10A MINIATURE POWER RELAY FOR ACTUAL LOADS

DY RELAYS (ADY)

FEATURES

- Latching types available
- Compliant with IEC EN61010-1.

Reinforced insulation with 6 mm distance between input and output.

- Electrical life of Min. 2×10^{5} times
(1 Form A type) realized with inductive load ($\cos \phi=0.4, \mathrm{~L} / \mathrm{R}=7 \mathrm{~ms}, 5 \mathrm{~A} 250 \mathrm{~V}$ AC)
- Lead- and cadmium-free.
- Socket also available.

	Part No.
Single side stable type	DK2a-PS
2 coil latching type	DK2a-PSL2

TYPICAL APPLICATIONS

- Control for industrial machines (machine tools, robotics)
- Output relays for temperature controllers, PLCs, timers, sensors.
- Measuring equipment
- Security equipment

SPECIFICATIONS

Contact

Arrangement			1 Form A	1 Form A 1 Form B
Initial contact resistance, max. (By voltage drop 6 V DC 1A)			$30 \mathrm{~m} \Omega$	
Contact material			Gold-flashed silver alloy	
Rating	Nominal switching capacity	Resistive load	$\begin{gathered} \text { 10A 250V AC } \\ \text { 10A 30V DC } \\ \hline \end{gathered}$	8A 250V AC 8A 30V DC
		Inductive load $\begin{aligned} & (\cos \phi=0.4, \\ & L / R=7 \mathrm{~ms}) \end{aligned}$	$\begin{gathered} 5 \mathrm{~A} 250 \mathrm{~V} \\ \text { AC } \end{gathered}$	$\begin{gathered} 3.5 \mathrm{~A} 250 \mathrm{~V} \\ \text { AC } \end{gathered}$
	Max. switching capacity (Reference)	Resistive load	$\begin{gathered} 2,500 \mathrm{~V} \mathrm{~A}, \\ 300 \mathrm{~W} \end{gathered}$	$\begin{gathered} 2,000 \mathrm{~V} \mathrm{~A} \\ 240 \mathrm{~W} \end{gathered}$
		Inductive load $\begin{aligned} & (\cos \phi=0.4, \\ & L / R=7 \mathrm{~ms}) \end{aligned}$	1,250V A	875V A
	Max. switching voltage		380 V AC, 125 V DC	
	Max. switching current		10 A	8 A
	Min. switching capacity\#1		5 V 10 mA	
Expected life (min. operations)	Mechanical (at 300cpm)		5×10^{7}	
	Electrical (at 20cpm)	1 Form A inductive load	2×10^{5}	
		1 Form A resistive load 1 Form A 1 Form B resistive load 1 Form A 1 Form B inductive load	10^{5}	

Coil
 Nominal operating power

Characteristics

			1 Form A	1 Form A 1 Form B
Max. operating speed			20 cpm (at rated load)	
Initial insulation resistance ${ }^{* 1}$			Min. 1,000 M 2 (at 500 V DC)	
Initial breakdown voltage*2	Between open contacts		1,000 Vrms for 1 min .	
	Between contacts and coil		4,000 Vrms for 1 min .	
Surge voltage between coil and contact*3			Min. 10,000 V (initial)	
Operate time [Set time] ${ }^{* 4}$ (at nominal voltage) (at $20^{\circ} \mathrm{C}$)			Max. 10ms (Approx. 5ms) [Max. 10ms (Approx. 5ms)]	
Release time [Reset time] (without diode) ${ }^{* 4}$ (at nominal voltage) (at $20^{\circ} \mathrm{C}$)			Max. 8ms (Approx. 3ms) [Max. 10ms (Approx. 3ms)]	
Temperature rise (at $\left.70^{\circ} \mathrm{C}\right)^{* 5}$			Max. $40^{\circ} \mathrm{C}$	
Shock resistance		Functional*6	Min. $98 \mathrm{~m} / \mathrm{s}^{2}$ \{10 G\}	
		Destructive*7	Min. $980 \mathrm{~m} / \mathrm{s}^{2}$ \{100 G\}	
Vibration resistance		Functional**	10 to 55 Hz at double amplitude of 1.5 mm	
		Destructive	10 to 55 Hz at double amplitude of 3.0 mm	
Conditions for operation, transport and storange*9 (Not freezing and condensing at low temperature)		Ambient temp.	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{F} \text { to }+158^{\circ} \mathrm{F} \end{aligned}$	
		Humidity	5 to 85\% R.H.	
Unit weight			Approx. 6g . 21 oz	

