

Voice Switched Speakerphone Circuit BL34118

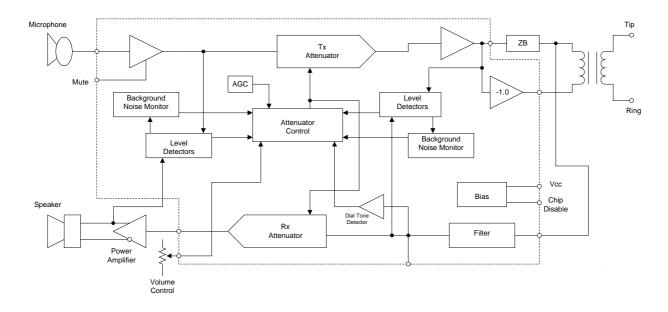
The BL34118 Voice Switched Speakerphone Circuit incorporates the necessary amplifiers, attenuators, level detectors, and control algorithm to form the heart of a high quality hands-free speakerphone system. Included are a microphone amplifier with adjustable gain and MUTE control, Transmit and Receive attenuators which operate in a complementary manner, level detectors at both input and output of both attenuators, and background noise monitors for both the transmit and receive channels. A Dial Tone Detector prevents the dial tone from being attenuated by the Receive background noise monitor circuit. Also included are two line driver amplifiers, which can be used to form a hybrid network in conjunction with an external coupling transformer. A high-pass filter can be used to filter out 60Hz noise in the receive channel, or for other functions. A chip Disable pin permits powering down the entire circuit to conserve power on long loops where loop current is at a minimum.

The BL34118 may be operated from a power supply, or it can be powered from the telephone line, requiring typically 5.0 mA. The BL34118 can be interfaced directly to Tip and Ring (through a coupling transformer) for stand-alone operation, or it can be used in conjunction with a handset speech network and/or other features of a feature phone.

- Improved Attenuator Gain Range: 52 dB Between Transmit and Receive
- Low Voltage Operation for Line-Powered Applications (3.0 6.5V)
- 4-Point Signal Sensing for Improved Sensitivity
- Background Noise Monitors for Both Transmit and Receive Paths
- Microphone Amplifier Gain Set by External Resistors Mute Function Included
- Chip Disable for Active/Standby Operation
- On Board Filter Pinned-Out for User Defined Function
- Dial Tone Detector to Inhibit Receive Idle Mode During Dial Tone Presence
- Standard 28-Pin Plastic DIP Package and SOIC Package Available
- Compatible with BL34119 Speaker Amplifier

PIN CONNECTIONS(Top View)

	I		\neg r		1
FO		1	\bigcirc	28	GND
FI		2		27	CPR
CD		3		26	RLI1
Vcc		4		25	RLO1
HTO+		5		24	TLO1
HTO-		6		23	TLI1
HTI		7		22	RXO
TXO		8		21	_ RXI
TXI		9		20	RLI2
MCO		10		19	RLO2
MCI		11		18	TLO2
MUT		12		17	TLI2
VLC		13		16	СРТ
СТ		14		15	_ ∨B



