Page 1 of 40

sparkfun

Electric Imp Breakout Hookup Guide

impRoduction

The Electric Imp is a deviously awesome development platform. Disguised
as an every day SD card, the imp is actually a unique combination of
microprocessor and WiFi module. The imp makes connecting any device to
the Internet a breeze. Looking to catch on with this “Internet of Things” fad?
The imp is an excellent place to start.

The Electric Imp card and imp002 Breakout Board

In this tutorial, we’ll be explaining how to use the imp card with one of our
Breakout Boards as well as the imp002 breakout board. You will have the
choice of which platform to use (the imp card or the imp002).

First, we’'ll cover how to hook up the hardware end of the imp and imp002.
Following that we’ll head over into the firmware domain, programming the
imp to blink LEDs and read analog and digital inputs. The last code
example shows off the coolest part of the imp: controlling hardware over the
Internet!

Required Materials

You have a choice to make! You can either use the imp card and Breakout
Board, or you can use the imp002 Breakout Board.

If you want to use the imp card, you will need an imp card and the Electric
Imp Breakout Board.

Electric Imp

@ WRL-11395 Breakout

© BOB-12886

1 8.8 8 & &

If, on the other hand, you want to use the imp002, you will need the Electric

Imp imp002 Breakout Board.

SparkFun Electric Imp
imp002 Breakout
© BOB-12958

1 8. 8.6 8 ¢

Aside from one of those platforms, we’'ll use a few common electronics
parts you may already have. Here’s a wishlist of everything else we'll be

using.

NOTE: The 2-pin jumper is only required for the Electric Imp Breakout

Board.

Electric Imp Hookup Guide SparkFun Wish List

@
Q)
P

1

Jumper - 2 Pin
PRT-09044

SparkFun USB Mini-B Cable - 6 Foot
CAB-11301

Breadboard - Translucent Self-Adhesive (Red)
PRT-11317

Rotary Potentiometer - Linear (10k ohm)
COM-09288

Resistor Kit - 1/4W (500 total)
COM-10969

LED - RGB Diffused Common Cathode
COM-09264

LED - Basic Red 5mm
COM-09590

Mini Pushbutton Switch
COM-00097

Jumper Wires Standard 7" M/M Pack of 30
PRT-11026

SparkFun Electric Imp

Page 2 of 40

Break Away Headers - Straight
PRT-00116

Mini Photocell
SEN-09088

In addition to those items, you'll also need the following non-SparkFun
materials:

* Wireless network with Internet access

« Electric Imp planner account (sign up is free/easy)

« Electric Imp planner website pulled up in your web browser
* SmartPhone w/ the Electric Imp app (Android or iOS)

Tools

There will be some soldering involved. The Breakout Board does not come
with header pins soldered on, which you'll need in order to interface with
the imp’s I/O pins. You'll need a simple soldering iron and a bit of solder (If
you've never soldered before, this is a great place to start! The solder
points are easy, through-hole jobs).

Before We Begin

This tutorial builds upon some basic electronics concepts. If you aren’t
familiar with any of the topics below, consider reading through that tutorial
first:

» How to Solder - Through-hole
* How to Power a Project

» Voltage Dividers

» Pulse Width Modulation

« Light-emitting Diodes

Aside from the imp’s programming language, Squirrel, there will be a
variety of coding languages used in later parts of this tutorial — primarily
HTML and Javascript. Don’t worry if you're not too familiar with those, as
the examples aim to be short, sweet, and easy-to-modify.

Let’s start by overviewing the imp hardware itself. It's hard, at first, to wrap
your head around the fact that this little, module is actually a powerful WiFi-
enabled microcontroller platform.

About the imp Card

It may look like an everyday SD card, but the imp is much, much more. It's
a WiFi-enabled microprocessor. It's programmable over the air. It's got
GPIOs, UARTS, I?C and SPI interfaces, pulse-width-modulation, digital-to-
analog and analog-to-digital converters. Basically, it's what you’d get if you
smushed an ARM microprocessor and a WiFi module down into a tiny SD-
card-sized package.

Page 3 of 40

Powered by
electricimp

The imp provides an easy, integrated way to connect almost any hardware
device to Internet services. It is well suited to be the backbone of your
Internet-enabled project, whether you're remotely controlling your electric
blanket or triggering an irrigation system via a web browser. Connecting
your imp to a wireless network and programming it is a simple, streamlined
process.

The Hardware: 6 Wondrous I/Os

The imp is basically made of pure awesome. But, if we lift the hood of
awesomeness for a moment, we can talk a bit about the imp's hardware.
The platform of the imp is a Cortex-M3 microprocessor. Just like any
microprocessor, the imp has a collection of input and output pins, each with
unique functions. There are six addressable 1/O pins — not as many as an
Arduino, but it makes up for it in terms of functionality. The imp has three
UARTS, two I°C and SPI interfaces, and two DAC outputs; plus each pin
can act as an ADC input and PWM output.

imp pin table from Imp's Pin Mux's Page

Pin #UART,6JUART 5 UARTl2C;4I2C,7SP1,5/SPl,5sDACADCPWM
1 CTS TX SCL SCLK|Yes|Yes| Yes
2 RTS RX ISDAMISO Yes| Yes
5 X SCLK| Yes|Yes| Yes
7 RX MOSI Yes| Yes
8 TX SCL MOSI Yes| Yes
9 RX SDA| MISO! Yes| Yes

Of course, each of those pins can also be used as a simple inputs (with or
without pull-up resistors) or outputs, sinking/sourcing up to 4mA each.

Also in that tiny SD package is a WiFi module, an antenna, and a light
sensor. We'll find out why the light sensor is critical in the coming pages.

The imp is a 1.8-3.3V device, supplying it any more voltage than that can
be harmful. It can require up to 400mA (worst-case), but it'll usually pull
about 80mA (even 5mA in a power-save mode).

The IDE

All code written for the imp is done online, in a browser-based integrated
development environment (IDE). Everyone can (freely) create their own
account on the IDE, where both your programs and your imps are kept safe

Page 4 of 40

and secure. There are certainly pros and cons to this “always online”
approach (though you can write and save every program locally, and
upload it when you're ready). Still, it seems like a good solution for this type
of platform.

Code in the IDE is divided into two halves: the imp device, and the agent.
Code in the device half is code that actually runs on your imp. The agent is
a process living on Electric Imp’s cloud server. It can communicate with
both your imp, and the outside Internet world. We'll dig further into the
differences between these two components later.

The Language: Squirrel

Firmware for the imp is written in a language called Squirrel. Squirrel is an
object oriented language similar to Javascript, but unlike most embedded
system programming languages we’ve encountered (namely Arduino).
Entering imp development from the world of Arduino may be somewhat
jarring. There are no loop() or setup() functions, instead most actions
are event or timer-driven.

There are tons of great examples on Electric Imp’s wiki page, and if you're
truly interested in learning Squirrel, check out the Squirrel homepage.
There’s also the Electric Imp API to familiarize yourself with. These are
functions and libraries used to perform actions with the imp’s GPIO pins
and other hardware functionality.

About the Breakout

In order to use an imp, two pieces of hardware are required: the imp card
and the impee. An impee is the piece of hardware that houses the imp.
Aside from having a standard SD socket for the imp to slide into, the impee
also needs to provide power to the imp, and do something with the imp’s
I/0 pins. Our impee for this tutorial is as simple as it gets...a breakout
board.

»
sparkfun.com’
imp Breakout .