Remarks

\#1 This value can change due to the switching frequency, environmental conditions and desired reliability level, therefore it is recommended to check this with the actual load.
*1 Measurement at same location as "Initial breakdown voltage" section
${ }^{*}$ Detection current: 10 mA
${ }^{*} 3$ Wave is standard shock voltage of $\pm 1.2 \times 50 \mu \mathrm{~s}$ according to JEC-212-1981
${ }^{*}$ Excluding contact bounce time
${ }^{*} 5$ By resistive method, nominal voltage applied to the coil, max. switching current
${ }^{* 6}$ Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$
*7 Half-wave pulse of sine wave: 6 ms
${ }^{*} 8$ Detection time: 10 s
${ }^{* 9}$ Refer to 6. Conditions for operation, transport and storage mentioned in AMBIENT ENVIRONMENT

TYPES AND COIL DATA (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)

- Single side stable type

Contact arrangement	Part No.	Nominal voltage, V DC	Pick-up voltage, V DC (max.) (initial)	Drop-out voltage, V DC (min.) (initial)	Nominal operating current, $m A(\pm 10 \%)$	Coil resistance, Ω ($\pm 10 \%$)	Nominal operating power, mW	Max. allowable voltage, V DC
1 Form A	ADY10003	3	2.1	0.3	66.6	45	200	3.9
	ADY10005	5	3.5	0.5	40	125	200	6.5
	ADY10006	6	4.2	0.6	33.3	180	200	7.8
	ADY10012	12	8.4	1.2	16.6	720	200	15.6
	ADY10024	24	16.8	2.4	8.3	2,880	200	31.2
1 Form A 1 Form B	ADY30003	3	2.1	0.3	66.6	45	200	3.9
	ADY30005	5	3.5	0.5	40	125	200	6.5
	ADY30006	6	4.2	0.6	33.3	180	200	7.8
	ADY30012	12	8.4	1.2	16.6	720	200	15.6
	ADY30024	24	16.8	2.4	8.3	2,880	200	31.2

- 2 coil latching type

Contact arrangement	Part No.	Nominal voltage, V DC	Set voltage, V DC (max.) (initial)	Reset voltage, V DC (max.) (initial)	Nominal operating current, mA ($\pm 10 \%$)		Coil resistance, $\Omega(\pm 10 \%)$		Nominal operating power, mW		Max. allowable voltage, V DC
					Set coil	Reset coil	Set coil	Reset coil	Set coil	Reset coil	
1 Form A	ADY12003	3	2.1	2.1	66.6	66.6	45	45	200	200	3.9
	ADY12005	5	3.5	3.5	40	40	125	125	200	200	6.5
	ADY12006	6	4.2	4.2	33.3	33.3	180	180	200	200	7.8
	ADY12012	12	8.4	8.4	16.6	16.6	720	720	200	200	15.6
	ADY12024	24	16.8	16.8	8.3	8.3	2,880	2,880	200	200	31.2
1 Form A 1 Form B	ADY32003	3	2.1	2.1	66.6	66.6	45	45	200	200	3.9
	ADY32005	5	3.5	3.5	40	40	125	125	200	200	6.5
	ADY32006	6	4.2	4.2	33.3	33.3	180	180	200	200	7.8
	ADY32012	12	8.4	8.4	16.6	16.6	720	720	200	200	15.6
	ADY32024	24	16.8	16.8	8.3	8.3	2,880	2,880	200	200	31.2

DIMENSIONS

Single side stable type

2 coil latching type

PC board pattern (BOTTOM VIEW) Single side stable type

Schematic (BOTTOM VIEW) Single side stable
(1 Form A)

General tolerance: $\pm 0.3 \pm .012$

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Panasonic:
ADY11005 ADY30006 ADJ21003