PIN DESCRPTION

Pin	Name	Description
1	FO	Filter output. Output impedance is less than 50 ohms.
2	FI	Filter input. Input impedance is greater than 1.0 Mohm.
3	CD	Chip Disable. A logic low (<0.8V) sets normal operation. A logic high (>2.0V) disables the IC to
		conserve power. Input impedance is nominally 90 k Ω .
4	VCC	A supply voltage of +2.8 to +6.5 volts is required, at \approx 5.0 mA. As Vcc falls from 3.5 to 2.8 volts, an
		AGC circuit reduces the receive attenuator gain by \approx 25 db (when in the receive mode).
5	HTO+	Output of the second hybrid amplifier. The gain is internally set at -1.0 to provide a differential
		output, in conjunction with HTO-, to the hybrid transformer.
6	HTO-	Output of the first hybrid amplifier. The gain of the amp is set by external resistors.
7	HTI	Input and summing node for the first hybrid amplifier. DC level is \approx VB.
8	ТХО	Output of the transmit attenuator. DC level is approximately VB.
9	TXI	Input to the transmit attenuator. Max. signal level is 350 mVrms. Input impedance is \approx 10 k Ω .
10	MCO	Output of the microphone amplifier. The gain of the amplifier is set by external resistors.
11	MCI	Input and summing node of the microphone amplifier. DC level is \approx VB.
12	MUT	Mute input. A logic low (<0.8V) sets normal operation. A logic high (>2.0V) mutes the microphone
		amplifier without affecting the rest of the circuit. Input impedance is nominally 90 k Ω .
13	VLC	Volume control input. When VLC = VB, the receive attenuator is at maximum gain when in the
		receive mode. When VLC = 0.3VB, the receive gain is down 35 dB. Does not affect the transmit
		mode.
14	СТ	An RC at this pin sets the response time for the circuit to switch modes.
15	VB	An output voltage \approx Vcc/2. This voltage is a system as ground, and biases the volume control. A
		filter cap is required.
16	CPT	An RC at this pin sets the time constant for the transmit background monitor.
17	TLI2	Input to the transmit level detector on the mike/speaker side.
18	TLO2	Output of the transmit level detector on the mike/speaker side, and input to the transmit
		background monitor.
19	RLO2	Output of the receive level detector on the mike/speaker side.
20	RLI2	Input to the receive level detector on the mike/speaker side.
21	RXI	Input to the receive attenuator and dial tone detector. Max input level is 350 mVrms. Input
		impedance is \approx 10 k Ω .
22	RXO	Output of the receive attenuator. DC level is approximately VB.
23	TLI1	Input to the transmit level detector on the line side.
24	TLO1	Output of the transmit level detector on the line side.
25	RLO1	Output of the receive level detector on the line side, and input to the receive background monitor.
26	RLI1	Input to the receive level detector on the line side.
27	CPR	An RC at this pin sets the time constant for the receive background monitor.
28	GND	Ground pin for the entire IC.

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Parameter	Value	Units
Supply Voltage (Pin 4)	-1.0, +7.0	Vdc
Voltage at CD (Pin 3), MUT (Pin 12)	-1.0, Vcc + 1.0	Vdc
Voltage at VLC (Pin 13)	-1.0, Vcc + 0.5	Vdc
Voltage at TXI (Pin 9), RXI (Pin21), FI (Pin 2)	-0.5, Vcc + 0.5	Vdc
Storage Temperature Range	-65 to +150	°C

RECOMMENDED OPERATING LIMITS

Parameter	Min	Тур	Max	Units
Supply Voltage (Pin 4)	3.5	-	6.5	Vdc
CD Input (Pin 3), MUT Input (Pin 12)	0	-	Vcc	Vdc
IVB (Pin 13)	-	-	500	μA
VLC (Pin 13)	0.3xVB	-	VB	Vdc
Attenuator Input Signal Voltage (Pins 9, 21)	0	-	350	mVrms
Microphone Amplifier, Hybrid Amplifier Gain	0	-	40	dB
Load Current @ RXO, TXO (Pins 8, 22)	0	-	± 2.0	mA
@ MCO (Pin 10)	0	-	± 1.0	
@ HTO-, HTO+ (Pins 6, 5)	0	-	± 5.0	
Ambient Operating Temperature Range	-20	-	+60	°C

