

AM25LS2568, AM25LS2569

Four-Bit Up/Down Counters with Three-State Outputs

The AM25LS2568 and AM25LS2569 are programmable up/down BCD and Binary counters respectively with three-state outputs for bus organized systems. All functions except output enable (\overline{OE}) and asynchronous clear (\overline{ACLR}) occur on the positive edge of the clock input (CP).

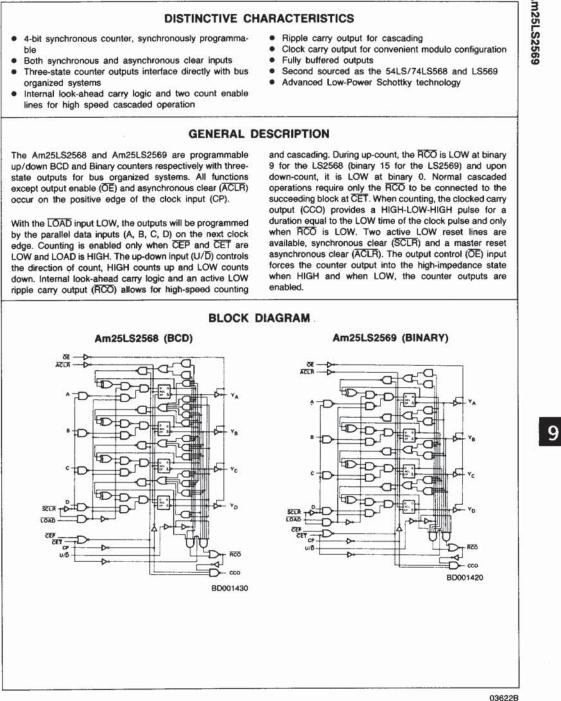
With the $\overline{\text{LOAD}}$ input LOW, the outputs will be programmed by the parallel data inputs (A, B, C, D) on the next clock edge. Counting is enabled only when $\overline{\text{CEP}}$ and $\overline{\text{CET}}$ are LOW and LOAD is HIGH. The up-down input (U/D) controls the direction of count, HIGH counts up and LOW counts down.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

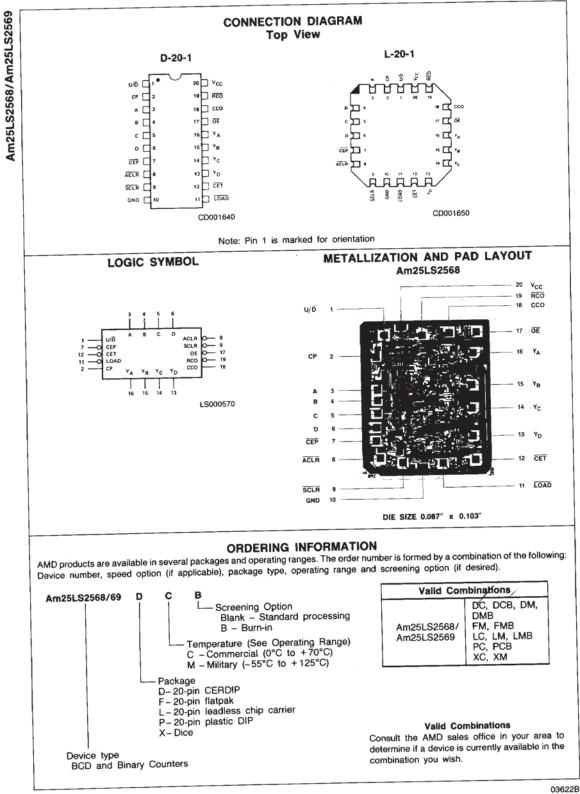
Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview


- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.


