												REVIS	SIONS								
				LTI	R	DESCRIPTI				RIPTI	ON				D	ATE		-	APPR	OVED)
Prepared	l in accordar	nce with	n ASME	E Y14	.24												Ve	ndor it	tem d	rawing	ı
		1 1							I	I		I	I								
REV																					
PAGE																					
REV																					
PAGE																					
REV STA		REV		\longrightarrow																	
OI FAGI		PAG			1	2	3	4	5	6	7	8	9	10	11	12	13	14			
PMIC N/	A		PREP	'AREI		hu H.	Nguye	en						OLUN	IBUS		432	18-399			
										COLUMBUS, OHIO 43218-3990 http://www.landandmaritime.dla.mil/											
		Original date of drawing CHECKED BY Physical Reports 1. Drawing Physical Reports 1.					TITLE														
YY MM DD Phu H. Nguyen 14-09-04 APPROVED BY				CKED		hu H	Nauve	en.			1111	LE									
1	14-09-04	9			Р	hu H.	Nguye	en			MIC	ROC								DAC	
1	14-09-04	ing .			P D BY		Nguye M. He				MIC WIT	ROC TH 5	ppm/		N-CH	IIP R	EFE	RENC	CE IN	DAC N 14-	
1	14-09-04	iiig	APPR	ROVE	D BY	omas	M. He	ess			MIC WIT LEA	CROC TH 5 AD TS	ppm/		N-CH	IIP R	EFE	RENC	CE IN		
1	14-09-04		APPR	ROVE	D BY	omas	М. Не NT. N	ess O.			MIC WIT LEA	ROC TH 5	ppm/	C O P, MC	N-CH NOL	IIP R ITHI	EFEI C SIL	RENO ICOI	CE IN		
1	14-09-04		APPR	ROVE	D BY	omas	М. Не NT. N	ess			MIC WIT LEA	CROC TH 5 AD TS	ppm/	C O P, MC	N-CH NOL	IIP R	EFEI C SIL	RENO ICOI	CE IN		

AMSC N/A 5962-V086-14

1. SCOPE

- 1.1 <u>Scope</u>. This drawing documents the general requirements of a high performance quad, 16-bit DAC with 5 ppm/°C on-chip reference in 14-lead TSSOP microcircuit, with an operating temperature range of -55°C to +125°C.
- 1.2 <u>Vendor Item Drawing Administrative Control Number</u>. The manufacturer's PIN is the item of identification. The vendor item drawing establishes an administrative control number for identifying the item on the engineering documentation:

 V62/14626
 01
 X
 B

 Drawing number
 Device type (See 1.2.1)
 Case outline (See 1.2.2)
 Lead finish (See 1.2.3)

1.2.1 Device type(s).

 Device type
 Generic
 Circuit function

 01
 AD5666 -EP
 Quad, 16-bit DAC with 5 ppm/°C on-chip reference in 14-lead TSSOP

1.2.2 <u>Case outline(s)</u>. The case outlines are as specified herein.

 Outline letter
 Number of pins
 Package style

 X
 14
 Thin Shrink Small Outline Package (TSSOP)

1.2.3 Lead finishes. The lead finishes are as specified below or other lead finishes as provided by the device manufacturer:

Finish designator

A Hot solder dip
B Tin-lead plate
C Gold plate
D Palladium
E Gold flash palladium
Z Other

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/14626
		REV	PAGE 2

1.3 Absolute maximum ratings. 1/

V _{DD} to GND	-0.3 V to +7 V
Digital input voltage to GND	
V _{OUT} to GND	$-0.3 \text{ V to V}_{DD} + 0.3 \text{ V}$
V _{REFIN} /V _{REFOUT} to GND	-0.3 V to V_{DD} + 0.3 V
Operating temperature range:	-55°C to +125°C
Storage temperature range	-65°C to 150°C
Junction temperature, (T _{J MAX})	
Case outline X (TSSOP):	
Power dissipation	$(T_{J MAX} - T_{A})/\theta_{JA}$
Thermal impedance (θ _{JA})	150.4°C/W
Reflow soldering peak temperature	
SnPb	240°C
Pb free	260°C

2. APPLICABLE DOCUMENTS

No Applicable document available.

