap diode
- Short propagation delay and delay matching (20 ns, maximum)
- Tolerant to negative transient voltage up to -50 V (pulse width is up 500 ns) given by SOI-technology
- > dV/dt immune ±50 V
- > Gate drive supply range from 10 to 20 V
- > Undervoltage lockout for both channels
- > 3.3 V, 5 V and 15 V input logic compatible
- > Schmitt trigger inputs with hysteresis and pull down
- > Output source/sink current capability +0.36 A/-0.7 A
- > RoHS compliant

### **Typical applications**

- Motor drives
- Solar inverter and UPS drives
- General purpose inverter drives
- > Half-bridge and full-bridge converters in offline AC-DC
- > Power supplies for telecom and lighting



# IRS200x 200 V IC family

New half-bridge and high- and low-side gate driver ICs

The 200 V half-bridge and high- and low-side driver IC family is tailored for low voltage (24 V, 36 V, and 48 V) and mid-voltage (60 V, 80 V and 100 V motor drive applications.

The IRS200x family utilizes our advanced high voltage IC process to realize a compact, efficient and robust monolithic construction.

The new IRS200x family consists of four devices with a typical output sink current of 600 mA and typical output source current of 290 mA. These 200 V devices are 3.3 V, 5 V, and 15 V logic compatible and have Vs operational logic of -8 V. The IRS2008 and IRS2007 include integrated dead-time and shoot-through protection and all IRS200x devices include undervoltage lockout (UVLO) protection. Additionally, the IRS2008 includes a shutdown input pin. These 200 V devices also feature low quiescent currents.

All three parts are offered in an eight-pin SOIC package or (for IRS2005) in a small form-factor fourteen-pin 4x4 mm MLPQ package. With various logic input options and standard pin-out configurations, these 200 V devices are easy to design-in for fast time-to-market

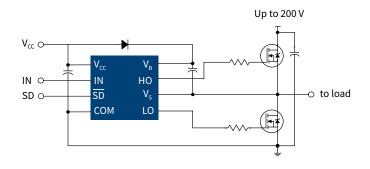
### **Applications**

- > Appliance motor drives
- > Servo drives
- Micro inverter drives
- General purpose three phase inverters
- > E-bike
- > Drones

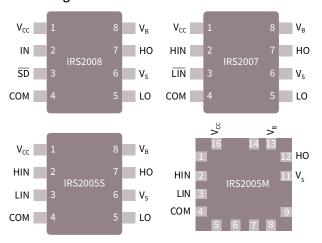
| Product features                                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>290 mA/600 mA typical source/sink current</li> <li>70 ns/35 ns typical turn-on rise and turn-off fall time</li> <li>Less than 60 ns delay matching time</li> </ul> |
| <ul> <li>Under-voltage lockout (UVLO) protection</li> <li>Deadtime and cross-conduction prevention logic</li> </ul>                                                         |
| <ul> <li>Fully operational to +200 V off-set voltage</li> <li>Tolerate to negative transient voltage, dV/dt immune</li> </ul>                                               |
| > Low quiescent current                                                                                                                                                     |
| <ul><li> Various input options</li><li> Standard pin-out and packages</li></ul>                                                                                             |



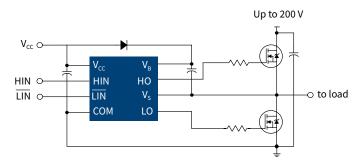
| E | 3enefits                                                    |
|---|-------------------------------------------------------------|
| > | Fast and reliable switching                                 |
| > | Protection under abnormal operation                         |
| > | Increased device reliability                                |
|   | Low cost bootstrap power supply BOM savings                 |
|   | Easy-to-use, straight forward design<br>Fast time-to-market |



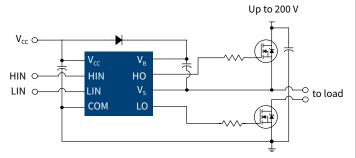






# Typical connection diagram (IRS2008)




# Pin configurations



# Typical connection diagram (IRS2007)



# Typical connection diagram (IRS2005)



# **Product portfolio**

| Part number | Voltage<br>class [V] | Channels | Source/sink<br>current typ.<br>[mA] | Deadtime<br>typ. [ns] | Typ. propagation delay<br>[ns] |     | Control inputs | UVLO typ. [V] | Package          | MSL |
|-------------|----------------------|----------|-------------------------------------|-----------------------|--------------------------------|-----|----------------|---------------|------------------|-----|
|             |                      |          |                                     |                       | on                             | off |                |               |                  |     |
| IRS2008S    | 200                  | 2        | 290/600                             | 520                   | 680                            | 150 | IN, SD         | +8.9/-8.2     | 8-lead SOIC      | 2   |
| IRS2007S    | 200                  | 2        | 290/600                             | 520                   | 160                            | 150 | HIN, LIN       | +8.9/-8.2     | 8-lead SOIC      | 2   |
| IRS2005S    | 200                  | 2        | 290/600                             |                       | 160                            | 150 | HIN, LIN       | +8.9/-8.2     | 8-lead SOIC      | 2   |
| IRS2005M    | 200                  | 2        | 290/600                             |                       | 160                            | 150 | HIN, LIN       | +8.9/-8.2     | 14-lead 4x4 MLPQ | 2   |

IRS2001 is not recommended for new designs

IRS2005 replaces IRS2001 IRS2007 can replace IRS2003

IRS2008 can replace IRS2004









# Industrial and general purpose gate driver ICs

Infineon's gate driver IC solutions are the expert's choice. With more than 500 reliable and efficient gate driver solutions, we provide a comprehensive portfolio for virtually any application. Addressing various application requirements, Infineon delivers solutions with an assortment of gate driver topologies, voltage classes, drive capability, features and package options to optimize performance, minimize size and reduce cost. Some discrete gate driver ICs are also available in bare die. The table below shows additional gate driver IC features available in the current portfolio.

| Feature                       | Benefit                                                                                    |
|-------------------------------|--------------------------------------------------------------------------------------------|
| Active miller clamp           | Protection against inadvertent dynamic turn-on because of parasitic effects                |
| Brake chopper                 | Integrated brake IGBT driver with protection                                               |
| Comparator                    | General purpose comparator included                                                        |
| Current amplifier             | An independent op-amp for current measurement or over current detection                    |
| Current sense                 | Dedicated input detects over current events                                                |
| Desaturation protection       | Protects the switch (IGBT) at short circuit                                                |
| Dedicated JFET control        | Optimized to drive CoolSiC™ (SiC JFET)                                                     |
| Enable                        | Dedicated pin terminates all outputs                                                       |
| Error reporting with shutdown | Pin indicates fault conditions and programs shutdown time                                  |
| Fault reporting               | Indicates an over current or under voltage shutdown has occurred                           |
| Fault reset                   | Dedicated pin resets the DESAT-FAULT-state of the chip                                     |
| Integrated bootstrap diode    | Integrated bootstrap reduces BOM                                                           |
| Over current protection       | Ensures safe application operation in case of over current                                 |
| Programmable dead time        | Dead time is programmable with external resistor for flexible design                       |
| Programmable shutdown         | A shutdown feature has been designed into a pin                                            |
| Shoot-through protection      | Functionality such as dead time and interlock                                              |
| Soft over current shutdown    | Dedicated pin turns off the desaturated transistor, preventing over voltages               |
| Shutdown                      | Dedicated pin disables the IC outputs                                                      |
| Separate sink/source outputs  | Simplifies gate resistor selection, reduces BOM and improves dV/dt control                 |
| Self-oscillating              | Integrated front end oscillator                                                            |
| Separate pin for logic ground | Dedicated pin for logic ground                                                             |
| Two-level turn-off            | Lowers V <sub>CE</sub> overshoots at turn-off during short circuits or over current events |
| Under voltage lockout         | Ensures safe application operation by avoiding unexpected driver behavior                  |

Infineon's industrial and general purpose gate driver ICs utilize the following technologies:

- > (1) Coreless transformer technology (CT)
- > (2) Level-shifting silicon-on-insulator technology (SOI)
- > (3) Level-shifting junction-isolation technology (JI)
- > (4) Non-isolated technology (N-ISO)

**Coreless transformer (CT) technology** uses semiconductor manufacturing processes to integrate a transformer consisting of metal spirals and silicon oxide insulation. The transformer is placed on the transmitter chip. Bond wires connect the upper winding with the receiver chip.

**Level-shifting silicon-on-insulator (SOI) technology** is an advanced technique for MOS/CMOS fabrication. The silicon is separated by a buried silicon dioxide layer. The top layer, which is the silicon film, is used to produce the transistor. The bottom layer is used as the silicon substrate. The buried silicon dioxide provides an insulation barrier between the active layer and silicon substrate. Infineon's advanced process allows monolithic high voltage and low voltage circuitry construction with additional technology-enhanced features.

**Level-shifting junction isolation (JI) technology** is a mature MOS/CMOS fabrication technique where silicon is used to produce the transistors. Infineon's proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The advanced process allows monolithic high voltage and low voltage circuitry construction with the best price for performance.

**Non-isolated (N-ISO) technology** refers to gate drivers utilizing low voltage circuitry. Infineon's world-class fabrication techniques enable tiny low side drivers in DSO-8 and SOT-23 packages with high current capabilities.

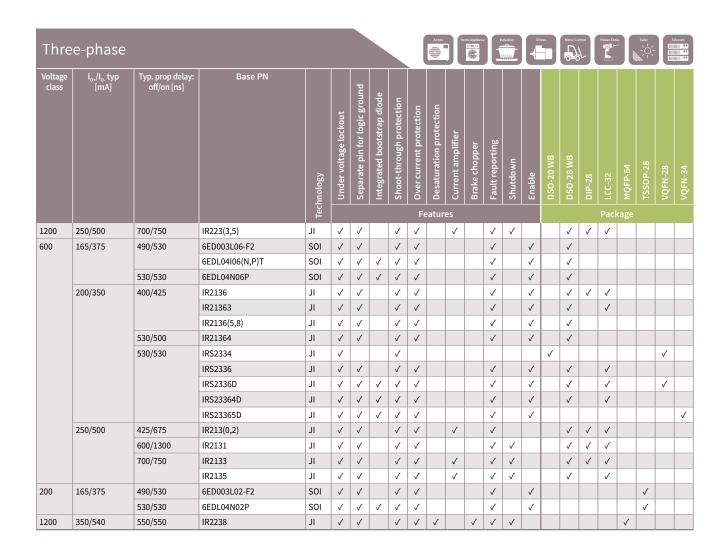
# Product overview

To ease the selection process, this overview is structured along the configurations of the gate driver ICs, as opposed to by application topology.



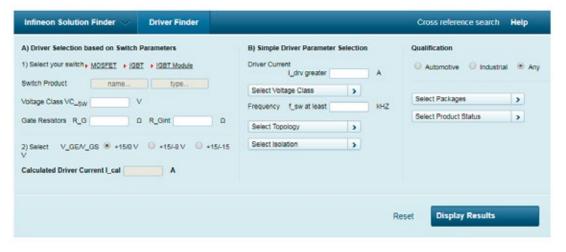
\*SRC = Turn on slew rate control

| Sing             | le low-sio                                    | de                              |               |            |                       |                              |                         |               |                 |                               | N PEC  | SMPS  |         |          | Telecom |
|------------------|-----------------------------------------------|---------------------------------|---------------|------------|-----------------------|------------------------------|-------------------------|---------------|-----------------|-------------------------------|--------|-------|---------|----------|---------|
| Voltage<br>class | I <sub>o.</sub> /I <sub>o</sub> . typ<br>[mA] | Typ. prop delay:<br>off/on [ns] | Base PN       | Technology | Under voltage lockout | Separate sink/source outputs | Over current protection | Current sense | Fault reporting | Error reporting with shutdown | Enable | DIP-8 | S0T23-5 | SOT23-6  | WSON-6  |
|                  |                                               |                                 |               | ≝          |                       |                              | F                       | eature        |                 |                               |        |       | Pac     | kage     |         |
| 25               | 300/550                                       | 50/50                           | IR44252       | NI         | ✓                     |                              |                         |               |                 |                               |        |       | ✓       |          |         |
|                  | 1500/1500                                     | 50/50                           | IRS44273      | NI         | ✓                     |                              |                         |               |                 |                               |        |       | ✓       |          |         |
|                  | 1700/1500                                     | 50/50                           | IR44272       | NI         | ✓                     |                              |                         |               |                 |                               | ✓      |       | ✓       |          |         |
|                  |                                               |                                 | IR44273       | NI         | ✓                     |                              |                         |               |                 |                               |        |       | ✓       |          |         |
| 20               | 4000/8000                                     | 19/19                           | 1EDN(7,8)511B | NI         | ✓                     | <b>✓</b>                     |                         |               |                 |                               | ✓      |       |         | <b>✓</b> |         |
|                  |                                               |                                 | 1EDN7512      | NI         | <b>√</b>              |                              |                         |               |                 |                               | ✓      |       |         | ✓        | ✓       |
| 5                | 1600/3300                                     | 200/150                         | IR2121        | NI         | ✓                     |                              | ✓                       | ✓             | ✓               | ✓                             |        | ✓     |         |          |         |


| Dual             | l high-sid                                   | e                               |              |            |                       | Aire                             |                         |                 | or Control  | Solar  Telecom  Solar  Telecom  Solar  Solar |
|------------------|----------------------------------------------|---------------------------------|--------------|------------|-----------------------|----------------------------------|-------------------------|-----------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Voltage<br>class | I <sub>o.</sub> /I <sub>o.</sub> typ<br>[mA] | Typ. prop delay:<br>off/on [ns] | Base PN      | Technology | Under voltage lockout | Separate pin for logic<br>ground | Desaturation protection | Fault reporting | Fault reset | 9°.<br>OSO<br>Package                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1200             | 2000/2000                                    | 165/170                         | 2ED020I12-F2 | СТ         | <b>√</b>              | ✓                                | ✓                       | ✓               | ✓           | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| Dual             | low-side                                      |                                 |               |            | SMPS                  |          |          | Telecom  | Motor Control | Solar    |
|------------------|-----------------------------------------------|---------------------------------|---------------|------------|-----------------------|----------|----------|----------|---------------|----------|
| Voltage<br>class | I <sub>o.</sub> /I <sub>o</sub> . typ<br>[mA] | Typ. prop delay:<br>off/on [ns] | Base PN       | Technology | Under voltage lockout | Enable   | DSO-8    | DIP-8    | WSON-8        | TSaSOP-8 |
|                  |                                               |                                 |               | Tec        | Feat                  | ures     |          | Pacl     | kage          |          |
| 25               | 2300/3300                                     | 50/50                           | IRS4426       | NI         |                       |          | ✓        |          |               |          |
|                  |                                               |                                 | IRS44262      | NI         | ✓                     |          | ✓        |          |               |          |
|                  |                                               |                                 | IRS4427       | NI         |                       |          | ✓        | ✓        |               |          |
|                  |                                               |                                 | IRS4428       | NI         |                       |          | ✓        |          |               |          |
|                  |                                               | 65/85                           | IR25600       | NI         |                       |          | <b>✓</b> | <b>✓</b> |               |          |
|                  |                                               |                                 | IR442(6,7)    | NI         |                       |          | ✓        | ✓        |               |          |
| 20               | 5000/5000                                     | 19/19                           | 2EDN752(3,4)F | NI         | ✓                     | <b>✓</b> | <b>✓</b> |          |               |          |
|                  |                                               |                                 | 2EDN752(3,4)G | NI         | <b>✓</b>              | <b>✓</b> |          |          | <b>✓</b>      |          |
|                  |                                               |                                 | 2EDN752(3,4)R | NI         | <b>✓</b>              | <b>✓</b> |          |          |               | <b>✓</b> |
|                  |                                               |                                 | 2EDN852(3,4)F | NI         | <b>✓</b>              | <b>✓</b> | <b>✓</b> |          |               |          |
|                  |                                               |                                 | 2EDN852(3,4)G | NI         | ✓                     | <b>✓</b> |          |          | <b>✓</b>      |          |
|                  |                                               |                                 | 2EDN852(3,4)R | NI         | ✓                     | ✓        |          |          |               | ✓        |

