

Voltage Detector IC Series

Low Voltage Standard CMOS Voltage Detector IC Series

BU48aaG, BU48aaF, BU48aaFVE, BU49aaG, BU49aaF, BU49aaFVE series

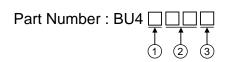
No.09006ECT01

Description

ROHM standard CMOS reset IC series is a high-accuracy low current consumption reset IC series.

The lineup was established with two output types (Nch open drain and CMOS output) and detection voltage range from 0.9V to 4.8V in increments of 0.1V, so that the series may be selected according to the application at hand.

Features


- 1) Detection voltage from 0.9V to 4.8V in 0.1V increments
- 2) Highly accurate detection voltage: ±1.0%
- 3) Ultra-low current consumption
- 4) Nch open drain output (BU48 = G/F/FVE) and CMOS output (BU49 = G/F/FVE)
- 5) Small surface package SSOP5: BU48 == G, BU49 == G

SOP4: BU4800F, BU4900F VSOF5: BU4800FVE, BU4900FVE

Applications

All electronics devices that use microcontrollers and logic circuits.

Selection Guide

No.	Specifications	Description	
1	Output Circuit Format	8:Open Drain Output, 9:CMOS Output	
2	Detection Voltage	Example VDET: Represented as 0.1V steps in the range from 0.9V to 4.8V	
		(Displayed as 0.9 in the case of 0.9V)	
3	Package	G:SSOP5(SMP5C2)/ F:SOP4/ FVE:VSOF5(EMP5)	

Lineup

шоар											
Making	Detection	Part Number									
	voltage			voltage			voltage			voltage	
JR	4.8V	BU4848	HV	2.8V	BU4828	LH	4.8V	BU4948	KM	2.8V	BU4928
JQ	4.7V	BU4847	HU	2.7V	BU4827	LG	4.7V	BU4947	KL	2.7V	BU4927
JP	4.6V	BU4846	HT	2.6V	BU4826	LF	4.6V	BU4946	KK	2.6V	BU4926
JN	4.5V	BU4845	HS	2.5V	BU4825	LE	4.5V	BU4945	KJ	2.5V	BU4925
JM	4.4V	BU4844	HR	2.4V	BU4824	LD	4.4V	BU4944	KH	2.4V	BU4924
JL	4.3V	BU4843	HQ	2.3V	BU4823	LC	4.3V	BU4943	KG	2.3V	BU4923
JK	4.2V	BU4842	HP	2.2V	BU4822	LB	4.2V	BU4942	KF	2.2V	BU4922
JJ	4.1V	BU4841	HN	2.1V	BU4821	LA	4.1V	BU4941	KE	2.1V	BU4921
JH	4.0V	BU4840	HM	2.0V	BU4820	KZ	4.0V	BU4940	KD	2.0V	BU4920
JG	3.9V	BU4839	HL	1.9V	BU4819	KY	3.9V	BU4939	KC	1.9V	BU4919
JF	3.8V	BU4838	HK	1.8V	BU4818	KX	3.8V	BU4938	KB	1.8V	BU4918
JE	3.7V	BU4837	HJ	1.7V	BU4817	KW	3.7V	BU4937	KA	1.7V	BU4917
JD	3.6V	BU4836	HH	1.6V	BU4816	K۷	3.6V	BU4936	JZ	1.6V	BU4916
JO	3.5V	BU4835	HG	1.5V	BU4815	KU	3.5V	BU4935	JY	1.5V	BU4915
JB	3.4V	BU4834	HF	1.4V	BU4814	KT	3.4V	BU4934	JX	1.4V	BU4914
JA	3.3V	BU4833	HE	1.3V	BU4813	KS	3.3V	BU4933	JW	1.3V	BU4913
HZ	3.2V	BU4832	HD	1.2V	BU4812	KR	3.2V	BU4932	JV	1.2V	BU4912
HY	3.1V	BU4831	HC	1.1V	BU4811	KQ	3.1V	BU4931	JU	1.1V	BU4911
HX	3.0V	BU4830	НВ	1.0V	BU4810	KP	3.0V	BU4930	JT	1.0V	BU4910
HW	2.9V	BU4829	HA	0.9V	BU4809	KN	2.9V	BU4929	JS	0.9V	BU4909