3. REQUIREMENTS

- 3.1 <u>Marking</u>. Parts shall be permanently and legibly marked with the manufacturer's part number as shown in 6.3 herein and as follows:
 - A. Manufacturer's name, CAGE code, or logo
 - B. Pin 1 identifier
 - C. ESDS identification (optional)
- 3.2 <u>Unit container</u>. The unit container shall be marked with the manufacturer's part number and with items A and C (if applicable) above
- 3.3 <u>Electrical characteristics</u>. The maximum and recommended operating conditions and electrical performance characteristics are as specified in 1.3, 1.4, and table I herein.
 - 3.4 Design, construction, and physical dimension. The design, construction, and physical dimensions are as specified herein.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/14626
		REV	PAGE 3

Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.

- 3.5 Diagrams.
- 3.5.1 <u>Case outline</u>. The case outline shall be as shown in 1.2.2 and figure 1.
- 3.5.2 Terminal connections. The terminal connections shall be as shown in figure 2.
- 3.5.3 Functional block diagram. The functional block diagram shall be as shown in figure 3.
- 3.5.4 <u>Load Circuit for Digital Output (SDO) Timing Specifications</u>. The Load Circuit for Digital Output (SDO) Timing Specifications shall be as shown in figure 4.
- 3.5.5 <u>Serial Write Operation</u>. The Serial Write Operation shall be as shown in figure 5.
- 3.5.6 <u>Daisy-chain timing diagram</u>. The Daisy-chain timing diagram shall be as shown in figure 6.
- 3.5.7 INL. The INL shall be as shown in figure 7.
- 3.5.8 <u>DNL</u>. The DNL shall be as shown in figure 8.
- 3.5.9 <u>Gain Error and Full Scale Error vs Temperature</u>. The Gain Error and Full Scale Error vs Temperature shall be as shown in figure 9.
- 3.5.10 <u>Zero Scale Error and Offset Error vs Temperature</u>. The Zero Scale Error and Offset Error vs Temperature shall be as shown in figure 10.
- 3.5.11 <u>Digital to Analog Glitch impulse</u>. The Digital to Analog Glitch impulse shall be as shown in figure 11.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/14626
		REV	PAGE 4

TABLE I. Electrical performance characteristics. 1/

Test	Test conditions	E	3 Grade	<u>3</u> /	Unit
	<u>2</u> /	Min	Тур	Max	
STATIC PERFORMANCE 4/					
Resolution		16			Bits
Relative Accuracy	See FIGURE 7			±21	LSB
Differential Nonlinearity	Guaranteed monotonic by design (see FIGURE 8)			±1	
Zero-Code Error	All 0s loaded to DAC register (see FIGURE 10)		1	14	mV
Zero-Code Error Drift			±2		μV/°C
Full-Scale Error	All 1s loaded to DAC register (see FIGURE 9)		-0.2	-1	% FSR
Gain Error				±1	
Gain Temperature Coefficient	Of FSR/°C		±2.5		ppm
Offset Error			±1	±14	mV
DC Power Supply Rejection Ratio	V _{DD} ± 10%		-80		dB
	Due to full-scale output change,		10		μV
DC Crosstalk (External Reference)	$R_L = 2 k\Omega$ to GND or V_{DD}				
20 Grootain (External Hororollos)	Due to load current change		5		μV/mA
	Due to powering down (per channel)		10		μV
	Due to full-scale output change,		25		μV
DC Crosstalk (Internal Reference)	$R_L = 2 k\Omega$ to GND or V_{DD}				
	Due to load current change		10		μV/mA
OUTPUT CHARACTERISTICS <u>5</u> /					
Output Voltage Range		0		V_{DD}	V
Capacitive Load Stability	R _L = ∞		2		nF
	$R_L = 2 k\Omega$		10		
DC Output Impedance			0.5		Ω
Short-Circuit Current	$V_{DD} = 5 \text{ V}$		30		mA
Power-Up Time	Coming out of power-down mode $V_{DD} = 5 \text{ V}$		4		μs
REFERENCE INPUTS					
Reference Input Voltage			V_{DD}		V
Reference Current	$V_{REF} = V_{DD} = 5.5 \text{ V}$		20	55	μA
Reference Input Range		0		V_{DD}	V
Reference Input Impedance	Per DAC channel		14.6		kΩ
REFERENCE OUTPUTS 5/					
Output Voltage	At ambient	2.495		2.505	V
Reference Temperature Coefficient 5/			±5		ppm/°C
Reference Output Impedance			7.5		kΩ

