Features and Benefits - High speed, 4-phase chopper stabilization - Low switchpoint drift throughout temperature range - Low sensitivity to thermal and mechanical stresses - On-chip protection - Supply transient protection - Reverse battery protection - On-board voltage regulator - □ 3.0 to 24 V operation - Solid-state reliability - Robust EMC and ESD performance - Industry leading ISO 7637-2 performance through use of proprietary, 40-V clamping structures #### **Packages** Approximate scale #### **Description** The A1152, A1153, A1155, and A1156 comprise a family of two-wire, unipolar, Hall-effect switches, which are factory-trimmed to optimize magnetic switchpoint accuracy. These devices are produced on the Allegro® advanced BiCMOS wafer fabrication process, which implements a patented high frequency, 4-phase, chopper-stabilization technique. This technique achieves magnetic stability over the full operating temperature range, and eliminates offsets inherent in devices with a single Hall element that are exposed to harsh application environments. The A115x family has a number of automotive applications. These include sensing seat track position, seat belt buckle presence, hood/trunk latching, and shift selector position. Two-wire unipolar switches are particularly advantageous in cost-sensitive applications because they require one less wire for operation versus the more traditional open-collector output switches. Additionally, the system designer inherently gains diagnostics because there is always output current flowing, which should be in either of two narrow ranges. Any current level not within these ranges indicates a fault condition. Continued on the next page... Engineering samples available on a limited basis. Contact your local sales or applications support office for additional information. #### **Functional Block Diagram** #### **Description (continued)** All family members are offered in two package styles. The LH is a SOT-23W style, miniature, low profile package for surface-mount applications. The UA is a 3-pin, ultra-mini, single inline package (SIP) for through-hole mounting. Both packages are lead (Pb) free, with 100% matter tin leadframe plating. #### **Selection Guide** | Part
Number | Packing ¹ | Package | Output (I _{CC}) in
South Polarity
Field | Supply Current
at I _{CC(L)}
(mA) | Magnetic Operate
Point, B _{OP}
(G) | |-------------------------|---------------------------------|----------------------------|---|---|---| | A1152LLHLX-T | 13-in. reel, 10 000 pieces/reel | 3-pin SOT23W surface mount | Low | | | | A1152LUA-T ² | Bulk, 500 pieces/bag | 3-pin SIP through hole | LOW | 5 to 6.9 | 50 to 110 | | A1153LLHLX-T | 13-in. reel, 10000 pieces/reel | 3-pin SOT23W surface mount | High | 5 to 6.9 | 50 10 110 | | A1153LUA-T ² | Bulk, 500 pieces/bag | 3-pin SIP through hole | підіі | | | | A1155LLHLX-T | 13-in. reel, 10000 pieces/reel | 3-pin SOT23W surface mount | Low | | | | A1155LUA-T ² | Bulk, 500 pieces/bag | 3-pin SIP through hole | LOW | 5 to 6.9 | 20 to 60 | | A1156LLHLX-T | 13-in. reel, 10000 pieces/reel | 3-pin SOT23W surface mount | High | | 20 10 00 | | A1156LUA-T ² | Bulk, 500 pieces/bag | 3-pin SIP through hole | riigii | | | ¹Contact Allegro[®] for additional packing options. #### **Absolute Maximum Ratings** | Characteristic | Symbol | Notes | Rating | Unit | |-------------------------------|----------------------|---------|------------|------| | Forward Supply Voltage | V _{CC} | | 28 | V | | Reverse Supply Voltage | V _{RCC} | | -18 | V | | Magnetic Flux Density | В | | Unlimited | G | | Operating Ambient Temperature | T _A | Range L | -40 to 150 | °C | | Maximum Junction Temperature | T _J (max) | | 165 | °C | | Storage Temperature | T _{stg} | | -65 to 170 | °C | #### **Pin-out Diagrams** LH Package #### **Terminal List Table** | Number | Na | me | Function | | | |--------|------------|------------|---|--|--| | Number | LH package | UA package | runction | | | | 1 | VCC | VCC | Connects power supply to chip | | | | 2 | NC | GND | LH package: no connection UA package: ground terminal | | | | 3 | GND | GND | Ground terminal | | | ²Contact factory for availability. #### **ELECTRICAL CHARACTERISTICS** Valid at $T_A = -40$ °C to 150°C, $T_J < T_J(max)$, $C_{BYP} = 0.01 \mu F$, through operating supply voltage range; unless otherwise noted | Characteristics | Symbol | Test Conditions | | Min. | Тур. | Max. | Unit | |---------------------------------|---------------------|--|--------------------------------------|------|--------------------|------------------------------------|-------| | Supply Voltage ¹ | V _{CC} | Operating, T _J ≤ | 165 °C | 3.0 | _ | 24 | V | | | | A1152, A1155 | B > B _{OP} | _ | _ | 6.9 | mA | | Complex Company | I _{CC(L)} | A1153, A1156 | B < B _{RP} | 5 | | | | | Supply Current | | A1152, A1155 | B < B _{RP} | 12 | | 17 | mA | | | I _{CC(H)} | A1153, A1156 | B > B _{OP} | | _ | | | | Supply Zener Clamp Voltage | $V_{Z(sup)}$ | I _{CC(L)} (max) + 3 mA, T _A = 25°C | | 28 | _ | _ | V | | Supply Zener Clamp Current | I _{Z(sup)} | V _{Z(sup)} = 28 V | | _ | _ | I _{CC(L)} (max)
+ 3 mA | mA | | Reverse Supply Current | I _{RCC} | V _{RCC} = -18 V | | _ | _ | -1.6 | mA | | Output Slew Rate ² | di/dt | No bypass capacitor, capacitance of probe C _S = 20 pF | | _ | 90 | _ | mA/µs | | Chopping Frequency | f _c | | | _ | 700 | _ | kHz | | Power-Up Time ^{3,4} | t _{on} | | | _ | _ | 25 | μs | | Power-Up State ^{3,5,6} | POS | $t_{on} < t_{on}(max),$ | V _{CC} slew rate > 25 mV/μs | _ | I _{CC(H)} | _ | _ | $^{^{1}\}mathrm{V}_{\mathrm{CC}}$ represents the generated voltage between the VCC pin and the GND pin. #### **MAGNETIC CHARACTERISTICS**¹ Valid at $T_A = -40$ °C to 150°C, $T_J < T_J$ (max); unless otherwise noted | Characteristics | Symbol | Test Conditions | Min. | Тур. | Max. | Unit ² | |--------------------------|------------------|-----------------|------|------|------|-------------------| | Magnetic Operating Point | B _{OP} | A1152, A1153 | 50 | _ | 110 | G | | | | A1155, A1156 | 20 | - | 60 | G | | Magnetic Release Point | B _{RP} | A1152, A1153 | 45 | _ | 105 | G | | | | A1155, A1156 | 10 | _ | 55 | G | | Hysteresis | B _{HYS} | | 5 | - | 30 | G | Relative values of B use the algebraic convention, where positive values indicate south magnetic polarity, and negative values indicate north magnetic polarity; therefore greater B values indicate a stronger south polarity field (or a weaker north polarity field, if present). ² 1 G (gauss) = 0.1 mT (millitesla). ²Measured without bypass capacitor between VCC and GND. Use of a bypass capacitor results in slower current change. ³Power-Up Time is measured without and with bypass capacitor of 0.01 μ F, B > B_{OP} + 10 G. Adding a larger bypass capacitor would cause longer Power-Up Time. ⁴Guaranteed by characterization and design. ⁵Power-Up State as defined is true only with a V_{CC} slew rate of 25 mV/µs or greater. $^{^{6}}$ For t > t_{on} and B_{RP} < B < B_{OP} , Power-Up State is not defined. #### Thermal Characteristics may require derating at maximum conditions, see application information | Characteristic | Symbol | Test Conditions* | Value | Unit | |----------------------------|----------------|---|-------|------| | Package Thermal Resistance | $R_{ heta JA}$ | Package LH, on 4-layer PCB based on JEDEC standard | | °C/W | | | | Package LH, on 2-layer PCB with 0.463 in.2 of copper area each side | 110 | °C/W | | | | Package UA, on 1-layer PCB with copper limited to solder pads | 165 | °C/W | ^{*}Additional thermal information available on the Allegro website #### **Power Derating Curve** #### **Power Dissipation versus Ambient Temperature** 115 Northeast Cutoff #### **Characteristic Performance** A1152/A1153/A1155/A1156 Average Supply Current (Low) versus Temperature A1152/A1153/A1155/A1156 Average Supply Current (High) versus Temperature A1152/A1153/A1155/A1156 Average Supply Current (Low) versus Supply Voltage A1152/A1153/A1155/A1156 Average Supply Current (High) versus Supply Voltage A1152/A1153 Average Operate Point versus Temperature A1152/A1153 Average Release Point versus Temperature A1152/A1153 