BC847BPN # 45 V, 100 mA NPN/PNP general-purpose transistor Rev. 04 — 18 February 2009 Produ **Product data sheet** ### 1. Product profile ### 1.1 General description NPN/PNP general-purpose transistor pair in a very small SOT363 (SC-88) Surface-Mounted Device (SMD) plastic package. #### 1.2 Features - Low collector capacitance - Low collector-emitter saturation voltage - Closely matched current gain - Reduces number of components and board space - No mutual interference between the transistors ### 1.3 Applications ■ General-purpose switching and amplification #### 1.4 Quick reference data Table 1. Quick reference data | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |-----------------|----------------------------|--|-----|-----|-----|------| | Per trans | istor; for the PNP transis | tor with negative polarity | 1 | | | | | V_{CEO} | collector-emitter voltage | open base | - | - | 45 | V | | I _C | collector current | | - | - | 100 | mA | | h _{FE} | DC current gain | $V_{CE} = 5 \text{ V}; I_{C} = 2 \text{ mA}$ | 200 | - | 450 | | #### **Pinning information** 2. | Table 2. | Pinning | | | |----------|---------------|--------------------|----------------| | Pin | Description | Simplified outline | Graphic symbol | | 1 | emitter TR1 | D. D. D. | | | 2 | base TR1 | 6 5 4 | 6 5 4 | | 3 | collector TR2 | | TR2 | | 4 | emitter TR2 | 0 | (TR1) | | 5 | base TR2 | □1 □2 □3 | | | 6 | collector TR1 | | 1 2 3 | | | | | sym019 | | | | | | ### 45 V, 100 mA NPN/PNP general-purpose transistor # 3. Ordering information Table 3. Ordering information | Type number | Package | | | | |-------------|---------|--|---------|--| | | Name | Description | Version | | | BC847BPN | SC-88 | plastic surface-mounted package; 6 leads | SOT363 | | ### 4. Marking Table 4. Marking codes | Type number | Marking code ^[1] | |-------------|-----------------------------| | BC847BPN | 13* | ^{[1] * = -:} made in Hong Kong # 5. Limiting values Table 5. Limiting values In accordance with the Absolute Maximum Rating System (IEC 60134). | Symbol | Parameter | Conditions | Min | Max | Unit | |------------------|-----------------------------|---|--------------|------|------| | Per transis | tor; for the PNP transistor | r with negative polarity | | | | | V_{CBO} | collector-base voltage | open emitter | - | 50 | V | | V_{CEO} | collector-emitter voltage | open base | - | 45 | V | | V_{EBO} | emitter-base voltage | open collector | - | 5 | V | | I _C | collector current | | - | 100 | mA | | I _{CM} | peak collector current | single pulse;
$t_p \le 1 \text{ ms}$ | - | 200 | mA | | I_{BM} | peak base current | single pulse; $t_p \le 1 \text{ ms}$ | - | 200 | mA | | P _{tot} | total power dissipation | T _{amb} ≤ 25 °C | <u>[1]</u> _ | 220 | mW | | | | | [2] _ | 250 | mW | | Per device | | | | | | | P _{tot} | total power dissipation | T _{amb} ≤ 25 °C | <u>[1]</u> _ | 300 | mW | | | | | [2] _ | 400 | mW | | Tj | junction temperature | | - | 150 | °C | | T _{amb} | ambient temperature | | -65 | +150 | °C | | T _{stg} | storage temperature | | -65 | +150 | °C | ^[1] Device mounted on an FR4 Printed-Circuit Board (PCB), single-sided copper, tin-plated and standard footprint. ^{* =} p: made in Hong Kong ^{* =} t: made in Malaysia ^{* =} W: made in China ^[2] Device mounted on an FR4 PCB, single-sided copper, tin-plated, mounting pad for collector 1 cm². ### 45 V, 100 mA NPN/PNP general-purpose transistor ### 6. Thermal characteristics Table 6. Thermal characteristics | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |-----------------------|--|-------------|--------------|-----|-----|------| | Per transist | or | | | | | | | · -ui(j-a) | thermal resistance from junction to ambient | | <u>[1]</u> _ | - | 568 | K/W | | | | | [2] _ | - | 500 | K/W | | R _{th(j-sp)} | thermal resistance from junction to solder point | | - | - | 230 | K/W | | Per device | | | | | | | | R _{th(j-a)} | thermal resistance from junction to ambient | in free air | <u>[1]</u> _ | - | 416 | K/W | | | | | [2] _ | - | 313 | K/W | ^[1] Device mounted on an FR4 PCB, single-sided copper, tin-plated and standard footprint. ^[2] Device mounted on an FR4 PCB, single-sided copper, tin-plated, mounting pad for collector 1 cm². 45 V, 100 mA NPN/PNP general-purpose transistor FR4 PCB, standard footprint Fig 2. Per transistor: Transient thermal impedance from junction to ambient as a function of pulse duration; typical