See footnote at end of table.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/14626
		REV	PAGE 5

TABLE I. <u>Electrical performance characteristics</u> - Continued. <u>1</u>/

Т	est	Symbol	Test conditions		Limits		Unit
			<u>2</u> /	Min	Тур	Max	
LOGIC INPUTS 5/							
Input Current			All digital inputs			±3	μA
Input Low Voltage		V _{INL}	$V_{DD} = 5 \text{ V}$			0.8	V
Input High Voltage		V _{INH}	$V_{DD} = 5 \text{ V}$	2			V
Pin Capacitance					3		pF
LOGIC OUTPUTS (SD	O) <u>5</u> /						
Output Low Voltage		V _{OL}	I _{SINK} = 2 mA			0.4	V
Output High Voltage		Voh	I _{SOURCE} = 2 mA	V _{DD} - 1			
High Impedance Leakag	ge Current					±0.25	μΑ
High Impedance Output	t Capacitance				2		pF
POWER REQUIREMEN	NTS						
V_{DD}			All digital inputs at 0 or V _{DD} ,	4.5		5.5	V
			DAC active, excludes load current				
Idd (Normal Mode)	Internal reference off		$V_{IH} = V_{DD}$ and $V_{IL} = GND$,		0.7	0.9	mA
<u>6</u> /	Internal reference on		$V_{DD} = 4.5 \text{ V to } 5.5 \text{ V}$		1.3	1.6	
I _{DD} (All Power-Down Mo	ndes) 7/	$V_{IH} = V_{DD}$ and $V_{IL} = GND$, 0.4		1	μΑ		
TOD (7 III 1 OWEI DOWN INC	DD (All I Owel-Down Modes) <u>H</u>		$V_{DD} = 4.5 \text{ V to } 5.5 \text{ V}$				
AC characteristics 5	<u>5</u> / <u>8</u> /						
Output Voltage Settling	Time		1/4 to 3/4 scale settling to ±2 LSB		6	10	μs
Slew Rate					1.5		V/µs
Digital-to-Analog Glitch	Impulse		1 LSB change around major carry (see FIGURE 11)		4		nV-sec
Reference Feedthrough	1		$V_{REF} = 2 V \pm 0.1 V p-p,$		-90		dB
- Troidioide i dodinidagii	· 		frequency = 10 Hz to 20 MHz				
SDO Feedthrough			Daisy-chain mode; SDO load is 10 pF		3		nV-sec
Digital Feedthrough					0.1		
Digital Crosstalk					0.5		
Analog Crosstalk					2.5		
DAC-to-DAC Crosstalk					3		
Multiplying Bandwidth			V _{REF} = 2 V ± 0.2 V p-p		340		kHz
Total Harmonic Distortion			V _{REF} = 2 V ± 0.1 V p-p,		-80		dB
Total Harmonic Distortic) i		frequency = 10 kHz				
Output Noise Spectral D	Density		DAC code = 0x8400, 1 kHz		120		nV/√Hz
			DAC code = 0x8400, 10 kHz		100		
Output Noise			0.1 Hz to 10 Hz		15		μV p-p

See footnote at end of table.