Am25LS2568/Am25LS2569

Four-Bit Up/Down Counters with Three-State Outputs

9-157

Refer to Page 13-1 for Essential Information on Military Devices

9-158

Refer to Page 13-1 for Essential Information on Military Devices

			PIN DESCRIPTION
Pin No.	Name	1/0	Description
3, 4, 5, 6	A, B, C, D	1	The four programmable data inputs.
7	CEP	ł	Count Enable Parallel. Can be used to enable and inhibit counting in high speed cascaded operation. CEP must be LOW to count.
12	CET	I	Count Enable Trickle. Enables the ripple carry output for cascaded operation. Must be LOW to count.
2	CP	1	Clock Pulse. All synchronous functions occur on the LOW-to-HIGH transition of the clock.
11	LOAD	1	Enables parallel load of counter outputs from data inputs on the next clock edge. Must be HIGH to count.
1	U/D	I	Up/Down Count Control. HIGH counts up and LOW counts down.
8	ACLR	Ι	Asynchronous Clear. Master reset of counters to zero when ACLR is LOW, independent of the clock.
9	SCLR	I	Synchronous clear of counters to zero on the next clock edge when SCLR is LOW.
17	ŌE	i	A HIGH on the output control sets the four counter outputs in the high-impedance, and a LOW enables the output.
16, 15 14, 13	Y _A , Y _B , Y _C , Y _D	0	The four counter outputs.
19	RCO	0	Ripple Carry Output. Output will be LOW on the maximum count on up-count. Upon down-count, RCO is LOW at 0000.
18	cco	0	Clock Carry Output. While counting and RCO is LOW, CCO will follow the clock HIGH-LOW-HIGH transition.