% .

Page 5 of 40

Top and bottom views of the imp breakout.

The imp breakout provides the bare minimum you should need to add an
imp to your project. There’s an SD socket, a step-down voltage regulator,
and every I/O pin of the imp is broken out to a 0.1"-spaced header.

Powering the Breakout

A big chunk of the circuitry on the Breakout board is a 3.3V TPS62172
step-down regulator (and the inductor/capacitors supporting it). This
regulator allows for input voltages anywhere between 3.3V and 17V
(voltages in the upper end of that range may produce some heat). It can
support up to 500mA of continuous current.

There are three power inputs on the board, all of which, are fed into the on-
board 3.3V regulator:

» “VIN” header - This standard 0.1" header feeds directly into the 3.3V
regulator.

« Battery input - These are the pins and pads labeled “+” and “-”. The
footprint of the two through-hole pins matches up to a PTH 2-pin JST
connector, which mates with our LiPo batteries (or AA batteries). This
input needs to be selected using the jumper (see below).

« USB mini-B connector - This power input should feed a clean, 5V
source into the breakout board’s regulator. The USB voltage supply
can come from either a mini-B cable connected to your computer or a
USB wall adapter. This input needs to be selected using the jumper
(see below).

Jumper BAT,

Setting the Jumper

To use either the battery or USB power inputs, a jumper must be set on the
board. To use the jumper, first solder a 3-pin male header to the jumper
pins. Then use a 2-pin jumper to span from the middle pin, to whichever of
the two inputs you'd like to use.

In this image, the jumper is set to apply USB power to the imp breakout. A
JST connector was soldered to the battery input pins, in case we want to
use a LiPo to power the board.

The Breakout's Schematic

Page 6 of 40

There are three main components to the breakout board: a TPS62172 step-
down regulator (U2), the Electric Imp socket (U1), and the ATSHA204
authentication chip (U3).

i

Electric Imp Breakout Schematic. Click the image to get a larger picture, or
click here to view the schematic as a PDF.

Pinout

All of the imp’s GPIO pins are broken out to the 0.1"-spaced header, along
with a few related power pins:

* GND - Common pin for input voltage

VIN - Input voltage supply fed into regulator

PIN1 - imp pin 1 (UART 589 CTS, UART, TX, I2C4, SCL, SPlygg
SCLK, DAC, ADC, PWM)

PIN2 - imp pin 2 (UART 559 RTS, UART, RX, I2C4, SDA, SPlys;
MISO, ADC, PWM)

PIN5 - imp pin 5 (UARTs; TX, SPl,s; SCLK, DAC, ADC, PWM)

PIN7 - imp pin 7 (UARTSs; RX, SPl,5; MOSI, ADC, PWM)

PIN8 - imp pin 8 (UART 589 TX, 12Cgg SCL, SPl4g¢ MOSI, ADC, PWM)
PIN9 - imp pin 9 (UART 559 RX, I12Cgg SDA, SPl;g9 MISO, ADC, PWM)
CD - Card detect. This signal will connect to GND whenever a card is
inserted into the socket.

3V3 - 3.3V output from regulator

* GND - Common ground

ID Chip

There’s actually one more piece of hardware required of the impee: an ID
chip, which provides each impee with a unique identification code. This
means that every impee you encounter should include an Atmel ATSHA204
authentication chip. The imp automatically interfaces with this chip every
time it boots up, so it can identify which impee it's plugged into. This
actually turns out to be pretty awesome, because the program that an imp
runs depends on what impee it's plugged into. If you had two impees in
your house — say controlling an irrigation system and another controlling a
coffee machine — one, single imp would run two different programs
depending on which machine it was plugged into.

You shouldn’t ever have to fuss with the ID chip. In fact, you can forget we
ever said anything about the ATSHA204!

About the imp002 Breakout

The imp002 is a solder-down module version of the original imp card. We
have done the hard work of creating a breakout board for you. Now, you
just need one board instead of 2 to get started with the electric imp!

Page 7 of 40

We recommend you read the About the imp section to learn what is in the
imp, what the Planner is, and a brief overview of the Squirrel language. Like
the imp card, the imp002 module contains an embedded ARM Cortex-M3
microprocessor, an onboard WiFi module, and antenna.

The Hardware: 12 Glorious 1/Os

We have broken out 12 1/O pins from the imp002 module to standard 0.1"
headers. Much like the imp card, these pins can be used for a variety of

functions.

imp002 pin table from Imp's Pin Mux's Page

ElnUART1mUART57UART12UARTSEUARTB|I2089IZC1ZSPI257SPI189DACADCPWM
A Yes

B RX Yes

C Yes
D

E RX

1 CTS TX SCL SCLK|Yes|Yes| Yes
2| RTS RX ISDAMISO Yes| Yes
5 X SCLK Yes|Yes| Yes
6 TX

7 RX MOSI Yes| Yes
8 X SCL MOSI Yes| Yes
9 RX ISDA MISO Yes| Yes

Powering the imp002 Breakout

The imp002 Breakout Board contains a 3.3V TPS62172 step-down
regulator (and the inductor/capacitors supporting it). This regulator allows

for input voltages anywhere between 3.3V and 17V (voltages in the upper
end of that range may produce some heat). It can support up to 500mA of

continuous current.

There are three power inputs on the board, all of which, are fed into the on-
board 3.3V regulator:

» “VIN” header - This standard 0.1" header feeds directly into the 3.3V

regulator.

« Battery input - These are the pins labeled “+” and “-” as well as the
JST connector, which mates with our LiPo batteries (or AA batteries).

+ USB mini-B connector - This power input should feed a clean, 5V
source into the breakout board’s regulator. The USB voltage supply
can come from either a mini-B cable connected to your computer or a
USB wall adapter.

Page 8 of 40

m

usB

NOTE: There is a voltage selector circuit on the imp002 Breakout Board
that will automatically use whichever voltage is higher: battery or USB. Be
aware that the circuit does NOT charge the battery, it just prevents current
flowing back into the source with the lower voltage (i.e. a short).

The imp002 Breakout’'s Schematic

There are a number of circuits used to support the imp002, all of which can

be found on the imp002 Breakout Board.

electric imp imp002 Breakout Schematic. Click the image to get a larger

picture, or click here to view the schematic as a PDF.

Input Voltage Source Selection - automatically switches between
USB and battery input (whichever voltage is higher)

Pin Breakout - Power and I/O pins from the imp002 module
DC/DC converter - the TPS62172 buck regulator and supporting
components

Input Voltage Measurement - the jumper can be soldered to allow
VIN measurements on PIN A

imp002 module - the imp module and decoupling capacitors
Status LED - the red/green LED required by the imp to display its
status (connecting, error, etc.)