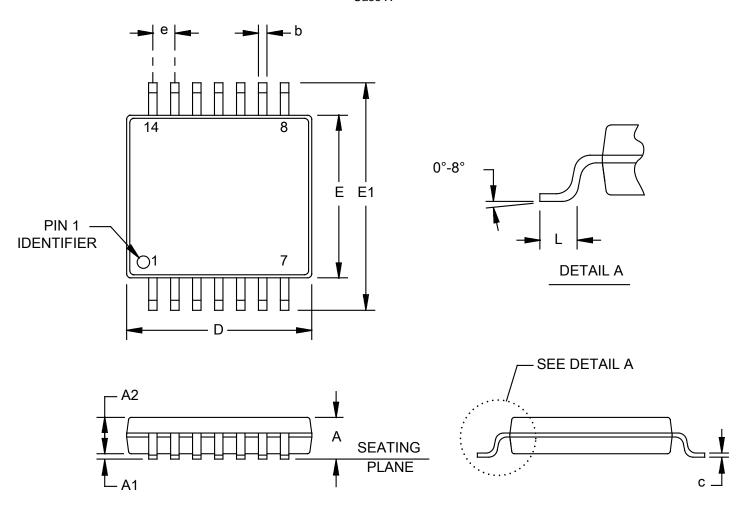

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/14626
		REV	PAGE 6

TABLE I. <u>Electrical performance characteristics</u> - Continued. <u>1/</u>

Test	Symbol	Test conditions	Limits			Unit
		<u>9</u> /	Min	Тур	Max	
Timing characteristics						
SCLK cycle time	t ₁ <u>10</u> /		20			ns
SCLK high time	t ₂		8			
SCLK low time	t ₃		8			
SYNC to-SCLK falling edge setup time	t ₄		13			
Data setup time	t ₅		4			
Data hold time	t ₆		4			
SCLK falling edge to SYNC rising edge	t ₇		0			
Minimum SYNC high time	t ₈		15			
SYNC rising edge to SCLK fall ignore	t ₉		13			
SCLK falling edge to SYNC fall ignore	t ₁₀		0			
LDAC pulse width low	t ₁₁		10			
SCLK falling edge to $\overline{\text{LDAC}}$ rising edge	t ₁₂		15			
CLR pulse width low	t ₁₃		5			
SCLK falling edge to $\overline{\text{LDAC}}$ falling edge	t ₁₄		0			
CLR pulse activation time	t ₁₅			300		
SCLK rising edge to SDO valid	t ₁₆ <u>11</u> /				22	
SCLK falling edge to SYNC rising edge	t ₁₇ <u>11</u> /		5			
SYNC rising edge to SCLK rising edge	t ₁₈ <u>11</u> /		8			
SYNC rising edge to LDAC falling edge	t ₁₉ <u>11</u> /		0			

- 1/ Testing and other quality control techniques are used to the extent deemed necessary to assure product performance over the specified temperature range. Product may not necessarily be tested across the full temperature range and all parameters may not necessarily be tested. In the absence of specific parametric testing, product performance is assured by characterization and/or design.
- $\underline{2}$ / $V_{DD} = 4.5 \text{ V}$ to 5.5 V, $R_L = 2 \text{ k}\Omega$ to GND, $C_L = 200 \text{ pF}$ to GND, $V_{REFIN} = V_{DD}$. All specifications T_{MIN} to T_{MAX} , unless otherwise noted.
- 3/ Temperature range is -40° C to $+105^{\circ}$ C, typical at 25°C.
- 4/ Temperature range is −55°C to +125°C, typical at 25°C. Linearity calculated using a reduced code range of 512 to 65,024. Output unloaded.
- 5/ Guaranteed by design and characterization; not production tested.
- 6/ Interface inactive. All DACs active. DAC outputs unloaded.
- 7/ All four DACs powered down.
- 8/ Temperature range is -55°C to +125°C, typical at 25°C.
- $\underline{9}$ / All input signals are specified with $t_r = t_f = 1$ ns/V (10% to 90% of V_{DD}) and timed from a voltage level of ($V_{IL} + V_{IH}$)/2. See FIGURE 5 and FIGURE 6. $V_{DD} = 2.7$ V to 5.5 V. All specifications T_{MIN} to T_{MAX} , unless otherwise noted.
- $\underline{10}$ Maximum SCLK frequency is 50 MHz at $V_{DD} = 2.7 \text{ V}$ to 5.5 V. Guaranteed by design and characterization; not production tested.
- 11/ Daisy-chain mode only.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/14626
		REV	PAGE 7

Dimensions											
Symbol	Millimeters		Millimeters		Symbol	Milli	meters				
	Min	Max		Min	Max						
Α		1.20	D	4.90	5.10						
A1	0.05	0.15	E	4.30	4.50						
A2	0.08	1.05	E1	6.40 BSC							
b	0.19	0.30	е	0.65 BSC							
С	0.09	0.20	L	0.45	0.75						

NOTES:

1. All linear dimensions are in millimeters.

FIGURE 1. Case outline.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/14626
		REV	PAGE 8

Case outline X					
Terminal number	Terminal symbol	Terminal number	Terminal symbol		
1	LDAC	14	SCLK		
2	SYNC	13	DIN		
3	V_{DD}	12	GND		
4	$V_{OUT}A$	11	$V_{OUT}B$		
5	$V_{OUT}C$	10	$V_{OUT}D$		
6	POR	9	$\overline{\text{CLR}}$		
7	V _{REFIN} /V _{REFOUT}	8	SDO		

FIGURE 2. <u>Terminal connections</u>.

