General Description This AP1695 Triac Dimmable **GU10** 12V/400mA Buck LEDs driver EV board use tapped transformer to increasing power conversion turn on duty cycle, boost current back to LED during ratio of tapped winding. Also the bigger gauge wire can be used as well as the large inductance can be suitable in switching loop which can reduce the switching current and the lower forward drop so that SBR diode can be used which can reduce the power consumption on the diodes. #### **Key Features** - Internal integrated 600V MOSFET - Typical 3% to 95% Dimming performance (Depends on dimmers brands) - Boundary conductive switching mode - Simple adjustable Constant Current - Inductor Short Protection - Low BOM cost - PFC >0.9 & low THD. - 200 ~265V_{AC} input range - >77% Efficiency - With open, short, and wrong polarity LED protection ### **Applications** - GU10 LED Offline small size bulb - Candle size LED lamp - Desktop lamps - Under the counter lamps #### **AP1695 EV5 Specifications** | Parameter | Value | |-----------------|----------------------| | Input Voltage | 200 to 265Vac | | PFC | > 0.9 | | LED Current | 400mA (Adjustable) | | LED Voltage | 12V | | Efficiency | >77% | | Number of LEDs | 4 LEDs in series | | | (Under Tested) | | XYZ Dimension | 28.5 x 16.5 x 14.5mm | | ROHS Compliance | Yes | #### **Evaluation Board** Figure 1: Top View Figure 2: Bottom View #### **Connection Instructions** Input Voltage: 230VAC (AC+, AC-) LED Outputs: LED+ (Red), LED- (Black) #### WHY USE DIODES TAPPED TRANSFORM STRUCTURE The traditional Buck converter turn on time is inverse proportion with input voltage. $Vo = D \times Vin$. The duty cycle will be getting smaller when the input voltage goes higher. Example: Vo=12V, Vin= 120V_{AC}, Fs= 75kHz. D= Vo/Vin * $\sqrt{2}$ = 12V/120V * 1.414 = 0.07 Ton=D/Fs = 0.07/75kHz =0.933µs. T=1/Fs = 13.33µs Since the Ton time is too short in the duty cycle; therefore there is not enough current passing through the LEDs and charging the inductor. In result, it caused the efficiency to be lower. In order to solve this issue - use the Diodes tapped transformer to boost the output current & increase the Ton time in the duty cycle. With the "new tapped" transformer, the Duty cycle will be: D is original duty cycle = Vo/Vin*1.414, n = N_A+Np/N_A & L = $Lp + L_A$, Vo/Vin = D'/(D' +n(1-D')), If N_A =40Ts, Np=100Ts, n=3.5 D' = nVo/(Vin+(n-1)Vo) = 0.21 The duty cycle almost increased by 3 times. The Efficiency will increase about 4 to 5% (before the Efficiency was about 72% now is 77%) comparing with the "none tapped" transformer. #### **DIODES TAPPED TRANSFORMER DESIGN** ### AP1695 230V_{AC} Buck tapped 12V 400mA Transformer Spec #### 1) Bobbin EEP10 4+4 pin ### 2) Transformer Parameters - 1. Primary Inductance (Pin1-Pin7, all other windings are open) - $Lp = 1.2mH \pm 6\%@10kHz$ - 2. Primary Winding Turns: N_P=120Ts (Pin7-Pin6) +50Ts (Pin 6 to Pin 1) - 3. Auxiliary Winding Turns (Pin2- Pin5): N_A= 84Ts (Pin 2 to Pin 5) #### 3) Transformer Winding Construction Diagram | Winding | Windings | Winding | |---------|---------------|--| | Number | | Specification | | _ | WD1-Primary | Start at Pin 7, wind 120 turns of single Φ 16mm wire and finish on Pin 6. | | 1 | Winding | | | | WD2-Primary | Start at Pin 6, wind 50 turns of single Φ26mm wire and finish on Pin 1. | | | Winding | | | 2 | Insulation | 2 Layers of insulation tape | | | WD3-Auxiliary | Start at Pin 2, wind 84 turns of single Φ13mm wire and finish on Pin 5. | | 3 | Winding | | | 4 | Insulation | 2 Layers of insulation tape | | | | | ### **Evaluation Board Schematic** **Figure 3: Evaluation Board Schematic** ### **Evaluation Board Layout** Figure 4: PCB Board Layout Top View **Figure 5: PCB Board Layout Bottom View** #### **Quick Start Guide** - 1. By default, the evaluation board is preset at 400mA LED Current adjustment by R10//R11. - 2. Ensure that the AC source is switched OFF or disconnected. - 3. Connect the AC line wires of power supply to "AC+ and AC-" on the left side of the board. - 4. Connect the anode wire of external LED string to LED+ output test point. - 5. Connect the cathode wire of external LED string to LED- output test point. - 6. Turn on the main switch. LED string should light up. ### **Bill of Material** | # | Name | QTY | Part number | Manufacturer | Description | | | | | |----|-----------------|-----|------------------|-------------------|---------------------------------|--|--|--|--| | 1 | U1 | 1 | AP1695-20CS7-13 | Diodes Inc | LED Driver, 600V/2A MOSFET, SO7 | | | | | | 2 | T1 | 1 | EL1004R | Elite Electronics | EE10, Transformer | | | | | | 3 | BD1 | 1 | HD06-T | Diodes Inc | Bridge Rectifiers 0.8A 600V | | | | | | 4 | D1 | 1 | DFLF1800-7 | Diodes Inc | Rectifier 1A/800V | | | | | | 5 | D2 | 1 | B1100B | Diodes Inc | Rectifier 1A/100V | | | | | | 6 | D3 | 1 | MMSZ5250B-7-F | Diodes Inc | Zener Diode, 20V | | | | | | 7 | F1 | 1 | C1Q1 | Bel Fuse | Fuse, 1A/125V | | | | | | 8 | Q2 | 1 | FMMT458 | Diodes Inc | MOSFET N-CH 400V 0.2A SOT-23 | | | | | | 9 | L1 | 1 | LPS6235-565MRB | Coilcraft | 5.6mH/150mA | | | | | | 10 | C1A, C1B,
C2 | 3 | C1210X104K501T | Holystone | CAP CER 1210 0.1µF 500V X7R | | | | | | 11 | C3 | 1 | GMK316BJ106KL-T | Taiyo Yuden | CAP CER 10µF 35V X5R 1206 | | | | | | 12 | C4 | 1 | EEU-FR1E331B | Panasonic | CAP 330μF/25V (8 x 13mm) | | | | | | 13 | C6 | 1 | C1206X0683K501T | Holystone | CAP CER 1206 0.068µF 500V X7R | | | | | | 14 | R1 | 1 | RC0805FR-077K5L | Yageo America | RES 7.5KΩ 1/8W 1% 0805 SMD | | | | | | 15 | R2 | 1 | FMP100JR-52-330 | Yageo America | RES 330Ω 1W 5% FMP100 | | | | | | 16 | R3A, R3B | 2 | RC0805FR-07360KL | Yageo America | RES 360KΩ 1/8W 1% 1206 SMD | | | | | | 17 | R4 | 1 | RC1206FR-075K1L | Yageo America | RES 5.1KΩ 1/8W 1% 1206 SMD | | | | | | 18 | R5 | 1 | RC0805FR-0720KL | Yageo America | RES 20KΩ 1/8W 1% 0805 SMD | | | | | | 19 | R6 | 1 | RC0805JR-0722RL | Yageo America | RES 22Ω 1/8W 1% 0805 SMD | | | | | | 20 | R7 | 1 | RC0805FR-0711KL | Yageo America | RES 11.0KΩ 1/8W 1% 0805 SMD | | | | | | 21 | R8 | 1 | RC0805FR-0756KL | Yageo America | RES 75KΩ 1/8W 1% 0805 SMD | | | | | | 22 | R9 | 1 | RC0805FR-071K5L | Yageo America | RES 1.5KΩ 1/8W 1% 0805 SMD | | | | | | 23 | R10 | 1 | MCR10ERTFL4R12 | Rohm | RES 4.12Ω 1/8W 1% 0805 SMD | | | | | | 24 | R11 | 1 | MCR10ERTFL3R24 | Rohm | RES 3.24Ω 1/8W 1% 0805 SMD | | | | | | 25 | R12 | 1 | RC1206FR-075K1L | Yageo America | RES 5.1KΩ 1/8W 1% 1206 SMD | | | | | | 26 | R13 | 1 | RC0805FR-0730K0L | Yageo America | RES 30KΩ 1/8W 1% 0805 SMD | | | | | | 27 | R14 | 1 | RC0603JR-0710KL | Yageo America | RES 10KΩ 1/8W 1% 0603 SMD | | | | | | 28 | Rf | 1 | FMP100JR-52-680 | Yageo America | RES 68Ω 1W 1% FMP | | | | | | 29 | Rm | 1 | MOV-07D431KTR | Bournes | MOV, 275VAC | | | | | #### **Functional Performance** | Manuf | Board Type | VIN
(VAC) | PFC | PIN
(W) | VLED
(V) | ILED
(mA) | PLED
(W) | ILED
(%) | Efficiency
(%) | Athd
(%) | |-------|---------------------|--------------|-------|------------|-------------|--------------|-------------|-------------|-------------------|-------------| | | AP1695EV5
Module | 200 | 0.899 | 6.36 | 12.23 | 400.6 | 4.90 | 0.2 | 77.11 | 24.0 | | IIIC | nc Module