BlinkUp - Light sensor for sending WiFi credentials to the imp002
module

Pinout

All of the imp’s GPIO pins are broken out to the 0.1"-spaced header, along
with a few related power pins:

GND - Common ground

VIN - Input voltage supply fed into regulator
PIN_A - imp002 pin A (ADC)

PIN_B - imp002 pin B (UART; RX, ADC)
PIN_C - imp002 pin C (PWM)

PIN_D - imp002 pin D

PIN_E - imp002 pin E (UARTg: RX)

Page 9 of 40

* PIN_1 - imp002 pin 1 (DAC, UART 2 CTS, UART, TX, I°C4, SCL,
SPlyge SCLK, DAC, ADC, PWM)

* PIN_2 - imp002 pin 2 (UART 559 RTS, UART; RX, 12C4, SDA, SPlys;
MISO, ADC, PWM)

* PIN_5 - imp002 pin 5 (UARTSs; TX, SPlxs; SCLK, DAC, ADC, PWM)

* PIN_6 - imp002 pin 6 (UARTse TX)

* PIN_7 - imp002 pin 7 (UARTSs; RX, SPls; MOSI, ADC, PWM)

PIN_8 - imp002 pin 8 (UART 259 TX, 12Cg9 SCL, SPl;33 MOSI, ADC,

PWM)

PIN_9 - imp002 pin 9 (UART g9 RX, 12Cgg SDA, SPl;g9 MISO, ADC,

PWM)

VDDA - ADC reference voltage. Connected to 3.3V by default.

3.3V - 3.3V output from regulator

GND - Common ground

IMPORTANT: If you disconnect the VDD/VDDA jumper, you
MUST bring up the VDD (3.3V) power before bringing up the
VDDA reference voltage. Additionally, if VDDA is greater than
VDD (3.3V), it might cause damage to the imp002 module.

Hardware Hookup

The hardware hookup approach in this guide is just one of many ways to
use the board. The breakout is made to be a versatile extension of the imp.
You can connect whatever you want to the imp pins, and power the board
however your project requires.

Solder Headers

In order to do much with the input/output capability of the imp, you'll need to
solder to the broken out pins. If you want to use the imp Breakout with a
breadboard or perfboard, 0.1" male headers make for a good choice.
Depending on your application, you could swap the headers with wire,
female headers, screw terminals, or a variety of other connectors.

We’'re going to solder male headers into the board, so we can use it with a
breadboard later on.

Pins soldered onto the imp002 Breakout Board

Apply Power

Page 10 of 40

Depending on what you want to use for your power source there are a few
options here. You could use the on-board USB connector. Or you could
solder down a 2-pin JST connector, and plug battery (LiPo or AA) into the
board to make it mobile. If you go with either of those options on the imp
card Breakout, you'll also need to set the jumper (the imp002 Breakout will
automatically select the higher voltage).

Note how the jumper is set. We're using USB to power the imp in this
picture.

No need to set a jumper on the imp002 Breakout Board! We're using USB
to power the imp002 here.

Alternatively, you can apply power straight to the headers labeled “VIN” and
“GND”. This pin bypasses the jumper and goes straight to the regulator.

Plug in the imp!

If you have the original imp card, plug the imp card in so the suspicious little
imp logo is facing up. If you've got power to the board, once plugged in, the
imp should start blinking orange. If there’s no blinking on the card, it's
probably not getting any power. Double-check that the jumper is set
correctly.

If you have the imp002, the status LED should start blinking orange as soon
as you apply power.

What's all that blinking signify? How do we get the imp connected to our
wireless network? Read on!

BlinkUp

Blink Codes

The imp has an internal red/green LED, which is used to tell the world what
state it's currently in. If you've just plugged the imp in, and haven't told it
how to get on your WiFi network, it should be blinking orange (red/green
simultaneously). Here are the rest of the codes to look out for:

imp blink codes (from the imp blinkup guide)

Color Speed |imp State

Orange 1Hz | No WiFi settings

Page 11 of 40

Single Successfully received configuration via
Green .
Pulse Blinkup.
Red Triple-pulse| Failed to receive configuration via Blinkup.
Red 1Hz Attempting to connect to WiFi.
Red, O , . .
© Ofrfa”ge 1Hz Getting IP address (via DHCP).
R
Orangg;,f ed, 1Hz Got IP address, connecting to server.
Green 0.5 Hz Connected to cloud (turns off after 60
seconds).
Red 2Hz Connection lost, attempting to reconnect.
None Normal operation

Let’'s make that LED blink green! Time to send a BlinkUp.

BlinkUp

To get your imp connected to your WiFi network as well as the online imp
servers, you need to go through the process Electric Imp calls
commissioning. There’s a great write-up on the commissioning process
over on Electric Imp’s Getting Started page. Here’s the gist of it, as well as
a few tips.

Before you begin, you’ll need to make an Electric Imp account by visiting
the IDE page.

Updating the imp with your WiFi credentials is a unique process. The imp
card has a built-in light sensor, looking out of the little window on the short,
flat edge of the imp. The imp002 has an external light sensor built into the
breakout board. The light-sensor can be used to process small amounts of
precisely modulated data in the form of a blinking light.

The light sensor is just behind the translucent window on the edge of the
imp card.

The light sensor on the imp002 is located to the left of the module, with the
lable “BU” (for BlinkUp).

To generate this blinking light, you need the Electric Imp app installed on
your smartphone (iOS or android). Go download that app if you haven’t
already!

Follow the directions in the app, and prepare to update the imp with your
WiFi network. Then, when your settings all look correct, hit the Send
BlinkUp button. Quickly place the screen of the phone as close to the imp’s
light sensor as possible.

Page 12 of 40

.

Avert your eyes! Unless you enjoy staring into bright, white strobing lights.

Similar warnings about white strobing lights.

If all goes well, there should be a very short green blip of the LED, followed
by a few blinks of red and orange. When the imp starts blinking green once
a second, you know you’ve got your imp commissioned yay!

Troubleshooting

If you're imp isn’t yet in the blinky green phase, use the LED blink codes to
find out where it’s failing. Here are some recommended steps, depending
on the failure point:

» Connecting to the server (orange, red, off) - Make sure there’s no
firewall blocking the imp’s way to the Internet (and make sure your
WiFi network has an Internet connection in the first place).

» Getting IP address via DHCP (red, orange, off) - Double check your
WiFi password.

« Attempting WiFI connection (red) - Double check your WiFi network
name (SSID).

If all of the above are set correctly, try sending the BlinkUp one more time.
We've found that it helps to close out all other app, or even try resetting
your phone if it continues to fail.

More troubleshooting information can be found on Electric Imp’s site.

Example O: Hello World
Now that your imp is commissioned, it's time to upload your first bit of code!

As with any new development platform, our first goal is to make sure we
can make an LED blink. If you can make an LED blink, you're well on your
way to spinning motors or communicating with sensors.

Using the IDE

To begin, go to Electric Imp IDE, and log in if you haven't already.

Page 13 of 40

Page 14 of 40

If your Electric Imp was successfully commissioned, you should see your
imp device appear under Unassigned Devices on the left-hand side.

B Dectic Iog 1D

C 8 hitps

L3f electric imp

 Unassigned Devices ()
¥ Inactive Models

Click the Create New Model button.

Hello, biink

In the name field, type “Hello, blink” for the name of our model. Check the
box next to our device under Unassigned Devices. Click Create Model.

Now, on the left side, you should see a new tab called Hello, blink. Select
than, then click your imp name. This is the standard view of the imp IDE.
It's split into three sections:

1. Agent — This is code that runs external to your imp, in the cloud.
You can offload server tasks, like HTTP requests, here. There are
built in functions to aid in communication between imp and agent.

2. Device — This is the code that your imp runs. This is where you do
all of your hardware control, like writing pins high and low, or reading
inputs.

3. Log - This is where messages and errors are printed (using the

server.log() function).

Now we’re ready to load some code and blink some LEDs!

The Circuit

The circuit for this example is very simple. We only need to connect an LED
to pin 1. Don’t forget your current-limiting resistor (330 Q)!

imp circuit

th O Fritzing.org

imp002 circuit

Any of the imp’s I/O pins would work for this example. After working with
the code, see if you can modify it to blink on other pins (or all of them!).

