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Abstract

It is shown that the motion of an electron in a periodic potential,

such as is found in a solid, plus a slowly varying perturbative potential,

can be derived from the energy in the periodic lattice alone, as a function

of momentun or wave number. A Schrodinger equation is set up, in which the

Hamiltonian is the sum of this energy in the periodic lattice - the momentum

being replaced by a differential operator - and of the perturbative potential

energy. The resulting wave function modulates atomic functions to provide

a solution of the perturbed problem. This method is applied to give proofs

of simple theorems in conduction theory, to discuss the energy levels of

impurity atoms in a semiconductor, and to consider excitons; all are prob-

lems which have been considered before, but which are treated more straight-

forwardly by the present method. Applying the method statistically, the

combined Poisson's equation and Fermi-Dirac statistics is set up for impuri-

ties in metals and semiconductors, and for the theory of rectifying barriers.





ELECTRONS IN PERTURBED PERIODIC LATTICES

I. Introduction

Many of the most important problems in the theory of solids concern

the motion of electrons in perturbed periodic lattices. Examples of such

problems are: the effect of impurities, of the P- or N-type, in semi-

conductors; the behavior of rectifying barriers, either between semiconduc-
tors and metals, or between P- and N-type semiconductors; and the behavior
of optically excited energy levels in crystals. All these problems have
received much discussion in the literature, by methods involving various

approximations to the solution of the wave-mechanical problem of the motion

of electrons in a perturbed periodic lattice. It is the purpose of this

paper to point out that there is a quite-general theorem in wave mechanics,

regarding the motion of an electron in such a perturbed lattice, which
serves to unify the treatment of all these problems. This theorem was
essentially discovered by Wannier,l and used by him in discussing excited

energy levels of crystals. That problem, unfortunately, is one of the most
complicated to which the method can be applied, and the theorem has tended

to lie buried in Wannier's paper, attracting little attention, without gen-
eral realization of the important simpler problems to which it is applicable.
James2 has independently arrived at many of the qualitative results of the

present paper, but is apparently unaware of the importance of Wannier's

theorem, and bases his conclusions on quite-different and less-powerful

methods of discussing the problem, applicable only in the one-dimensional

case, though he has carried his approximations one step further than we have.
A number of other writers have used similar less-powerful methods for special

problems.3

In the present paper, we shall first state the general theorem, and

prove it by a method similar to that used by Wannier for his special problem.
We shall then apply it to discussion of the important problems, such as

impurity semiconductors and excited energy levels, which result in discrete
energy levels. For problems of rectifying barriers and surface states, a

statistical approach is more appropriate, and we point out the relation of

1. G. H. Wannier, Structure of Electronic Excitation Ievels in Insulating Crystals",
Phys. Rev. 52, 191 (1937).

2. H. M. James, "Electronic States in Perturbed Periodic Systems", unpublished report
of Contract No. W-36-039-SC-32020, Department of Physics, Purdue University. The
writer is indebted to Prof. K. Lark-Horovitz, Director of the project, for the
privilege of inspecting this report.

3. For instance, S. C. Tibbs, Trans. Far. Soc. 35, 1471 (1939), who discussed excited
energy levels in NaCl, and S. Peckar, J. Phys. U.S.S.R. 10, 431 (1946).

-1-



our theoremto self-consistent field methods, and thence to statistical

treatment by the Fermi-Dirac statistics. This leads us to a discussion of

rectifying barriers and surface states, not essentially different from that

appearing in the literature, but somewhat more general and unified.

II. The Motion of Electrons in Perturbed Periodic Lattices

In Appendix I we give a general proof of our theorem; in this section

we shall merely state it and discuss its applications. The theorem is one

which starts by assuming that the problem of the motion of electrons in a

given periodic lattice has been solved, and uses that solution as the

starting point for discussion of the problem in which the potential is the

sum of the original periodic potential and an additional potential varying

only slightly from atom to atom of the periodic potential. We first remind

the reader of the nature of the solution of the periodic potential problem.

We describe the solution as if we were considering a metal, although the

extension to non-metals with more than one atom per cell presents no diffi-

culties. We surround each atom by an appropriate polyhedral cell, the

vectors from the origin (located at the nucleus of one of the atoms) to

other atoms being denoted by Qk' so that the potential is unchanged when we

make the translation Qk. Then each solution of the wave equation can be

characterized by a vector quantity p, of the dimensions of a momentum, such

that the wave function is multiplied by a factor exp [(i/h)p.Qk] when we

make the translation Qk. Bloch5 made a well-known approximation to the form

of the wave function by starting with functions u(q-Qk) (where q is the

vector position of the point where we are finding the wave function) repre-

senting the wave function of an electron at a vector displacement q-Qk from

the nucleus of the kth atom, in the case where that atom alone was present;

such a function is generally called an atomic function. He then set up the

approximate wave function

b(p,q) = exp [(')pQk]}u(qQk) (1)
k

which clearly has the required periodicity property and which, at the same

time, behaves in the neighborhood of each atom like an atomic wave function.

This Bloch function b(p,q) suffers from two defects. First, it is not

an exact solution of the problem; secondly, the functions u(q-Qk), for dif-

ferent k's, are not orthogonal to each other, so that in calculating any

sort of integrals over the Bloch functions we meet integrals coming from

4. We use substantially the notation in J. C. Slater, "The Electronic Structure of
Metals", Rev. Mod. Phys. 6, 209 (1934).