Am25LS2568/2569 FUNCTION TABLE

Clear X (ASYNC) X Clear X Clear X Load 0 Load 0 Count Up 1 Inhibit 1 Inhibit 1 Output 1 Disable X X = Don't Care Dn = Do thru D3 Notes: 1. Regis 2. Follow 3. 1001 2.	X X X X X X X X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 1 0 1 0 1 1 1 1 X X V-to-HIGH tra 3 input level p ister performs cucck 1 V for one full	X X X X 1 3 0 1 0 1 0 1 0 1 1 3 0 1 1 3	1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 X 1 X 1 X 1 X 1 X 1 X X clock transition	CLEAR X 0 1 <th>OE, but OI</th> <th>D₀ X X X X X X X X X X X X X</th> <th>Next i No cha</th> <th>ower (</th> <th>D₃ X X X X X X X X X X X X X</th> <th>CP X X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</th> <th>Q0 0 0 0 1 Z</th> <th>Q1 0 0 0 0 0 1 Q_n = 0 1 Q_n = 0 1 Q_n = 0 1 N. N. N. N. Z = equence</th> <th>0 1 + 1 - 1 C. C. C. C. Z</th> <th>Q3 0 0 0 1(3) Z</th> <th>RC 1 0 1 0 1 0 0 (4) (6) N.C. N.C. N.C. N.C.</th> <th>CLOCK CARRY 1 1 (2) 1 (2) 1 (2) (5) (5) (5) 1 1 1 1 1 N.C.</th>	OE, but OI	D ₀ X X X X X X X X X X X X X	Next i No cha	ower (D ₃ X X X X X X X X X X X X X	CP X X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Q0 0 0 0 1 Z	Q1 0 0 0 0 0 1 Q _n = 0 1 Q _n = 0 1 Q _n = 0 1 N. N. N. N. Z = equence	0 1 + 1 - 1 C. C. C. C. Z	Q3 0 0 0 1(3) Z	RC 1 0 1 0 1 0 0 (4) (6) N.C. N.C. N.C. N.C.	CLOCK CARRY 1 1 (2) 1 (2) 1 (2) (5) (5) (5) 1 1 1 1 1 N.C.
(ASYNC) X Clear X (SYNC) X Load 0 Load 0 Count Up 1 Inhibit 1 Inhibit 1 Output 1 Disable X T = CLOCK LOW- X = Don't Care Dn = D0 thru D3 Notes: 1. Regis 1001 4. LOW 5. Follow	X X X X X X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 1 0 1 0 1 1 1 1 X X V-to-HIGH tra 3 input level p ister performs cWork CLOCK i 1 1 V for one full	X X X X 1 3 0 0 0 0 0 1 0 1 1 3 0 1 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 2 ansition prior to c s all corr if CET = 1 1	D O 1 1 0 1 1 1 1 1 1 1 X 1 X 1 X 1 X 1 X 1 X 1 X X clock transition rect logic for or	X 0 1		X X X 0 1 X X X X X X X X X X X X X X X	X X X X 0 1 X X X X X X X X X X X X X X	X X X 0 1 X X X X X X X X X X	x x x 0 1(3) x x x x x x x x x x x x	X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 1 Z	0 0 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0	0 0 0 1 + 1 - 1 C. C. C. C. Z	0 0 1(3)	0 1 0 (4) (6) N.C. N.C. N.C. N.C.	1 (2) 1 (2) (2) (5) (5) 1 1 1 1 1
(SYNC) X Load 0 Load 0 Count Up 1 Count Down 1 Inhibit 1 Output 1 Disable X D = Do thru D3 Notes: 1. Regis Notes: 1. Regis 2. Follow 3. 1001 4. LOW 5. Follow 5. Follow	X X 0 X 0 X 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 X X W-to-HIGH transport a input level performs ows CLOCK in the LS68. V for one full	X 1 1 2 0 1 0 2 1 2 0 1 0 2 1 2 x 3 ansition prior to c s all correction s all correction	0 1 X 1 0 1 1 1 1 1 X 1 X 1 X 1 X 1 X 1 X X clock transition rect logic for of	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	X X 0 1 X X X X X X X X X X X X X	X X 0 1 X X X X X X X X X X X X X	X 0 1 X X X X X X X X	X 0 1(3) X X X X X X X X X X	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 1 Z	0 Q _n = 0 1 Q _n 0 1 1 1 1 1 1 1 1 1 1 1 1 1	0 = D _n 0 1 + 1 -1 C. C. C. C. Z	0 1(3)	0 1 0 (4) (6) N.C. N.C. N.C. N.C.	1 (2) (2) (2) (5) (5) 1 1 1 1
Load 0 Load 0 0 0 Count Up 1 Count Down 1 Inhibit 1 Inhibit 1 Output X Disable X T = CLOCK LOW- X = Don't Care Dn = D0 thru D3 Notes: 1. Regis 2. Follow 3. 1001 4. LOW 5. Follow	0 X 0 X 1 0 1 0 1 1 1 1 1 1 X X V-to-HIGH tra 3 input level p ister performs ows CLOCK i 1 for LS68.	0 0 0 0 1 2 x 2 x 2 ansition prior to c s all correction	0 1 1 1 1 1 1 1 0 1 X 1 X 1 X 1 X X clock transition rect logic for of	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	0 1 X X X X X X X X X X N-1 =	0 1 X X X X X X X X Next i Next i	0 1 X X X X X X X	0 1(3) X X X X X X X X x	1 1 1 1 1 1 1 X	1 Z	0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0	0 1 + 1 - 1 C. C. C. C. Z	1(3)	0 (4) (6) N.C. N.C. N.C.	1 (2) (2) (5) 1 1 1
Count Down 1 Inhibit 1 Inhibit 1 Output X Disable X T = CLOCK LOW-X = Don't Care Don thru D3 Notes: 1. Regis 2. Follow 3. 1001 4. LOW 5. Follow	1 0 1 0 1 1 1 1 X X W-to-HIGH tra a input level g ister performs ows CLOCK i 1 for LS68. V for one full	0 0 1 2 0 1 1 2 x 2 ansition prior to c s all correction if CET = 0	0 1 X 1 X 1 X 1 X X clock transition rect logic for a	1 1 1 1 X		X X X X X X X X X X X X X X X X X X X	X X X X = Next Next i	X X X X higher	X X X X X	1 1 1 X	nary s	Qn N. N. Z	- 1 C. C. C. C. Z	Z	(6) N.C. N.C. N.C.	(5) 1 1 1
Inhibit 1 Inhibit 1 Output 1 Disable X Disable X T = CLOCK LOW- X = Don't Care Dn = Do thru D3 Notes: 1. Regis Notes: 1. Regis 2. Follow 3. 1001 4. LOW 5. Follow 5. Follow	1 0 1 1 1 1 1 1 X X W-to-HIGH tra ister performs ows CLOCK i 1 for LS68. V for one full	1 2 0 2 1 2 x 2 ansition prior to c s all corre	X 1 X 1 X 1 X X Clock transition	1 1 1 X	0 0 1 OE, but O	X X X X N + 1 =	X X X = Next Next i	X X X higher	X X X X	1 1 X	nary s	N. N. Z	C. C. C. Z	Z	N.C. N.C. N.C.	1 1 1
Inhibit 1 Output 1 Disable X Disable X T = CLOCK LOW- X = Don't Care Dn = Do thru D3 Notes: 1. Regis 2. Follow 3. 1001 4. LOW 5. Follow	1 1 1 1 X X W-to-HIGH tra 3 input level p ister performs ows CLOCK i 1 for LS68. V for one full	0 2 1 2 ansition prior to c s all correct if CET = 1	X 1 X 1 X X clock transition	1 1 X		X X X n+1= I.C. = N	X X = Next Next i No cha	X X higher	X X X	t tin bi	nary s	N. N. Z	C. C. Z	Z	N.C. N.C.	1
Disable ↑ t = CLOCK LOW- X = Don't Care D _n = D ₀ thru D ₃ Notes: 1. Regis 2. Follow 3. 1001 4. LOW 5. Follow	V-to-HIGH tra input level p ister performs ows CLOCK i 1 for LS68. V for one full	ansition prior to c s all corre if CET = 1	clock transition	n any state of		n + 1 = n_1 = I.C. = N	Next Next i	higher ower	r coun	t in bi	nary s	equend	:0	Z	N.C.	N.C.
$\label{eq:constraint} \begin{array}{l} \uparrow = \text{CLOCK LOW-} \\ \textbf{X} = \text{Don't Care} \\ \textbf{D}_n = \textbf{D}_0 \ \text{thru} \ \textbf{D}_3 \\ \textbf{Notes: 1. Regis} \\ 2. \ \text{Follow} \\ 3. \ 1001 \\ 4. \ \text{LOW} \\ \textbf{5. \ Follow} \end{array}$	3 input level p ister performs ows CLOCK i 1 for LS68. V for one full	prior to c s all corre if CET = t	rect logic for a	any state of	OE, but OI	n_1 = I.C. = N	Next i No cha	ower (r coun count	t in bi in bina	nary sec	equence	9	_		
						, –										