values FR4 PCB, mounting pad for collector 1 cm² Fig 3. Per transistor: Transient thermal impedance from junction to ambient as a function of pulse duration; typical values ### 45 V, 100 mA NPN/PNP general-purpose transistor ### 7. Characteristics Table 7. Characteristics $T_{amb} = 25 \,^{\circ}C$ unless otherwise specified. | Symbol | Parameter | Conditions | | Min | Тур | Max | Unit | |------------------|---|--|------------|-----|-----|-----|------| | Per trans | Per transistor; for the PNP transistor with negative polarity | | | | | | | | I _{CBO} | collector-base cut-off | $V_{CB} = 30 \text{ V}; I_{E} = 0 \text{ A}$ | | - | - | 15 | nA | | | current | $V_{CB} = 30 \text{ V; } I_E = 0 \text{ A;}$
$T_j = 150 \text{ °C}$ | | - | - | 5 | μΑ | | I _{EBO} | emitter-base cut-off current | $V_{EB} = 5 \text{ V}; I_{C} = 0 \text{ A}$ | | - | - | 100 | nA | | h _{FE} | DC current gain | $V_{CE} = 5 \text{ V}; I_{C} = 2 \text{ mA}$ | | 200 | - | 450 | | | V_{CEsat} | collector-emitter | $I_C = 10 \text{ mA}; I_B = 0.5 \text{ mA}$ | | - | - | 100 | mV | | | saturation voltage | $I_C = 100 \text{ mA}; I_B = 5 \text{ mA}$ | <u>[1]</u> | - | - | 300 | mV | | V_{BEsat} | base-emitter saturation voltage | $I_C = 10 \text{ mA}; I_B = 0.5 \text{ mA}$ | | - | 755 | - | mV | | V_{BE} | base-emitter voltage | $I_C = 2 \text{ mA}; V_{CE} = 5 \text{ V}$ | | | | | | | | TR1 (NPN) | | | 580 | 655 | 700 | mV | | | TR2 (PNP) | | | 600 | 655 | 750 | mV | | C _c | collector capacitance | $I_E = i_e = 0 A; V_{CB} = 10 V;$
f = 1 MHz | | | | | | | | TR1 (NPN) | | | - | - | 1.5 | pF | | | TR2 (PNP) | | | - | - | 2.2 | pF | | C _e | emitter capacitance | $I_C = I_c = 0 \text{ A}; V_{EB} = 0.5 \text{ V};$ f = 1 MHz | | | | | | | | TR1 (NPN) | | | - | 11 | - | pF | | | TR2 (PNP) | | | - | 10 | - | pF | | f _T | transition frequency | $I_C = 10 \text{ mA}; V_{CE} = 5 \text{ V};$
f = 100 MHz | | 100 | - | - | MHz | ^[1] Pulse test: $t_p \le 300 \ \mu s; \ \delta \le 0.02.$ 45 V, 100 mA NPN/PNP general-purpose transistor $$V_{CE} = 5 V$$ - (1) $T_{amb} = 150 \, ^{\circ}C$ - (2) $T_{amb} = 25 \, ^{\circ}C$ - (3) $T_{amb} = -55 \,^{\circ}C$ Fig 4. TR1 (NPN): DC current gain as a function of collector current; typical values $T_{amb} = 25 \, ^{\circ}C$ Fig 5. TR1 (NPN): Collector current as a function of collector-emitter voltage; typical values - $V_{CE} = 5 V$ - (1) $T_{amb} = -55 \, ^{\circ}C$ - (2) T_{amb} = 25 °C - (3) $T_{amb} = 150 \, ^{\circ}C$ Fig 6. TR1 (NPN): Base-emitter voltage as a function of collector current; typical values $I_{\rm C}/I_{\rm B} = 20$ - (1) $T_{amb} = -55$ °C - (2) $T_{amb} = 25 \, ^{\circ}C$ - (3) $T_{amb} = 150 \, ^{\circ}C$ Fig 7. TR1 (NPN): Base-emitter saturation voltage as a function of collector current; typical values BC847BPN_4 © NXP B.V. 2009. All rights reserved. 45 V, 100 mA NPN/PNP general-purpose transistor $$I_{\rm C}/I_{\rm B} = 20$$ - (1) $T_{amb} = 150 \, ^{\circ}C$ - (2) $T_{amb} = 25 \, ^{\circ}C$ - (3) $T_{amb} = -55 \, ^{\circ}C$ Fig 8. TR1 (NPN): Collector-emitter saturation voltage as a function of collector current; typical values $$V_{CE}$$ = 5 V; f = 1 MHz; T_{amb} = 25 °C Fig 9. TR1 (NPN): Transition frequency as a function of collector current; typical values ### 45 V, 100 mA NPN/PNP general-purpose transistor $$V_{CE} = -5 \text{ V}$$ - (1) $T_{amb} = 150 \, ^{\circ}C$ - (2) $T_{amb} = 25 \, ^{\circ}C$ - (3) $T_{amb} = -55 \, ^{\circ}C$ Fig 10. TR2 (PNP): DC current gain as a function of collector current; typical values $T_{amb} = 25 \, ^{\circ}C$ Fig 11. TR2 (PNP): Collector current as a function of collector-emitter voltage; typical values - $V_{CE} = -5 \text{ V}$ - (1) $T_{amb} = -55 \,^{\circ}C$ - (2) $T_{amb} = 25 \, ^{\circ}C$ - (3) $T_{amb} = 150 \, ^{\circ}C$ Fig 12. TR2 (PNP): Base-emitter voltage as a function of collector current; typical values $I_{\rm C}/I_{\rm B} = 20$ - (1) $T_{amb} = -55 \, ^{\circ}C$ - (2) $T_{amb} = 25 \, ^{\circ}C$ - (3) $T_{amb} = 150 \, ^{\circ}C$ Fig 13. TR2 (PNP): Base-emitter saturation voltage as a function of collector current; typical values BC847BPN_4 © NXP B.V. 2009. All rights reserved. ### 45 V, 100 mA NPN/PNP general-purpose transistor $$I_{\rm C}/I_{\rm B} = 20$$ - (1) $T_{amb} = 150 \, ^{\circ}C$ - (2) $T_{amb} = 25 \, ^{\circ}C$ - (3) $T_{amb} = -55 \, ^{\circ}C$ Fig 14. TR2 (PNP): Collector-emitter saturation voltage as a function of collector current; typical values $$V_{CE} = -5 \text{ V}; f = 1 \text{ MHz}; T_{amb} = 25 ^{\circ}\text{C}$$ Fig 15. TR2 (PNP): Transition frequency as a function of collector current; typical values 45 V, 100 mA NPN/PNP general-purpose transistor # 8. Package outline # 9. Packing information Table 8. Packing methods The indicated -xxx are the last three digits of the 12NC ordering code.