| High          | -side an                                     | d low-side                      |            |            |                       | 1                             | Induction                  | Drive    | s Mc     | otor Control | SMPS      | Tele     | ····     | Household |
|---------------|----------------------------------------------|---------------------------------|------------|------------|-----------------------|-------------------------------|----------------------------|----------|----------|--------------|-----------|----------|----------|-----------|
| Voltage class | I <sub>o+</sub> /I <sub>o-</sub> typ<br>[mA] | Typ. prop delay:<br>off/on [ns] | Base PN    |            |                       |                               | e e                        |          |          | Ner)         |           |          |          |           |
| CldSS         | [IIIA]                                       | onyon [ns]                      |            | Technology | Under voltage lockout | Separate pin for logic ground | Integrated bootstrap diode | Shutdown | DSO-8    | DSO-14       | DSO-16 WB | DIP-8    | DIP-14   | VQFN-14   |
|               |                                              |                                 |            | Tec        |                       | Feat                          | ures                       |          |          |              | Ben       | efits    |          |           |
| 1200          | 2000/2500                                    | 225/280                         | IR2213     | JI         | ✓                     | ✓                             |                            | ✓        |          |              | ✓         |          | ✓        |           |
| 700           | 220/350                                      | 200/220                         | IR7106     | JI         | ✓                     |                               |                            |          | ✓        |              |           |          |          |           |
| 600           | 200/350                                      | 200/220                         | IR2106     | JI         | <b>✓</b>              |                               |                            |          | ✓        |              |           | <b>✓</b> |          |           |
|               |                                              |                                 | IR21064    | JI         | ✓                     | ✓                             |                            |          |          | ✓            |           |          | ✓        |           |
|               |                                              |                                 | IR2301     | JI         | <b>✓</b>              |                               |                            |          | ✓        |              |           | <b>✓</b> |          |           |
|               |                                              |                                 | IR25604    | JI         | ✓                     |                               |                            |          | ✓        |              |           |          |          |           |
|               |                                              |                                 | IRS2301    | JI         | ✓                     |                               |                            |          | ✓        |              |           |          |          |           |
|               | 210/360                                      | 150/160                         | IR210(1,2) | JI         | ✓                     |                               |                            |          | ✓        |              |           | ✓        |          |           |
|               | 250/500                                      | 105/125                         | IR2112     | JI         | ✓                     |                               |                            | ✓        |          |              | ✓         |          | ✓        |           |
|               | 290/600                                      | 130/135                         | IRS2112    | JI         | ✓                     | ✓                             |                            | ✓        |          |              | <b>√</b>  |          | ✓        |           |
|               |                                              | 150/160                         | IRS2101    | JI         | ✓                     |                               |                            |          | ✓        |              |           | ✓        |          |           |
|               |                                              | 200/220                         | IRS2106    | JI         | ✓                     |                               |                            |          | ✓        |              |           | <b>✓</b> |          |           |
|               |                                              |                                 | IRS21064   | JI         | ✓                     | ✓                             |                            |          |          | ✓            |           |          | ✓        |           |
|               | 360/700                                      | 400/420                         | 2EDL05I06B | SOI        | ✓                     |                               | ✓                          |          | ✓        |              |           |          |          |           |
|               | 1900/2300                                    | 220/180                         | IR(S)2181  | JI         | ✓                     |                               |                            |          | ✓        |              |           | ✓        |          |           |
|               |                                              |                                 | IR21814    | JI         | ✓                     | ✓                             |                            |          |          | ✓            |           |          | ✓        |           |
|               |                                              |                                 | IRS21814   | JI         | ✓                     | <b>✓</b>                      |                            |          |          | ✓            |           |          | <b>✓</b> | <b>✓</b>  |
|               | 2500/2500                                    | 94/120                          | IR2113     | JI         | ✓                     | ✓                             |                            | ✓        |          |              | <b>✓</b>  |          | ✓        |           |
|               |                                              |                                 | IR25607    | JI         | <b>✓</b>              | <b>✓</b>                      |                            | <b>✓</b> |          |              | <b>V</b>  |          |          |           |
|               |                                              | 120/130                         | IRS2113    | JI         | <b>✓</b>              | <b>V</b>                      |                            | <b>✓</b> |          |              | <b>√</b>  |          | <b>✓</b> | <b>✓</b>  |
|               | 4000/4000                                    | 170/170                         | IRS2186    | JI         | <b>✓</b>              |                               |                            |          | <b>√</b> |              |           | <b>✓</b> |          |           |
|               |                                              |                                 | IRS21864   | JI         | <b>✓</b>              | <b>V</b>                      |                            |          |          | <b>✓</b>     |           |          | <b>√</b> |           |
|               |                                              |                                 | IRS21867   | JI         | <b>✓</b>              |                               |                            |          | <b>√</b> |              |           |          |          |           |
| 500           | 2500/2500                                    | 94/120                          | IR2110     | JI         | <b>✓</b>              | <b>✓</b>                      |                            | <b>√</b> |          |              | <b>√</b>  |          | <b>√</b> |           |
|               |                                              | 120/130                         | IRS2110    | JI         | <b>✓</b>              | <b>✓</b>                      |                            | <b>✓</b> |          |              | <b>✓</b>  |          | <b>✓</b> |           |
| 200           | 290/600                                      | 150/160                         | IRS2005    | JI         | ✓                     |                               |                            |          | ✓        |              |           |          |          | <b>✓</b>  |
|               | 1000/1000                                    | 60/60                           | IRS2011    | JI         | <b>✓</b>              |                               |                            |          | <b>√</b> |              |           | <b>✓</b> |          |           |
|               |                                              | 75/80                           | IR2011     | JI         | <b>✓</b>              |                               |                            |          | <b>√</b> |              |           | <b>✓</b> |          |           |
|               | 3000/3000                                    | 65/95                           | IR2010     | JI         | <b>V</b>              | <b>/</b>                      |                            | <b>V</b> |          |              | <b>V</b>  |          | <b>V</b> |           |


| Curr             | ent sense |            |                                  |                         |               | SMPS  | Server To | Motor Con |          |
|------------------|-----------|------------|----------------------------------|-------------------------|---------------|-------|-----------|-----------|----------|
| Voltage<br>class | Base PN   | Technology | Separate pin for logic<br>ground | Over current protection | Current sense | DSO-8 | DSO-16 WB | DIP-8     | \$0123-5 |
|                  |           |            |                                  | Features                |               |       | Pacl      | kage      |          |
| 1200             | IR2277(1) | JI         | ✓                                | ✓                       | ✓             |       | ✓         |           |          |
| 600              | IR2172    | JI         |                                  | ✓                       |               | ✓     |           | ✓         |          |
|                  | IR2175    | JI         |                                  | ✓                       | ✓             | ✓     |           | ✓         |          |
|                  | IR2177(1) | JI         | ✓                                | ✓                       | ✓             |       | ✓         |           |          |
|                  | IR25750   | JI         |                                  | ✓                       |               |       |           |           | ✓        |