Absolute maximum ratings (Ta=25°C)

F	Parameter	Symbol	Limits	Unit
Power Supply Volta	age	VDD-GND	-0.3 ~ +7	V
Output Valtage	Nch Open Drain Output	VOLIT	GND-0.3 ~ +7	V
Output Voltage	CMOS Output	VOUT	GND-0.3 ~ VDD+0.3	
Dawar	SSOP5 *1*4		540	
Power	SOP4 *2*4	Pd	400	mW
Dissipation	VSOF5 *3*4		210	
Operating Tempera	ature	Topr	-40 ~ +125	°C
Ambient Storage To	emperature	Tstg	-55 ~ +125	°C

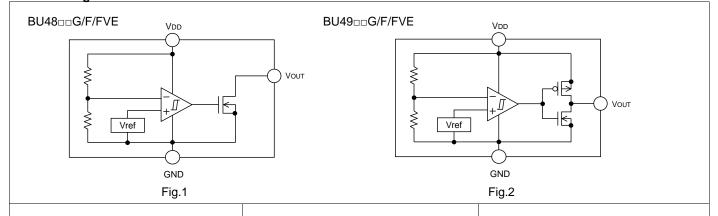
- *1 When used at temperatures higher than Ta=25°C, the power is reduced by 5.4mW per 1°C above 25°C.
 *2 When used at temperatures higher than Ta=25°C, the power is reduced by 4.0mW per 1°C above 25°C.
 *3 When used at temperatures higher than Ta=25°C, the power is reduced by 2.1mW per 1°C above 25°C.

- *4 When a ROHM standard circuit board (70mm×70mm×1.6mm, glass epoxy board)is mounted.

• Electrical characteristics

Parameter	Symbol	Condition		Limit Min Typ May			Unit	
	2,201	23.141.011	DUIZOZO	Min.	Typ.	Max.	J	
			BU4848	4.752	4.800	4.848	_	
			BU4847	4.653	4.700	4.747		
			BU4846	4.554	4.600	4.646	-	
			BU4845	4.455	4.500	4.545		
			BU4844	4.356	4.400	4.444		
			BU4843	4.257	4.300	4.343		
			BU4842	4.158	4.200	4.242		
			BU4841	4.059	4.100	4.141		
			BU4840	3.960	4.000	4.040		
			BU4839	3.861	3.900	3.939		
			BU4838	3.762	3.800	3.838		
			BU4837	3.663	3.700	3.737		
			BU4836	3.564	3.600	3.636		
			BU4835	3.465	3.500	3.535		
			BU4834	3.366	3.400	3.434		
			BU4833	3.267	3.300	3.333		
			BU4832	3.168	3.200	3.232	V	
			BU4831	3.069	3.100	3.131		
			BU4830	2.970	3.000	3.030		
	VDET	VDD=H→L , Ta=25°C RL=470kΩ	BU4829	2.871	2.900	2.929		
Detection Voltage			BU4828	2.772	2.800	2.828		
			BU4827	2.673	2.700	2.727		
			BU4826	2.574	2.600	2.626		
			BU4825	2.475	2.500	2.525		
			BU4824	2.376	2.400	2.424		
			BU4823	2.277	2.300	2.323		
			BU4822	2.178	2.200	2.222		
			BU4821	2.079	2.100	2.121		
			BU4820	1.980	2.000	2.020		
			BU4819	1.881	1.900	1.919		
			BU4818	1.782	1.800	1.818		
					1.700			
			BU4817	1.683	1.600	1.717		
			BU4816	1.584	1.500	1.616 1.515		
			BU4815	1.485				
			BU4814	1.386	1.400	1.414		
			BU4813	1.287	1.300	1.313	-	
			BU4812	1.188	1.200	1.212	-	
			BU4811	1.089	1.100	1.111	-	
			BU4810	0.990	1.000	1.010		
D (C)/ 5			BU4809	0.891	0.900	0.909		
Detection Voltage Temperature Coefficient	VDET/ΔT	Ta=-40°C~125°C *1		-	±30	-	ppm/°C	
		Vpp=L→H→L	VDET≤1.0V	VDET	VDET	VDET		
Hysteresis Voltage	$\Delta VDET$	VDD=L→H→L Ta=-40°C~125°C	VDE1≥1.0V	×0.03	×0.05	×0.08		
11, 3torodo voltago	7 4 DE 1	RL=470kΩ	VDET≥1.1V	VDET	VDET	VDET		
		1.75-11 01/22	VDL121.1V	×0.03	×0.05	×0.07		