Average Switchpoint Hysteresis versus Temperature A1155/A1156 Average Operate Point versus Temperature A1155/A1156 Average Release Point versus Temperature A1155/A1156 Average Switchpoint Hysteresis versus Temperature #### **Functional Description** The A1152 and A1155 output, I_{CC} , switches low after the magnetic field at the Hall sensor IC exceeds the operate point threshold, B_{OP} . When the magnetic field is reduced to below the release point threshold, B_{RP} , the device output goes high. This is shown in figure 1, panel A. In the case of the reverse output polarity, as in the A1153 and A1156, the device output switches high after the magnetic field at the Hall sensor IC exceeds the operate point threshold, B_{OP} . When the magnetic field is reduced to below the release point threshold, B_{RP} , the device output goes low (panel B). The difference between the magnetic operate and release points is called the hysteresis of the device, B_{HYS}. This built-in hysteresis allows clean switching of the output even in the presence of external mechanical vibration and electrical noise. (B) Hysteresis curve for A1153 and A1156 Figure 1. Alternative switching behaviors are available in the A115x device family. On the horizontal axis, the B+ direction indicates increasing south polarity magnetic field strength, and the B– direction indicates decreasing south polarity field strength (including the case of increasing north polarity). Figure 2. Typical application circuits #### **Chopper Stabilization Technique** When using Hall-effect technology, a limiting factor for switchpoint accuracy is the small signal voltage developed across the Hall element. This voltage is disproportionally small relative to the offset that can be produced at the output of the Hall sensor IC. This makes it difficult to process the signal while maintaining an accurate, reliable output over the specified operating temperature and voltage ranges. Chopper stabilization is a unique approach used to minimize Hall offset on the chip. The patented Allegro technique, namely Dynamic Quadrature Offset Cancellation, removes key sources of the output drift induced by thermal and mechanical stresses. This offset reduction technique is based on a signal modulation-demodulation process. The undesired offset signal is separated from the magnetic fieldinduced signal in the frequency domain, through modulation. The subsequent demodulation acts as a modulation process for the offset, causing the magnetic field-induced signal to recover its original spectrum at base band, while the DC offset becomes a high-frequency signal. The magnetic-sourced signal then can pass through a low-pass filter, while the modulated DC offset is suppressed. The chopper stabilization technique uses a 350 kHz high frequency clock. For demodulation process, a sample and hold technique is used, where the sampling is performed at twice the chopper frequency. This high-frequency operation allows a greater sampling rate, which results in higher accuracy and faster signal-processing capability. This approach desensitizes the chip to the effects of thermal and mechanical stresses, and produces devices that have extremely stable quiescent Hall output voltages and precise recoverability after temperature cycling. This technique is made possible through the use of a BiCMOS process, which allows the use of low-offset, low-noise amplifiers in combination with high-density logic integration and sampleand-hold circuits. Figure 3. Chopper stabilization circuit (Dynamic Quadrature Offset Cancellation) #### **Power Derating** The device must be operated below the maximum junction temperature of the device, $T_J(max)$. Under certain combinations of peak conditions, reliable operation may require derating supplied power or improving the heat dissipation properties of the application. This section presents a procedure for correlating factors affecting operating T_J . (Thermal data is also available on the Allegro MicroSystems Web site.) The Package Thermal Resistance, $R_{\theta JA}$, is a