| Half             | -bridge                                       |                                    |              |            |                       |                               |                            | h                       |                         |                         |                            | Airco           |                   | Home Applia           |                        | Induction  |          | Drives   |                  |          |          | ewer Tools |          | Solar    |          | **<br>   **<br>   ** |
|------------------|-----------------------------------------------|------------------------------------|--------------|------------|-----------------------|-------------------------------|----------------------------|-------------------------|-------------------------|-------------------------|----------------------------|-----------------|-------------------|-----------------------|------------------------|------------|----------|----------|------------------|----------|----------|------------|----------|----------|----------|----------------------|
| Voltage<br>class | I <sub>o</sub> ./I <sub>o</sub> . typ<br>[mA] | Typ. prop<br>delay: off/on<br>[ns] | Base PN      | Technology | Under voltage lockout | Separate pin for logic ground | Integrated bootstrap diode | Shoot-trough protection | Over current protection | Desaturation protection | Soft over current shutdown | Fault reporting | Current Amplifier | Programmable shutdown | Programmable dead time | Comparator | Shutdown | Enable   | Self-oscillating | DSO-8    | DSO-14   | DSO-18     | DIP-8    | DIP-14   | SSOP-24  | VQFN-14              |
|                  |                                               |                                    |              | Tech       |                       |                               |                            |                         |                         |                         | Fe                         | '<br>eatur      | es                |                       |                        |            |          |          |                  |          |          |            | icka     |          |          |                      |
| 1200             | 1500/2500                                     | 85/85                              | 2ED020I12-FI | СТ         | <b>√</b>              |                               |                            | <b>√</b>                |                         |                         |                            |                 | <b>√</b>          |                       |                        | <b>√</b>   | <b>√</b> |          |                  |          |          | <b>✓</b>   |          |          |          |                      |
|                  | 2000/3000                                     | 440/440                            | IR2214S      | JI         | <b>√</b>              | <b>√</b>                      |                            | <b>√</b>                |                         | <b>√</b>                | <b>✓</b>                   | <b>√</b>        |                   |                       |                        |            |          |          |                  |          |          |            |          |          | <b>✓</b> |                      |
| 700              | 78/169                                        | 220/220                            | IR7304       | JI         | <b>√</b>              |                               |                            | <b>√</b>                |                         |                         |                            |                 |                   |                       |                        |            |          |          |                  | <b>V</b> |          |            |          |          |          |                      |
|                  | 1900/2300                                     | 270/680                            | IR7184       | JI         | <b>√</b>              |                               |                            | <b>√</b>                |                         |                         |                            |                 |                   |                       |                        |            | <b>√</b> |          |                  | <b>√</b> |          |            |          |          |          |                      |
| 650              | 1500/2500                                     | 85/85                              | 2ED020I06-FI | СТ         | <b>√</b>              |                               |                            | <b>√</b>                |                         |                         |                            |                 |                   |                       |                        |            | ✓        |          |                  |          |          | <b>✓</b>   |          |          |          |                      |
| 600              | 78/169                                        | 220/220                            | IR2304       | JI         | ✓                     |                               |                            | ✓                       |                         |                         |                            |                 |                   |                       |                        |            |          |          |                  | <b>✓</b> |          |            | ✓        |          |          |                      |
|                  |                                               |                                    | IR25601      | JI         | ✓                     |                               |                            | ✓                       |                         |                         |                            |                 |                   |                       |                        |            |          |          |                  | ✓        |          |            |          |          |          |                      |
|                  | 180/260                                       | na                                 | IR21531      | JI         | ✓                     |                               |                            | ✓                       |                         |                         |                            |                 |                   | <b>✓</b>              |                        |            | ✓        |          | ✓                | <b>✓</b> |          |            | <b>✓</b> |          |          |                      |
|                  |                                               |                                    | IR21531D     | JI         | ✓                     |                               | <b>✓</b>                   | ✓                       |                         |                         |                            |                 |                   | ✓                     |                        |            | ✓        |          | ✓                |          |          |            | ✓        |          |          |                      |
|                  |                                               |                                    | IR25603      | JI         | ✓                     |                               |                            | ✓                       |                         |                         |                            |                 |                   | ✓                     |                        |            | ✓        |          | ✓                | ✓        |          |            | ✓        |          |          |                      |
|                  |                                               |                                    | IRS2153(1)D  | JI         | ✓                     |                               | ✓                          | ✓                       |                         |                         |                            |                 |                   | ✓                     |                        |            | ✓        |          | ✓                | ✓        |          |            | ✓        |          |          |                      |
|                  | 200/350                                       | 200/220                            | IR2108       | JI         | ✓                     |                               |                            | ✓                       |                         |                         |                            |                 |                   |                       |                        |            |          |          |                  | ✓        |          |            | ✓        |          |          |                      |
|                  |                                               |                                    | IR21084      | JI         | ✓                     | ✓                             |                            | ✓                       |                         |                         |                            |                 |                   |                       | ✓                      |            |          |          |                  |          | ✓        |            |          | ✓        |          |                      |
|                  |                                               |                                    | IR2308       | JI         | ✓                     |                               |                            | ✓                       |                         |                         |                            |                 |                   |                       |                        |            |          |          |                  | ✓        |          |            | ✓        |          |          |                      |
|                  |                                               |                                    | IR25606      | JI         | ✓                     |                               |                            | ✓                       |                         |                         |                            |                 |                   |                       |                        |            |          |          |                  | ✓        |          |            |          |          |          |                      |
|                  |                                               | 200/750                            | IR2109       | JI         | ✓                     |                               |                            | ✓                       |                         |                         |                            |                 |                   |                       |                        |            | ✓        |          |                  | ✓        |          |            | ✓        |          |          |                      |
|                  |                                               |                                    | IR21091      | JI         | ✓                     |                               |                            | ✓                       |                         |                         |                            |                 |                   |                       | ✓                      |            | ✓        |          |                  | ✓        |          |            | ✓        |          |          |                      |
|                  |                                               |                                    | IR21094      | JI         | ✓                     | ✓                             |                            | ✓                       |                         |                         |                            |                 |                   |                       | ✓                      |            | ✓        |          |                  |          | ✓        |            |          | ✓        |          |                      |
|                  |                                               |                                    | IR2302       | JI         | ✓                     |                               |                            | ✓                       |                         |                         |                            |                 |                   |                       |                        |            | ✓        |          |                  | ✓        |          |            | ✓        |          |          |                      |
|                  | 210/360                                       | 150/680                            | IR2103       | JI         | ✓                     |                               |                            | ✓                       |                         |                         |                            |                 |                   |                       |                        |            |          |          |                  | ✓        |          |            | ✓        |          |          |                      |
|                  |                                               |                                    | IR2104       | JI         | ✓                     |                               |                            | ✓                       |                         |                         |                            |                 |                   |                       |                        |            | ✓        |          |                  | ✓        |          |            | ✓        |          |          |                      |
|                  |                                               |                                    | IR25602      | JI         | ✓                     |                               |                            | ✓                       |                         |                         |                            |                 |                   |                       |                        |            | ✓        |          |                  | ✓        |          |            |          |          |          |                      |
|                  | 220/480                                       | 500/500                            | IRS2890      | JI         | ✓                     |                               | ✓                          | ✓                       | ✓                       |                         |                            | ✓               |                   |                       |                        |            |          |          |                  |          | ✓        |            |          |          |          |                      |
|                  | 250/500                                       | 150/750                            | IR2111       | JI         | ✓                     |                               |                            | ✓                       |                         |                         |                            |                 |                   |                       |                        |            |          |          |                  | <b>✓</b> |          |            | ✓        |          |          |                      |
|                  | 290/600                                       | 150/150                            | IRS2304      | JI         | ✓                     |                               |                            | ✓                       |                         |                         |                            |                 |                   |                       |                        |            |          |          |                  | ✓        |          |            | ✓        |          |          |                      |
|                  |                                               | 150/680                            | IRS2103      | JI         | ✓                     |                               |                            | ✓                       |                         |                         |                            |                 |                   |                       |                        |            |          |          |                  | ✓        |          |            | ✓        |          |          |                      |
|                  |                                               |                                    | IRS2104      | JI         | ✓                     |                               |                            | ✓                       |                         |                         |                            |                 |                   |                       |                        |            | ✓        |          |                  | ✓        |          |            | ✓        |          |          |                      |
|                  |                                               | 150/750                            | IRS2111      | JI         | ✓                     |                               |                            | ✓                       |                         |                         |                            |                 |                   |                       |                        |            |          |          |                  | <b>✓</b> |          |            | <b>√</b> |          |          |                      |
|                  |                                               | 200/220                            | IRS2(1,3)08  | JI         | ✓                     |                               |                            | ✓                       |                         |                         |                            |                 |                   |                       |                        |            |          |          |                  | <b>✓</b> |          |            | <b>√</b> |          |          |                      |
|                  |                                               | 000/750                            | IRS21084     | JI         | ✓                     | <b>✓</b>                      |                            | ✓                       |                         |                         |                            |                 |                   |                       | <b>√</b>               |            |          |          |                  |          | ✓        |            |          | ✓        |          |                      |
|                  |                                               | 200/750                            | IRS2109      | JI         | <b>√</b>              |                               |                            | <b>√</b>                |                         |                         |                            |                 |                   |                       |                        |            | <b>√</b> |          |                  | <b>✓</b> |          |            | <b>√</b> |          | _        |                      |
|                  |                                               |                                    | IRS21091     | JI         | ✓                     |                               |                            | ✓                       |                         |                         |                            |                 |                   |                       | <b>√</b>               |            |          |          |                  | ✓        |          |            | ✓        |          |          |                      |
|                  | 0.00/700                                      | 000/040                            | IRS21094     | JI         | ✓                     | <b>√</b>                      |                            | <b>√</b>                |                         |                         |                            |                 |                   |                       | <b>√</b>               |            | <b>√</b> |          |                  |          | ✓        |            |          | <b>√</b> | _        |                      |
|                  | 360/700                                       | 300/310<br>400/420                 | 2EDL05N06P   | SOI        | ✓                     |                               | <b>√</b>                   | <b>√</b>                |                         |                         |                            |                 |                   |                       |                        |            |          |          |                  | <b>✓</b> | ✓        |            |          |          |          |                      |
|                  | 1000/2200                                     | · ·                                | 2EDL05I06P   | SOI        | <b>√</b>              |                               | <b>√</b>                   | <b>√</b>                |                         |                         |                            |                 |                   |                       |                        |            |          |          |                  | <b>√</b> | <b>✓</b> |            |          |          |          |                      |
|                  | 1900/2300                                     | 220/180                            | IR(S)2183    | JI<br>     | <b>√</b>              |                               |                            | <b>√</b>                |                         |                         |                            |                 |                   |                       |                        |            |          |          |                  | ✓        |          |            | ✓        |          |          |                      |
|                  |                                               | 270/500                            | IR(S)21834   | JI         | <b>√</b>              | <b>✓</b>                      |                            | <b>√</b>                |                         |                         |                            |                 |                   |                       | <b>√</b>               |            |          |          |                  |          | <b>√</b> |            |          | <b>√</b> |          |                      |
|                  |                                               | 270/680                            | IR(S)2184    | JI<br>     | <b>√</b>              |                               |                            | <b>√</b>                |                         |                         |                            |                 |                   |                       |                        |            | <b>√</b> |          |                  | ✓        |          |            | ✓        |          |          |                      |
|                  |                                               |                                    | IR21844      | JI         | <b>√</b>              | <b>√</b>                      |                            | <b>√</b>                |                         |                         |                            |                 |                   |                       | ✓                      |            | <b>✓</b> |          |                  |          | <b>√</b> |            |          | ✓        |          |                      |
|                  | 2000/2002                                     | 440/440                            | IRS21844     | JI<br>     | <b>√</b>              | <b>✓</b>                      |                            | <b>√</b>                |                         |                         |                            |                 |                   |                       | ✓                      |            | ✓        |          |                  |          | ✓        |            |          | ✓        |          | <b>✓</b>             |
|                  | 2000/3000                                     | 440/440                            | IR2114S      | JI         | <b>√</b>              | <b>√</b>                      |                            | <b>√</b>                |                         | <b>√</b>                | <b>✓</b>                   | <b>√</b>        |                   |                       |                        |            |          |          |                  |          |          |            |          |          | <b>√</b> |                      |
|                  | 2300/2800                                     | 300/310                            | 2EDL23N06P   | SOI        | ✓                     | <b>√</b>                      | <b>√</b>                   | <b>√</b>                | <b>√</b>                |                         |                            | ✓               |                   |                       |                        |            |          | <b>√</b> |                  |          | ✓        |            |          |          |          |                      |
| 202              | 200/662                                       | 400/420                            | 2EDL23I06P   | SOI        | <b>√</b>              | <b>✓</b>                      | <b>√</b>                   | <b>√</b>                | <b>√</b>                |                         |                            | <b>✓</b>        |                   |                       |                        |            |          | <b>√</b> |                  |          | ✓        |            |          |          |          |                      |
| 200              | 290/600                                       | 150/160                            | IRS2007      | JI         | ✓                     |                               |                            | ✓                       |                         |                         |                            |                 |                   |                       |                        |            |          |          |                  | <b>√</b> |          |            |          |          |          |                      |
|                  |                                               | 150/680                            | IRS2003      | JI         |                       |                               |                            | <b>√</b>                |                         |                         |                            |                 |                   |                       |                        |            |          |          |                  | <b>√</b> |          |            | ✓        |          |          |                      |
|                  |                                               |                                    | IRS2008      | JI         | ✓                     |                               |                            | ✓                       |                         |                         |                            |                 |                   |                       |                        |            | ✓        |          |                  | <b>✓</b> |          |            |          |          |          |                      |
|                  |                                               |                                    | IRS2004      | JI         |                       |                               |                            | ✓                       |                         |                         |                            |                 |                   |                       |                        |            | ✓        |          |                  | ✓        |          |            | ✓        |          |          |                      |



# Gate driver selection tool

To simplify the gate driver selection process, Infineon offers an online easy-to-use gate driver selection tool. By selecting a few key parameters, the tool quickly guides you in finding the right driver for your application.



Visit the gate driver selection tool by going to www.infineon.com/gdfinder

# iMOTION™

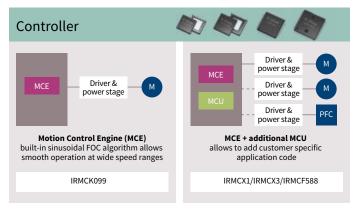
# Highly integrated products to control variable speed drives

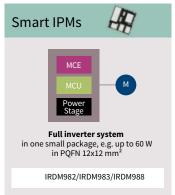
iMOTION™ ICs integrate all the control and analog interface functions required for sensor less field oriented control (FOC) of PM motors. In addition, they feature Infineon's patented motor control engine (MCE) that eliminates software coding for the motor control algorithm development.

#### **Observed market trends**

- > Energy regulations higher performance drive inverterization rate
- > Shorter product life cycles and larger product portfolios
- > Miniaturization of building blocks
- > Increased price pressure

#### **Key benefits**


- > Easy to use no special motor control know-how required
- > High performance and energy optimized solution
- > Reduced system cost due to R&D and BOM savings
- > Improved time-to-market


#### Our markets





# iMOTION™ product offering





# iMOTION™ ecosystem

Specialized tools available to tune, drive and test your application

# MCEWizard/TinyWizard

SW tool to generate drive control parameters from motor and hardware specifications

# **MCEDesigner**

SW tool to fine-tune your motor control – with trace features to watch internal variables

# **MCEProgrammer**

Program MCE OTP/SRAM



IRMCK099 evaluation kit

www.infineon.com/imotion



# iMOTION™ Modular Application Design Kit

Infineon's evaluation platform - get a motor running in less than one hour!

The iMOTION™ Modular Application Design Kit (MADK) evaluation platform covers motor drive applications up to 1 kW. The platform is offering a modular and scalable system solution with different control board options and a range of power boards. Using iMOTION™ MADK standardized M1 platform interface, different control and power boards can be combined in a system that perfectly matches the requirements of the application. This modular approach allows developers a maximum in flexibility and scalability during evaluation and development phase at affordable costs. The set up of a complete motor drive system is possible in less than one hour!

Further information, datasheets and documents www.infineon.com/imotion

www.infineon.com/imotior www.infineon.com/madk For technical assistance www.infineon.com/support

# **MADK applications**











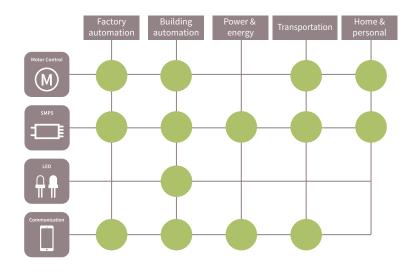


# $XMC^{TM}$

One microcontroller platform. Countless solutions.

Infineon's XMC™ 32-bit industrial microcontroller portfolio is designed for efficiency and demanding industrial applications.

# XMC™ MCU portfolio


- > RAM: 8 kB up to 352 kB
- > Flash: 16 kB up to 2 MB
- Accurate analog-mixed signal peripherals
- Fast timer/PMW peripherals
- Rich communication interfaces
- > 16pin to 196pin count packages

# XMC1000 family

- > ARM® Cortex®-M0 up to 48 MHz
- > Peripherals up to 96 MHz
- One time Event Request Unit (ERU)
- $V_{DD}$ : 1.8 to 5.5 V
- $T_{Ambient}$ : -40°C to 105°C

# XMC4000 family

- > ARM® Cortex®-M4 up to 144 MHz
- > Built in DSP, SFPU
- > Peripherals up to 144 MHz
- > Event Request Unit (ERU)
- $T_{Ambient}$ : -40°C to 125°C





# XMC4000

ARM® Cortex® M4F up to 144 MHz core 64 KB-2 MB Flash

XMC1000

ARM® Cortex® M0 up to 48 MHz core/96 MHz peripheral

8-200 KB Flash

#### XMC4100

Basic control & connectivity VQFN-48/LQFP-64

XMC1100

Basic control & connectivity

TSSOP-16, 38/VQFN-24, -40

up to 105°C

up to 125°C

# XMC1400

Flicker-free dimming, SMPS control, dual channel, connectivity VQFN-40, -64/LQFP-64 up to 105°C

XMC1200, XMC1300 Flicker-free dimming, SMPS control, connectivity TSSOP-16, 28, 38/VQFN-24, -40

up to 105°C

#### XMC<sup>™</sup> entry **LED** lighting

#### XMC4500

UPS, solar three-level inverter LOFP-100, -144/LFBGA-144 up to 125°C

# XMC4200

Server power supplies, 150 ps HRPWM LQFP-64, -100 up to 125°C

# XMC1400

SMPS control, dual channel, connectivity VQFN-40, -64/LQFP-64 up to 105°C

#### XMC1300

Basic SMPS control TSSOP-16, 38/VQFN-24, -40 up to 105°C

# Digital power

#### XMC4700

Industrial drives LQFP-100, -144/LFBGA-196 up to 125°C

### XMC4500, XMC4400

Industrial drives, hall & encoder I/F, ΔΣ demodulator LQFP-64, -100, 144/ LFBGA-144 up to 125°C

#### XMC1400

Motor control, hall & encoder I/F, co-processor VQFN-40, -64/LQFP-64 up to 105°C

#### XMC1300

Motor control, hall & encoder I/F, co-processor TSSOP-16, 38/VQFN-24, -40 up to 105°C

# **Motor control**

VQFN-48, -64/LQFP-64 up to 105°C

XMC4800, XMC4300 EtherCAT®, Multi CAN 6

nodes, industrial drives

LQFP-100, -144/LFBGA-196 up to 125°C

XMC4500

Multi CAN 3 nodes, external

memory, Ethernet, SD/MMC,

industrial drivesLQFP-100,

-144/LFBGA-144 up to 125°C

XMC1400

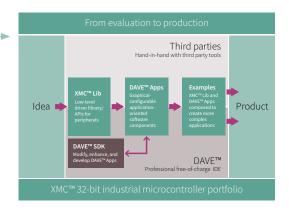
Multi CAN 2 nodes

Industrial I/O

www.infineon.com/xmc



# XMC<sup>™</sup> ecosystem, enablement and partners


A comprehensive set of tools, products, components, and services are available for fast and efficient design with XMC™ microcontrollers.

# Infineon enablement for XMC™ MCUs

- DAVE<sup>™</sup> www.infineon.com/dave
   Professional and free-of-charge development platform
- > XMC™ library for Embedded Coder® www.infineon.com/matlab Model-based design from MATLAB® and Simulink® environment, download free-of-charge
- > IEC60730 class B library for XMC<sup>™</sup> www.infineon.com/iec60730 Free-of-charge available for XMC<sup>™</sup> industrial microcontrollers
- ➤ µC/Probe™ XMC™ www.infineon.com/ucprobexmc
  Free-of-charge version of µC/Probe™ for XMC™ MCUs to build user interfaces for visualizing, observing, and control of the internals of XMC™ MCUs
- > XMC<sup>™</sup> Link www.infineon.com/xmclink Functional isolated debug probe, based on SEGGER J-Link technology

In addition to a rich third party ecosystem and enablement landscape, which support the entire development cycle from evaluation to production.