Hello, blink Code

We'll only be working with the Device portion of the IDE right now. Copy
and paste the code below into the middle section of your window.

Page 15 of 40

/* Hello, Blink

by: Jim Lindblom

SparkFun Electronics

date: October 31, 2013

license: Beerware. Use, reuse, and modify this code howeve
r you see fit.

If you find it useful, buy me a beer some day!

This is an Electric Imp hello, world blink sketch. It'll bl
ink an LED

connected to pin 1, once every second.
*/

[T 77070777777177171171117117
// Global Variables //
111171177171711711771171177171711171177117
ledState <- 9;

[117111171771117117111111111111111111117
// Function definitions //
[1171111717711177117111171111111111111117

// Loop constantly updates the LED. If ledState is 1, we'll tu
rn the LED on and

// set ledState to @. Vice-versa is ledState is © coming in. T
his function

// schedules a wakeup in 1 second, and calls itself again.
function loop()

{

if (ledState)

{
hardware.pinl.write(1); // Write pin 1 high
ledState = @; // Flip ledState

}

else

{
hardware.pinl.write(@); // Write pin 1 low
ledState = 1; // Flip ledState

}

// This must be called at the end. This'll call loop() aga
in in 1s, that way

// it'll actually loop!

imp.wakeup(1.00, loop);
}

[T 77070777777171171171117117

// Setup Stuff: Runs first at startup //
[117777177777117771111771771117711111717117
hardware.pinl.configure(DIGITAL_OUT); // Configure Pin 1 as
digital output

loop(); // Call loop, and let the program go!

Then hit the >Build and Run button up top, and enjoy the blinks.

Shortcut heads up! If you're a neurotic CTRL+S saver, the standard save
shortcut does save, but it also attempts to build and run your code. If

successful, it'll upload the code and immediately start running on your imp.

If there’s an error, you'll start hearing about it in the log window.

Into the Code

Page 16 of 40

If you're only used to working with Arduino sketches, this code may make
very little sense, Electric Imp programs have a very different “flow” to them.
Begin by looking at the 2 lines of code at the bottom (under the “Setup
Stuff” header). This is actually where our imp starts when it begins to run
it's program. Everything above is simply a function or variable definition.

The majority of this code deals with the imp’s pin class, which handles all of
the 1/0 control. If you're used to using Arduino GPIO’s, the imp’s APl isn’t
too different. You have to set the pin up as either an input or output, analog
or digital. Then write or read to the pin accordingly.

At the end of the setup, we make a call to a loop() function, which is
defined above. loop() is simple, it checks a global variable named
ledState . If ledState is 1 we turn the LED on, if it's O we turn the LED
off.

To write a pin high or low, we call the hardware.pinl.write([0:1])
function. You can probably extrapolate from that how to control the other
five pins.

The special sauce making loop actually loop is the last line of code in the
function: imp.wakeup(1.00, loop) . The imp.wakeup function puts the imp
to sleep, but sets a timer. When the timer goes off, the requested function

(loop in this case) function is called from its beginning. In this case we set
the timer to 1.00 seconds, so loop() should run once a second. This is
really the only way to make the imp “loop” like an Arduino might.

Check out the comments in the code for a more in-depth overview of each
function call. Or, for more information, check out Electric Imp’s API
reference.

Example 1: I/O Control

The imp can do most anything an Arduino or similar microcontroller can. It's
got analog-to-digital converters, PWM, SPI, I°C, UARTSs, and it even has
digital-to-analog converters. In this snippet of example code, we’ll dig
further into the imp’s 1/0O control delving into digital and analog input/output.

imp and Breakout Board connected the Example 1 circuit

Page 17 of 40

imp002 connected the Example 1 circuit

The Circuit

The setup for this example code requires three unique components: an
LED, potentiometer, and a button (plus a current-limiting resistor for the
LED). Here’s a fritzing diagram and schematic (click to see it bigger) for our
circuit:

Partl
Pt Lol
—lpg electricimp
L L
an
vIFE E
e L PR
- oa
L a2 —_le
B .
—™ oo —
| L

imp schematic

imp circuit

Page 18 of 40

th [Fritzing.org
imp002 circuit

Make sure the imp is getting power. USB is usually the quickest/easiest
way to apply power to the breakout board, but you'll need to set the jumper
accordingly on the breakout.

The IDE

To create a new piece of code, we need to create a new “model” and
associate it with our Breakout Board impee. To do this, hover over your
impee and click the “settings” gear. The familiar Device settings window
should pop up. Under the Associated model: box, create a new model
named 1/0 Control. Then click Save Changes_.

Breakout Board Alpha

1O Controd - Create New Model

Save Changes ESETREC]

This will create a new tab on the left side labeled I/O Control. If you expand
that tab, you'll see that the Breakout Board impee has be reassigned there.

The Code

Once again, we'll only be using the Device portion of the IDE. Copy and
paste everything from the below box, into your Device window and click
Build and Run up top.

Page 19 of 40

/* Digital Input, Analog Input, PWM Output Example

by: Jim Lindblom

SparkFun Electronics

date: July 15, 2013

license: Beerware. Use, reuse, and modify this code howeve
r you see fit.

If you find it useful, buy me a beer some day!

This is a simple piece of code which uses an LED, potentiom
eter, and button.
The LED connects to pin 1 through a 47 ohm resistor. The ca
thode of the LED should connect to ground.
This means writing pin 1 will turn the LED on, and wri
ting it to @ turns the LED off.
The button connects on one side to pin 9, and the other pi
n of the button goes to ground.
We'll use the internal pull-up resistors on pin 9 to b
ias the button high.
When the button is pressed, pin 9 should read as low.
The wiper of the potentiometer is connected to pin 5. The o
ther two pins of the pot should be
connected to +3.3V and GND. This'll make the voltage a
t pin 5 adjustable from ©-3.3V.
*/

II117777717710777111111117777711111111111
// Function definitions //

IITTIT0T1007170707177171771717711711117

local ledState = 1; // Says local, but think of this as a glob
al var. Start with LED on

// function pin9Changed() will be called whenever pin 9 goes f
rom high->low or low->high
function pin9changed()
{

local buttonState = hardware.pin9.read(); // Read from th
e button pin

if (buttonState == @) // Button will read low if pressed
{
ledState = ledState ? @ : 1; // Flip flop ledState
server.log("Button pressed!");
}

else // Otherwise button was released, no action

{

server.log("Button released");

// Loop constantly updates the LED. If ledState is 1, we'll re
ad the pot, and set the LED brightness accordingly.
// If ledState is @, we'll just turn the LED off. ledState is
updated in the pin9Changed() function.
function loop()
{
if (ledState == 1)
{
local rawValue = hardware.pin5.read(); // Read from t
he potentiometer. Returns a value between @ and 65535.
rawValue /= 65535.0; // Make rawValue a % (and a floa
t). The pin write function requires a value between © and 1.
hardware.pinl.write(rawvValue); // Pin 1 is already co
nfigured as PWM, write potentiometer value

Page 20 of 40

}

else

{
hardware.pinl.write(®); // Write pin 1 low -- LED off

// This must be called at the end. This'll call loop() aga
in in 1@ms, that way it'll actually loop!
imp.wakeup(0.01, loop);

[T 777070777777171171171117117

// Setup Stuff: Runs first at startup //

[T 7077070777777171171171117117
hardware.pinl.configure(PWM_OUT, ©.0005, 0.0); // Configure
Pin 1 as PWM output, 5ms period, 0% high (off)
hardware.pin5.configure(ANALOG_IN); // Configure pin 5 as anal
og input

hardware.pin9.configure(DIGITAL_IN_PULLUP, pin9changed); // Co
nfigure pin 9 as digital input (with pull-up enabled). On chan
ge it'1l call function pin9changed().

imp.configure("LED Trigger Wiper", []1, [1);

loop(); // Call loop, and let the program go!