Am25LS2568/Am25LS2569

03622B Refer to Page 13-1 for Essential Information on Military Devices

ABSOLUTE MAXIMUM RATINGS

Continuous-0.5V to +7.0V

DC Voltage Applied to Outputs For High Output State-0.5V to +V_{CC} max

DC Input Current-30mA to +5.0mA

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device

OPERATING RANGES

Commercial (C) Devices

Temperature0°C to +70°C Supply Voltage + 4.75V to + 5.25V

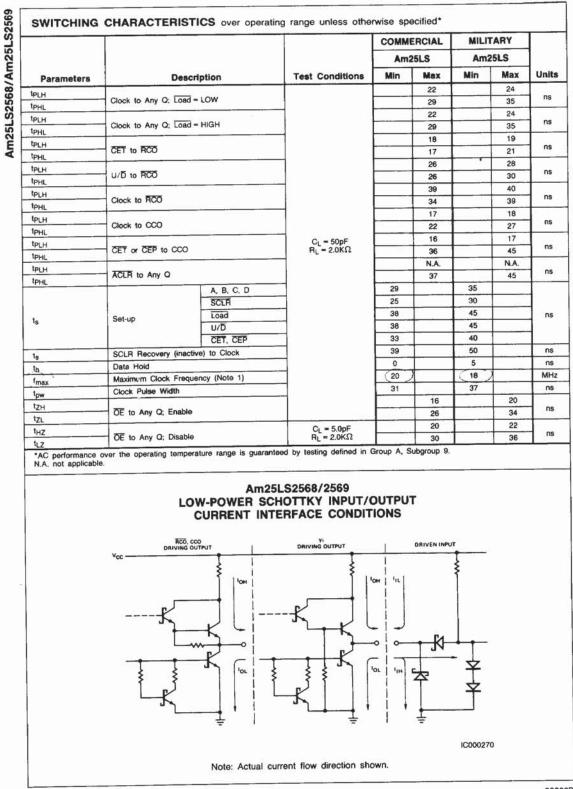
Military (M) Devices Temperature-55°C to +125°C

ality of the device is guaranteed.