^{*1} Designed Guarantee (Outgoing inspection is not done on all products.)


^{*}This product is not designed for protection against radioactive rays.

• Electrical characteristics (Unless Otherwise Specified Ta=-25 to 125°C)

Denomenton	0: ::!!	Condition			Limit		
Parameter	Symbol		Condition		Тур.	Max.	Unit
		\\ \\ 0.0\\	V _{DET} =0.9-1.3V	-	0.15	0.88	-
			$V_{DET} = 1.4 - 2.1 V$	-	0.20	1.05	
Circuit Current when ON	loo4		V _{DET} =2.2-2.7V	-	0.25	1.23	
Circuit Current when ON	IDD1	VDD=VDET-0.2V	$V_{DET} = 2.8 - 3.3 V$	-	0.30	1.40	μA
			$V_{DET} = 3.4 - 4.2 V$	-	0.35	1.58	
			$V_{DET} = 4.3 - 4.8 V$	-	0.40	1.75	
			$V_{DET} = 0.9 - 1.3 V$	-	0.30	1.40	μΑ
	FF IDD2	2 VDD=VDET+2.0V	$V_{DET} = 1.4 - 2.1 V$	-	0.35	1.58	
Circuit Current when OFF			$V_{DET} = 2.2 - 2.7V$	-	0.40	1.75	
Circuit Current when OFF			$V_{DET} = 2.8 - 3.3 V$	-	0.45	1.93	
			$V_{DET} = 3.4 - 4.2 V$	-	0.50	2.10	
			$V_{DET} = 4.3 - 4.8 V$	-	0.55	2.28	
Onerating Valtage Dange	Vopl	VoL≤0.4V, Ta=25~125°C, RL=470kΩ		0.70	-	-	\/
Operating Voltage Range		VoL≤0.4V, Ta=-40~25°C, RL=470kΩ		0.90	-	-	V
	loL	VDS=0.05V VDD=0.85V		20	100	-	μA
'Low' Output Current (Nch)		VDS=0.5V VDD=	1.5V VDET=1.7-4.8V	1.0	3.3	-	A
		VDS=0.5V VDD=2.4V VDET=2.7-4.8V		4.0	7.2	-	mA
'High' Output Current (Pch)	. \	VDS=0.5V VDD=4	4.8V VDET=0.9-3.9V	1.7	3.4	-	A
(only BU49□□G/F/FVE)	Юн	VDS=0.5V		2.0	4.0	-	mA
Output Leak Current when		VDD=VDS=7V		_	0	0.1	
OFF	Ileak	Ta=-40°C~85°C			-	_	μA
(only BU48□□G/F/FVE)		_	VDD=VDS=7V		0	1	P
·		Ta=85°C~125°C					

^{*} This product is not designed for protection against radioactive rays.