5. F. Bloch, Zeits. f. Physik, 52, 555 (1928).
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lack of orthogonality. WannierI showed that both difficulties can be over-

come by setting up a new set of atomic functions a(q-Qk) (see Appendix I

for their definition), similar to the u's near each atom, but oscillating

and falling off in amplitude like the function (sin x)/x at a distance from

the atom. These functions have the properties that they are normalized, are

exactly orthogonal to each other, and when they are substituted in an ex-

pression like (1) they form an exact solution of the problem of the periodic

lattice. Thus the real solution 4o0(p,q) can be written in the form

o (P,q)= E. fexp [()PQka(qQk) (2)

k

The factor (1/N 1/2), where N is the total number of atoms in the crystal,

is introduced so that 9o0 will be normalized when integrated over the whole

volume of the crystal. We notice from (2) that the function o (p,q) is

periodic in p-space, or momentum space: if p is increased by one of the

vectors Pj of the reciprocal lattice, defined by the relation PjQk =

integer x h, the expression on the right side of (2) is unchanged. Then the

energy E(p), the energy of the level associated with a given p, will like-

wise be a periodic function of p, being unchanged when p increases by any

one of the Pj's. All solutions can then be obtained by allowing p to range

over the interior of the central zone in momentum space; it is easily shown

that, when p is quantized by the boundary conditions appropriate to a finite

crystal with N atoms, there will be N allowed stationary states. For a

given p, there will, of course, be an infinite number of energy levels, just

as for an isolated atom. The N levels continuously oined together, corre-

sponding to the various allowed p's, form an energy band; we see that there

are an infinite number of such bands. Their properties and relations to the

theory of metals (where they overlap) and semiconductors or insulators (where

gaps in energy remain between them) are well known.

Now we are ready to consider our problem of the perturbed periodic lat-

tice. Let the Hamiltonian function of the unperturbed problem (the kinetic

energy plus periodic potential energy) be Ho, so that the ~O's satisfy the

equation

Ho =(p,q) = E(p)4o(p,q) . (3)

Then we wish to find functions n(q), n being a quantum number, satisfying

H4n(q) = Enn(q) , (4)

where H = Ho + H1, H1 being the slowly varying function of q. We try to

express the n' in the form:
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n (q) = t(Qk) a(q-Qk) · (5)

k

That is, we try to find a functionJ 'q) which we can use to modulate the

atomic functions a(q-Qk) to get the correct solution of the problem, replacing

the exponential function (1/11/2) exp [(i/h)p.q] which is used in the problem

of the unperturbed periodic potential, in the solution (2). Our theorem

now states that n(q) satisfies the following differential equation, provided

H1 varies slowly with position, so that it does not change its value greatly
from one atom to the next:

[E,(-i ) + H1l(q)]N*n(q) = E *T (q) *(6)

Here the first term Eo(-im a/aq) stands as an abbreviation for the differ-

ential operator in which Eo, regarded as a function of the three rectangular

components of the vector p, is transformed by replacing p, by --ih a/ax,

py by -ih /ay, etc., as in the ordinary kinetic energy operator in

Schrodinger's equation. In (6) we then have a Schrodinger equation for

*,(q), in which the perturbative potential H 1 appears as the potential energy,

while the kinetic energy operator is derived from the energy Eo(p) of the

unperturbed problem by replacing p by a differential operator. It is this

theorem which is proved in Appendix I, and which was applied to the problem

of excited energy levels by Wannier.l By means of it, we effectively reduce

the problem of electrons in periodic lattices and additional perturbing

potentials to a problem much like that of free electrons in the perturbing

potential (as we shall show in the next section) and hence make the problem

of electrons in periodic lattices not much more complicated than free-

electron theory.

III. Applications of the General Theorem

The first application which we shall make of our general theorem (6)

is to the motion of wave packets of electrons in the perturbed periodic

lattice. We can set up such wave packets just as well from the functions

*n' which modulate the atomic functions, as from the functions +n which

take into account the oscillations in the neighborhood of each atom. It is

a well-known theorem of quantum mechanics that the center of gravity of a

wave packet moves according to the classical Hamiltonian equations. Since

(6) is derived from the Hamiltonian Eo(p) + Hl(q), we see that the equations

of motion of the packet (writing them in terms of their rectangular com-

ponents) are:

-4-
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dix aE 0 d a Eo dz a Eo-p J (7)Px P M = py ' E = apz '
and

dP x a H 1 dp aH 1 dpz a H1
-= -ax · - ay -az · (8)

Both these theorems are familiar, but they are ordinarily derived by much

more involved methods than are used here.6 In (7) we see the formula for

the velocity of a wave packet in terms of the gradient of the function E o

in momentum space, and in (8) the statement that the momentum p of a packet

is governed by the classical equation of motion in terms of the additional

force resulting from the perturbation H1. These two results are the basis

of most of the band theory of electrical conduction in solids, but it has

hardly been realized that they form merely the classical Hamiltonian equa-

tions of the Hamiltonian of Eq. (6).

Our next example will be the behavior of wave packets near the bottom

or top of an energy band, and hence the concept of effective mass. At the

bottom of a band, provided the axes are properly oriented, the energy Eo0

may be written in the form

2 2 2

E(p) = E1 + x + a +z (9)

Here mx, my m are three coefficients of the dimensions of masses and E

the energy of the bottom of the band. In this case, (7) and (8) become

dx Px dPx a H1
T=' mx dt = - ',

(10)
d2x aH 1

mx dt a x

with similar equations for the y- and z-components, showing that the packet

obeys an ordinary equation of motion corresponding to a particle of mass mx

for the x-coordinate, my for the y-coordinate, and mz for the z-coordinate.