The code creates an adjustable-brightness LED controller. The brightness
of the LED is adjusted by turning the potentiometer. Pressing the button will
turn the LED on and off.

Explaining the Code

The skeleton of this code acts a lot like that of Hello, blink. The function
definitions are up top, the setup stuff runs at the bottom, and loop() is
called at the beginning. loop() continually calls itself, using the
imp.wakeup(@.01, loop) function call, every 10 ms.

The loop() function again relies on an ledState variable. If ledState is
1, we read the potentiometer voltage, and adjust the brightness of our LED
accordingly.

The ledstate variable is flip-flopped in the pin9changed() function. This
is like an interrupt. It's called whenever the state of pin 9 changes — if it
goes from high to low, or low to high. When setting up pin 9 as a digital
input, we added this function as the one to be called when the state change
occurred.

Check out the comments in the code for a more in-depth overview of each
function call. Or, for more information, check out Electric Imp’s API
reference.

Enough hardware stuff! The next two examples will make use of the imp’s
greatest feature...it's web connectivity.

Example 2: Web Control (Request)

Some of the most fun you can have with the imp is connecting it to the
Internet, and interfacing it with web pages. In this example, we’'ll use a
simple HTML/Javascript web page to control some LEDs connected to the
imp.

This time, we’ll not only be writing code for the imp, but the agent as well.
This example code will show how to pass data from the imp to the agent,
and how to write a simple web page to interact with the agent half of the
code.

Page 21 of 40

Page 22 of 40

The Circuit

The circuit for this example is very simple: a common-cathode RGB LED is
connected to the imp’s pins 1, 2, and 5 (red, green, and blue anodes
respectively), and another basic red LED is connected to pin 9 of the imp.
Don’t forget to add some current limiting resistors (in the range of 50-100Q)!

Partl

=

Made with [Fritzing.org

imp circuit

IR
DR
" e

vith [Fritzing.org

imp002 circuit

The imp (Device) Code

Create a new model, as you did in the last example. We’'ll call this one LED
Web Control. Copy and paste the code below into the Device section of the
IDE.

Page 23 of 40

/* Electric Imp Web-controlled LEDs
by: Jim Lindblom
SparkFun Electronics
date: November 1, 2013
license: Beerware. Please use, reuse, and modify this cod

e.
If you find it useful, buy me a beer some day!
This is a simple Electric Imp example, which shows how to
interface

the imp with an agent and webpage. This example code goes
hand-in-hand with
an HTML webpage. Check out this page for more informatio

https://learn.sparkfun.com/tutorials/electric-imp-breakout
-hookup-guide/example-2-web-control

This will show how you can use html color, text, and radi
o form inputs

to control LEDs on/off, PWM them, and set a timer to turn
them off.

Circuit:

A common cathode RGB LED is connected to the imp's pins
1, 2, and 5.

The red anode connects to 1 through a 47 Ohm resistor, gre
en 2, and blue 5.

The cathode of the LED connects to ground.

Another simple, red LED is connected to the imp to imp pi
n 9, through

another 47 Ohm resistor. The cathode of the LED is grounde
d.
*/

imp.configure("LED Web Control", [], []); // Configure the imp

111111711111117

// Pin Setup //

111111171111117

// Setup reference variables for our pins:
redPin <- hardware.pinil; // R of RGB
greenPin <- hardware.pin2; // G of RGB
bluePin <- hardware.pin5; // B of RGB
ledPin <- hardware.pin9; // Lonely red LED

// Configure our pins:

ledPin.configure(DIGITAL_OUT); // Simple digital output
redPin.configure(PWM_OUT, ©.01, ©); // PWM output 1@ms cloc
k, off
greenPin.configure(PWM_OUT, 0.01, ©); // PWM output 1@ms cloc
k, off
bluePin.configure(PWM_OUT, ©.01, @); // PWM output 1@ms cloc
k, off

[11777717777711771111117111111117
// Agent Function Declarations //
[117177777777117711711111171111117
// setLed will turn the lonely red LED on or off.
// This function will be called by the agent.
function setLed(ledState)
{

ledPin.write(ledState);

// setRGB will take a table input, and set the RGB LED accordi

ngly.
// the table input should have parameters 'r', 'g', and 'b'.
// This function will be called by the agent.
function setRGB(rgbvalue)
{
bluePin.write(rgbvalue.b/255.0);
redPin.write(rgbValue.r/255.0);
greenPin.write(rgbvalue.g/255.0);
}
// setUser will print out to the log the name of the LED chang
er
// This function will be called by the agent.
function setUser(suspect)
{
server.log(suspect + " set the LEDs.");
}
// setTimer will turn the LEDs off after a specified number o
f seconds
// This function will be called by the agent.
function setTimer(time)
{
if (time != 0)
imp.wakeup(time, ledsOff); // Call ledsOff in 'time' s
econds.
}

II111TT117707777111777777771111177

//

Important Agent Handler Stuff //

IITTI1011707777171717717111717111117

//
ch
//
an
//
nd
//

Each object that the agent can send us needs a handler, whi
we define with

the agent.on function. The first parameter in agent.on is

identifier

string which must be matched by the sending agent. The seco
parameter is

the name of a function to be called. These functions are al

ready defined up

//

above.

agent.on("led", setlLed);
agent.on("rgb", setRGB);
agent.on("user", setUser);
agent.on("timer", setTimer);

II11111777171111111117

//

Helper Functions //

11117777711171111111171

//

ledsOff just turns all LEDs off.

function ledsOff()

{

The key bit of new code in this example is the agent.on function call. Run
during the setup portion of the code, these function calls set up a handler
function to be called whenever the agent sends a specific string to the imp.
For example, the agent.on("led", setLed); functions says that whenever

ledPin.write(0);
redPin.write(0);
greenPin.write(9);
bluePin.write(0);

a message tagged with an “led” string is received from the agent, call the
setLed() function.

Page 24 of 40

How do we send messages from the agent to the imp? Looks like it's time
to start using the other half of the IDE window...

The Agent Code

The agent is a piece of squirrel code living and running in the Electric Imp
cloud. While the imp is managing all of its hardware pins, the agent can be
off mingling with other servers and dealing with Internet traffic. There are
built in functions which allow the imp to send data to the agent, and vice-
versa.

In this example, we’ll set the agent up to listen for HTTP requests. Upon
receiving a request, the agent will parse the query, and relay the important
information back to the imp.

Copy and paste this code into the Agent half of your LED Web Control
model:

Page 25 of 40

/* Agent for imp Web-Controlled LEDs
by: Jim Lindblom
SparkFun Electronics
date: November 1, 2013
license: Beerware. Please use, reuse, and modify this cod

If you find it useful, buy me a beer some day!

This is the agent portion of the LED Web Controller. It de
fines how http

requests to https://agent.electricimp.com/XXXXXXXXXXXX ar
e handled. Check

your agent URL to find out what, exactly, XXXXXXXXXXXX is.