For more www.infineon.com/xmc-ecosystem





Infineon's XMC™ 32-bit industrial microcontroller portfolio is designed for system cost and efficiency for demanding industrial applications. It comes with the most advanced peripheral set in the industry. Fast and largely autonomous peripherals can be configured to support individual needs.

Highlights include analog-mixed signal, timer/PWM and communication peripherals powered by either an ARM® Cortex®-M0 core (XMC1000 family) or a Cortex®-M4 core with a floating point unit (XMC4000 family).

|                                             |                   | Clo       | cks                | Me                           | mory              |                | Analog             | ;                  |            | Timer      | /PWM  |            | Conne                    | ctivity  | Package                      |
|---------------------------------------------|-------------------|-----------|--------------------|------------------------------|-------------------|----------------|--------------------|--------------------|------------|------------|-------|------------|--------------------------|----------|------------------------------|
| ARM <sup>®</sup><br>Cortex <sup>®</sup> -M0 | Co-processor      | Frequency | Peripherals        | Flash 8-64                   |                   | ADC1 2-bit/S&H | Number of channels | Analog comparators | CCU4 (4ch) | CCU8 (4ch) | POSIF | всси       | USIC                     | CAN 2.0B |                              |
| XMC11x                                      | -                 | 32        | 64                 |                              |                   |                | Up to              | -                  | 1x         | -          | -     | -          | 2x                       | -        | VQFN 24/40<br>TSSOP 16/38    |
| XMC12x                                      | -                 | 32        | 64                 | RAM 16 kB<br>Flash 16-200 kB |                   | 1/2            | Up to              | Up to 3            | 1x         | -          | -     | 1x         | 2x                       | -        | VQFN 24/40<br>TSSOP 16/28/38 |
| XMC13x                                      | Ø                 | 32        | 64                 | Flash<br>RAM                 | 8-200 kB<br>16 kB | 1/2            | Up to              | Up to 3            | 1x         | 1x         | 1x    | 1x         | 2x                       | -        | VQFN 24/40<br>TSSOP 16/38    |
| XMC14x                                      | ☑ 48 96 Flash 32- |           | 32-200 kB<br>16 kB | 1/2                          | Up to             | Up to 4        | 2x                 | 2x                 | 2x         | 1x         | 4x    | Up<br>to 2 | VQFN 40/48/64<br>LQFP 64 |          |                              |
|                                             |                   |           |                    |                              |                   | Supply         | voltage r          | ange 1.8 V         | – 5.5 V    |            |       |            |                          |          |                              |
|                                             |                   |           |                    |                              | Tei               | mperatu        | re range           | -40°C 8            | 5°C/105    | °C         |       |            |                          |          |                              |

|                    |                 | Ме    | mory       |                | Analog             |            |            | Tir        | ner/PV         | /M     |               |      | Conn      | ectivity | ,        |           | Package      |
|--------------------|-----------------|-------|------------|----------------|--------------------|------------|------------|------------|----------------|--------|---------------|------|-----------|----------|----------|-----------|--------------|
| ARM®<br>Cortex®-M0 | Frequency [MHz] |       |            | ADC1 2-bit/S&H | Number of channels | DAC1 2-bit | CCU4 (4ch) | CCU8 (4ch) | HRPWM (150 ps) | POSIF  | Σ Demodulator | USIC | CAN 2.0B  | USB      | Ethernet | EtherCAT® |              |
| XMC41x             | 80              | Flash | 64-128 kB  | 2/2            | Up to 9            | 2 ch       | 2x         | 1x         | 1x             | 1x     | _             | 4x   | Up to 2   | _        |          |           | VQFN 48      |
|                    | 80              | RAM   | 20 kB      | 2/2            | Op 10 9            | 2 (11      | ZX         | 1X         | 1x             | IX     | -             | 4x   | υρ to 2   | -        | -        | _         | TQFP 64      |
| XMC42x             | 80              | Flash | 256 kB     | 2/2            | Up to 9            | 2 ch       | 2x         | 1x         | 4 ch           | 1x     | _             | 4x   | 2x        | 1x       | _        |           | VQFN 48      |
|                    | 80              | RAM   | 40 kB      | 2/2            | Op to 3            | 2 (11      | 2^         | 17         | 4 (11          | 17     |               | 77   | 2^        | 17       |          |           | TQFP 64      |
| XMC43x             | 144             | Flash | 256 kB     | 2/2            | Up to 14           | 2 ch       | 2x         | 1x         | _              | _      | _             | 4x   | 2x        | 1x       | 1x       | 1x        | LOFP 100     |
|                    | 144             | RAM   | 128 kB     | 2/2            | ор tо 14           | 2 (11      |            |            |                |        |               | -77  | 27        | 17       |          | 1/        | EQTT 100     |
| XMC44x             | 120             | Flash | 256-512 kB | 4/4            | Up to 18           | 2 ch       | 4x         | 2x         | 4 ch           | 2x     | 4ch           | 4x   | 2x        | 1x       | 1x       | _         | TQFP 64      |
|                    | 120             | RAM   | 80 kB      | ., .           | Op to 10           | 2 (11      | ıx.        |            | 1 611          |        | 1011          | IX.  | ZX        |          |          |           | LQFP 100     |
| XMC45x             | 120             | Flash | 512 MB     | 4/4            | Up to 26           | 2 ch       | 4x         | 2x         | _              | 2x     | 4 ch          | 4x   | Up to 3   | 1x       | 1x       | _         | LQFP 100/144 |
|                    | 120             | RAM   | 128-160 kB | ., .           | Op 10 20           | 2 (11      |            |            |                |        | 1 611         |      | - OP 10 3 |          |          |           | LFBGA 144    |
| XMC47x             | 144             | Flash | 1.5-2 MB   | 4/4            | Up to 26           | 2 ch       | 4x         | 2x         | _              | 2x     | 4 ch          | 6x   | 6x        | 1x       | 1x       | _         | LQFP 100/144 |
|                    | 144             | RAM   | 276-352 kB | 7/7            | Op 10 20           | 2 (11      | 77         | 21         |                | 2.     | 4 (11         | OX.  | OA .      | 17       | 17       |           | LFBGA 196    |
| XMC48x             | 144             | Flash | 1-2 MB     | 4/4            | Up to 26           | 2 ch       | 4x         | 2x         | _              | 2x     | 4 ch          | 6x   | 6x        | 1x       | 1x       | 1x        | LQFP 100/144 |
|                    | 1-1-1           | RAM   | 200-352 kB | 7/4            | Op 10 20           | 2 (11      | -TA        |            |                | ۷,     | 7 (11         |      | <u> </u>  |          | 17       | 1,        | LFBGA 196    |
|                    |                 |       |            |                | 9                  | Supply     | voltag     | e range    | 3.1-3.         | 6 V    |               |      |           |          |          |           |              |
|                    |                 |       |            |                | Temp               | eratur     | e range    | -40°C      | 85°0           | C/125° |               |      |           |          |          |           |              |

www.infineon.com/xmc www.infineon.com/dave



# XMC<sup>™</sup> digital power explorer kit

The new digital power explorer kit is designed with the particular goal of making it easy for engineers to take the first steps into digital power control with XMC™ microcontrollers. It showcases both XMC™ families Cortex®-M microcontrollers: XMC4000 and XMC1000, 30 V dual n-channel OptiMOS™ MOSFETs and IRS2011S gate drivers. The kit includes two different control card options, XMC1300 control card (ARM® Cortex®-M0) and XMC4200 control card (ARM® Cortex®-M4F), which allow designers to evaluate both XMC™ microcontroller families and make the right price/performance choice for their application.

# **Key features**

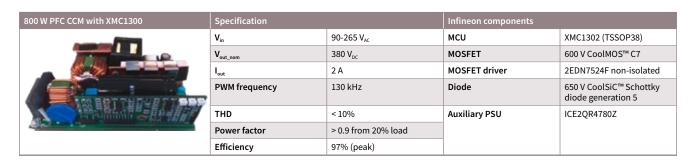
- Synchronous buck converter evaluation kit controlled with XMC4200 or XMC1300 ARM® Cortex®-M MCUs
- On-board resistive load banks
- > Featuring BSC0924NDI dual n-channel OptiMOS™ and IRS2011S high and low-side gate driver
- Different control schemes possible
  - Voltage mode control
  - Peak current mode control (with slope compensation)

# **Customer benefits**

- > Easy entry in digital power control applications
- > Understand the details of voltage/peak current control and how to extract the maximum of XMC<sup>™</sup> devices
- > DAVE<sup>™</sup> v4 APPs for buck converter and much more examples

| XMC™ digital power explorer kit          | Specification         |                     | Infineon components |                        |
|------------------------------------------|-----------------------|---------------------|---------------------|------------------------|
| 1                                        | V <sub>in</sub>       | 12 V <sub>DC</sub>  | мси                 | XMC4200 or XMC1300     |
| A. A | $V_{\text{out\_nom}}$ | 3.3 V <sub>DC</sub> | MOSFETs             | OptiMOS™<br>BSC0924NDI |
|                                          | I <sub>out</sub>      | 2 A                 | MOSFET HB driver    | IRS2011S               |
|                                          | P <sub>out</sub>      | 6 W                 |                     |                        |

# 800 W PFC CCM with XMC1300


The 800 W PFC CCM evaluation board demonstrates the design and practical results of an 800 W 130 kHz platinum server PFC demo board based on Infineon devices, in terms of power semiconductors, non-isolated gate drivers, analog and digital controllers for the PFC converter as well as flyback controller for the auxiliary supply. This demo board verifies the performance of the latest 600 V CoolMOS™ C7 MOSFET technology working at 130 kHz in a PFC CCM boost converter along with EiceDRIVER™ ICs and 650 V CoolSiC™ Schottky diode generation 5 using digital control.

#### **Key features**

- Classic PFC boost stage digitally controlled with XMC1302 including voltage and current loops
- Protections, including cycle-by-cycle current protection included
- Run time debug with isolated UART to PC interface and PC software

#### **Customer benefits**

- High efficient PFC stage with a complete system solution from Infineon
- > HW and SW available
- Higher switching frequency permits higher power density



# 600 W LLC digital control

600 W LLC digital control evaluation board shows how to design the half-bridge LLC stage of a server SMPS with the target to meet 80+ Titanium standard efficiency requirements. On this purpose the latest CoolMOS™ technologies, 600 V CoolMOS™ C7 or P6 power MOSFET have been applied on the primary side, and OptiMOS™ low voltage power MOSFET in SuperSO8 BSC010N04LS, in the synchronous rectification secondary stage in combination with QR CoolSET™ ICE2QR2280Z, hi-low-side driver 2EDL05N06PF, low-side gate driver 2EDN7524F and a XMC4200 microcontroller.

#### **Key features:**

- 600 W LLC half-bridge stage with synchronous rectification (SR)
- > All controlled with XMC4200 including:
  - Start up (PWM to PFM) and burst mode algorithms
  - Adaptive dead time and capacitive mode detection
  - No hard commutation at any condition

# **Customer benefits**

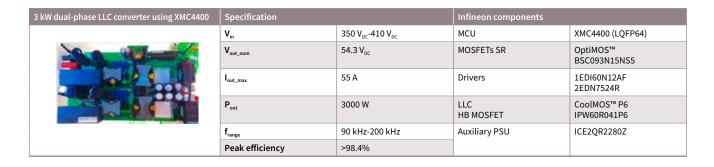
- Learn LLC topology with a complete system solution from Infineon
- HW and SW available
- > Close to customer solution
  - High efficiency → 97.8%
  - Reliability and power density

| 600 W LLC digital control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Specification        |                                          | Infineon components |                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------|---------------------|----------------------|
| Bate 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | V <sub>in</sub>      | 350 V <sub>DC</sub> -410 V <sub>DC</sub> | MCU                 | XMC4200 (VQFN48)     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V <sub>out_nom</sub> | 12 V <sub>DC</sub>                       | MOSFET SR           | BSC010N04LS          |
| The state of the s | l <sub>out</sub>     | 50 A                                     | HB driver           | 2EDL05N06PF          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P <sub>out</sub>     | 600 W                                    | LLC HB MOSFET       | CoolMOS™ IPP60R190P6 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | f <sub>res</sub>     | 157 kHz                                  | Auxiliary PSU       | ICE2QR2280Z          |

www.infineon.com/xmc



# 3 kW dual-phase LLC converter using XMC4400


The 3 kW dual-phase LLC demo board is an example of a high efficiency isolated DC-DC converter using state-of-the-art Infineon components, both power devices and controller/driver ICs. The use of an advanced digital control using the XMC4400 microcontroller, together with the latest generation of CoolMOS™ and OptiMOS™ devices, allows to achieve a very flat efficiency curve in the entire load range. The demo board is targeting the HV DC-DC stage of high-end telecom rectifiers.

# **Key features**

- > Full digital control by XMC4400 on the secondary side
- > Digital current sharing with phase shedding
- > Accurate algorithm able to prevent hard commutation and capacitive load mode in LLC operation

# **Customer benefits**

- > Full digital control by XMC4400 on the secondary side
- > Efficiency peak 98.5% and more than 97.2% in the entire load range.
- > Easy monitoring and parameter setting via a graphic user interface.



#### Preferred design houses















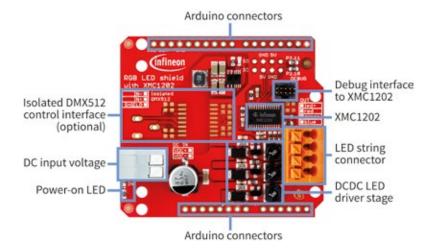




For information about our partners and preferred design houses please visit: www.infineon.com/pdh

# RGB LED lighting shield with XMC1202 for Arduino

The RGB LED lighting shield with XMC1202 for Arduino uses a DC-DC buck topology and is able to drive up to 3 LED channels with constant current. The shield itself is powered by a programmable XMC<sup>™</sup> 32-bit ARM<sup>®</sup> MCU with embedded brightness color control unit (BCCU, XMC1200 MCU series), for flicker-free LED dimming and color control.