Similarly, near the top of a band, we have:

6. R. Peierls, Zeits. f. Physik, 53, 255 (1929); F. Bloch, Zeits. f. Physik, 52,
555 (1928); A. Sommerfeld and H. Bethe, "Handbuch der Physik", 2d. Ed., vol. XXIV
(Berlin, 1933) pp. 374-375, 506-509; H. Jones and C. Zener, Proc. Roy. Soc. A144,
101 (1934); C. Zener, Proc. Roy. Soc. A145, 523 (1934); L. Brillouin, "Les electrons
dans les metaux du point de vue ondulatoire" (Hermann, Paris, 1934); J. C. Slater,
Rev. Mod. Phys. 6, 209 (1934), pp. 259-262 and Appendix VI; Mott and Jones,
"Properties of Metals and Alloys" (Oxford, 1936) pp. 92-96; W. V. Houston, Phys. Rev.
.7, 184 (1940); and many other references.
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2 2 2

1 X x (11)
x y z

where these m 's are different from those in (9), but still positive.

Hence the equations corresponding to (10) are

d2x aH1
dx = ax etc., (12)

'x dt

showing that a packet at the top of a band will be accelerated by an external
field in the opposite direction to a particle of positive mass exposed to
the perturbative force. It is well known, and we need not repeat the dis-

cussion, that this leads a hole in an almost-filled band, near the top of

that band, to be accelerated as a positively charged particle of electronic

charge and mass mx, my, mz would be.
If we are near the top or bottom of a band, so that one of the approxi-

mations (9) or (11) is correct, it is clear that equation (6) reduces to a

Schrodinger equation of the conventional type, with a quadratic differential
operator for the kinetic energy (though, in general, with different coeffi-
cients for the x-, y-, and z-derivatives). We can thus solve it by con-
ventional methods, resulting in discrete energy levels as in atomic problems.

We shall shortly give examples of this situation. In case the energy is

such that these approximations are not appropriate, the problem becomes more

complicated, higher derivatives entering the differential equation. In such

circumstances, at least in one-dimensional problems, the most appropriate
method of solution would presumably be the WKB approximation. This depends

on finding the momentum p, which is equal to h/t, where is the wavelength,

in terms of position. From the equation Eo(p) + Hl(q) E we can find p,
and hence set up the wave function and quantum condition.

There is a useful graphical method of discussing the solution, in the

one-dimensional case (James2 makes considerable use of this method). This
is shown in Figure 1. In Figure l(a), we show a schematic periodic potential,
with its energy bands. In Figure l(b), we draw the energy bands, pushed
upward for each value of x by the amount Hl(x), the potential energy. We

also draw a horizontal line of constant energy, E. We now see that the
kinetic energy and momentum are determined by the position of E with respect

to the energy bands, just as they would be in the absence of H1. For
instance, at point A in Figure l(b), the energy E is in the same position
with respect to the energy band which the energy E' occupies in Figure l(a).
Thus, at this point A, in the presence of the potential H, the de Broglie
wavelength of the function T will be the same as the de Broglie wavelength
of the sinusoidal function in Figure l(a), corresponding to energy E'.

-6-
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H1
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E

(al

Fig. l(a) Periodic potential, with Fig. l(b) Energy bands and potential
energy bands (shaded). pushed upward by amount H1 (shown in

upper curve). Line of constant energy
E cuts band, at point A, at same rela-
tive height as energy E' in Fig. l(a).
B and C, reversing points of oscillation
of particle.

Our graphical representation of Figure l(b) thus has many of the character-
istics of an energy diagram in classical mechanics, in which potential

energy and total energy are plotted as functions of x, the difference giving
the kinetic energy. When E, in Figure l(b), lies outside any of the energy
bands, the kinetic energy is negative, the wavelength imaginary, and the
wave function is damped off exponentially. When E is inside one of the
bands, kinetic energy is positive, and the wavelength real. A classical

particle of energy E, moving according to the classical Hamiltonian

Eo(p) + H(q), would then oscillate between points like B and C, Figure l(b),
reversing at each point as its kinetic energy and momentum become zero, and
a quantized particle will obey a quantum condition. Such a picture, as
James has emphasized, allows us to deduce the nature of the stationary
states and wave functions in such a problem. If, for instance, the external

field represented by H1 is constant, so that the energy bands are tilted at
a constant angle, the electron will oscillate back and forth in coordinate

space with a very large amplitude (for a small external field), at the same
time having its position in the energy band go from bottom to top and back
again, in a way familiar in the theory of electrical conduction.

Let us now consider the application of our theorem to cases actually
met in the theory of solids. First we take P- and N-type impurity atoms.
The N-type is a little easier to understand, and we deal with it first. It

is usually an atom substituted for one of the atoms normally present in the
lattice, and containing more valence electrons than the atom which it
replaces; for definiteness, we may be considering an atom of P or As in a
lattice of Si or Ge. If the atom loses an electron, it has enough remaining
electrons to fit properly into the lattice, but it then carries a positive

-7-
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charge, which introduces a Coulomb potential (modified as to its absolute

value by the dielectric constant of the material) into the lattice. Thus

the energy bands, as modified by this Coulomb potential, will be as shown

in Figure 2. In these bands, we clearly have the possibility of discrete

////7///am /X/OF CONDUCTION BAND

)CCUPIED AT
ICTOR

I VALENCE ELECTRON
BAND (OCCUPIED)

LEVEL IN VALENCE BAND,
ALWAYS OCCUPIED

Fig. 2. Continuous and discrete levels surrounding impurity atom in
N-type semiconductor. E1 , energy of a discrete level; E2 , energy in continuum.

energy levels, of a hydrogen-like sort, at energies such as E1. Just com-

pensating these levels, which if they were occupied would introduce extra

charge near the impurity, we see that with higher energies in the band, such

as E2, the electrons will effectively be repelled like positive charges as

they approach too close to the impurity atom, their kinetic energy going

to zero and the electrons being turned back at the point where the line at

height E2 emerges from the top of the energy band. Thus these other states

will provide less than the normal charge near the impurity, so that, if all

the states of a band are occupied, we shall still have just enough charge

to account for one electron per atom of each spin in the band. In the N-type

semiconductor, these modified levels are all occupied in the lower, or

valence-electron, band. We still have one electron per impurity atom left

over, however, and this at low temperature will go into the lowest discrete

level below the upper (or conduction) band, but at slightly higher tempera-

tures will go into one of the conduction levels.

