				REVISIONS																	
					LTR				DESC	RIPTI	ON				D,	ATE		1	APPR	OVED	
Prepared	in acc	cordanc	ce with	ASME 1	Y14.24												Ve	ndor i	tem dr	awing	
REV																					
PAGE																					
REV																					
PAGE																					
REV STA	TUS	_	REV		_																
OF PAGE	ES		PAGE	:	1	2	3	3 4 5 6			7	8	9	10	11	12					
PMIC N/A PREF			PREPA	REPARED BY Phu H. Nguyen				DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 http://www.landandmaritime.dla.mil/													
Original date of drawing YY MM DD 12-10-09 AF		CHECK	ED BY																		
			F	²hu H.	Nguye	en			MIC	 ROC	SIRCL	JIT.	LINE	AR.	LOW	/ DIS	TOR	TION			
			APPRO	VED BY T	nomas	5 M. He	ess			DIFFERENTIAL ADC DRIVER, MONOLITHIC SILICON											
		SIZE	COL)E IDE	NT. N	0.			DWG NO.												
			Α			162	236			V62/12629											
RE			REV							PAG	E 1	OF	12								

1. SCOPE

1.1 <u>Scope</u>. This drawing documents the general requirements of a high performance low distortion differential ADC driver microcircuit, with an operating temperature range of -55°C to +105°C.

1.2 <u>Vendor Item Drawing Administrative Control Number</u>. The manufacturer's PIN is the item of identification. The vendor item drawing establishes an administrative control number for identifying the item on the engineering documentation:

	<u>V62/12629</u>	- <u>01</u>	¥	Ę			
	Drawing	Device type	Case outline	Lead finish			
	number	(See 1.2.1)	(See 1.2.2)	(See 1.2.3)			
1.2.1	Device type(s).						
	Device type	<u>Generic</u>	<u>Cir</u>	rcuit function			
	01	AD8138-EP	Low distortion	differential ADC driver			
1.2.2	.2.2 Case outline(s). The case outlines are as specified herein.						

<u>Outline letter</u>	Number of pins	JEDEC PUB 95	Package style
Х	8	JEDEC MO-187-AA	Mini Small Outline Package

1.2.3 Lead finishes. The lead finishes are as specified below or other lead finishes as provided by the device manufacturer:

Finish designator	Material
A	Hot solder dip
B	Tin-lead plate
C	Gold plate
D	Palladium
E	Gold flash palladium
Z	Other

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12629
		REV	PAGE 2

1.3 Absolute maximum ratings. 1/

Supply voltage	±5.5 V
V _{OCM}	±Vs
Output voltage swing	See FIGURE 5 and 6
Internal power dissipation	550 mW
Operating temperature range:	-55°C to +105°C
Storage temperature range	-65°C to 150°C
Lead temperature, (Soldering, 10 sec)	300°C
Junction temperature	150°C

1.4 Thermal characteristics.

Thermal resistance

Case outline	θ _{JA}	Unit
Case X	145	°C/W

2. APPLICABLE DOCUMENTS

JEDEC - SOLID STATE TECHNOLOGY ASSOCIATION (JEDEC)

JEP95 – Registered and Standard Outlines for Semiconductor Devices

(Copies of these documents are available online at http://www.jedec.org or from JEDEC – Solid State Technology Association, 3103 North 10th Street, Suite 240–S, Arlington, VA 22201.)

3. REQUIREMENTS

3.1 <u>Marking</u>. Parts shall be permanently and legibly marked with the manufacturer's part number as shown in 6.3 herein and as follows:

- A. Manufacturer's name, CAGE code, or logo
- B. Pin 1 identifier
- C. ESDS identification (optional)

3.2 <u>Unit container</u>. The unit container shall be marked with the manufacturer's part number and with items A and C (if applicable) above.

3.3 <u>Electrical characteristics</u>. The maximum and recommended operating conditions and electrical performance characteristics are as specified in 1.3 and table I herein.