For example, if your agent url is https://agent.electricim
p.com/UpyYpRLmBB7m

sending https://agent.electricimp.com/UpyYpRLmBB7m?1led=0 s
hould turn the

lonely red led off. https://agent.electricimp.com/UpyYpRL
mBB7m?led=1 would

turn the LED on.

* There are also request handlers for "rgb", which should
be a #RRGGBB
formatted string. E.g: https://agent.electricimp.com/Upy
YpRLMBB7m?rgb=%238500b7
* A "user" request handler can receive a string. E.g.: htt
ps://agent.electricimp.com/UpyYpRLmBB7m?user=Jim
* And a "timer" handler looks for a number-looking strin
g. E.g.:
https://agent.electricimp.com/UpyYpRLmBB7m?timer=10

The parameters can be combined in one request. E.g.:
https://agent.electricimp.com/UpyYpRLmBB7m?led=1&rgb=%237f
3fff&timer=10&user=Jim
*/

// At the start, print a message to say we're online, and prin
t the agent URL:

server.log("LED Web Control Agent Online:
M

+ http.agenturl

// requestHandler handles all http requests coming into the ag
ent. It's only

// setup to look for a select few requests: "led", "rgb", "use
r" and "timer".

function requestHandler(request, response) {

try { // Try provides us with exception handling, in case
a runtime error occurs

// check if the user sent led as a query parameter
if ("led" in request.query) {
// if they did, and led=1.. set our variable to 1

if ((request.query.led == "1") || (request.query.l
ed == "0"))
{
// convert the led query parameter to an integ
er
local ledStatus = request.query.led.tointeger
0;

// send "led" message to device, and send ledS
tate as the data

Page 26 of 40

device.send("led", ledStatus);

¥
// check if an "rgb" query was received:
if ("rgb" in request.query) {
// colors are sent as a string, we've got to do so
me work to convert
// them to a number, which is eventually what we'l
1 need to do
// pwm on our RGB led pins.
local color = request.query.rgb; // get the query
into a variable
if (color[@] == '#') { // The request should star
t with "#' (%23)
// We'll construct a table with three paramete
rs: r, g, and b
// Do some work to convert r, g, and b from AS
CII characters
// to ©-255 values.
local returnTable = {
r = ASCIItoHex(color[1])*16 + ASCIItoHex(c

olor[2])

g = ASCIItoHex(color[3])*16 + ASCIItoHex(c
olor[4])

b = ASCIItoHex(color[5])*16 + ASCIItoHex(c
olor[6])

s
device.send("rgb", returnTable); // send our c
olor table to the imp

}

// check if a "user" query was received.
if ("user" in request.query) {
device.send("user", request.query.user); // Simpl
y pass the value out to the imp.
¥
// check if a "timer" query was received:
if ("timer" in request.query) {
// convert to an integer, and pass it out to the i

mp.
device.send("timer", request.query.timer.tointeger
M
¥
// send a response back saying everything was OK.
response.send(200, "OK");
}
catch (ex) {
response.send(500, "Internal Server Error: " + ex);
¥
}

// Set up a handler for HTTP requests. This is the function th
at we defined above.

// https://electricimp.com/docs/api/http/onrequest/
http.onrequest(requestHandler);

[117711171111111111117
// Helper Functions //
[1111171771717117171711111111717

// This function converts an ASCII character to a number
function ASCIItoHex(colorNibble) {
if ((colorNibble >= '@') && (colorNibble <= '9')) {
return colorNibble - 48;

Page 27 of 40

Page 28 of 40

else if ((colorNibble >= 'a') &% (colorNibble <= 'f')) {
return colorNibble - 87;

}
else if ((colorNibble >= 'A') && (colorNibble <= 'F')) {
return colorNibble - 55;

Check out the comments in the code for a line-by-line dissection. Most of
the code on the agent is an HTTP request handler (the
requestHandler(request, response) function). This function uses a series
of if statements to check for a specific request parameter key (like “led”
or “rgb”). In those if statements, the agent decides what to do with the
parameter value (if anything) and sends a message to the imp using the
device.send function.

With both of those halves of code added to your model, and the circuit built,
build and run the model. Time to test it out!

Testing the Model

After initially running the model, you shouldn’t see anything happen to your
imp or the LEDs it's connected to. To change that, we need to send an
HTTP request to the agent.

First, we need to locate the URL of our agent, which is printed at the top of
your Agent window. It'll be something like
https://agent.electricimp.com/0123456789ABCDEF . Each imp gets its
own, unique, agent URL.

LED Web_ Control

gent rurning

Buikdl= o Che P Builg

g Aun

How to locate the agent URL. Mine, for example, is
https://agent.electricimp.com/UpyYpRLmBB7m.

We can send requests to the agent by adding URL query strings onto the
agent URL. For example, type
https://agent.electricimp.com/qIx35x_LTITP?led=1 (make sure you
replace my unique code with your own!) into your browser’s address bar
and go. Notice anything happen on your imp circuit? The lonely red LED
should have turned on! Look through the agent code to see what other
parameters we can send.

We can even add multiple parameters to the same request, for example try
going to
https://agent.electricimp.com/qIx35x_LTITP?led=1&rgb=%234080ff&timer=10
in your browser. This request turns on the LED, but it also sends an RGB

string to control the RGB LED and it sets a timer to turn all LEDs off.

This is very cool, but typing these parameters into an address bar is a pain!
Let’s write a simple HTML webpage to take a form input and do all of that
for us!

The HTML Code

This is the last piece to the puzzle — a simple HTML page that takes a form
input, and sends that information out to our Electric Imp agent.

Create a local file on your computer called impControl.html. Open it with a
text editor, and paste the below code into it.:

<html>
<head>
</head>

<body onLoad=updateURL()>

<h4>What is your agent's url?</h4>

<form name="url">

https://agent.electricimp.com/<input type="text" name="agentUr
1" placeholder="qIx35x_LTITP" onChange=updateURL()>

</form>

<h4>Imp Inputs:</h4>
<form name="leds" id="ledSend" method="get">
Lonely Red LED: <input type="radio" name="led" value="0" check
ed>0ff

<input type="radio" name="led" value="1">On

Set the RGB LED: <input type="color" name="rgb"> (Chrome/Oper
a use color input, other browsers format as "#XXXXXX", where
X is ©-9, a-f, or A-F.)

How long should the LEDs stay on? <input type="text" name="tim
er" value="10">seconds

Your name? So we know who to blame! <input type="text" name="u
ser” placeholder="Your name here">

<input type="submit" value="Update!">
</form>

</body>
<script language="javascript">
function updateURL() {

ledForm = document.leds;
urlForm = document.url;

ledForm.action = "https://agent.electricimp.com/" + urlFor
m.agentUrl.value;
}
</script>
</html>

Then save and open the file with your browser of choice. A simple web
page like this should show up:

Make sure you type in the correct, unique code for your agent URL. Then
play with the rest of the form inputs. The On/Off radio buttons turn the

lonely red LED on or off. The RGB color selector sets the color of the RGB

LED. The duration text box will turn all LEDs off after a set number of

seconds. And the name textbox will print your name in your imp’s console.

Try it out!

Page 29 of 40

imp002 being controlled by a phone’s browser.

The code should be pretty easy to pattern-match and modify. The agent
checks for specific values (like “led” or “rgb”), which are set by the name
identifiers in the HTML form. To add, subtract, or modify those, simply
add/remove/modify the form inputs, and add an if statement to look for it
in the agent.