The P-type semiconductor is handled similarly. A P-type impurity atom

normally contains one less valence electron than the atom of the lattice,

e.g., an atom of Al or B in a lattice of Si or Ge. If we provide such an

atom with an extra electron, to make it a negative ion, it has the right

number of electrons to fit into the lattice. Then the modified energy

bands will be as in Figure 3, clearly giving discrete levels lying above

the bands, with compensating diminished electron density in those wave

-8-

II.



CONDUCTION BAND
(UNOCCUPIED)

., ,,~-- ~ DISCRETE IMPURITY LEVEL ABOVE VALENCE
BAND, UNOCCUPIED AT OK

VALENCE-ELECTRON
BAND (OCCUPIED AT
OOK)

Fig. 3 Continuous and discrete levels surrounding impurity
atom in P-type semiconductor.

functions lying at the bottom of the band. In the neutral crystal, there

must be one less electron per impurity atom than the number necessary to

fill the complete valence-electron band, so that at low temperatures this

electron will be missing from the discrete level lying above the band; but

at higher temperatures it will often be missing from one of the continuous

levels lying in the band, leading therefore to hole conduction.

The case of excited energy levels in crystals, which has often been

discussed (see, for instance, Wannier, loc. cit.), is more involved, but

similar to these cases of impurities. It is, perhaps, easiest to under-

stand in the case where a tightly bound, or x-ray, electron is excited to

the conduction band.7 If an atom of the crystal has lost one of its inner

electrons, it acts approximately, so far as its valence electrons are con-

cerned, like an atom with a nuclear charge greater by one unit; the missing

electron can act like an additional valence electron. Thus the atom tem-

porarily plays the role of an N-type impurity atom, and will set up discrete

energy levels as in Figure 2. When the corresponding emission spectrum is

observed, resulting from an electron in the valence-electron band falling

down into the empty x-ray level, there is the possibility that the electron

may come from one of the levels in the continuum of the valence-electron

band (the possibility considered by Skinner and O'Bryan, discussed in many

references, some given in Ref. 6), but also the possibility that it may

come from one of the discrete levels lying below the valence-electron band,

resulting therefore in a longer-wave radiation than we should otherwise

find. Such tails are observed in the soft x-ray emission spectra, and

Seitz suggests this interpretation of them.

7. The application of the theory to this case, the soft x-ray problem of Skinner and
O'Bryan and other writers, is discussed by F. Seitz, "Modern Theory of Solids",
McGraw-Hill Book Co. Inc., (New York, 1940) pp. 36-438.

-9-
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The really optical case of excitation, where an electron is removed
from the valence-electron band to a conduction band, is more complicated,
in that both electron and hole are readily mobile. We may then best describe
it essentially as Wannier did in Ref. 1, and as Frenkel had done earlier.

Considering it classically, the electron in the conduction band attracts the

hole in the valence-electron band, and, since each has a comparable effective

mass, they each execute hydrogen-like orbits about their center of mass,

resulting in certain discrete states. These discrete states lie below the
continuous states; that is, the electron effectively is at the bottom of the

conduction band, like the discrete states in an N-type semiconductor as in
Figure 2, while the positive hole is at the top of the valence electron band,
like the discrete states in a P-type semiconductor as in Figure 3. The

electron and hole together form a stable structure, however, which, because
of the mobility of both electron and hole, is free to wander through the

crystal, forming what has been called an exciton. (See Ref. 8.) Being a

neutral structure, it carries no current. Less energy is required to set

up such an exciton than to raise an electron from the valence-electron band
to the conduction band, leaving both electron and hole dissociated from each

other and free to move, so that the wavelength for absorption to this exciton

level, which does not result in photoconductivity, is longer than for the

limit of photoconductivity. It is well known that such exciton levels exist,
for instance, in the alkali halides.9

IV. Statistical Treatment of Perturbed Periodic Lattices

A study of the stationary states of the electrons in the perturbed

lattice, such as we have been making in the preceding section, is really
only half the problem; we wish, as well, to ask which levels will be occu-

pied, which ones empty. In thermal equilibrium, which is the only case we

shall consider, we must then supplement our theory by use of the Fermi-Dirac
statistics: the average number of electrons in a state of total energy E,

with a given spin, is l/{exp[(E-EF)/kT] + l}, where EF is the electrochemical
potential or Fermi level. From this fact, supplemented by the knowledge of
the wave functions •n' we can find the average charge density at each point
of the lattice. It is by no means necessarily true that this charge density
will automatically come out zero; hence we have space charge, and from this
space charge we can compute an electrostatic potential by Poisson's equation.
We can then apply a self-consistent condition, in essentially the sense of

8. J. Frenkel, Phys. Rev. 37, 17 (1931); 37, 1276 (1931); Phys. Zeits. d. SowJetunion
2, 158 (1936).

9. See, for instance, J. C. Slater and W. Shockley, Phys. Rev. 50, 705 (1936), in which
the theory of the exciton is considered without benefit of Wannier's theorem.

-10-
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Hartree: we can demand that the potential energy of an electron in this

potential be the same quantity Hl(q) which is responsible for perturbing

the energy bands.