ELECTRICAL CHARACTERISTICS (TA=+25°C, Vcc=5.0V, CD≤0.8V, unless noted)					
Parameter	Symbol	Min	Тур	Max	Units
Power Supply					
Vcc Supply Current (Vcc=6.5V, CD=0.8V)	lcc	-	5.5	8.0	mA
(Vcc=6.5V,CD= 2.0V)		-	600	800	μA
CD Input Resistance (Vcc=VCD=6.5V)	RCD	50	90	-	kΩ
CD Input Voltage – High	VCDH	2.0	-	Vcc	Vdc
_ Low	VCDL	0	-	0.8	Vdc
VB Output Voltage (Vcc = 3.5V)	VB	-	1.3	-	Vdc
(Vcc = 5.0V)		1.8	2.1	2.4	
VB Output Resistance (IVB = 1.0 mA)	Rovb	-	400	-	Ω
VB Power Supply Rejection Ratio (CVB = 220 uF, f = 1.0kHz)	PSRR	-	54	-	dB
ATTENUATORS (TA = $+25^{\circ}$ C)		•			
Receive Attenuator Gain (f = 1.0 kHz, VLC = VB)					dB
Rx Mode, RXI = 150 mVrms (Vcc = 5.0V)	GRX	+4.0	+6.0	+8.0	
Rx Mode, RXI = 150 mVrms (Vcc = 3.5V)	GRX	+4.0	+6.0	+8.0	
Gain Change – Vcc = 3.5V versus Vcc = 5.0V	Δ GRX1	-0.5	0	+0.5	
AGC Gain Change – Vcc = 2.8V versus Vcc = 5.0V	Δ GRX2	-	-25	-15	
Idle Mode, RXI = 150 mVrms	GRXI	-22	-20	-17	
Range (Rx to Tx mode)	∆GRX3	49	52	54	
Volume Control Range (Rx Mode, 0.3VB < VLC < VB)	VCR	27	35	-	dB
RXO DC Voltage (Rx Mode)	Vrxo	-	VB	-	Vdc
△RXO DC Voltage (Rx to Tx Mode)	ΔVRXO	-	± 10	± 150	mV
RXO High Voltage (lout = - 1.0mA RXI = VB + 1.5V)	VRXOH	3.7	-	-	Vdc
RXO Low Voltage (lout = - 1.0 mA, RXI = VB - 1.0, Output	VRXOL	-	-1.5	-1.0	Vdc
measured with respect to VB)					
RXI Input Resistance (RXI < 350 mVrms)	RRXI	7.0	10	14	kΩ
Transmit Attenuator Gain (f = 1.0 kHz)					dB
Tx Mode, TXI = 150 mVrms	GTX	+4.0	+6.0	+8.0	
Idle Mode, TXI = 150 mVrms	GTXI	-22	-20	-17	
Range (Tx to Rx Mode)	ΔGTXI	49	52	54	
TXO DC Voltage (Tx Mode)	VTXO	-	VB	-	Vdc
△TXO DC Voltage (Tx to Rx Mode)	Δντχο	-	± 30	± 150	mV
TXO High Voltage (lout = -1.0 mA TXI = VB +1.5V)	Vтхон	3.7	-	-	Vdc
TXO Low Voltage (lout = +1.0 mA, TXI = VB - 1.0V, Output	VTXOL	-	-1.5	-1.0	Vdc
measured with respect to VB)					
TXI Input Resistance (TXI < 350 mVrms)	RTXI	7.0	10	14	kΩ
Gain Tracking (GRX + GTX, @ Tx, Idle, Rx)	GTR	-	± 0.1	-	dB

ATTENUATOR CONTROL (TA = +25°C)

CT Voltage (Pin 14 – VB)	VCT				mV
Rx Mode (VLC = VB)		-	+240	-	
Idle Mode		-	0	-	
Tx Mode		-	-240	-	
CT Source Current (switching to Rx mode)	ICTR	-85	-60	-40	μA
CT Sink Current (switching to Tx mode)	ICTT	+40	+60	+85	μA
CT Slow Idle Current	ICTS	-	0	-	μA
CT Fast Idle Internal Resistance	RFI	1.5	2.0	3.6	kΩ
VLC Input Current	IVLC	-	-60	-	nA
Dial Tone Detector Threshold	VDT	10	15	20	mV

MICROPHONE AMPLIFIER (TA = +25°C, VMUT ≤ 0.8V, AVCL = 31 dB unless otherwise noted)

MCOVOS	-50	0	+50	mVdc
AVOLM	70	80	-	dB
GBWM	-	1.0	-	MHz
Vмсон	3.7	-	-	Vdc
VMCOL	-	-	200	mVdc
IBM	-	-40	-	nA
GMT	-55	-	-	dB
	-	-68	-	
RMUT	50	90	-	kΩ
VMUTH	2.0	-	Vcc	Vdc
VMUTL	0	-	0.8	Vdc
THDM	-	0.15	-	%
	AVOLM GBWM VMCOH VMCOL IBM GMT RMUT VMUTH VMUTL	AVOLM 70 GBWM - VMCOH 3.7 VMCOL - IBM - GMT -55 - - RMUT 50 VMUTH 2.0	AVOLM 70 80 GBWM - 1.0 VMCOH 3.7 - VMCOL - - IBM - -40 GMT -55 - - - -68 RMUT 50 90 VMUTH 2.0 -	AVOLM 70 80 - GBWM - 1.0 - VMCOH 3.7 - - VMCOL - 200 IBM - -40 - GMT -55 - - GMT 50 90 - VMUTH 2.0 - Vcc