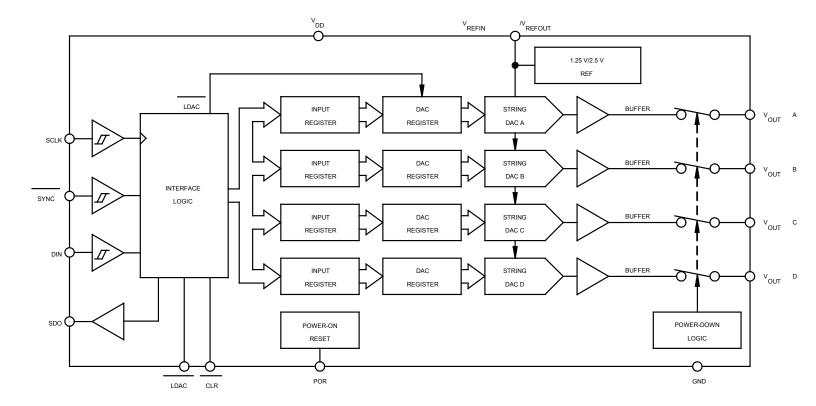


FIGURE 3. Functional block diagram.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/14626
		REV	PAGE 9

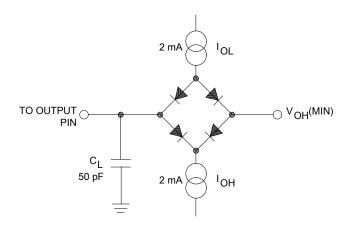
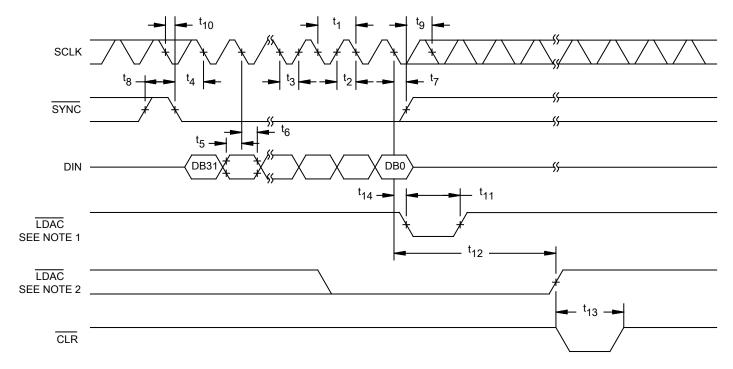



FIGURE 4. Load Circuit for Digital Output (SDO) Timing Specifications.

NOTES:

- Asynchronous LDAC update mode.
 Synchronous LDAC update mode

FIGURE 5. Serial Write Operation.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/14626
		REV	PAGE 10

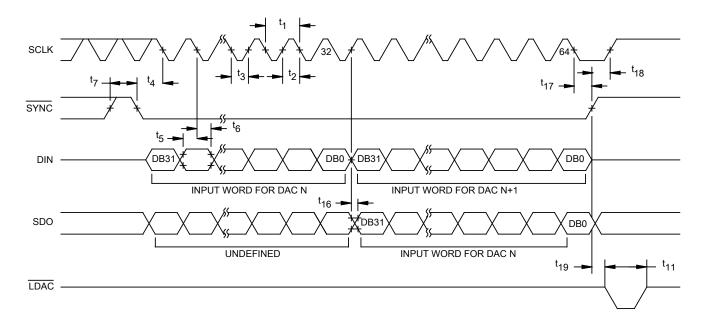


FIGURE 6. Daisy-chain timing diagram.

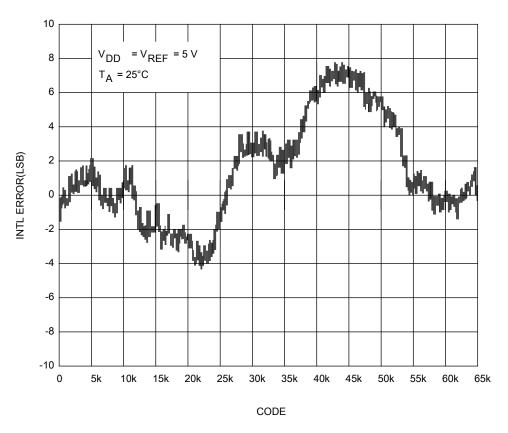


FIGURE 7. INL.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/14626
		REV	PAGE 11