Block Diagrams

SSOP5

PIN No.	Symbol	Function
1	VOUT	Reset output
2	VDD	Power supply voltage
3	GND	GND
4	N.C.	Unconnected terminal
5	N.C.	Unconnected terminal

SOP4

PIN No.	Symbol	Function
1	VOUT	Reset output
2	VDD	Power supply voltage
3	N.C.	Unconnected terminal
4	GND	GND

VSOF5

PIN No.	Symbol	Function
1	VOUT	Reset output
2	SUB	Substrate*
3	N.C.	Unconnected terminal
4	VDD	Power supply voltage
5	GND	GND

^{*}Connect the substrate to VDD

• Reference Data (Unless specified otherwise, Ta=25°C)

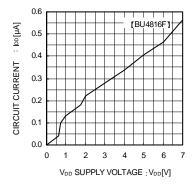


Fig.3 Circuit Current

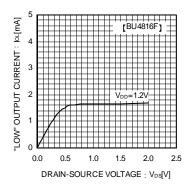


Fig.4 "LOW" Output Current

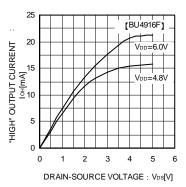


Fig.5 "High" Output Current

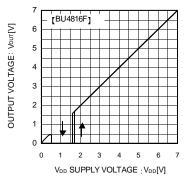


Fig.6 I/O Characteristics

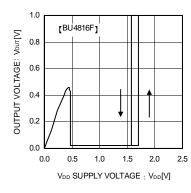


Fig.7 Operating Limit Voltage

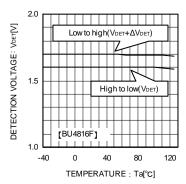


Fig.8 Detecting Voltage Release Voltage

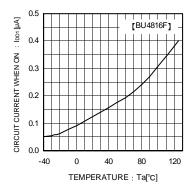


Fig.9 Circuit Current when ON

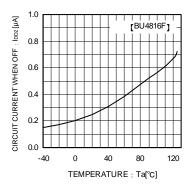


Fig.10 Circuit Current when OFF

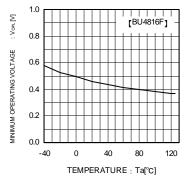
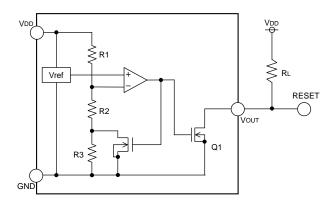


Fig.11 Operating Limit Voltage

Reference Data

Examples of Output rising value(TPLH) and Output falling value(TPHL)


- 1		· / · · ·	` '
	Part Number	Трцн[µs]	TPHL[µs]
	BU4845G/F/FVE	23.3	275.9
	BU4945G/F/FVE	3.5	354.3

VDD=4.3V→5.1V VDD=5.1V→4.3V

This figure will vary with the application, so please confirm actual operation conditions before use.

Explanation of Operation

For both the open drain type(Fig.12) and the CMOS output type(Fig.13), the detection and release voltages are used as threshold voltages. When the voltage applied to the VDD pins reaches the applicable threshold voltage, the Vout terminal voltage switches from either "High" to "Low" or from "Low" to "High". Because the BU48 G/F/FVE series uses an open drain output type, it is possible to connect a pull-up resistor to VDD or another power supply [The output "High" voltage (VOUT) in this case becomes VDD or the voltage of the other power supply].

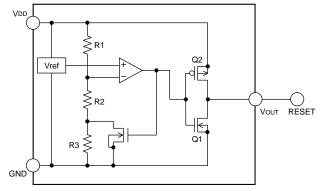
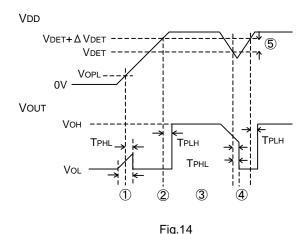



Fig.12 (BU48 = type internal block diagram)

Fig.13 (BU49□□ type internal block diagram)

Timing Waveforms

Example: The following shows the relationship between the input voltage VDD, the CT Terminal Voltage VCT and the output voltage VOUT when the input power supply voltage VDD is made to sweep up and sweep down (The circuits are those in Fig.12 and 13).