DC CHARACTERISTICS over operating range unless otherwise specified

arameters	Description	Test	Cond	tions (No	te 2)		Min	Typ (Note 1)	Max	Units
al allietel 8			T	MIL, IOH =			2.4	3.4		
		V _{CC} = MIN	Yi	COM'L, IOH = -2.6mA			2.4	3.2		Matte
VOH	Output HIGH Voltage	VIN - VIH of VIL	RCO.			MIL	2.5	3.4		Volts
			000	IOH = -44	OμA	COM'L	2.7	3.4		
				IOL = 4.0m	hΑ				0.4	Valla
VOL	Output LOW Voltage	V _{CC} = MIN V _{IN} = V _{IH} or V	IOL = 8.0m	-				0.45	Volts	
VIH	Input HIGH Level	Guaranteed in voltage for all	cal HIGH	02					Volts	
		Guaranteed in	MIL MIL					0.7	Volts	
VIL	Input LOW Level	voltage for all			CO	M'L			0.8	
VI	Input Clamp Voltage	Vcc = MIN, I	N = -18	mA					- 1.5	Volts
¥1		1		ACLR, OF					-0.3	
3	Land LOW Current	V _{CC} = MAX,		A, B, C,	D, CF	, CEP			-0.4	mA
հե	Input LOW Current	VIN = 0.4V		CET, SCI					-0.65	
lui .	Input HIGH Current	VCC = MAX.	VIN = 2.3	V					20	μA
<u>чн</u>	Input HIGH Current	VCC = MAX, V			1.000		11		0.1	mA
կ		1.00		Vo = 0.4	1				- 20	
loz	Off-State (High-Impedance) Output Current	V _{CC} = MAX	V ₀ = 2.4V					20	μΑ	
Isc	Output Short Circuit Current (Note 3)	V _{CC} = MAX	V _{CC} = MAX						-85	mA
lcc	Power Supply Current (Note 4)	VCC = MAX						28	43	mA
	Typical limits are at V _{CC} = 5.0V, For conditions shown as MIN or Not more than one output should \overline{OE} = HIGH, all other inputs = GN	1 be shorted at	a ume.	Duration of	the :	short circu	it test shou	ld not exceed	one second.	

03622B


Refer to Page 13-1 for Essential Information on Military Devices

reliability.

Parameters	Description		Test Conditions	Min	Тур	Max	Units
tPLH	- Clock to Any Q; Lo	ad - LOW			12	18	ns
^t PHL			4 1		14	21	
tPLH	Clock to Any Q; Lo	ad = HIGH			12	18	ns
tphl tplh			1 F		11	16	
1PHL	CET 10 ACO				6	10	- ns
tPLH	U/D to ACO		1 [15	23	ns
tPHL	0/0 10 400				13	20	
tPLH	Clock to RCO				24	35	ns
tPHL			4 -		18	26	
tPLH tPHL	Clock to CCC				10	15	ns
IPLH			CL = 15pF		10	15	
tPHL.	CET or CEP : 104.00	20	R _L = 2.0kΩ		17	25	ns
^t ₽LH	ACLR to Any Q] [N.A.	N.A.	ns
tPHL .	AUCH ID ANY O				17	26	
		A, B, C, D	4	22			-
		SCLR		20			
1 _S	Set-up	Load U/D	-	30 30			ns
		CET, CEP	4 -	25			-
ls	SCLR Recovery (in		1 1	30			ns
th	Data Hold		1 1	0			ns
Imax	Maximum Clock Fr	equency (Note 1)	1 t	25	40		MHz
tpw	Clock Pulse Width		1 [25			ńs
ФZH	OE to Any Q; Enal	ble] [11	ns
IPZL	OE to Any Q, Ena					19	19
1PHZ	1						
IPLZ Note 1. Per indu or duty	DE to Any Q; Disaustry convention, fmax cycle.		$C_L = 5.0 \text{pF}$ $R_L = 2.0 \text{k}\Omega$ ratue of the maximum device	ce operating free	quency with no	18 24 constraints on 1	ns I _r , t _f , pulse width
IPLZ Note 1. Per ind or duty	ustry convention, fmax		$R_L = 2.0 k\Omega$	ce operating free	quency with no	24	

Refer to Page 13-1 for Essential Information on Military Devices

9-161

03622B

Refer to Page 13-1 for Essential Information on Military Devices