To set up our self-consistent condition, we must first find the net

charge density as a function of position arising from our assumed energy

bands with the assumed Fermi level. First we shall find this in the case

of the unperturbed periodic potential. In this potential, let the number

of energy levels per unit volume, in the energy range dE, be n(E) dE; this

can be found, as is well known, from the volume of momentum space lying

between surfaces Eo(p) = E and Eo(p) = E + dE, since states are distributed

in momentum space with uniform density in the periodic case. In forbidden

bands of energy, n(E) is, of course, equal to zero. Let No be the number

of electrons per unit volume necessary to render the crystal electrically

neutral. Then the excess number of electrons per unit volume, with an

arbitrary value of EF, is

N(EF) = n(E) exp[( ) + ] dE-N o . (13)

Ordinarily, we determine EF by the condition that N must be zero, or the

lattice uncharged, so that we set N(EF) in (13) equal to zero. Our present

problem, however, is different: we wish to investigate the results of

volume charge in the lattice, resulting from N being not zero but, instead,

a slowly varying function of position. If we have such a volume charge,

then the potential in the lattice will differ from its periodic value by a

slowly varying function determined from the volume charge by Poisson's

equation. We let H1 be the potential energy of an electron in this slowly

varying potential, as before. Since the charge density is -Ne, where e is

the magnitude of the electronic charge, 2H1 = -Ne 2/e, where is the

permittivity of the material, or the dielectric constant times co.

In the presence of the slowly varying electrostatic potential, n(E)

will, of course, no longer be given as it was previously. We know from the

preceding sections, however, that the effect of H1 will be to push up the

energy bands with respect to their original position by an amount equal to

the local value of H 1. It seems reasonable that the number of excess elec-

trons per unit volume will then be given by N(EF-IH1) = N(), where the func-

tion N is as defined in (13), and where we introduce the abbreviation

= EF-Hl. This is an assumption much like that made in the well-known

Thomas-Fermi method of discussing atomic structure, where we assume at every

point of space that the statistical distribution of electron energies is

what would be found for free electrons moving in a constant potential equal

to the local value of the actual potential. It takes no specific account

-11-
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of the discrete energy levels, but merely handles them in a statistical

or averaged-out way. Our method differs from the Thomas-Fermi method in

three respects: we are handling our kinetic energy by the energy-band

method, so that it is given by Eo(p) instead of the usual expression; we

are dealing with a modulating function ln(q), instead of with the actual

wave function (q); and we are handling our statistics in a form appropriate

to an arbitrary temperature, rather than for the absolute zero of tempera-

ture as is done in the ordinary Thomas-Fermi method.

When we make the assumption above, we can write Poisson's equation

in the following form:

V2= NM() - -(14)

where we have used the fact that EF must be constant over all space, to

satisfy the condition for thermal equilibrium in the Fermi statistics, so

that its Laplacian is zero. In Equation (14), supplemented by Eq. (13) for

the function N, we have the general formulation of the problem of setting

up the electrostatic potential within a solid in thermal equilibrium. This

equation has, of course, been used and solved in special cases by many

writers. It has essentially been used by Schottky1 0 in an extensive series

of papers, and is similarly used by Mott and Gurney, and by Bethe.1 1 Fan1 2

has carried out careful studies of the contact between metals and between a

metal and a semiconductor, which are complete enough so that many of our

results will be merely a restatement of some of Fan's conclusions. Quite

recently, Markham and Miller1 3 have used essentially similar methods in

closely related problems. Many other writers are aware of these methods of

handling the problem. To give a complete picture, we shall state some of

the methods of solving this equation, and some of the applications to well-

known cases, as well as some new aspects of the problem.

The nature of the solution depends on the form of the function N(t).

In Figure 4 we show this function for two familiar cases: the metal and the

intrinsic semiconductor. In the first case, N increases very rapidly as 

departs from the value appropriate for no charge, and over a considerable

range it can be treated as proportional to -- o, where to is the value

associated with no charge. In the semiconductor, however, N increases very

slowly with --f , behaving approximately as a hyperbolic sine, although

10. W. Schottky, Zeits. f. Physik, 118, 539 (1941); other references quoted in this paper.

11. N. F. Mott and R. W. Gurney, "Electronic Processes in Ionic Crystals", (Oxford, 1940),
Chapter V; H. A. Bethe, M. I. T. Radiation Laboratory Report 43-12 (Nov. 23, 1942).

12. H. Y. Fan, Phys. Rev. 62, 388 (1942).

13. J. J. Markham and P. H. Miller, Jr., Phys. Rev. 75, 959 (1949).
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when becomes so large, negatively or positively, that the Fermi level

penetrates either the lower valence-electron band or the upper conduction

band, N begins to get very large, negatively or positively as the case may

be. If N( ) can be approximated as a(-to) (where a is a constant) as it

can over a considerable range in these two cases, then Eq. (14) takes on

the mathematical form of the wave equation, and solutions can be set up by

familiar methods. Thus, if we are dealing with a one-dimensional problem,

we have solutions - = exp ( x/X), where X = (e/ae2) 1/ 2, and where x is

the coordinate in the direction in which the potential is changing. As

shown by Fan,1 2 this quantity X for a metal is very small - of the order

of magnitude of an Angstrom unit; on the other hand, for an intrinsic semi-

conductor it becomes large and in the limit of zero temperature for this

case it becomes infinite. For a three-dimensional problem of spherical

symmetry, we similarly have --o = exp (+ r/X)/r, where r is the distance

from the center, and X is as given above.