#### **Features**

- Compatible with Arduino Uno R3 and XMC1100 boot kit from Infineon
- > Easily configurable for various light engines and any input voltage (within operating conditions)
- > Wide DC input voltage range
- > Simple I2C interface

# **Operating conditions**

- > Nominal: 12 V-48 V input voltage (max. 6 V-60 V)
- > Average LED current up to 700 mA (max. peak current 1 A)

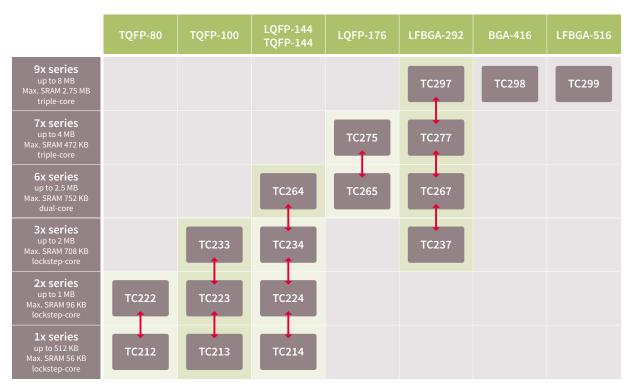
The Infineon shields mentioned above are hardware compatible with Arduino and Infineon's XMC™ boot and relax kits.



# AURIX™ – 32-bit microcontrollers

# 32-bit multicore TriCore™ – safety joins performance

AURIX™ is Infineon's family of microcontrollers serving exactly the needs of industrial applications in terms of performance and safety. Its innovative multi-core architecture, based on up to three independent 32-bit TriCore™ CPUs @ 300 MHz has been designed to meet the highest safety standards while increasing the performance at the same time. Using the AURIX™ scalable platform, developers will be able to implement applications like motor control and drives, PLC or any other automation application. Developments using AURIX™ require less effort to achieve the SIL/ IEC61508 standard based on its innovative safety concept and multiple HW safety features. Furthermore, AURIX™ has enhanced communication capabilities to support communication between CAN, LIN, FlexRay and Ethernet buses.


# **Key features**

- > TriCore™ with DSP functionality
- > Best-in-class real-time performance: triple TriCore™ with up to 300 MHz per core
- Supporting floating point and fix point with all cores
- > Up to 2.75 MB of internal RAM, up to 8 MB of flash
- > Innovative single supply 5 V or 3.3 V
- > IEC61508 conformance to support safety requirements up to SIL3
- Embedded EEPROM
- Advanced communication peripherals: CAN FD, LIN, SPI, FlexRay, Ethernet

# **Key benefits**

- > High scalability gives the best cost-performance fit
- > High integration leads to significant cost savings
- High integration leads to reduced complexity
- Innovative supply concept leads to best-in-class power consumption

# AURIX™ family package scalability

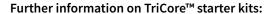


Upgrade/downgrade with pin-compatible packages

www.infineon.com/aurix

# AURIX™ microcontroller

| Product type | Max. clock frequency [MHz] | Program memory [KByte] | SRAM (incl. cache) [KByte] | Co-processor <sup>1)</sup> | Cores/lockstep | Timed I/O | Number of ADC channels | External Bus interface | CAN nodes | Communication interfaces"                                                                       | Temperature ranges <sup>3)</sup> | Packages     | Additional features/remarks " |
|--------------|----------------------------|------------------------|----------------------------|----------------------------|----------------|-----------|------------------------|------------------------|-----------|-------------------------------------------------------------------------------------------------|----------------------------------|--------------|-------------------------------|
| TC299TX      | 300                        | 8000                   | 2728                       | FPU                        | 3/1            | 263       | 84/10 DS               | yes                    | 6         | 4xASCLIN, 6xQSPI, 3xMSC, 2xl <sup>2</sup> C,15xSENT, HSSL, 5xPSI5, 2xFlexRay, Ethernet, CAN FD  | К                                | PG-LFBGA-516 | EVR, STBU, HSM                |
| TC299TP      | 300                        | 8000                   | 728                        | FPU                        | 3/1            | 263       | 84/10 DS               | yes                    | 6         | 4xASCLIN, 6xQSPI, 3xMSC, 2xl <sup>2</sup> C, 15xSENT, HSSL, 5xPSI5, 2xFlexRay, Ethernet, CAN FD | K                                | PG-LFBGA-516 | EVR, STBU, HSM                |
| TC298TP      | 300                        | 8000                   | 728                        | FPU                        | 3/1            | 232       | 60/10 DS               | yes                    | 6         | 4xASCLIN, 6xQSPI, 3xMSC, 2xI <sup>2</sup> C, 15xSENT, HSSL, 5xPSI5, 2xFlexRay, Ethernet, CAN FD | K                                | PG-LBGA-416  | EVR, STBU, HSM                |
| TC297TA      | 300                        | 8000                   | 2728                       | FPU, FFT, CIF              | 3/1            | 169       | 60/10 DS               | no                     | 6         | 4xASCLIN, 4xQSPI, 3xMSC, 2xI <sup>2</sup> C, 15xSENT, HSSL, 5xPSI5, 2xFlexRay, Ethernet, CAN FD | K                                | PG-LFBGA-292 | EVR, STBU, HSM                |
| TC297TX      | 300                        | 8000                   | 2728                       | FPU                        | 3/1            | 263       | 60/10 DS               | no                     | 6         | 4xASCLIN, 4xQSPI, 3xMSC, 2xI <sup>2</sup> C, 15xSENT, HSSL, 5xPSI5, 2xFlexRay, Ethernet, CAN FD | K                                | PG-LFBGA-292 | EVR, STBU,HSM                 |
| TC297TP      | 300                        | 8000                   | 728                        | FPU                        | 3/1            | 169       | 60/10 DS               | no                     | 6         | 4xASCLIN, 4xQSPI, 3xMSC, 2xI <sup>2</sup> C, 15xSENT, HSSL, 5xPSI5, 2xFlexRay, Ethernet, CAN FD | K                                | PG-LFBGA-292 | EVR, STBU, HSM                |
| TC277TP      | 200                        | 4000                   | 472                        | FPU                        | 3/2            | 169       | 60/6 DS                | no                     | 4         | 4xASCLIN, 4xQSPI, 2xMSC, HSSL, 2xI <sup>2</sup> C, 10xSENT, 3xPSI5, FlexRay, Ethernet, CAN FD   | K                                | PG-LFBGA-292 | EVR, WUT, HSM                 |
| TC275TP      | 200                        | 4000                   | 472                        | FPU                        | 3/2            | 112       | 60/6 DS                | no                     | 4         | 4xASCLIN, 4xQSPI, 2xMSC,HSSL, 2xI <sup>2</sup> C, 10xSENT, 3xPSI5, FlexRay, Ethernet, CAN FD    | K                                | PG-LQFP-176  | EVR, WUT, HSM                 |
| TC267D       | 200                        | 2500                   | 240                        | FPU                        | 2/1            | 169       | 50/3 DS                | no                     | 5         | 4xASCLIN, 4xQSPI, 2xMSC, 2xl <sup>2</sup> C, 10xSENT, 3xPSI5, HSSL, FlexRay, Ethernet, CAN FD   | K                                | PG-LFBGA-292 | EVR, STBU                     |
| TC265D       | 200                        | 2500                   | 240                        | FPU                        | 2/1            | 112       | 50/3 DS                | no                     | 5         | 4xASCLIN, 4xQSPI, 2xMSC, 2xI <sup>2</sup> C, 10xSENT, HSSL, 3xPSI5, FlexRay, Ethernet, CAN FD   | K                                | PG-LQFP-176  | EVR, STBU                     |
| TC264DA      | 200                        | 2500                   | 752                        | FPU, FFT,CIF               | 2/1            | 88        | 40/3 DS                | no                     | 5         | 4xASCLIN, 4xQSPI, 2xMSC, 2xI <sup>2</sup> C, 10xSENT, HSSL, 3xPSI5, FlexRay, Ethernet, CAN FD   | K                                | PG-LQFP-144  | EVR, STBU                     |
| TC264D       | 200                        | 2500                   | 240                        | FPU                        | 2/1            | 88        | 40/3 DS                | no                     | 5         | 4xASCLIN, 4xQSPI, 2xMSC, 2xI <sup>2</sup> C, 10xSENT, HSSL, 3xPSI5, FlexRay, Ethernet, CAN FD   | K                                | PG-LQFP-144  | EVR, STBU                     |
| TC237LP      | 200                        | 2000                   | 192                        | FPU                        | 1/1            | 120       | 24                     | no                     | 6         | 2xASCLIN, 4xQSPI, 4xSENT, FlexRay, CAN FD                                                       | к                                | PG-LFBGA-292 | EVR, WUT, HSM                 |
| TC234LA      | 200                        | 2000                   | 704                        | FPU, FFT                   | 1/1            | 120       | 24                     | no                     | 6         | 2xASCLIN, 4xQSPI, 4xSENT, FlexRay, Ethernet                                                     | К                                | PG-TQFP-144  | EVR, WUT, HSM                 |
| TC234LX      | 200                        | 2000                   | 704                        | FPU                        | 1/1            | 120       | 24                     | no                     | 6         | 2xASCLIN, 4xQSPI, 4xSENT, FlexRay, Ethernet                                                     | К                                | PG-TQFP-144  | EVR, WUT, HSM                 |
| TC234LP      | 200                        | 2000                   | 192                        | FPU                        | 1/1            | 120       | 24                     | no                     | 6         | 2xASCLIN, 4xQSPI, 4xSENT, FlexRay, CAN FD                                                       | K                                | PG-TQFP-144  | EVR, WUT, HSM                 |
| TC233LP      | 200                        | 2000                   | 192                        | FPU                        | 1/1            | 78        | 24                     | no                     | 6         | 2xASCLIN, 4xQSPI, 4xSENT, FlexRay, CAN FD                                                       | К                                | PG-TQFP-100  | EVR, WUT, HSM                 |
| TC224L       | 133                        | 1000                   | 96                         | FPU                        | 1/1            | 120       | 24                     | no                     | 3         | 2xASCLIN, 4xQSPI, 4xSENT, CAN FD                                                                | К                                | PG-TQFP-144  | EVR, WUT                      |
| TC223L       | 133                        | 1000                   | 96                         | FPU                        | 1/1            | 78        | 24                     | no                     | 3         | 2xASCLIN, 4xQSPI, 4xSENT, CAN FD                                                                | К                                | PG-TQFP-100  | EVR, WUT                      |
| TC222L       | 133                        | 1000                   | 96                         | FPU                        | 1/1            | 59        | 24                     | no                     | 3         | 2xASCLIN, 4xQSPI, 4xSENT, CAN FD                                                                | К                                | PG-TQFP-80   | EVR, WUT                      |
| TC214L       | 133                        | 500                    | 96                         | FPU                        | 1/1            | 120       | 14                     | no                     | 3         | 2xASCLIN, 4xQSPI, 4xSENT, CAN FD                                                                | К                                | PG-TQFP-144  | EVR, WUT                      |
| TC213L       | 133                        | 500                    | 96                         | FPU                        | 1/1            | 78        | 24                     | no                     | 3         | 2xASCLIN, 4xQSPI, 4xSENT, CAN FD                                                                | K                                | PG-TQFP-100  | EVR, WUT                      |
| TC212L       | 133                        | 500                    | 96                         | FPU                        | 1/1            | 59        | 24                     | no                     | 3         | 2xASCLIN, 4xQSPI, 4xSENT, CAN FD                                                                | K                                | PG-TQFP-80   | EVR, WUT                      |


<sup>&</sup>lt;sup>1)</sup> CIF = Camera and external ADC Interface, FFT = Fast Fourier Transform Accelerator, FPU = Floating Point Unit, PCP = Peripheral Control Processor
<sup>2)</sup> ASC = Asynchronous Serial Channel, ASCLIN = Asyn/Synchronous Local Interconnect Network, HSSL= High Speed serial Link, I2C = Inter-Integrated Circuit, LIN = Local
Interconnect Network, MLI = Micro Link Interface, MSC = Micro Second Channel, PSI5 = Peripheral Sensor Interface 5, QSPI = Queued Serial Peripheral Interface, SENT =
Single Edge Nibble Transmission, SSC = Synchronous Serial Channel, CAN FD ISO11898-1:2015
<sup>3)</sup> Ambient Temperature Range: A = -40°C ... 140°C, B = 0°C ... 70°C, F = -40°C ... 85°C, H = -40°C ... 110°C, K = -40°C ... 125°C, L = -40°C ... 150°C, X = -40°C ... 105°C
<sup>4)</sup> EVR = Embedded Voltage Regulator, HSM = Hardware Security Module, STBU = Stand-by Control Unit, WUT = Wake-Up Timer

# Expert kits

Infineon TriCore™ family starter kits are powerful evaluation systems that enable evaluation and development well before the target hardware is available. They offer a solid platform for both hardware and software engineers to evaluate and prototype designs that are closely aligned with their final applications.

#### Our kits include

- > Full-featured evaluation board
- > USB cable
- > Easy connectivity to all peripheral modules
- > Extension board
- Development tools for evaluation such as compilers, debuggers and DAVE™
- > Technical documentation user manuals, architecture manuals, application notes, data sheets, board documentation



http://ehitex.com/starter-kits/for-tricore



Flexible application development platform with TFT-screen for the 32-bit AURIX™ multicore TriCore™ family

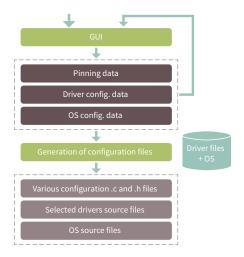
To simplify the development of your own application, the kit is supplied with a variety of on-board components including a highly-integrated software development environment that gives you everything you need to compile, debug and flash your AURIX™ multicore application.

# **Including**

- > AURIX™ application board
- > 3 V lithium battery
- Link to the free TriCore<sup>™</sup> entry tool chain including getting started, first 3 steps to
  - install the tools
  - set up your hardware
  - write, compile and debug your first program

# Further information on AURIX™ application kits:

http://ehitex.com/shopware.php/sViewport,search/sSearch,AURIX+application+kit




# ACT- AURIX™ configuration tool

ACT is a powerful tool that helps engineers to jump-start programming of Infineon microcontrollers.

# Key feature

- > Altium TASKING VX TriCore™ Lite Version including build-in
  - AURIX™ pin mapping incl. interactive package view
  - AURIX™ iLLD (low-level driver)
  - AURIX™ OSEK



# Free TriCore™ entry tool chain

This free of charge tooling entry tool chain provides all required features to develop and test software for TriCore™ and AURIX™. The tool can be used with all available TriCore™ and AURIX™ starter kit and application boards.