Example 3: Web Response

In the previous example, we used a web page to send data to the imp. But
what if you wanted to send data from the imp back to a web page? This
example shows how to use the imp to post a response to a web server.
Maybe you want to monitor the light level in your garage with a simple
photocell? Or live stream the temperature in your backyard. This is the
example you'll want to start with.

The Circuit

The circuit for this example is very open-ended. If you have any digital or
analog components you'd like the imp to read, hook them up to one of it's
inputs. For example, if you want to monitor a button-press and a photocell,
hook up a circuit like this:

o electricimp L
breakout

F-
[]
:g
I 1

Page 30 of 40

imp schematic

vade with [[) Fritzing.org

imp circuit

Made with [Fritzing.org

imp002 circuit

Feel free to make the circuit your own. Maybe add a tilt sensor or an analog
temperature sensor to one of the unused pins. At this point you should feel
somewhat comfortable modifying the imp’s pin functions to make them do
what you want.

The Imp Code

Once again, we'll need a few pieces of code to make everything work
together. Move your impee into a new model and name it Web Response
Example.

Starting with the imp again, copy and paste this code into the Device
section of your IDE:

Page 31 of 40

/* Electric Imp Web Response Example (device)

by: Jim Lindblom

SparkFun Electronics

date: November 5, 2013

license: Beerware. Use, reuse, and modify this code howeve
r you see fit.

If you find it useful, buy me a beer some day!

The idea for this code was inspired by this gist by indust
rialinternet:

https://gist.github.com/industrialinternet/5419730

This example code demonstrates how an imp can publish info
rmation to a

webpage. All of the imp's pins are configured as inputs. T
hey can be either

digital or analog.

There are three parts to this code:
1. The imp (device) code. The imp itself simply reads its
pin values, and
sends them out to the agent.
2. The agent code. The agent waits for an http request. O
n such a request,
it'1l construct a JSON of the imp's pin values, and re
spond with that.
3. An html page to make the http request and handle the re
sponse from the agent.
There are a number of ways to do this. See one exampl
e at the bottom of
The agent code.
*/

11111111111
// Setup //
11111111111

// Register imp. This good practice:
imp.configure("Imp Pin Web Response",[]1,[]);

// Configure pins:
hardware.pinl.configure(DIGITAL_IN_PULLUP);
hardware.pin2.configure(DIGITAL_IN_PULLUP);
hardware.pin5.configure(ANALOG_IN);
hardware.pin7.configure(DIGITAL_IN_PULLUP);
hardware.pin8.configure(DIGITAL_IN_PULLUP);
hardware.pin9.configure(DIGITAL_IN_PULLUP);

111111111111111111111171117
// Function Definitions //

I1111107771771117777111117

// sendPins reads each of the pins, stores them in a table, an
d sends that
// table out to the agent.
// It calls itself every 100ms -- 10 times a second.
function sendPins()
{

// Read each of the pins and store them in a table.

// The key names -- "pinl", "pin2", etc. -- should be kep
t the same, unless

// you also change them in the device.on() function on th
e agent.

local pinValues =

{

Page 32 of 40

pinl = hardware.pinl.read(),
pin2 = hardware.pin2.read(),
pin5 = hardware.pin5.read(),
pin7 = hardware.pin7.read(),
pin8 = hardware.pin8.read(),
pin9 = hardware.pin9.read(),
voltage = hardware.voltage() // We'll also send th
e operating voltage.

}

// Once the table is constructed, send it out to the agen
t with "impValues"

// as the identifier.

agent.send("impvalues", pinvalues);

// Schedule a wakeup in 1@@ms, with a callback to this fun
ction.
imp.wakeup(@.1, sendPins);

sendPins(); // Call sendPins once, and let it do the rest of t
he work.

Per usual, check out the code comments for a line-by-line overview of
what'’s going on. The new function this time?

agent.send(string, object) . agent.send is used to send data from the
imp, to the agent. This time we need to create a handler on the agent side
to deal with the data sent by the imp.

Speaking of agent code...

The Agent Code
On the agent side we need to accomplish two tasks:

1. Define an imp handler function to deal with the data sent by the imp.
We'll just store the data sent by the imp into a global variable.

2. Create another handler to be called when an HTTP request is
received. Upon receiving the request the agent will construct a
response based on the data received from the imp, and send that out
to the requester.

There’s the overview, here’s the code. Copy and paste this into the Agent
half of your model:

Page 33 of 40

/* Electric Imp Web Response Example (agent)

by: Jim Lindblom

SparkFun Electronics

date: November 5, 2013

license: Beerware. Use, reuse, and modify this code howeve
r you see fit.

If you find it useful, buy me a beer some day!

The agent half of this code accomplishes two tasks:

1. In the device.on("impValues", function) definitions, th
e agent receives

a table of pin values from the imp. It stores those value
s in a global

variables.

2. On an http request, respondImpValues(request, respons
e) is called. This

function constructs a JSON of the imp pin values, and resp
onds with that.

Also, check the comment at the bottom of this code for an
example HTML file,

which sends a request to the imp, then parses and prints t
he response.
*/

I11111177177117711117177

// Global Variables //

I111111771777171711117177

_pinl <- ""; // Stores pin 1 value received from imp
_pin2 <- "";
_pin5 <- "";
_pin7 <- "";
_pin8 <- "";
_pin9 <- "";
_voltage <- "";
[1171711711111111111111117
// Function Definitions //

IITT1107170777171111711717

// respondImpValues is called whenever an http request is rece
ived.

// This function will construct a JSON table containing our mo
st recently

// received imp pin values, then send that out to the requeste
r.

function respondImpValues(request,response){

// First, construct a JSON table with our received pin val

ues.
local pinTable = {
"pinl": ""+_pinl+"", // e.g.: "pin1l"™ : "1"
"pin2": ""+_pin2+"",
"pin5": ""+_pin5+"", // e.g.: "pin5" : "48491"
"pin7": ""+_pin7+"",
"pin8": ""+_pin8+"",
"pin9": ""+_pin9+"",
"voltage": ""+_voltage+"" + " V", // e.g.: "voltag
e" @ "3.274 V"

// the http.jsonencode(object) function takes a squirrel v
ariable and returns a
// standardized JSON string. - https://electricimp.com/doc

Page 34 of 40

s/api/http/jsonencode/
local jvars = http.jsonencode(pinTable);

// Attach a header to our response.

// "Access-Control-Allow-Origin: *"
source sharing

// https://electricimp.com/docs/api/httpresponse/header/

response.header("Access-Control-Allow-Origin", "*");

allows cross-origin re

// Send out our response.

// 200 is the "OK" http status code

// jvars is our response string. The JSON table we constru
cted earlier.

// https://electricimp.com/docs/api/httpresponse/send/

response.send (200, jvars);

// device.on("impValues") will be called whenever an "impValue
s" request is sent
// from the device side. This simple function simply fills up
our global variables
// with the equivalent vars received from the imp.
device.on("impValues", function(iv) {

_pinl = iv.pinil;

_pin2 = iv.pin2;

_pin5 = iv.pin5;

_pin7 = iv.pin7;

_pin8 = iv.pin8;

_pin9 = iv.pin9;

_voltage = iv.voltage;

s

11111111117
// Setup //
11111111117

// http.onrequest(function) sets up a function handler to cal
1 when an http

// request is received. Whenever we receive an http request ca
11 respondImpValues

// https://electricimp.com/docs/api/http/onrequest/
http.onrequest(respondImpValues);

There are two things to point out here. The first is the device.on function.
This function sets up a handler to be called when the imp sends a defined
string. In this case, we're looking for the imp sending “impValues”. The data
associated with this string is a table, full of all of the imp’s pin readings.
That function is called every time the imp sends that specific string to the
agent.