We can now examine several applications of these simple results. First

we consider the metal, and the one-dimensional problem; this is met in

investigating the surface charge at the free surface of a metal in an ex-

ternal electric field. Clearly, we can adjust boundary conditons so that

the electric field at the surface resulting from the gradient of H1 has any

desired value, and yet the resulting potential will penetrate into the metal

only to a distance of the order of a single atomic layer, with the related

charge density confined to this same small depth. This allows us, in other

words, to assume an arbitrary surface charge on the surface layer of atoms

of a metal, of suitable amount to match any external boundary conditions.

Similarly, if two metals are close to each other and connected electrically,

so that they must bear surface charges enough to produce the difference of

-13-
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potential equal to their difference of work function, these surface charges
will be formed according to this same method; and as the metals are brought
into contact, the double layer between them is formed from surface charges
of the same variety at the surfaces of each. This description of the double

layer has been worked out in detail by Fan.12 Another example relating to
the metal comes from the spherically symmetrical problem. If we had an
impurity atom in a metal, of the type which we have in a semiconductor, and
which we discussed in Section II, it would produce a local singularity in
the potential. The solution which we should have to use would then be of
the form -o = constant exp (-r/X)/r, showing a suitable singularity at
r 0, but decreasing exponentially to zero in a distance of atomic dimensions.
In other words, the conduction electrons would shield the impurity atom so
completely that it would not produce appreciable perturbation of potential
beyond its nearest neighbor atoms. This, of course, is a well-known result.

In an intrinsic semiconductor, we may consider these same two problems,

remembering that here X is very large. This means that in such a material,
which is practically an insulator, we can accumulate a practically negligible
volume charge in the interior, so that if the whole material (including the
surface layers) behaves in the same way, we cannot have a thin surface layer
of charge as we can in a metal. Instead, if we have such an insulator in
an external electric field normal to the surface, the field penetrates the
surface, the normal component of D being continuous as in the usual theory
of dielectrics. To account for surface charges which unquestionably can
build up on the surface of a dielectric, as, for instance, by bombarding
with electrons which have no chance to leak off, we must introduce surface
states, capable of holding extra charge; we postpone discussion of such
surface states to the next section. In the interior of an intrinsic semi-
conductor, we may use the spherical solution of our equation to discuss an
impurity atom; and we find, with our large X, that the field is essentially
an inverse square field, the effect of the dielectric being seen only in the
dielectric constant. Thus we have correctly drawn our perturbed energy

bands around impurity atoms, in Figures 2 and 3, as though the potential
varied inversely as the distance from the impurity center, without the type

of shielding found in the metal.

V. Impurity Semiconductors and Rectifying Barriers

The method of treatment we have used in the preceding section handles
the action of impurity atoms on a microscopic scale, asking how the potential
behaves around each impurity atom; Section II handled similarly the energy
levels of such impurity atoms on the same microscopic scale. In treating
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impurity semiconductors, however, it is usually more convenient to treat
average behavior over a volume which is small compared to the thickness of
a rectifying barrier, but large compared to the distance between impurity
atoms; or, alternatively, it is better somehow to average the impurity
levels, so that we do not have to consider the fine-grained inhomogeneities
arising from the discrete impurity atoms. When we do this, we have a dif-
ferent distribution of energy levels, n(E), for now we include an appropri-
ate number of levels per unit volume arising from the discrete levels in
N- or P-type impurity atoms, and hence located just below or just above
the continuous bands. Also in computing the net amount of charge per unit
volume, we must take account of the charge furnished by these impurity ions.
When we do this, we may get for N(t) for, say, a material containing N-type
impurity atoms uniformly distributed, a curve of the nature shown in
Figure 5.

OF CONDUCTION
BAND

Fig. 5 N(t) vs. for N-type
semiconductor.

In Figure 5, there are shown several distinct regions, with different
behavior of N(t) in each. First, for less than o0, there is a long region
in which N is negative and approximately constant. This is the range in
which the impurity atoms have lost their extra electrons, so that they yield
a positive space charge. This is the region in which Schottky's depletion-
layer theory is appropriate. As decreases still further, there is a very
rapid and large decrease in N; this arises when is so low that it begins
to empty the levels in the valence-electron band. In this region, the
material would act like a P-type semiconductor, and with still further
decrease of it would show metallic properties, whereas in the depletion-
layer region there are practically no holes in the lower band, or electrons
in the upper band, so that the material acts like an intrinsic semiconductor,
or practically as an insulator. Proceeding in the other direction, of
increasing :, we find that N is zero when = o, and beyond that point N

starts to increase very rapidly. This is the range where there are enough
electrons to start filling the conduction band. Of course, even with N = 0,

there are some electrons in the conduction band, raised by thermal agitation
from the donator impurity atoms; but this number very rapidly increases with
increase of , so that the material becomes a much better conductor, and
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soon acquires metallic properties.
With as complicated a function N() as is given in Figure 5, it is

clear that the simple approximation used previously (of setting it propor-
tional to -) is inadequate, and we must use the whole form of the func-
tion. Even in this case, in the one-dimensional problem, we can integrate
Poisson's equation, (14), as is done, for instance, by Mott and Gurneyll

and by Fan.12 The equation becomes d2 /dx2 = f(), where f(t) is a function
of . Mathematically, this is similar to a one-dimensional equation of

motion in mechanics, m d2x/dt2 = f(x), where f(x) is the force; and, as in
the mechanical case, we can integrate by a method entirely equivalent to the
energy integral in mechanics. When we do this, carrying out the integrations
numerically if N(Q) is as complicated as in Figure 5, we can find the rela-
tion between and x. We find that there are solutions approaching o
asymptotically for large values of x, one for greater than to, the other
for less than ,o; all such solutions differ from each other only by uni-
form translation along the x-axis. In Figure 6 we show such a solution for
the case coming into the problem of a rectifying barrier at the surface of
an N-type semiconductor.

t -t

Fig. 6 t-0 vs. x, for N-type semiconductor.