#### **Key features**

- > Eclipse based IDE
- > Project wizard to easy define the project properties for device and board support
- > High performance GNU C compiler
- > Integrated source level debugger
- > On-chip flash programming support

# Preferred design houses































For information about our partners and preferred design houses please visit: www.infineon.com/pdh



# Infineon support for industrial microcontrollers



One platform, countless solutions

# Further information, datasheets and documents

www.infineon.com/xmc www.infineon.com/xmc1000 www.infineon.com/xmc4000

www.infineon.com/aurix www.infineon.com/shields-for-arduino

#### **Videos**

www.infineon.com/xmc-mediacenter

# XMC™ MCUs ecosystem and enablement – kits, board, tools and software

DAVE™ IDE: www.infineon.com/dave

Boards and kits: www.infineon.com/xmc-dev

Ecosystem and tools: www.infineon.com/xmc-ecosystem













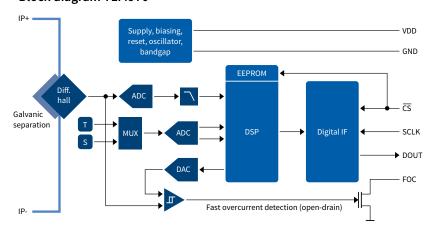


# Current sensors

# The miniaturization advantage

TLI4970 is a high-precision current sensor based on our proven Hall technology. Its coreless concept supports the miniaturization trend defining today's sensor designs. It is a fully digital solution with the added bonus of ease-of-use. There is no need for any external calibration or other parts (such as A/D converters, Op-amps, reference voltage sources), reducing the overall implementation effort, PCB space and cost significantly.

TLI4970 provides superior accuracy compared with existing open- or closed-loop systems with magnetic cores. It has additional functionality such as overcurrent detection and programmable filters, while offering a significantly smaller footprint and lower power consumption. Key applications include AC-DC inverters, DC-DC converters and PFC power supplies and current monitoring.


#### **Key features**

- > AC & DC measurement range up to +/-50 A
- > Highly accurate over temperature range and lifetime (max. 1.0% (0 h), 1.6% (over lifetime) of indicated value)
- Low offset error (max. 75 mA over temperature and lifetime)
- > High magnetic stray field suppression
- Fast overcurrent detection with configurable threshold
- Galvanic isolation up to 2.5 kV max. rated isolation voltage (UL1577)
- > 16-bit digital SPI output (13-bit current value)
- > Small 7.0 x 7.0 mm<sup>2</sup> SMD package

# **Key benefits**

- > Plug and play solution no external calibration needed
- Much smaller footprint than existing solutions
- > Reduced implementation effort, PCB space and cost
- > Small package size and weight for SMD mounting
- CSA component acceptance

# Block diagram TLI4970



#### **Product summary**

| Product number | Description                                                                                     | Primary current range | Max. accuracy error <sup>1)</sup> | Package    |
|----------------|-------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------|------------|
| TLI4970-D050T4 | Qualified according to industrial standards:<br>For use in industrial and consumer applications | 50 A                  | ±1.6                              | PG-TISON-8 |
| TLI4970-D050T5 |                                                                                                 | 50 A                  | ±3.5                              |            |
| TLI4970-D025T4 |                                                                                                 | 25 A                  | ±1.6                              |            |
| TLI4970-D025T5 |                                                                                                 | 25 A                  | ±3.5                              |            |

### www.infineon.com/tli4970

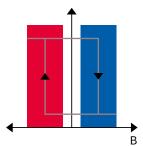
<sup>1)</sup> Accuracy error includes temperature and lifetime drifts

# Hall-effect switches

The energy-saving option with excellent accuracy and robustness

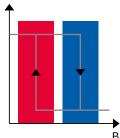
Our portfolio of hall switches (e.g. TLV496x, TLI496x) comprises unipolar and omnipolar switches, bipolar latches and double hall switches. They are suited to a wide range of applications such as position sensing, index counting, BLDC motor control, etc. These devices show excellent accuracy and robustness against electrical disturbances and are available in a variety of packages.

#### **Key features**


- Operating supply voltage 3 V-32 V
- > Reverse polarity protection (-18 V)
- Overvoltage capability up to 42 V without external resistor
- > Low current consumption (1.6 mA)
- > Active error compensation
- > High ESD performance, up to 7 kV HBM
- > Small SMD package SOT23
- Leaded package PG-TO92S-3

### **Key benefits**

- Reduction of system power consumption
- > Reduced system size
- > Removal of protection devices
- > Reliable system operation
- Increased motor efficiency
- Broad range of switching thresholds available for all applications
- Special industrial and consumer versions available


# Hall switch types

Latch (bipolar)



Main application: BLDC motor commutation

Uni-/omnipolar switches

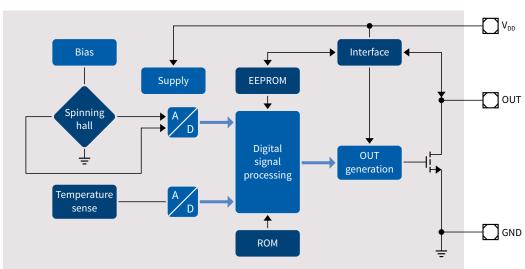


Proximity detection

# Linear hall sensors

Highly accurate angular and linear position measurement

All products of our linear hall family measure the vertical component of a magnetic field. The output signal is directly proportional to the sensed magnetic field. Building on these principles, our TLE499x family of linear hall ICs has been designed specifically to meet the requirements of highly accurate angular and linear position measurement. They are also suited to current measurement applications.


#### **Key features**

- Single supply voltage 4.5 V-5.5 V
- > Temperature range -40°C ... +150°C
- Linear ratiometric output between -200 mT and +200 mT within three ranges
- > Sensitivity offset and clamping programmable
- > Digital temperature and stress compensation
- High-voltage capability and reverse polarity protection
- Low drift of output signal over temperature and lifetime
- 20-bit digital signal processing
- Analog and digital interfaces
- > Packages PG-SSO-3-10, PG-SSO-4-1

# **Key benefits**

- > Highly accurate contactless position sensing
- In-system calibration possible
- > Flexible system implementation

# **Block diagram TLE4998**



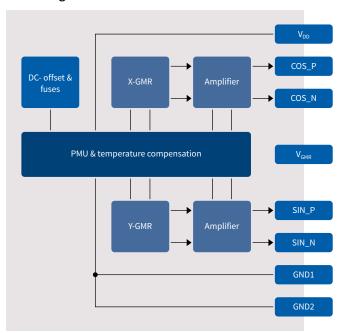
# iGMR angle sensors

# Compact designs in small outline packages

Our angle sensor family is based on integrated Giant Magneto Resistance (iGMR) technology. These sensors detect the orientation of an applied magnetic field by measuring sine and cosine angle components with monolithically integrated magneto-resistive elements. This allows them to easily determine the absolute orientation of the magnetic field between 0° and 360°. Data processing and communication interfaces are integrated on the same silicon chip as the sensing elements, allowing a compact design using small outline packages. Our angle sensor family offers a broad variety of communication interfaces, as well as different levels of data processing and self-test capabilities. Ideal for functional safety-critical applications, our TLE5309D combines a TLE5009 iGMR with a TLE5109 iAMR chip, whereas the TLE5012BD combines two TLE5012B iGMR in one fully integrated dual-sensor package. Target applications of our iGMR sensors include contactless angle measurement, rotational position measurement and BLDC motor commutation.

#### **Features**

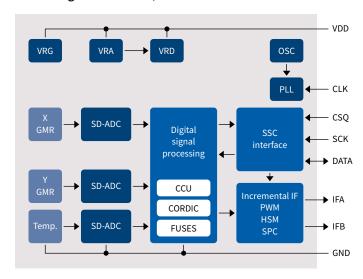
- Integrated GMR (iGMR) technology
- > 0°-360° angle measurement with sine and cosine bridge
- Supply voltage 3.3 V or 5.0 V
- > On-chip temperature compensation of amplitude and offset
- > Temperature range -40°C ... +150°C
- > PG-DSO-8 package
- New in dual sensor package PG-TDOS16


# **Product portfolio**

| Sales number    | Description                                                       | Interface                             |
|-----------------|-------------------------------------------------------------------|---------------------------------------|
| TLE5009 E1000   | V <sub>DD</sub> : 3.3 V; static offset compensation               | Analog                                |
| TLE5009 E1010   | V <sub>DD</sub> : 3.3 V; TCO <sup>1)</sup>                        | Analog                                |
| TLE5009 E2000   | V <sub>DD</sub> : 5.0 V; static offset compensation               | Analog                                |
| TLE5009 E2010   | V <sub>DD</sub> : 5.0 V; TCO <sup>1)</sup>                        | Analog                                |
| TLE5012B E1000  | V <sub>DD</sub> : 3.3 V and 5.0 V                                 | SPI <sup>2)</sup> , IIF <sup>3)</sup> |
| TLE5012B E5000  | V <sub>DD</sub> : 3.3 V and 5.0 V                                 | SPI <sup>2)</sup> , PWM <sup>4)</sup> |
| TLE5012BD E1200 | V <sub>DD</sub> : 3.3 V and 5.0 V DualDie                         | SPI <sup>2)</sup> , IIF <sup>3)</sup> |
| TLE5309D E1211  | V <sub>DD</sub> : 3.3 V (AMR and GMR), TCO <sup>1</sup> , DualDie | Analog                                |
| TLE5309D E2211  | V <sub>DD</sub> : 5.0 V (AMR and GMR), TCO <sup>1</sup> , DualDie | Analog                                |
| TLE5309D E5201  | V <sub>DD</sub> : 5.0 V (AMR) and 3.3 V (GMR), DualDie            | Analog                                |
| TLI5012B E1000  | V <sub>DD</sub> : 3.3 V and 5.0 V                                 | SPI <sup>2)</sup> , IIF <sup>3)</sup> |

# **Benefits TLE5009**

- The analog sensor output signals can be directly connected to the analog inputs of a microcontroller
- The output signals are offset- and temperaturecompensated
- Output signals can be read as single-ended or differential voltage
- Signal amplitudes are independent from supply voltage variations


# **Block diagram TLE5009**



# Benefits TLI5012B/TLE5012B

- Different digital interfaces available (SPI, PWM, IIF)
- Integrated angle calculation based on sine and cosine values
- > Increased accuracy with auto-calibration functionality
- Prediction of output signal to compensate latency
- > High-speed angle update rate up to 23.4 kHz

# Block diagram TLI5012B/TLE5012B



# 3D magnetic sensor

TLV493D-A1B6 – low power three access linear hall sensor

The 3D magnetic sensor TLV493D-A1B6 offers accurate three dimensional sensing with extremely low power consumption. Within its small 6pin package the sensor provides direct measurement of the x, y and z magnetic field components, making it ideally suited for the measurement of 3D movement, linear travel and 360° rotation.

By combining 3-axis measurement in a small package, with low power consumption, the TLV493D-A1B6 provides environmental robustness and contactless position sensing durability to applications currently using potentiometers or optical solutions. System size can also be reduced, as magnetic threshold stability over temperature provides a more accurate and robust solution for these systems. The sensor provides a standard 2-wire digital I<sup>2</sup>C interface, which enables high speed bi-directional communication between the sensor and microcontroller.

#### **Key applications**

- > E-meters e.g. anti-tampering
- Joystick e.g. finger, thumb and gaming paddles
- > Control elements e.g. white goods, multifunction knob

#### **Key features**

- Integrated temperature sensing
- Low current consumption
  - 0.007 μA in power down mode
  - 10 μA in ultra low power mode
- 2.8 V to 3.5 V operating supply voltage
- Digital output via 2-wire standard I<sup>2</sup>C interface
- > Bx, By and Bz linear field measurement up to ±150 mT
- > 12-bit data resolution for each measurement direction
- > Resolution 98 μT/LSB
- TSOP6 package



**Rotation movement** 





3D movement



Linear movement

| Parameter                                    | Тур. | Unit |
|----------------------------------------------|------|------|
| Usable magnetic linear range – Bx, By and Bz | ±130 | mT   |
| Magnetic offset error                        | ±0.2 | mT   |
| X to Y static channel matching               | ±2   | %    |
| X/Y to Z static channel matching             | ±5   | %    |

# 3D magnetic sensor 2GO

# TLV493D-A1B6 (three dimensional magnetic sensor)

The 3D magnetic sensor 2GO is a new budget-priced evaluation board equipped with a magnetic sensor for three dimensional measurement combined with an ARM® Cortex®-M0 CPU. The 3D magnetic sensor 2GO has a complete set of on-board devices, including an on-board debugger. Build your own application and gadget with the 3D magnetic sensor 2GO.



# Current sensor 2GO

# TLI4970-D050T4 (current sensor with digital interface)

The current sensor 2GO is a new budget-priced evaluation board equipped with a current sensor combined with an ARM® Cortex®-M0 CPU. The current sensor 2GO has a complete set of on-board devices, including an on-board debugger. Build your own application and gadget with the current sensor 2GO.

# Key features sensors kits 2GO

- > XMC1100 (ARM® Cortex®-M0 based)
- > On-board J-Link Lite Debugger (realized with XMC4200 microcontroller) power over USB (Micro USB)
- > ESD and reverse current protection
- > GUI for free download

# Sensors

# DPS310 digital barometric pressure sensor for mobile and wearable devices

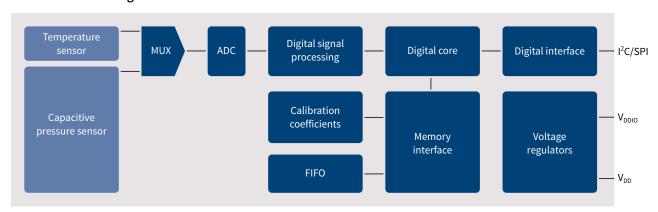
The DPS310 is a miniaturized digital barometric air pressure sensor with a high accuracy level and low current consumption. The DPS310 is both a pressure and temperature sensor. The pressure sensor element is based on a capacitive principle which guarantees high precision during temperature changes. The small package makes the DPS310 ideal for mobile applications and wearable devices.

The DPS310's internal signal processor converts the output from the pressure and temperature sensor elements to 24-bit results. Each pressure sensor has been calibrated individually and contains calibration coefficients. The coefficients are used in the application to convert the measurement results to true pressure and temperature values.

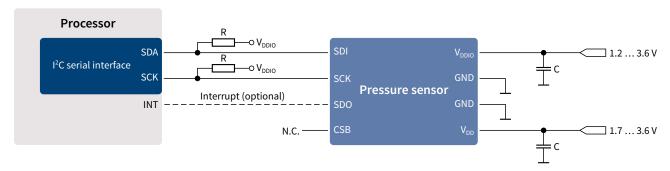
The sensor has a FIFO that can store the latest 32 measurements. Since the host processor can remain in a sleep mode for a longer period between readouts, a FIFO can reduce the system power consumption.

Sensor measurements and calibration coefficients are available via the serial I2C/SPI interface.