When the power supply is turned on, the output is unsettled from after over the operating limit voltage (VOPL) until TPHL. Therefore it is possible that the reset signal is not outputted when the rise time of VDD is faster than TPHL.

- (2)When VDD is greater than VOPL but less than the reset release voltage (VDET + VDET), output (VOUT) voltages will switch to L.
- (3) If VDD exceeds the reset release voltage (VDET + VDET), then VOUT switches from L to H (with a delay of TPLH).
- (4) If VDD drops below the detection voltage (VDET) when the power supply is powered down or when there is a power supply fluctuation, VOUT switches to L (with a delay of TPHL).
- (5) The potential deference between the detection voltage and the release voltage is known as the hysteresis width (VDET). The system is designed such that the output does not flip-flop with power supply fluctuations within this hysteresis width, preventing malfunctions due to noise.

^{*} This data is for reference only.

Circuit Applications

1) Examples of a common power supply detection reset circuit

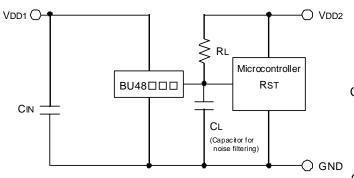


Fig.15 Open collector Output type

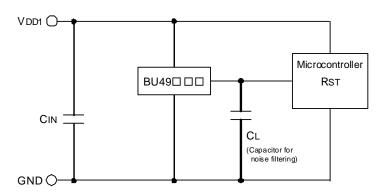


Fig.16 CMOS Output type

Application examples of BU48□□G/F/FVE series (Open Drain output type) and BU49□□G/F/FVE series (CMOS output type) are shown below.

CASE1:The power supply of the microcontroller (VDD2) differs from the power supply of the reset detection (VDD1).

Use the Open Drain Output Type (BU48□□G/FVE) attached a load resistance (RL) between the output and VDD2. (As shown Fig.15)

CASE2:The power supply of the microcontroller (VDD1) is same as the power supply of the reset detection (VDD1).

Use CMOS output type (BU43□□G/FVE) or Open Drain Output Type (BU48□□G/FVE) attached a load resistance (RL) between the output and VDD1.

(As shown Fig.16)

When a capacitance CL for noise filtering or setting the output delay time is connected to the Vout pin (the reset signal input terminal of the microcontroller), please take into account the waveform of the rise and fall of the output voltage (Vout).

2) Examples of the power supply with resistor dividers

In applications where the power supply input terminal (VDD) of an IC with resistor dividers, it is possible that a through-current will momentarily flow into the circuit when the output logic switches, resulting in malfunctions (such as output oscillatory state).

(Through-current is a current that momentarily flows from the power supply (VDD) to ground (GND) when the output level switches from "High" to "Low" or vice versa.)

Consider the use of BD48□□ when the power supply input it with resistor dividers.

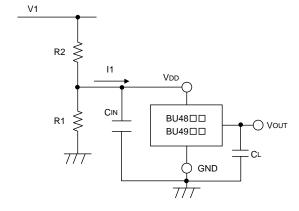


Fig.17

Operation Notes

1. Absolute maximum range

Absolute Maximum Ratings are those values beyond which the life of a device may be destroyed. We cannot be defined the failure mode, such as short mode or open mode. Therefore a physical security countermeasure, like fuse, is to be given when a specific mode to be beyond absolute maximum ratings is considered.

2. GND potential

GND terminal should be a lowest voltage potential every state.

Please make sure all pins that are over ground even if include transient feature.

3. Electrical Characteristics

Be sure to check the electrical characteristics, that are one the tentative specification will be changed by temperature, supply voltage, and external circuit.

4. Bypass Capacitor for Noise Rejection

Please put into the to reject noise between VDD pin and GND with 1uF over and between VOUT pin and GND with 1000pF. If extremely big capacitor is used, transient response might be late. Please confirm sufficiently for the point.

5. Short Circuit between Terminal and Soldering

Don't short-circuit between Output pin and VDD pin, Output pin and GND pin, or VDD pin and GND pin. When soldering the IC on circuit board please is unusually cautious about the orientation and the position of the IC. When the orientation is mistaken the IC may be destroyed.