The real magic happens in the respondImpvalues() function. The agent
sets this function as the handler for any HTTP request (using the
http.onrequest function). This function constructs a JSON string of data,
in the form of “"key”:“value”, “key”:“value”, ...,"“, which the requesting HTTP
client should be able to parse and understand.

Check the comments in the code for more information on the agent code.

For now, Build and Run the code. Don’t expect it to do anything of interest
until we add the last bit of magic...

The Web App - AJAX, jQuery, ISON Oh My!

The final piece to this puzzle is constructing a web page that can both send
an HTTP request and deal with the response from the agent.

Page 35 of 40

Page 36 of 40

Create a new HTML file named pinview.html . Paste the code below into
it.

<html>
<head>
<title>Electric Imp Breakout</title>
<script src="http://code.jquery.com/jquery-1.9.1.min.js">
</script>
<script src="http://code.jquery.com/mobile/1.3.1/jquery.mo
bile-1.3.1.min.js"></script>
<script>
$(function() {
// Edit these values first! The externalURL variab
le should be the
// unique URL of your agent. e.g. the last part o

// https://agent.electricimp.com/UpyYpRLmBB7m

// pollRate defines how often the values on your p
age will refresh.

var externalURL ="UpyYpRLmBB7m";

var pollRate ="1000";

function poll(){
// Construct an ajax() GET request.
// http://www.w3schools.com/jquery/ajax_ajax.a
sp

$.ajax({

type: "get",

url: "https://agent.electricimp.com/"+exte
rnalURL, // URL of our imp agent.

dataType: "json", // Expect JSON-formatt
ed response from agent.

success: function(agentMsg) { // Functio
n to run when request succeeds.

// jQuery find "pinl" id and overwrit
e its data with "pinl" key value in agentMsg
$("#pinl").html(agentMsg.pin
1);
$("#pin2").html(agentMsg.pin2);
$("#pin5").html(agentMsg.pin5);
$("#pin7").html(agentMsg.pin7);
$("#pin8").html(agentMsg.pin8);
$("#pin9").html(agentMsg.pin9);
$("#vin").html(agentMsg.voltage);

updateBG(agentMsg.pin5); // Try thi
s if you have a photocell connected to pin 5
s
error: function(err) {
console.log("err"+ err.status)

s

// setInterval is Javascript method to call a func
tion at a specified interval.

// http://www.w3schools.com/jsref/met_win_setinter
val.asp

setInterval(function(){ poll(); }, pollRate);

// This function updates the
function updateBG(lightSensor)

{
if (lightSensor > 30000)

{

Page 37 of 40

document.body.style.backgroundColor = "#FF
FFFF";
}
else
{
document.body.style.backgroundColor = "#AA
AAAA™;
}
}
}s
</script>
</head>
<body>
<h3>Imp Pins:</h3>
<div id="pins">
<p> Pin 1: <!-- This is where t

he pin 1 reading will go --></p>

<p> Pin 2: <!-- This is where t
he pin 2 reading will go --></p>

<p> Pin 5: <!-- This is where t
he pin 5 reading will go --></p>

<p> Pin 7: <!-- This is where t
he pin 7 reading will go --></p>

<p> Pin 8: <!-- This is where t
he pin 8 reading will go --></p>

<p> Pin 9: <!-- This is where t
he pin 9 reading will go --></p>

<p> Voltage: <!-- This is where
the voltage reading will go --></p>

</body>

</html>

Before saving and closing the file, edit this line of code to point to your
agent’s unique URL:
var externalURL ="UpyYpRLmBB7m"; // Put your agent's unique URL here

Sweet! Save and open the file with your favorite web browser. Assuming
your imp is running with the new device/agent code, you should see
something like this:

Those 1’s, 0’s, and other numbers might be a little different on your screen.
Try pressing a button. Or cover the photocell. Or mess with the imp’s pins
in some other way. Are the values changing? How cool is that!

The code for this webpage is a little ugly. It uses some web “stuff’ that my
fragile, electrical engineer mind can barely grasp. There may be a better
way to do this, but this works for us. If you find another cool way to request
and use data from the imp, let us know in the discussion section!

Towards the bottom of the HTML code is a series of tags, with
id s like “pin1”, “pin2” etc. But they’re blank. Remember those, they’ll come
in handy.

The real magic here is happening in the pol1() function in the <script>
area up top. This function sets up an AJAX) request to the Electric Imp
agent. If the request succeeds, function(agentMsg) is executed. This
function parses the JSON message received from the agent, and

Page 38 of 40

dynamically updates the data in our blank tags defined below.
poll() is setto be called every pollRate (defaulted to 1000)

milliseconds.

Whew! Hopefully all of this stuff is easy enough to pattern-match and
modify as you please. To make some other information stream to the

webpage, you have to:

1. Edit the imp Device code to send the desired data to the agent. Use

the agent.send() function to do this.

2. Edit the Agent code in two places:
1. Read the data in from the imp in the device.on() function.
2. Inan HTTP request handler, send the data out as a JSON

string.

3. Add something in the AJAX success function to look for the correct

JSON “key” and “value” combination. Then do something with that

data.

4. Add a location in the HTML body to show the data. E.g.

<!--Data goes here-->

Give it a try! It sounds like a lot of work, but most of the constructs are
already there for you to quickly add new displayable data. You could print
the imp’s measured RSSI, or do some math on the analog input reading to

turn it into a voltage.

Resources & Going Further

Now that you know how to hook up the imp and its Breakout, what project
will you be making with it? Will you be adding to the “Internet of Things”?
Need some inspiration? Check out some of these products and projects:

Wireless Arduino
Programming with Electric
Imp

Reprogram your Arduino from
anywhere in the world using the
Tomatoless Boots wireless
bootloader with the Electric Imp.

Arduino Wireless
Communication via the
Electric Imp

How to communicate between an
Electric Imp and Arduino using
serial.

Weather Station Wirelessly
Connected to
Wunderground

Build your own open source, official
Wunderground weather station that
updates every 10 seconds over Wifi
via an Electric Imp.

Pushing Data to
Data.SparkFun.com

A grab bag of examples to show off
the variety of routes your data can
take on its way to a
Data.SparkFun.com stream.

Page 39 of 40

If you're looking to interface an imp with an Arduino, check out the Electric
Imp Shield. We’ve also written a tutorial on communicating via serial
between the imp and Arduino.

Resources

The folks at Electric Imp have loads of great resources on their wiki. Among
the many links on that page, these ones stand out for being extra helpful:

Electric Imp API Reference - Here you'll find all of the imp-specific

functions.

Electric Imp Developer Forums - There’s a wealth of knowledge in

the imp community. If you've got a question, search for an answer

here, or start a new topic.

imp Card Datasheet - A good datasheet for the imp (now called the
imp001). You'll find electrical characteristics here, along with other
useful info.

imp002 Datasheet - The datasheet for the imp002 module.

If you're still left with imp-related questions, try consulting their forums.

https://learn.sparkfun.com/tutorials/electric-imp-breakout-hookup-guide/all

Page 40 of 40

11/10/2015