3.4 Design, construction, and physical dimension. The design, construction, and physical dimensions are as specified herein.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/12629	
COLUMBUS, OHIO	A	16236		
		REV	PAGE 3	

<u>1</u>/ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.

3.5 Diagrams.

- 3.5.1 <u>Case outline</u>. The case outline shall be as shown in 1.2.2 and figure 1.
- 3.5.2 <u>Terminal connections</u>. The terminal connections shall be as shown in figure 2.
- 3.5.3 <u>Terminal function</u>. The terminal function shall be as shown in figure 3.
- 3.5.4 <u>Maximum power dissipation vs ambient temperature</u>. The maximum power dissipation vs ambient temperature shall be as shown in figure 4.
- 3.5.5 <u>Differential output voltage swing vs ambient temperature, $V_S = \pm 5 V$ </u>. The differential output voltage swing vs ambient temperature, $V_S = \pm 5 V$ shall be as shown in figure 5.
- 3.5.6 <u>Differential output voltage swing vs ambient temperature, $V_S = 5 V$ </u>. The differential output voltage swing vs ambient temperature, $V_S = 5 V$ shall be as shown in figure 6.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12629
		REV	PAGE 4

Test	Symbol Test conditions			Limits			
			Min	Тур	Max		
		±D _{IN} TO ±OUT SPECIFICATIONS <u>2</u> /					
Dynamic performance							
		V _{OUT} = 0.5 V p-p, C _F = 0 pF	290	320		MHz	
-3 dB small signal bandwidth		T _{MIN} to T _{MAX} <u>3</u> /	256				
		V _{OUT} = 0.5 V p-p, C _F = 1 pF		225			
Bandwidth for 0.1 dB Flatness		V _{OUT} = 0.5 V p-p, C _F = 0 pF		30			
Large signal bandwidth		$V_{OUT} = 2 V p-p, C_F = 0 pF$		265			
Slew rate		$V_{OUT} = 2 V p-p, C_F = 0 pF$		1150		V/µs	
Settling time		0.01%, V _{OUT} = 2 V p-p, C _F = 1 pF		16		ns	
Overdrive recovery time		$V_{IN} = 5 V \text{ to } 0 V \text{ step}, G = +2$		4			
Noise/Harmonic performance							
		V_{OUT} = 0.5 V p-p, 5 MHz, $R_{L, dm}$ = 800 Ω		-94		dBc	
Second Harmonic		$V_{OUT} = 0.5 \text{ V p-p}, 20 \text{ MHz}, R_{L, dm} = 800 \Omega$		-87			
		V _{OUT} = 0.5 V p-p, 70 MHz, R _{L, dm} = 800 Ω		-62			
		$V_{OUT} = 0.5 \text{ V p-p}, 5 \text{ MHz}, R_{L, dm} = 800 \Omega$		-114			
Third Harmonic		$V_{OUT} = 0.5 \text{ V p-p}, 20 \text{ MHz}, R_{L, dm} = 800 \Omega$		-85			
		V _{OUT} = 0.5 V p-p, 70 MHz, R _{L, dm} = 800 Ω		-57			
IMD		20 MHz		-77			
IP3		20 MHz		37		dBm	
Voltage noise (RTI)		f = 100 kHz to 40 MHz		5		nv/√Hz	
Input current noise		f = 100 kHz to 40 MHz		2		pA/√Hz	
Input characteristics							
Offset voltage		$V_{OS, dm} = V_{OUT, dm}/2; V_{DIN+} = V_{DIN-} = V_{OCM} = 0 V$	-2.5	±1	+2.5	mV	
		T _{MIN} to T _{MAX} <u>3</u> /	-4.8		+4.8		
Input bias current				3.5	7	μA	
		T _{MIN} to T _{MAX} variation		-0.01		µA/°C	
Input resistance		Differential		6		MΩ	
Input resistance		Common mode		3			
Input capacitance				1		pF	
Input common mode voltage				-4.7 to +3.4		V	
		$\Delta V_{OUT, dm} / \Delta V_{IN, cm}; \Delta V_{IN, cm} = \pm 1 V,$		-77	-70	dB	
CIVICIC		T _{MIN} to T _{MAX} <u>3</u> /			-69		
Output characteristics		-					
Output voltage swing <u>4</u> /		Maximum ΔV_{OUT} ; single ended output		7.75		V р-р	
Output balance error		$\Delta V_{OUT, cm} / \Delta V_{OUT, dm}; \Delta V_{OUT, dm} = 1 V,$		-66		dB	