Board | 210 | 0.892 | 6.35 | 12.20 | 400.7 | 4.89 | 0.2 | 77.02 | 25.0 | | | | 220 | 0.884 | 6.35 | 12.17 | 408.9 | 4.89 | 0.5 | 77.01 | 25.4 | | | | 230 | 0.877 | 6.37 | 12.15 | 401.9 | 4.90 | 0.8 | 76.92 | 26.4 | | | | 240 | 0.870 | 6.40 | 12.14 | 403.2 | 4.91 | 1.1 | 76.71 | 27.0 | | | | 250 | 0.863 | 6.43 | 12.13 | 405.9 | 4.92 | 1.5 | 76.49 | 27.9 | | | | 265 | 0.853 | 6.50 | 12.12 | 408.4 | 4.95 | 2.1 | 76.13 | 28.6 | ### **Functional Performance** Figure 5. Efficiency vs. Vin Figure 7. LED Current Line Regulation Figure 6. LED Current vs. Vin Figure 8. PFC vs. Vin ### **Performance Waveforms** All of the Channel 1 (V_{IN}) measurement used a 100:1 probe shown in a 2V/division scale. Figure 9. Turn on time (20mS) at 230V_{AC} input Figure 11. Input AC voltage vs. output current Figure 12. Input AC voltage vs. input AC current Figure 13. LED open protection # AP1695EV5 with Panasonic 230 V_{AC} dimmer test data | | | V after | | | | | | | | | Dimming | | |---------------------------|------------------------|---------|-----------|--------|----------|--------|----------|-----------|----------|---------|-----------|----------| | 230V _{AC} Dimmer | Vin (V _{AC}) | dimmer | Arms (mA) | Pin(W) | PFC (in) | THD(%) | Vout (V) | Iled (mA) | Pout (W) | Eff (%) | range (%) | Flicker? | | Panasonic | 230V _{AC} | 223.6 | 40.53 | 5.802 | 0.640 | 29.15 | 11.137 | 367.90 | 4.0973 | 70.62 | 100.00 | ✓ | | (Model # WMS549, 400W) | | 211.5 | 46.51 | 5.774 | 0.540 | 55.40 | 11.089 | 348.20 | 3.8612 | 66.87 | 94.65 | ✓ | | | | | 51.16 | 5.614 | 0.475 | 45.56 | 11.045 | 330.60 | 3.6515 | 65.04 | 89.86 | ✓ | | | | | 55.06 | 5.457 | 0.437 | 46.50 | 11.008 | 308.40 | 3.3949 | 62.21 | 83.83 | ✓ | | | | | 91.68 | 5.175 | 0.245 | 46.78 | 10.957 | 281.90 | 3.0888 | 59.69 | 76.62 | ✓ | | | | 158.1 | 93.72 | 5.036 | 0.236 | 53.50 | 10.919 | 260.10 | 2.8400 | 56.39 | 70.70 | ✓ | | | | | 94.25 | 4.848 | 0.222 | 54.53 | 10.886 | 241.30 | 2.6268 | 54.18 | 65.59 | ✓ | | | | | 94.22 | 4.617 | 0.213 | 56.55 | 10.848 | 220.30 | 2.3898 | 51.76 | 59.88 | ✓ | | | | | 95.19 | 4.417 | 0.201 | 63.70 | 10.814 | 199.94 | 2.1622 | 48.95 | 54.35 | ✓ | | | | 108.8 | 95.36 | 4.136 | 0.190 | 79.22 | 10.775 | 179.08 | 1.9296 | 46.65 | 48.68 | ✓ | | | | | 94.85 | 3.895 | 0.179 | 96.77 | 10.738 | 159.27 | 1.7102 | 43.91 | 43.29 | ✓ | | | | | 94.33 | 3.626 | 0.168 | 95.40 | 10.709 | 141.01 | 1.5101 | 41.65 | 38.33 | ✓ | | | | | 92.53 | 3.261 | 0.153 | 97.99 | 10.701 | 119.35 | 1.2772 | 39.16 | 32.44 | ✓ | | | | 61.0 | 88.27 | 2.860 | 0.141 | 114.50 | 10.649 | 100.38 | 1.0689 | 37.38 | 27.28 | ✓ | | | | | 84.88 | 2.418 | 0.125 | 129.90 | 10.593 | 81.47 | 0.8630 | 35.69 | 22.14 | ✓ | | | | | 81.97 | 2.052 | 0.109 | 157.60 | 10.521 | 59.61 | 0.6272 | 30.56 | 16.20 | ✓ | | | | 25.3 | 77.99 | 1.610 | 0.090 | 168.70 | 10.450 | 41.53 | 0.4340 | 26.96 | 11.29 | ✓ | | | | | 40.49 | 1.351 | 0.145 | 185.21 | 10.422 | 35.98 | 0.3750 | 27.76 | 9.78 | ✓ | Note: ✓= No Flicker #### **EMC** test result ### Conductive emission noise level (Pass with 15db margin) ### Radiated emission noise level (Pass, please zoom in to see the green mark) Note: Green color data are after VQP, will be 5db down than normal #### IMPORTANT NOTICE DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION). Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages. Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application. Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks. This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated. #### **LIFE SUPPORT** Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein: - A. Life support devices or systems are devices or systems which: - 1. are intended to implant into the body, or - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user. - B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness. Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems. Copyright © 2015, Diodes Incorporated www.diodes.com