There are sections of the curve of Figure 6 which are associated with
the various parts of Figure 5. As departs only slightly from o, we are
in a linear part of Figure 5. Here we have the Laplacian of -- 0 equal to
a constant times --0, so that we can set up an exponential solution for

--to as a function of x, just as we did with the metals. We find, however,
a much slower exponential variation, extending over much greater distances.
Next we have the region where is considerably less than to, so that we are
in the region of the depletion layer. In this region, as we have mentioned
earlier, N( C) is practically constant, and our solution agrees exactly with
Schottky's,10 leading to as a quadratic function of x. This parabolic
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function, of course, fits smoothly to the exponential function which holds

as approaches its asymptotic value to. Finally, when gets so small that

electrons of the lower band begin to be removed, begins to decrease very

rapidly with change of x. This is because we are now meeting high positive

volume charges, arising from the emptying of this lower band, and the elec-

tric field can change with position about as rapidly as in a metal (where

we have already seen that we can accommodate a large enough charge in a

layer of atomic thickness to be equivalent to a surface charge). This hap-

pens here as penetrates into the lower band, and the reason for its happen-

ing is essentially the large reservoir of charge available, similar to the

case of a metal. In the nature of things, however, this surface layer of

charge can only be positive, since it arises from holes in the valence-elec-

tron band. If there is a negative surface charge, the curve corresponding

to Figure 6 must rise rather than fall at the surface of the material.

The result shown in Figure 6 can now be used to discuss the boundary

between a metal and an N-type semiconductor, or between such a semiconductor

and a vacuum. If we used this result straightforwardly, we should draw the

following conclusions. We should conclude that at the boundary between a

semiconductor and a vacuum, in the absence of an external electric field,

the potential in the semiconductor would be constant. If an external field

were impressed, then the surface charge to terminate the lines of force

would be actually distributed through the whole depth of a depletion layer,

instead of being located on the surface, as in a metal. The only exception

would come if the field were so strong that the Fermi level dipped down into

the valence-electron band at the surface; then any remaining charge required

to terminate the lines of force would be located almost exactly at the sur-

face. In other words, the total amount of charge which can be distributed

through the interior of the volume in the depletion layer is limited. In

such an extremely large field, the energy bands would look as in Figure 7,

and the external field would be indicated by the slope of the curve to the

Fig. 7 Energy bands at boundary of
N-type semiconductor, large external
electric field, but no double layer.
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left of the solid. If now the semiconductor were placed in contact with a

metal between which the difference of work function was so great as to

require on the semiconductor a positive charge, and on the metal a negative

charge, great enough to produce a field of the magnitude shown in Figure 7

in the double layer between the two materials, then we should find the

situation shown in Figure 8. Here the Fermi level would come slightly below

LEVELS

OF VALENCE
BAND

BAND OF METAL I
DISTORTION OF CONDUCTION BAND OF
METAL ON ACCOUNT OF SURFACE CHARGE

Fig. 8 Energy bands at interface between metal and semiconductor,
no surface states.

the top of the valence-electron band of the semiconductor just at the sur-

face, and the resulting situation would be almost independent of the work

function of the metal, provided only that it was different enough from that

of the semiconductor to require a large enough double layer.

It is well known that the situation we have just described does not

fit the observations, at least in germanium and silicon, two semiconductors

which are very well understood as a result of the large amount of work done

on them during the war and since at Purdue University, the Bell Telephone

Laboratories, the University of Pennsylvania, and elsewhere. Meyerhof1 4

in a set of measurements on contact difference of potential between silicon

and metals found definite evidence that our simple picture is wrong, and

14. W. E. Meyerhof, Phys. Rev. 71, 727 (1947).
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his effect was explained by Bardeen1 5 with his theory of surface states.

Since then, the group at the Bell Telephone Laboratories has arrived at

substantially the following conclusions regarding the surface of germanium,

explainable in terms of surface states.l 6 At a free surface between germa-

nium and air, there is good evidence that in the absence of an external

field there is, nevertheless, a well-formed positively charged depletion

layer below the surface, compensated by an equal negative surface charge.

In an external electric field, the extra surface charge required to termi-

nate the lines of force appears just on the surface, rather than in the

depletion layer in the interior. And when contact is made between the semi-

conductor and a metal, the required double layer adjusting the Fermi levels

of the two to coincidence is made up of a surface charge of the usual sort

at the surface of the metal, and a surface charge of opposite sign on the

surface of the germanium.

It thus appears that the surface layer of atoms on a germanium crystal

must behave differently from the interior and, to explain this, Bardeen

introduces the idea of surface states. The action can be described, roughly,

as if there were part of a monomolecular layer of metal on the surface of

the germanium, whose work function differed from that of a hypothetical

germanium which lacked the surface states by something like the amount con-

sidered in Figure 8. This layer of metal would have to acquire enough nega-

tive charge to raise its Fermi level - normally far below that of the ger-

manium - up to equality with that of the germanium. Having the large

reservoir of electrons characteristic of a metal, it could acquire any other

amount of surface charge necessary to compensate for an applied external

field, or for a double layer arising when another metal made contact with

it. Thus the rectifying barrier would remain something like that of Figure 8,

which is not unlike what is observed (see, for instance, Ref. 16), inde-

pendent of the material of the metal making contact.