HYBRID AMPLIFIER (TA = $+25^{\circ}$ C)

HTO- Offset (VHTO VB, Feedback R = 51 k Ω)	HVOS	-20	0	+20	mVdc
HTO- to HTO+ Offset (Feedback R = 51 k Ω)	HBVOS	-30	0	+30	mVdc
Open Loop Gain (HTI to HTO-, f < 100 Hz)	AVOLH	60	80	-	dB
Gain Bandwidth	GBWH	-	1.0	-	MHz
Closed Loop Gain (HTO- to HTO+)	AVCLH	-0.35	0	+0.35	dB
Input Bias Current (@ HTI)	IBH	-	-30	-	nA
HTO- High Voltage (lout = -5.0 mA)	VHT-H	3.7	-	-	Vdc
HTO- Low Voltage (lout = +5.0 mA)	VHT-L	-	-	250	mVdc
HTO+ High Voltage (lout = -5.0 mA)	VHT+H	3.7	-	-	Vdc
HTO+ Low Voltage (lout = +5.0 mA)	VTH+L	-	-	450	mVdc
Distortion (300 Hz < f < 10 kHz, See Figure 1)	THDH	-	0.3	-	%

LEVEL DETECTORS AND BACKGROUND NOISE MONITORS (TA = +25°C)

	``	,			
Transmit-Receive Switching Threshold	ITH	0.8	1.0	1.2	
(Ratio of Current at RLI1 + RLI2 to 20 uA at TLI1 + TLI2 to					
switch from Tx to Rx)					
Source Current at RLO1, RLO2, TLO1, TLO2	ILSO	-	-2.0	-	mA
Sink Current at RLO1, RLO2, TLO1, TLO2	ILSK	-	4.0	-	μA
CPR, CPT Output Resistance (lout = 1.5 mA)	RCP	-	35	-	Ω
CPR, CPT Leakage Current	ICPLK	-	-0.2	-	μA

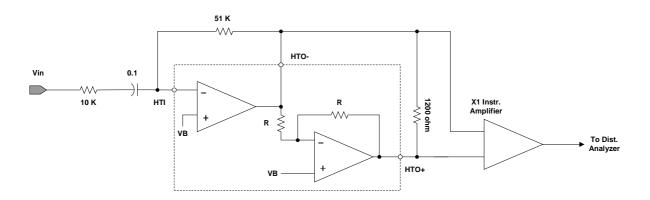
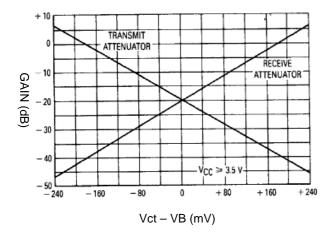
FILTER (TA = $+25^{\circ}$ C)

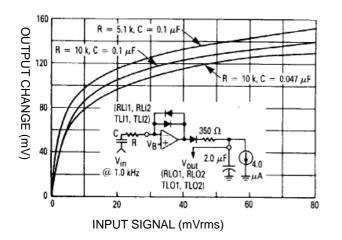
Voltage Offset at FO (VFO – VB, 220 k Ω from VB to FI)	FOVOS	-200	-90	0	mV
FO Sink Current	IFO	150	260	400	μA
FI Bias Current	lFI	-	-50	-	nA

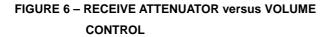
SYSTEM DISTORTION (TA = +25°C)

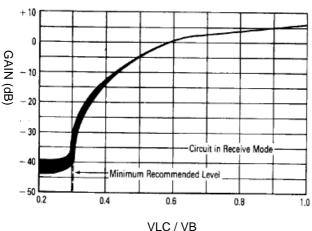
Rx Mode (From FI to RXO, FO connected to RXI)	THDR	-	0.5	3.0	%
Tx Mode (From MCI to HTO-/HTO+, includes Tx attenuator)	THDT	-	0.8	3.0	%

1. All currents into a devices pin are positive, those out of a pin are negative, Algebraic convention rather than magnitude is used to define limits.