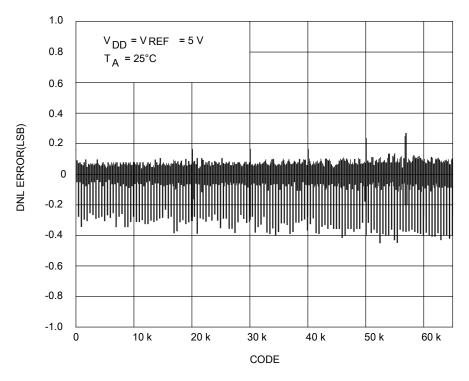


FIGURE 8. DNL.

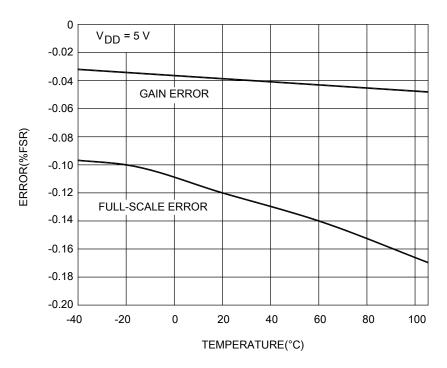


FIGURE 9. Gain Error and Full Scale Error vs Temperature.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/14626
		REV	PAGE 12

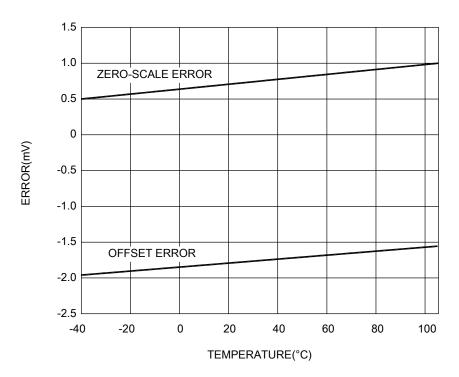


FIGURE 10. Zero Scale Error and Offset Error vs Temperature.

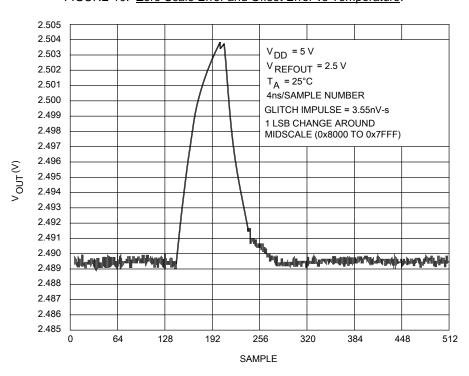


FIGURE 11. Digital to Analog Glitch impulse.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/14626
		REV	PAGE 13

4. VERIFICATION

4.1 <u>Product assurance requirements</u>. The manufacturer is responsible for performing all inspection and test requirements as indicated in their internal documentation. Such procedures should include proper handling of electrostatic sensitive devices, classification, packaging, and labeling of moisture sensitive devices, as applicable.

5. PREPARATION FOR DELIVERY

- 5.1 <u>Packaging</u>. Preservation, packaging, labeling, and marking shall be in accordance with the manufacturer's standard commercial practices for electrostatic discharge sensitive devices.
 - 6. NOTES
 - 6.1 ESDS. Devices are electrostatic discharge sensitive and are classified as ESDS class 1 minimum.
- 6.2 <u>Configuration control</u>. The data contained herein is based on the salient characteristics of the device manufacturer's data book. The device manufacturer reserves the right to make changes without notice. This drawing will be modified as changes are provided.
- 6.3 <u>Suggested source(s) of supply</u>. Identification of the suggested source(s) of supply herein is not to be construed as a guarantee of present or continued availability as a source of supply for the item. DLA Land and Maritime maintains an online database of all current sources of supply at http://www.landandmaritime.dla.mil/Programs/Smcr/.

Vendor item drawing administrative control number 1/	Device manufacturer CAGE code	Vendor part number
V62/14626-01XB	24355	AD5666SRU-EP-2RL7

1/ The vendor item drawing establishes an administrative control number for identifying the item on the engineering documentation.

<u>CAGE code</u> <u>Source of supply</u>

24355 Analog Devices 1 Technology Way P.O. Box 9106

Norwood, MA 02062-9106

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/14626
		REV	PAGE 14