In this description of the surface, which is substantially that sug-

gested by the group at the Bell Telephone Laboratories, it is not clear

whether the surface states arise from real impurities on the surface (either

metallic or, at any rate, setting up a distribution of states of the sort

characteristic of a metal), or whether they are inherent in the germanium

itself. The evidence indicates that the surface states depend on surface

15. J. Bardeen, Phys. Rev. 71, 717 (1947).

16. W. W. Brattain and W. Shockley, Phys. Rev. 72, 345 (1947); W. H. Brattain, Phys. Rev.
72, 345 (1947); J. Bardeen and W. H. Brattain, Phys. Rev. 74, 230 (1948); W. H.
Brattain and J. Bardeen, Phys. Rev. 74, 231 (1948); W. Shockley and G. L. Pearson,
Phys. Rev. 74, 232 (1948); J. Bardeen and W. H. Brattain, Phys. Rev. 75, 1208 (1949).
The author is indebted to Dr. Bardeen for an opportunity to see this latter paper
before its appearance in print.
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conditions, suggesting impurities, and certainly it is very difficult to
get the surface really clean. Furthermore, the absence of surface conduc-
tivity suggests that the surface states are localized at widely separated
spots on the surface, as if they arose from impurities. On the other hand,
the photoelectric experiments of Apker, Taft, and Dickey,17 performed on
the cleanest surfaces obtainable, gave evidence of the same sort of situa-
tion observed in ordinary germanium, suggesting that the situation may be
inherent in a clean germanium surface. This is not impossible: the spacing
between the surface layer of germanium atoms and the next layer below it
may well be different from that between layers in the interior because of
the unbalanced forces near the surface; this would bring about a distortion

of the energy bands near the surface, quite aside from anything we have
considered, which might have the effect of making the surface layer of atoms
behave quite differently from the interior. At any rate, it seems to be
empirically clear that we must treat the surface layer of such a crystal as
a different material from the interior; hence, to apply the arguments of
the present theory to the boundary layer, we must consider the interior
and the surface separately, and consider the boundary conditions at the
interface between them, as well as at the interface between the surface and
air or another conductor.
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Appendix I

We start with the functions 0o(p,q), satisfying Eq. (3). From them
we form the functions

a(q-Qk) iN-1 / 2 exp[()pQk] o(P,q) , (1A)

P

where the sum is over all the quantum states p. These functions are the
normalized atomic functions of Wannier, written in our notation; we refer
to Ref. 1 for their properties. Equation (2) follows at once from (1A) by
multiplying by exp [(i/h)p'-Qk], summing over k, and using the theorem

E exp L=)('-p)Qk 0 if p' p p
k

=N if pt =p .

Now we set up the solution (5) for Eq. (4). In (4) we write n(q) in
the form (5), multiply both sides of the equation by a*(q-%), and integrate
over q, obtaining the equation

= E fa*(qQ)(Ho + H - En) kn(Qk) a(q-Qk) dq (2A)
k

We remember that H is an operator operating on a function of q, H is a
slowly varying function of q, and En is a constant. On account of the
orthogonality of the a's, proved by Wannier, a*(q-Qm) a(q-Qk) dq = 0 if
mfk, 1 if m = k. Thus the term in En reduces to --Enqn(Qm). So far as the
term in H1 is concerned, let us assume that H1 is so slowly varying with q
that it can be regarded as approximately constant over the atomic wave func-
tion of an atom. Then, again using the orthogonality of the a's, this term

reduces to H1(Qm)Tn(Qm). If H varies more rapidly, we can use the devia-
tions from this result as a starting point for a higher order of approxima-
tion.

The other term of (2A), the one in Ho, must be handled differently.
We rewrite a*(q-Qm) and a(q-Qk), as they appear in (2A), by using (1A), and

make use of the fact that the O I's satisfy Eq. (3). Then we have

X fa*(q-m) Hn(Qk) a(qQk) dq =
k

>1 Tln(Qk)exp [(~)(P' 'Q-PQk)]} f *(pq)HOW(p,q) dq
k,p,p'
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We use (3), and the orthogonality of the functions To, for different p's,

to show that f Po*(p',q)Hooo(p,q) dq = E(p)§(p',p). When we substitute

this above, we have

E fa*(q m) Hotn(Qk) a(q-Qk) dq
k

= EI ln(cQk) E(P) exp [ ()P(QmQk)] (3A)
k,p

E n(QmQ) o(p) exp ,)pQ
s,p

where we have substituted Qm-Qk = Qs'

We can now rewrite this expression (3A). We recall that E (p) is a

periodic function in the p-space, having the periodicity of the reciprocal

lattice. Thus it can be written in the form

Eo(p) = > A(Q) exp [(:)PQk] , (4A)

Qk

where the Fourier coefficients A(Qk) are given by

A(Qk) = E1 Eo(p) exp [()pQk]

p

Thus the right-hand side of (3A) can be expressed in the form

EA(Q s) (QmQs) (5A)
S

Now we expand *n(Qm-Qs) in Taylor's series about the point Qm. We have

~n( Q~ ) 3 i() A 4i()(Qs) + d 2 (Qm)(Qs ) +
C idq

In this exp (-written only the case where q is a scalar quantity,

In this expression we have written only the case where q is a scalar quantity,

but an exactly analogous form holds if it is a vector, Qs(d/dq) being replaced

by the scalar product Qs*V, where the V operator denotes vector differentia-

tion with respect to the components of the vector q. We now use the result

(6A) to modify (5A), and it takes on the form

, A(Qs) [exp (-Qs*V)]n(Qm)
8
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Comparison with Eq. (4A) shows that this is what we should get if we took

Eo(p), replaced p in it by the operator (/i) V, and allowed this to operate

on~ n( t). When we combine this with the expressions for the terms in H1
and En in Eq. (2A) which we have already discussed, we see that we are led

to Eq. (6), which we wished to prove.
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