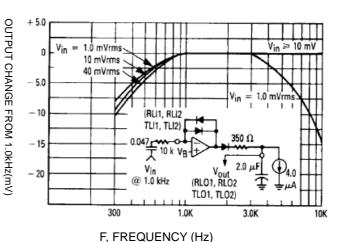



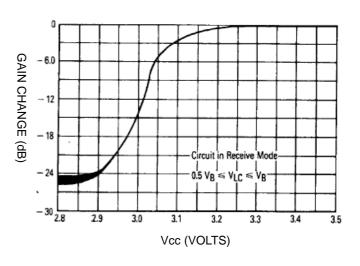

FIGURE 1 – HYBRID AMPLIFIER DISTORTION TEST




FIGURE 2 – ATTENUATOR GAIN versus Vct




http://www.belling.com.cn



DC INPUT CURRENT (uA)

FIGURE 5 – LEVEL DETECTOR AC TRANSFER CHARACTERISTICS versus FREQUENCY

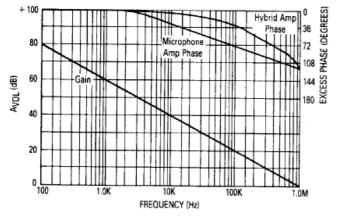


FIGURE 8 – MICROPHONE AMPLIFIER AND 1st HYBRID

AMPLIFIER OPEN LOOP GAIN AND PHASE

FIGURE 10 – SUPPLY CURRENT versus SUPPLY VOLTAGE

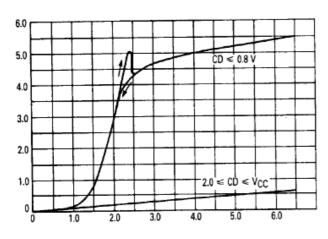


FIGURE 12 – VB POWER SUPPLY REJECTION versus FREQUENCY AND VB CAPACITOR

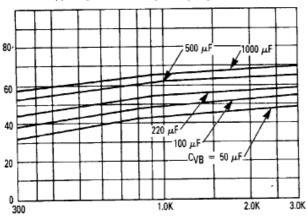
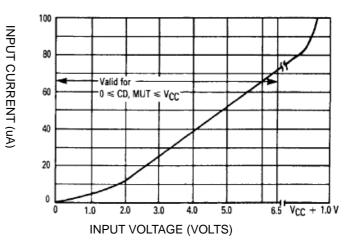
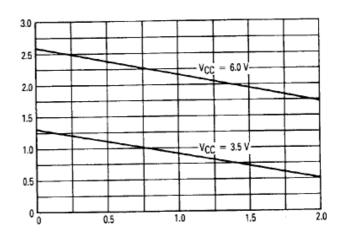




FIGURE 9 – INPUT CHARACTERISTICS @ CD, MUT

FIGURE 11 – VB OUTPUT CHARACTERISTICS

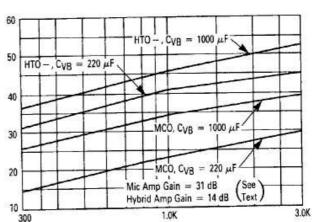
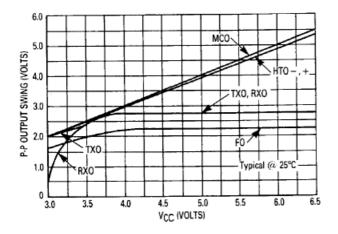