6. Electromagnetic Field

Mal-function may happen when the device is used in the strong electromagnetic field.

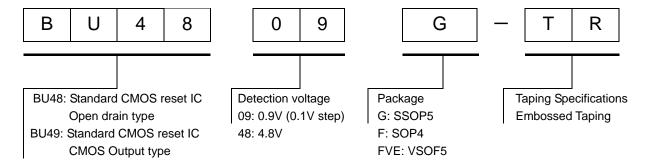
- The VDD line inpedance might cause oscillation because of the detection current.
- 8. A VDD -GND capacitor (as close connection as possible) should be used in high VDD line impedance condition.
- 9. Lower than the mininum input voltage makes the VouT high impedance, and it must be VDD in pull up (VDD) condition.
- Recommended value of RL Resistar is over 10kΩ (VDET=1.5V~4.8V), over 100kΩ (VDET=0.9~1.4V).
- 11. This IC has extremely high impedance terminals. Small leak current due to the uncleanness of PCB surface might cause unexpected operations. Application values in these conditions should be selected carefully. If 10MΩ leakage is assumed between the CT terminal and the GND terminal, 1MΩ connection between the CT terminal and the VDD terminal would be recommended. Also, if the leakage is assumed between the Vout terminal and the GND terminal, the pull up resistor should be less than 1/10 of the assumed leak resistance.

12. External parameters

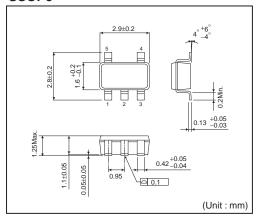
For RL, the recommended range is $10k\Omega\sim1M\Omega$. There are many factors (board layout, etc) that can affect characteristics. Please verify and confirm using practical applications.

13. Power on reset operation

Please note that the power on reset output varies with the Vcc rise up time. Please verify the actual operation.

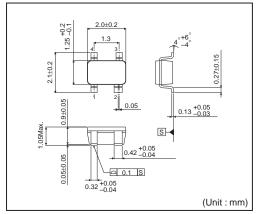

14. Precautions for board inspection

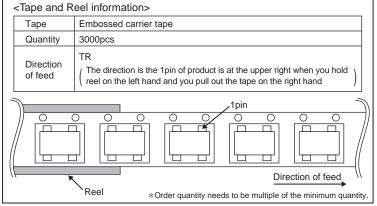
Connecting low-impedance capacitors to run inspections with the board may produce stress on the IC. Therefore, be certain to use proper discharge procedure before each process of the test operation.

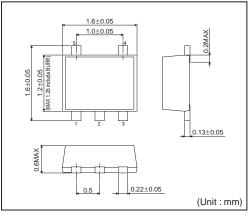

To prevent electrostatic accumulation and discharge in the assembly process, thoroughly ground yourself and any equipment that could sustain ESD damage, and continue observing ESD-prevention procedures in all handing, transfer and storage operations. Before attempting to connect components to the test setup, make certain that the power supply is OFF. Likewise, be sure the power supply is OFF before removing any component connected to the test setup.

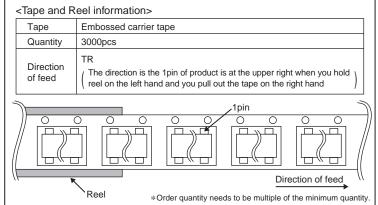

15. When the power supply, is turned on because of incertain cases, momentary Rash-current flow into the IC at the logic unsettled, the couple capacitance, GND pattern of width and leading line must be considered.

Part Number Selection




SSOP5




SOP4

VSOF5

Notes

No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM Co.,Ltd.

The content specified herein is subject to change for improvement without notice.

The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM upon request.

Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage.

The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information.

The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).

The Products specified in this document are not designed to be radiation tolerant.

While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons.

Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual.

The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing.

If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.

Thank you for your accessing to ROHM product informations.

More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/