figure of merit summarizing the ability of the application and the device to dissipate heat from the junction (die), through all paths to the ambient air. Its primary component is the Effective Thermal Conductivity, K, of the printed circuit board, including adjacent devices and traces. Radiation from the die through the device case, $R_{\theta JC}$, is relatively small component of $R_{\theta JA}$. Ambient air temperature, T_A , and air motion are significant external factors, damped by overmolding. The effect of varying power levels (Power Dissipation, P_D), can be estimated. The following formulas represent the fundamental relationships used to estimate T_J , at P_D . $$P_{\rm D} = V_{\rm IN} \times I_{\rm IN} \tag{1}$$ $$\Delta T = P_D \times R_{OIA} \tag{2}$$ $$T_{I} = T_{\Delta} + \Delta T \tag{3}$$ For example, given common conditions such as: T_A = 25°C, V_{CC} = 12 V, I_{CC} = 4 mA, and $R_{\theta JA}$ = 140 °C/W, then: $$\begin{split} P_D &= V_{CC} \times I_{CC} = 12 \text{ V} \times 4 \text{ mA} = 48 \text{ mW} \\ \Delta T &= P_D \times R_{\theta JA} = 48 \text{ mW} \times 140 \text{ °C/W} = 7 \text{°C} \\ T_J &= T_A + \Delta T = 25 \text{°C} + 7 \text{°C} = 32 \text{°C} \end{split}$$ A worst-case estimate, $P_D(max)$, represents the maximum allowable power level ($V_{CC}(max)$, $I_{CC}(max)$), without exceeding $T_J(max)$, at a selected $R_{\theta JA}$ and T_A . *Example*: Reliability for V_{CC} at $T_A=150^{\circ}C$, package UA, using a low-K PCB. Observe the worst-case ratings for the device, specifically: $R_{\theta JA} = 165 \text{ °C/W}$, $T_J(\text{max}) = 165 \text{ °C}$, $V_{CC}(\text{max}) = 24 \text{ V}$, and $I_{CC}(\text{max}) = 17 \text{ mA}$. Calculate the maximum allowable power level, P_D(max). First, invert equation 3: $$\Delta T_{\text{max}} = T_{\text{J}}(\text{max}) - T_{\text{A}} = 165 \,^{\circ}\text{C} - 150 \,^{\circ}\text{C} = 15 \,^{\circ}\text{C}$$ This provides the allowable increase to T_J resulting from internal power dissipation. Then, invert equation 2: $$P_D(max) = \Delta T_{max} \div R_{\theta JA} = 15^{\circ}C \div 165^{\circ}C/W = 91 \text{ mW}$$ Finally, invert equation 1 with respect to voltage: $$V_{CC(est)} = P_D(max) \div I_{CC}(max) = 91 \text{ mW} \div 17 \text{ mA} = 5 \text{ V}$$ The result indicates that, at T_A , the application and device can dissipate adequate amounts of heat at voltages $\leq V_{CC(est)}$. Compare $V_{CC(est)}$ to $V_{CC}(max)$. If $V_{CC(est)} \leq V_{CC}(max)$, then reliable operation between $V_{CC(est)}$ and $V_{CC}(max)$ requires enhanced $R_{\theta JA}$. If $V_{CC(est)} \geq V_{CC}(max)$, then operation between $V_{CC(est)}$ and $V_{CC}(max)$ is reliable under these conditions. #### Package LH, 3-Pin SOT23W For Reference Only; not for tooling use (reference DWG-2840) Dimensions in millimeters Dimensions exclusive of mold flash, gate burrs, and dambar protrusions Exact case and lead configuration at supplier discretion within limits shown Active Area Depth, 0.28 mm REF Reference land pattern layout All pads a minimum of 0.20 mm from all adjacent pads; adjust as necessary to meet application process requirements and PCB layout tolerances Branding scale and appearance at supplier discretion A Hall element, not to scale #### Package UA, 3-Pin SIP Allegro MicroSystems, Inc. A1152, A1153, A1155, and A1156 ### Chopper-Stabilized, Two Wire Hall-Effect Switches Copyright ©2009-2011, Allegro MicroSystems, Inc. Allegro MicroSystems, Inc. reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current. Allegro's products are not to be used in life support devices or systems, if a failure of an Allegro product can reasonably be expected to cause the failure of that life support device or system, or to affect the safety or effectiveness of that device or system. The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, Inc. assumes no responsibility for its use; nor for any infringement of patents or other rights of third parties which may result from its use. For the latest version of this document, visit our website: www.allegromicro.com