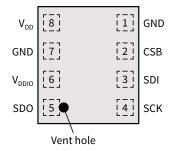
# **Typical applications**


- > Indoor navigation
  - Floor detection e.g. in shopping malls and parking garages
- > Health and sports
  - Accurate elevation gain and vertical speed
- Outdoor navigation
  - GPS start-up time and accuracy improvement
  - Dead-reckoning e.g. in tunnels
- ) Local weather station

# **Key features**


- Operation range
  - Pressure: 300 ... 1200 hPa
  - Temperature: -40 ... 85°C
- > Pressure level precision
  - ±0.005 hPa (or ±5 cm)
    - (high-precision mode)
- > Pressure sensor relative accuracy
  - ±0.06 hPa (or ±0.5 m)
- Temperature accuracy
  - ±0.5°C
- Pressure temperature sensitivity
  - -<0.5 Pa/K
- Measurement time
  - Low power mode: 3 ms

- Average current consumption
  - Low power: 3 μA (1 measurement/sec.)
  - Standby: < 1 μA
- > Supply voltage
  - V<sub>DDIO</sub>: 1.2 ... 3.6 V
  - V<sub>DD</sub>: 1.7 ... 3.6 V
- Operating modes
  - Command (manual)
  - Background (automatic)
  - Standby
- Interface
  - I2C and SPI (both with optional interrupt)
- Package dimensions
  - -8 pin LGA
  - 2.0 x 2.5 x 1.0 mm


# Functional block diagram



# Application circuit example (in I2C configuration)



# Pin configuration (top view)



| Pin | Name              | Function                 |
|-----|-------------------|--------------------------|
| 1   | GND               | Ground                   |
| 2   | CSB               | Chip select              |
| 3   | SDI               | Serial data in/out       |
| 4   | SCK               | Serial clock             |
| 5   | SDO               | Serial data out          |
| 6   | V <sub>DDIO</sub> | Digital interface supply |
| 7   | GND               | Ground                   |
| 8   | V <sub>DD</sub>   | Analog supply            |

# 24GHz radar sensor

Infineon offers a wide portfolio of mmWave radar sensors to address different customer requirements. The BGT24M/L family is the largest and highest integrated 24GHz radar transceiver family currently in the market, saving ~30 percent board space compared to discrete line ups. Infineon provides a total of four 24Ghz industrial radar chips, providing a range of different transmitter and receiver channel configurations, supporting different application requirements.

### **Applications**

- > Building and smart home (IoT)
- Indoor/outdoor lighting
- > Smart street lighting
- > UAV/multicopter
- > Security
- > Robotics









# **Key benefits**

- > Direction, proximity and speed detection
- Hidden mounting capability
- Maintains operation through harsh weather conditions
- Motion tracking
- Ghost target suppression
- Target positioning
- Adaptable to different application requirements

In addition to the Infineon BGT24M/L family of MMIC chips, Infineon provides a continuously expanding range of evaluation and demo boards to support the testing and development of radar in multiple applications. All boards are provided with base level software to support ease-of-use and faster to market integration.

Our 3<sup>rd</sup> offering comes in the format of radar modules. Through utilising our strong network of partners our radar offering extends to a portfolio of easy to integrate modules containing the Infineon 24Ghz MMIC inside.

# Infineon's radar offerings

Infineon MMIC Evaluation and demo boards Radar modules

BGT24M/L family Supporting testing and development Turnkey modules and design support

# Infineon BGT24M/L family of MMIC chips

The Infineon range of 24GHz industrial radar chips provide 4 configurations of transmit and receiver channels ensuring there is a chip to support your specific application. Whether one transmit and one receive channel is enough for applications such as basic motion detection in security, through to more complex speed detection requiring 2 receiver channels, our range supports your needs.

# **Features**

# 24GHz ISM band operation for motion, speed, direction movement and distance measurements

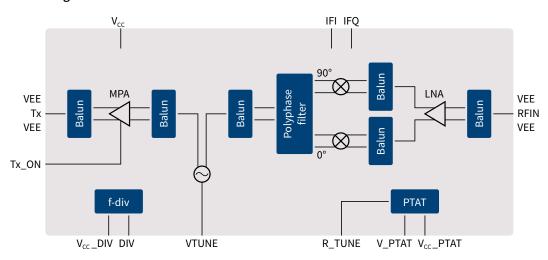
> 4 MMIC chips available

# S.5.5 TO

# Benefits

- Long range distance detection of moving objects up to 30 m
- Wide range speed detection up to more than ±100 km/h

| BGT24MTR11                                                                                                                                                                | BGT24MR2                                                                                                      | BGT24MTR12                                                                                                                                                 | BGT24LTR11                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>&gt; Transceiver 1Tx+1Rx/ IQ differential</li> <li>&gt; RF<sub>in</sub> 24.0-26.0 GHz</li> <li>&gt; 500 mW @3.3 V</li> <li>&gt; 4.5 x 5.5 mm -VQFN-32</li> </ul> | > Twin receiver 2Rx/ IQ differential > RF <sub>in</sub> 24.0-26.0 GHz > 300 mW @3.3 V > 4.5 x 5.5 mm -VQFN-32 | > Transceiver 1Tx+2Rx / IQ differential > RF <sub>in</sub> 24.0-26.0 GHz > 700 mW @3.3 V > 4.5 x 5.5 mm -VQFN-32 > VCO integrated, SPI > Power/temp sensor | > Transceiver (1Tx+1Rx) > Single- ended > BITE Tested > RF <sub>in</sub> 24.0 - 24.25 GHz > 150 mW @3.3 V > 2.4 x 2.4 mm -TSNP-16 |


The following features and block diagram are for the BGT24LTR11N16.

For similar level of information on the other MMIC listed above, please visit: www.infineon.com/24GHz

- > 24GHz transceiver MMIC
- > Fully integrated low phase noise V<sub>co</sub>
- Built in temperature compensation circuit for VCO stabilization
- > Low power consumption

- Fully ESD protected device
- > Single ended RF and IF terminals
- > 200 GHz bipolar SiGe:C technology b7hf200
- > Single supply voltage 3.3 V

# **Block diagram**

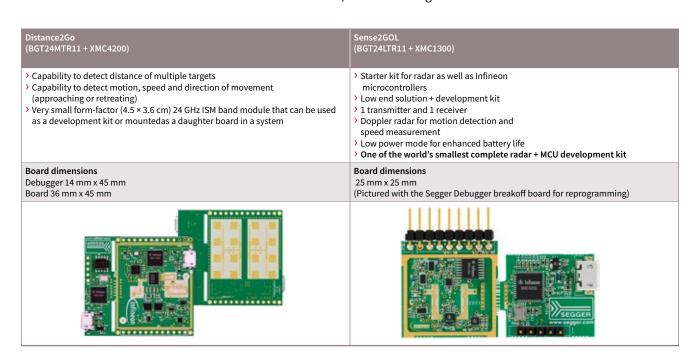


www.infineon.com/24GHz

# 24GHz evaluation and demo boards

Our range of 24GHz evaluation and demo boards continues to expand to support the needs of our customers and the increasing number of innovative ways radar is being incorporated into new applications.

# Features


- Four system boards available
- › All include 24GHz radar and XMC™ microcontroller
- Kit contains user manual, GUI, MATLAB compiler and Gerber files
- Requires software

# + Software

Demokit with SW, reference design

# Benefits


- Capability to detect motion, speed and direction of movement (approaching or retreating) distance and angle of arrival based on hardware
- FW/SW available for each radar mode



The following features are representative of the demo board Distance2Go.

For similar level of information on the other boards available, listed above, please visit: www.infineon.com/24GHz

# New - Distance2Go development kit



### Kit contents

- User's manual
- > SW GUI to operate kit
- > FMCW FW and SW<sup>1)</sup>
- Doppler FW and SW<sup>1)</sup>
- Schematic and bill-of-materials of module

### Features

- BGT24MTR11 24 GHz highly integrated RF MMIC
- XMC4200 ARM® Cortex®-M4 –32-bit industrial microcontroller
- Debug over cortex 10 pin debug connector
- Integrated multiple element patch antennas

# www.infineon.com/24GHz

# 24GHz modules

Partnering with the leading radar solution providers enables Infineon to connect our customers looking for turnkey solutions and design support for a complete range of applications.

# Features

 Complete module, including radar MMIC, antenna options, MCU signal processing options, and SW options (Doppler, FSK and FMCW versions available)

# Partner modules using Infineon chips



Module (RF module; RF module + MCU including SW)

# Benefits

- Ease-of-design
- Turn-key solution for customers with limited radar/RF/SW know-how

By integrating the Infineon 24GHz MMIC chip into their own easy-to-use, and simple to integrate modules we have reduced the complexity and time to market for a range of applications from home automation, multicopter, robotics and street lighting.



# New application or simple PIR replacement? Radar has it covered.

Radar used in motion detection applications increases accuracy when compared to passive infrared (PIR) technology allowing a more precise measurement of object detection and providing new capabilities such as the detection of speed and direction of moving objects. Radar is also superior to camera based systems by allowing detection of the objects while keeping identities anonymous.

Visit the link below to view our network of partners who provide modules and design support for all 24GHz industrial applications: www.infineon.com/24GHzpartners

www.infineon.com/24GHz



# Infineon support for sensors

Useful links and helpful information

# Further information, datasheets and documents

www.infineon.com/magnetic-sensors www.infineon.com/current-sensor www.infineon.com/hall-switches www.infineon.com/angle-sensors www.infineon.com/3dmagnetic www.infineon.com/sensors www.infineon.com/pressuresensor www.infineon.com/24GHz

# **Evaluationboards and simulation models**

www.infineon.com/sensors2go

# Videos & eLearnings

www.infineon.com/sensor-mediacenter www.infineon.com/sensor-eLearnings













# Packages

# Surface mount device technology

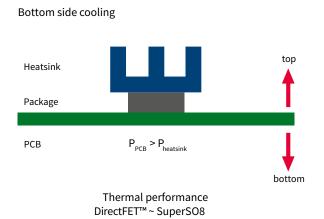
| 0              | PAK (TO-252-2)        | DPAK (TO-252)           | Reverse DPAK (Rev. TO-252) | DPAK 5pin (TO-252)   | D <sup>2</sup> PAK (TO-263) | D <sup>2</sup> PAK (TO-263-2)         |
|----------------|-----------------------|-------------------------|----------------------------|----------------------|-----------------------------|---------------------------------------|
| 2              | 9.9 x 6.5 x 2.3       | 3 9.9 x 6.5 x 2.3       | 3 9.7 x 6.6 x 2.34         | 5 9.9 x 6.5 x 2.3    | 3 15.0 x 10.0 x 4.4         | 2 15.0 x 10.0 x 4.4                   |
|                |                       |                         | <b>4</b>                   |                      |                             | <b>(1)</b>                            |
| D <sup>2</sup> | PAK 7pin (TO-263)     | TO-Leadless (TOLL)      | SC59                       | SOT-23               | SOT-89                      | SOT-223                               |
| 7              | 15.0 x 10.0 x 4.4     | 8 11.68 x 9.9 x 2.3     | 3 3.0 x 2.8 x 1.1          | 3 2.9 x 2.4 x 1.0    | 3 4.5 x 4.0 x 1.5           | 4 6.5 x 7.0 x 1.6                     |
|                | 0                     |                         |                            | -                    | 4                           | 9                                     |
|                | SOT-323               | SOT-363                 | TSOP-6                     | PQFN 2x2             | PQFN 2x2 dual               | PQFN 3.3x3.3                          |
| 3              | 2.0 x 2.1 x 0.9       | 6 2.0 x 2.1 x 0.9       | 6 2.9 x 2.5 x 1.1          | 6 2.0 x 2.0 x 0.9    | 6 2.0 x 2.0 x 0.9           | 8 3.3 x 3.3 x 1.0                     |
|                |                       |                         | 0                          |                      |                             |                                       |
|                | SuperSO8              | SuperSO8 dual           | SuperSO8 fused leads       | TDSON-10-2           | TDSON-10-7                  | TISON-8                               |
| 8              | 5.15 x 6.15 x 1.0     | 8 5.15 x 6.15 x 1.0     | 8 5.15 x 6.15 x 1.0        | 10 3.0 x 3.0 x 0.9   | 10 3.0 x 3.0 x 0.9          | 8 7.0 x 7.0 x 1.0                     |
|                | 0                     |                         |                            |                      |                             | (i) III                               |
| TISOI          | N-8 (power stage 5x6) | TISON-8-4 (Power Block) | TSON-8-1                   | TSON-8 ThinPAK 5x6   | TSON-10                     | VSON-4 ThinPAK 8x8                    |
| 8              | 5.0 x 6.0 x 1.0       | 8 5.0 x 6.0 x 1.0       | 8 3.0 x 3.0 x 1.0          | 8 5.0 x 5.0 x 1.0    | 10 3.3 x 3.3 x 1.0          | 4 8.0 x 8.0 x 1.0                     |
|                |                       |                         |                            |                      |                             |                                       |
|                | VDSON-8               | WSON-10 (DrMOS 4x4)     | DirectFET™ Small Can       | DirectFET™Medium Can | DirectFET™ Large Can        | Package (JEITA-code)                  |
| 8              | 4.0 x 4.0 x 0.9       | 10 4.0 x 4.0 x 0.8      | V 4.8 x 3.8 x 0.65         | V 6.3 x 4.9 x 0.65   | V 9.1 x 6.98 x 0.71         | X LxWxH                               |
|                |                       | GI D                    |                            | (a) (b)              | E D                         | pin-count V = Variable number of pins |
|                |                       |                         |                            |                      |                             | All dimensions in mm                  |