[1] | Type number | Package | Description | | Packing quantity | | |-------------|---------|------------------------------------|-----|------------------|-------| | | | | | 3000 | 10000 | | BC847BPN | SOT363 | 4 mm pitch, 8 mm tape and reel; T1 | [2] | -115 | -135 | | | | 4 mm pitch, 8 mm tape and reel; T2 | [3] | -125 | -165 | ^[1] For further information and the availability of packing methods, see Section 13. [2] T1: normal taping [3] T2: reverse taping ### 45 V, 100 mA NPN/PNP general-purpose transistor # 10. Soldering # 45 V, 100 mA NPN/PNP general-purpose transistor # 11. Revision history ### Table 9. Revision history | Document ID | Release date | Data sheet status | Change notice | Supersedes | | | |----------------|--|-----------------------------------|------------------------|--------------------------------|--|--| | BC847BPN_4 | 20090218 | Product data sheet | - | BC847BPN_3 | | | | Modifications: | The format of NXP Sem | | edesigned to comply wi | th the new identity guidelines | | | | | Legal texts h | ave been adapted to the ne | ew company name whe | re appropriate. | | | | | Section 4 "M | arking": updated | | | | | | | Section 7 "Characteristics": enhanced | | | | | | | | Section 9 "Packing information": added | | | | | | | | Section 10 "Soldering": added | | | | | | | | Section 12 "I | <u>egal information":</u> updated | | | | | | BC847BPN_3 | 20011026 | Product specification | - | BC847BPN_2 | | | | BC847BPN_2 | 19990426 | Preliminary specification | n - | BC847BPN_1 | | | | BC847BPN_1 | 19970709 | Preliminary specification | n - | - | | | | | | | | | | | #### 45 V, 100 mA NPN/PNP general-purpose transistor ### 12. Legal information #### 12.1 Data sheet status | Document status[1][2] | Product status[3] | Definition | |--------------------------------|-------------------|---| | Objective [short] data sheet | Development | This document contains data from the objective specification for product development. | | Preliminary [short] data sheet | Qualification | This document contains data from the preliminary specification. | | Product [short] data sheet | Production | This document contains the product specification. | - [1] Please consult the most recently issued document before initiating or completing a design. - [2] The term 'short data sheet' is explained in section "Definitions" - [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com. #### 12.2 Definitions Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information. Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail. #### 12.3 Disclaimers **General** — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk. **Applications** — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability. Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail. **No offer to sell or license** — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. **Quick reference data** — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding. #### 12.4 Trademarks Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners. #### 13. Contact information For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com © NXP B.V. 2009. All rights reserved. ### 45 V, 100 mA NPN/PNP general-purpose transistor ### 14. Contents | 1 | Product profile | |------|---------------------------| | 1.1 | General description | | 1.2 | Features | | 1.3 | Applications | | 1.4 | Quick reference data | | 2 | Pinning information 1 | | 3 | Ordering information 2 | | 4 | Marking 2 | | 5 | Limiting values | | 6 | Thermal characteristics 3 | | 7 | Characteristics 5 | | 8 | Package outline 10 | | 9 | Packing information | | 10 | Soldering 11 | | 11 | Revision history | | 12 | Legal information | | 12.1 | Data sheet status | | 12.2 | Definitions | | 12.3 | Disclaimers | | 12.4 | Trademarks 13 | | 13 | Contact information | | 11 | Contents 14 | Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'. © NXP B.V. 2009. All rights reserved. For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com Date of release: 18 February 2009 Document identifier: BC847BPN_4