FIGURE 13 – POWER SUPPLY REJECTION OF THE MICROPHONE AND HYBRID AMPLIFIERS

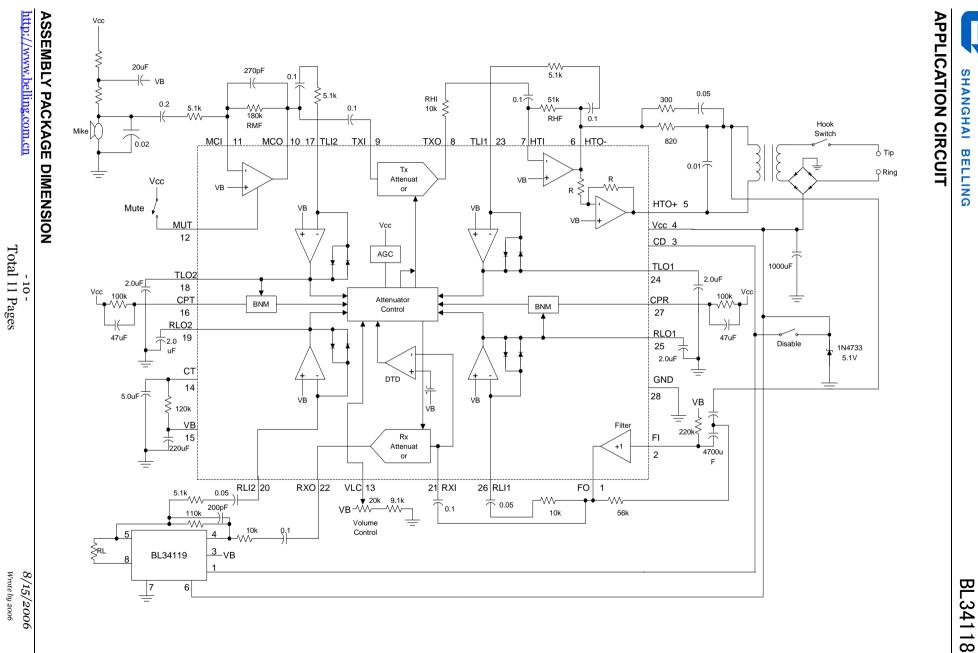


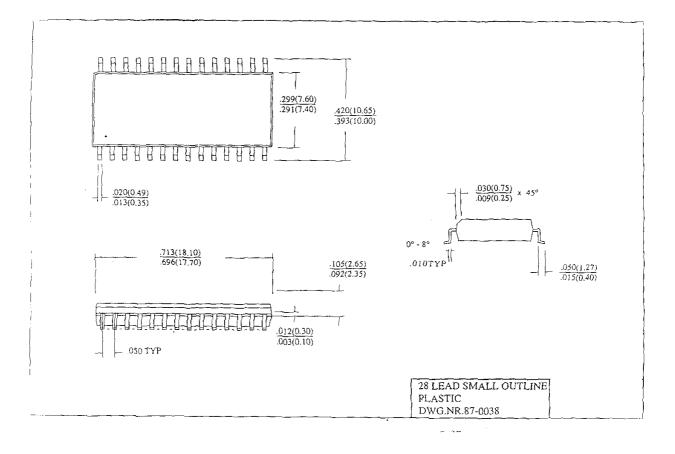
FIGURE 14 – TYPICAL OUTPUT SWING versus Vcc

TEMPERATURE CHARACTERISTICS

Parameter	Typical Value	Typical Change
	@ 25 °C	–20 to +60 °C
Vcc Supply Current (CD = 0.8 V)	5.0 mA	- 0.3 %/°C
Vcc Supply Current (CD = 2.0 V)	400 μA	-0.4 %/°C
VB Output Voltage (Vcc = 5.0 V)	2.1 V	+0.8 %/°C
Attenuator gain (Max Gain)	+6.0 dB	0.0008 dB/°C
Attenuator Gain (Max Attenuation)	-46 dB	0.004 dB/°C
Attenuator Input Resistance (@ TXI, RXI)	10 kΩ	+ 0.6 %/°C
Dial Tone Detector Threshold	15 mV	+20 μV/°C
CT Source, Sink Current	± 60 μA	-0.15 %/°C
Microphone, Hybrid Amplifier Offset	0 mV	± 4.0 μV/°C
Transmit-Receive Switching Threshold	1.0	± 0.02 %/°C
Sink Current at RLO1, RLO2, TLO1, TLO2	4.0 μA	-10 nA/°C
Closed Loop Gain (HTO- to HTO+)	0 dB	0.001 %/°C

T

剣


H

罚

Unit: inches (mm)

SOP 28