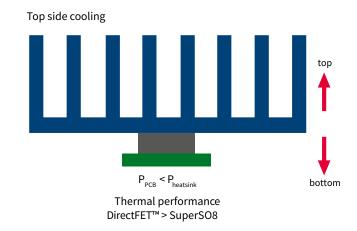


|     | IQFN-30               | IQFN-31 (DrMOS 5x5)   | IQFN-36               | IQFN-39                | IQFN-40                                                            | SO-8/SO-8 dual                           |
|-----|-----------------------|-----------------------|-----------------------|------------------------|--------------------------------------------------------------------|------------------------------------------|
| 30  | 4.0 x 4.0 x 1.0       | 31 5.0 x 5.0 x 0.8    | 36 7.5 x 6.0 x 0.9    | 39 5.0 x 6.0 x 0.9     | 40 6.0 x 6.0 x 0.8                                                 | 8 5.0 x 6.0 x 1.75                       |
|     | (1)                   |                       | (i)                   | 0                      | (i)                                                                | (d)                                      |
|     | SO-16/12              | SO-14                 | SO-16                 | SO-18                  | DSO-12                                                             | DSO-24                                   |
| 12  | 10.0 x 6.0 x 1.75     | 14 8.75 x 6.0 x 1.75  | 16 10.0 x 6.0 x 1.75  | 18 12.8 x 10.3 x 2.65  | 12 10.3 x 7.8 x 2.6 (max)                                          | 24 10.5 x 15.6 x 2.65 (max)              |
|     | O O                   | 0                     | 0                     |                        | G ,                                                                | C. C |
|     | SSOP-24               | TDSO-16               | SO-19                 | SO-20                  | DSO-28                                                             | SO-36                                    |
| 24  | 6 x 8.65 x 1.75 (max) | 16 5.0 x 6.0 x 1.2    | 19 12.8 x 10.3 x 2.65 | 20 12.8 x 10.3 x 2.65  | 28 18.1 x 10.3 x 2.65                                              | 36 15.9 x 11.0 x 3.5                     |
|     | G G                   | G)                    |                       | (i)                    | (i)                                                                |                                          |
|     | TSSOP-28              | TSSOP-48              | LFBGA-516-5           | LFBGA-292-6            | BGA-416-26                                                         | LQFP-176-22                              |
| 28  | 9.7 x 6.4 x 1.2       | 48 12.5 x 6.1 x 1.1   | 516 25.3 x 25.3 x 2.8 | 292 17.3 x 17.3 x 2.35 | 416 27.3 x 27.3 x 3.2                                              | 176 26.7 x 26.7 x 2.1                    |
|     | (i)                   |                       |                       | GD                     | (i)                                                                |                                          |
|     | LQFP-144-22           | TQFP-144-27           | TQFP-100-23           | TQFP-80-7              | Package (JEITA-code)                                               |                                          |
| 144 | 22.4 x 22.4 x 2.2     | 144 18.7 x 18.7 x 1.6 | 100 14.5 x 14.5 x 1.5 | 80 12.6 x 12.6 x 1.5   | X LxWxH                                                            |                                          |
|     | DA                    |                       |                       |                        | <br>pin-count<br>V=Variable number of pins<br>All dimensions in mm |                                          |

# Through hole device technology

| IPAK (TO-251) |                                 | IPAK SL (TO-251 SL) |                                            | I <sup>2</sup> PAK (TO-262) |                         | TO-220 real 2pin |                    | TO-220 2pin |                   | TO-220 3pin |                    |
|---------------|---------------------------------|---------------------|--------------------------------------------|-----------------------------|-------------------------|------------------|--------------------|-------------|-------------------|-------------|--------------------|
| 3             | 15.5 x 6.5 x 2.3                | 3                   | 10.7 x 6.5 x 2.3                           | 3                           | 25.1 x 10 x 4.4         | 2                | 29.15 x 10.0 x 4.4 | 2           | 29.1 x 9.9 x 4.4  | 3           | 29.15 x 10.0 x 4.4 |
| 0             |                                 | 0                   |                                            | <b>G</b>                    |                         | 6                |                    | 0           |                   | G           |                    |
|               | TO-220 FullPAK                  | TO-2                | 20 FullPAK Narrow Lead                     | TO-22                       | 0 FullPAK Wide Creepage |                  | TO-220-6-46        |             | TO-220-6-47       |             | TO-247             |
| 3             | 29.6 x 10.5 x 4.7               | 3                   | 29.6 x 10.5 x 4.7                          | 3                           | 28.85 x 11 x 4.7        | 6                | 21.7 x 9.9 x 4.4   | 6           | 26.1 x 9.9 x 4.4  | 3           | 40.15 x 15.9 x 5.0 |
|               | 6                               |                     |                                            |                             |                         |                  | G                  |             | 0                 |             | (9)                |
|               | TO-247 4pin                     |                     | DIP-7                                      |                             | DIP-8                   |                  | DIP-14             |             | DIP-20            |             | Super220           |
| 4             | 40.15 x 15.9 x 5.0              | 7                   | 9.52 x 8.9 x 4.37                          | 8                           | 9.52 x 8.9 x 4.37       | 14               | 19.5 x 8.9 x 4.37  | 20          | 24.6 x 9.9 x 4.2  | 3           | 28.25 x 10.5 x 4.5 |
|               | 6                               |                     |                                            |                             |                         |                  | MANA               | -           | GI PATE           | •           | 0                  |
| Super247      |                                 | SSO-3-9             |                                            | SSO-3-10                    | SSO-4-1                 |                  | T092S-3-1          |             | T092S-3-2         |             |                    |
| 3             | 34.6 x 15.6 x 5                 | 3                   | A: 3.71 x 5.34 x 1<br>B: 2.68 x 5.34 x 1.2 | 3                           | 4.06 x 1.5 x 4.05       | 4                | 5.34 x 1.0 x 3.71  | 3           | 4.0 x 1.52 x 3.15 | 3           | 4.0 x 1.52 x 3.15  |
| •             | 9                               |                     | A<br>B                                     |                             | 1                       |                  | 1                  |             | 7                 |             | 1                  |
| Pac           | kage (JEITA-code)               |                     |                                            |                             |                         |                  |                    |             |                   | '           |                    |
| Х             | LxWxH                           |                     |                                            |                             |                         |                  |                    |             |                   |             |                    |
|               | count<br>ariable number of pins |                     |                                            |                             |                         |                  |                    |             |                   |             |                    |


All products are RoHS Compliant.


All dimensions in mm

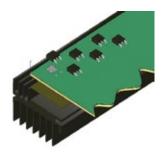
# Top and bottom side cooling of SMD devices

For LV MOSFETs different SMD packages such as SuperSO8 and DirectFET™ are available. If the cooling system is designed for main heatflow to the PCB both packages will show similar thermal performance.

If the main heat flow is to the top side the DirectFET<sup>TM</sup> is the better choice since the thermal resistance to the top side is lower ( $R_{th top DirectFET^{TM}} \sim 1 \text{ K/W}$ ,  $R_{th top SuperSO8} \sim 20 \text{ K/W}$ ).






Example: high performance server (PCB: 8 layer, 70 µm)



Example: motherboard (PCB 4 layer, 35 μm) with high performance heatsink



New IGBT technology RCD allows highest power density with small SMD packages



The new IGBT RCD technology in combination with an efficient cooling system allows to use small SMD packages which enable to build compact systems with increased power density. In order to improve the heat dissipation, thermal vias are integrated in the PCB under the device case which results in a low thermal resistance to the opposite side of the PCB. A heatsink complements the cooling system. Isolation to the heatsink is realized with a thermal foil. With this cooling system power dissipation up to 7 to 10 W/IGBT is achievable which corresponds to ~ 2 kW application systems.

www.infineon.com/packages

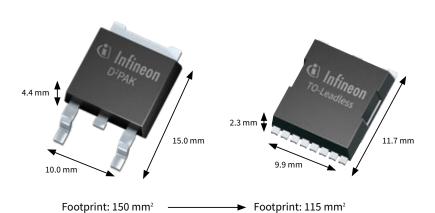


# **Applications**

- > Forklift
- > Light electric vehicles
- > Point-of-load (POL)
- > Telecom
- > eFuse

# OptiMOS™ in TO-Leadless

# A package optimized for high current applications

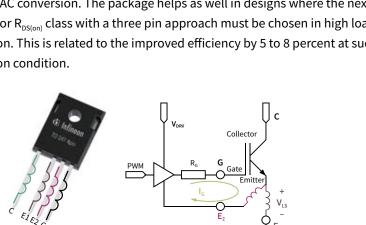

TO-Leadless has been designed for high currents up to 300 A. In addition, latest OptiMOS™ Silicon technology in combination with reduced package resistance achieves lowest R<sub>DS(on)</sub>. This enables a reduction in the number of parallel MOSFETs in a forklift application and increases power density.

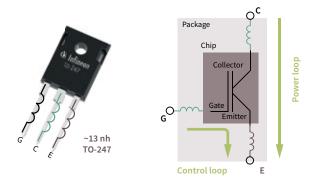
Further the 60 percent smaller package size enables a very compact design. Compared to D<sup>2</sup>PAK 7pin, TO-Leadless shows a substantial reduction in footprint of 30 percent. The 50 percent reduced height offers a significant advantage in applications where compact designs are key, such as rack or blade servers.

Moreover low package parasitic inductances result in an improved EMI behavior and a 50 percent bigger solder contact area avoids electro migration at high current levels, which results in improved reliability.

### **Features**

- > Industry's lowest R<sub>DS(on)</sub>
- > Highest current capability up to 300 A
- Very low package parasitics and inductances
- > Less paralleling and cooling required
- Highest system reliability
- System cost reduction
- > Enabling very compact design





www.infineon.com/toll

# TO-247 4pin full load efficiency for free

Package for high voltage switches with increased creepage and clearance Infineon's TO-247 4pin package enables significant efficiency improvement in hard switched topologies and at the same time allows a better control. The fourth pin acts as Kelvin source. The main current of the switch is placed outside of the gate loop and the feedback is eliminated. This leads especially at high currents to less switching losses. Secondly, the EMI will be reduced due to cleaner waveforms.

The benefit will be seen in various hard switching topologies used in AC-DC and DC-AC conversion. The package helps as well in designs where the next current or  $R_{\scriptscriptstyle DS(on)}$  class with a three pin approach must be chosen in high load operation. This is related to the improved efficiency by 5 to 8 percent at such operation condition.







### **Benefits**

- > Full load efficiency
- ) Improved EMI
- > Better gate control
- Increased creepage

# **Evaluation board available:**



EVAL-IGBT-650 V-TO247-4



# **Applications**

- ) UPS
- Solar
- > Welding
- > Drives
- > Aircon/HVAC

# TO-247PLUS higher power in the standard footprint

Infineon introduces the new package TO-247PLUS, responding to the market requirement to accommodate ever increasing amounts of silicon in smaller, space saving packages.

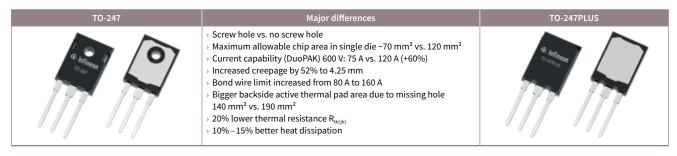
# Higher current capability - improved thermal behavior

Infineon's new TO-247PLUS has the same outer dimensions as the industry standard TO-247, but due to the absence of the screw hole, allows up to 120 A in 600 V. Also the total backside active thermal pad area has been increased to improve heat dissipation capabilities of the package.

# Improved thermal management and creepage distances

Better heat dissipation through lower  $R_{\rm th}$  improves thermal management, that means less heat sink and lower cost for the cooling infrastructure.

TO-247PLUS package body has special "plastic trousers", that allow to increase the creepage distance to 4.25 mm – 2 mm bigger compared to the standard TO-247. Special cut-outs of the mold compound at the upper corners, increase creepage path at single clip mounting.


A new bond wiring concept realized in TO-247PLUS allows increase of the DC collector current from 80 A to 160 A (at  $T_c$  = 25°C) contributing to the better reliability and longer lifetime of the IGBT.

# **Features**

- > Highest current rating co-pack 600 V in 100 A and 120 A
- > 35% bigger active thermal pad area for up to 20% lower thermal resistance  $R_{\mbox{\tiny th/(ih)}}$
- > Extended creepage distance of 4.25 mm 2 mm bigger than TO-247

### **Benefits**

- Higher system power density I<sub>c</sub> increase keeping the same system thermal performance
- Lower thermal resistance R<sub>th(jh)</sub> and improved by ~15% heat dissipation capability of TO-247PLUS versus TO-247
- > Higher reliability, extended lifetime of the device



www.infineon.com/to-247plus



# Infineon support for packages

Useful links and helpful information

# Further information, datasheets and documents

www.infineon.com/packages www.infineon.com/toll www.infineon.com/to-247-4

**Videos** 

www.infineon.com/mediacenter

www.infineon.com/to-247plus www.infineon.com/coolmos-latest-packages www.infineon.com/optimos-latest-packages











# Infineon's powerful support

# Useful links and helpful information

# **General support**

www.infineon.com/support www.infineon.com/wheretobuy www.infineon.com/quality www.infineon.com/packages www.infineon.com/green www.infineon.com/opn

# Request reliability (FIT) data

http://infineon-community.com/FIT\_1

# Tools and desks

www.infineon.com/solutionfinder www.infineon.com/lightdesk

# Register for the Newsletter4Engineers

http://infineon-community.com/Newsletter4Engineers





# From product thinking to system understanding

Infineon enables efficient generation, transmission and conversion of electrical energy



We make life easier, safer and greener – with technology that achieves more, consumes less and is accessible to everyone.



# Where to buy

Infine on distribution partners and sales offices: www.infineon.com/wheretobuy

# Service hotline

Infineon offers its toll-free 0800/4001 service hotline as one central number, available 24/7 in English, Mandarin and German.

- > Germany ...... 0800 951 951 951 (German/English)
- > China, mainland ...... 4001 200 951 (Mandarin/English)
- > India ...... 000 800 4402 951 (English)
- > USA ...... 1-866 951 9519 (English/German)
- > Other countries ....... 00\* 800 951 951 (English/German)
- Direct access ......+49 89 234-0 (interconnection fee, German/English)

<sup>\*</sup> Please note: Some countries may require you to dial a code other than "00" to access this international number. Please visit www.infineon.com/service for your country!



Mobile product catalog

Mobile app for iOS and Android.

# www.infineon.com

Published by Infineon Technologies Austria AG 9500 Villach, Austria

© 2017 Infineon Technologies AG. All Rights Reserved.

### Please note

THIS DOCUMENT IS FOR INFORMATION PURPOSES ONLY AND ANY INFORMATION GIVEN HEREIN SHALL IN NO EVENT BE REGARDED AS A WARRANTY, GUARANTEE OR DESCRIPTION OF ANY FUNCTIONALITY, CONDITIONS AND/OR QUALITY OF OUR PRODUCTS OR ANY SUITABILITY FOR A PARTICULAR PURPOSE. WITH REGARD TO THE TECHNICAL SPECIFICATIONS OF OUR PRODUCTS, WE KINDLY ASK YOU TO REFER TO THE RELEVANT PRODUCT DATA SHEETS PROVIDED BY US. OUR CUSTOMERS AND THEIR TECHNICAL DEPARTMENTS ARE REQUIRED TO EVALUATE THE SUITABILITY OF OUR PRODUCTS FOR THE INTENDED APPLICATION.

WE RESERVE THE RIGHT TO CHANGE THIS DOCUMENT AND/OR THE INFORMATION GIVEN HEREIN AT ANY TIME.

### Additional information

For further information on technologies, our products, the application of our products, delivery terms and conditions and/or prices, please contact your nearest Infineon Technologies office (www.infineon.com).

# Warnings

Due to technical requirements, our products may contain dangerous substances. For information on the types in question, please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by us in a written document signed by authorized representatives of Infineon Technologies, our products may not be used in any life-endangering applications, including but not limited to medical, nuclear, military, life-critical or any other applications where a failure of the product or any consequences of the use thereof can result in personal injury.

Order number: B111-I0422-V2-7600-EU-EC-P

Date: 11/2017