TABLE I. <u>Electrical performance characteristics</u>. <u>1</u>/

See footnote at end of table.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12629
		REV	PAGE 5

TABLE I.	Electrical performance characteristics - Continued.	<u>1</u> /
----------	---	------------

Test	Symbol	Test conditions	Limits			Unit
			Min	Тур	Max	
		V _{OCM} TO ±OUT SPECIFICATIONS <u>2</u> /				
Dynamic performance						
-3dB bandwidth				250		MHz
Slew rate				330		V/µs
Noise						
Input voltage noise (RTI)		f = 0.1 MHz to 100 MHz		17		nv/√Hz
DC performance						
Input voltage range				±3.8		V
Input resistance				200		kΩ
Input offset voltage		$V_{OS, cm} = V_{OUT, cm}; V_{DIN+} = V_{DIN-} = V_{OCM} = 0 V$	-3.5	±1	+3.5	mV
		T _{MIN} to T _{MAX} <u>3</u> /	-10.2		+10.2	
Input bias current				0.5		μA
V _{OCM} CMRR		$\Delta V_{OUT, dm} / \Delta V_{OCM}; \Delta V_{OCM} = \pm 1 V,$		-75		dB
Gain		$\Delta V_{OUT, cm} / \Delta V_{OCM}; \Delta V_{OCM} = \pm 1 V;$	0.9955	1	1.0045	V/V
		T _{MIN} to T _{MAX} <u>3</u> /				
Power supply	-					
Operating range			±1.4		±5.5	V
Quiescent current			18	20	23	mA
		T _{MIN} to T _{MAX} <u>3</u> /	13.2			mA
Power supply rejection ratio		$\Delta V_{OUT, dm} / \Delta V_S, \Delta V_S = \pm 1 \text{ V}; \text{ T}_{MIN} \text{ to } \text{T}_{MAX} $ <u>3</u> /		-90	-70	dB
Operating temperature range			-55		+105	°C

See footnote at end of table.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12629
	REV		PAGE 6

Test	Symbol	Test conditions		Limits		Unit
	-		Min	Тур	Max	
		±D _{IN} TO ±OUT SPECIFICATIONS 5/				
Dynamic performance						
		V _{OUT} = 0.5 V p-p, C _F = 0 pF	280	310		MHz
-3 dB small signal bandwidth		T _{MIN} to T _{MAX} <u>3</u> /	242			
		V _{OUT} = 0.5 V p-p, C _F = 1 pF		225		
Bandwidth for 0.1 dB flatness		V _{OUT} = 0.5 V p-p, C _F = 0 pF		29		
Large signal bandwidth		$V_{OUT} = 2 V p-p, C_F = 0 pF$		265		
Slew rate		$V_{OUT} = 2 V p-p, C_F = 0 pF$		950		V/µs
Settling time		0.01%, V _{OUT} = 2 V p-p, C _F = 1 pF		16		ns
Overdrive recovery time		$V_{IN} = 5 V \text{ to } 0 V \text{ step}, G = +2$		4		
Noise/Harmonic performance						
		$V_{OUT} = 0.5 \text{ V p-p}, 5 \text{ MHz}, R_{L, dm} = 800 \Omega$		-90		dBc
Second Harmonic		V _{OUT} = 0.5 V p-p, 20 MHz, R _{L, dm} = 800 Ω		-79		
		V _{OUT} = 0.5 V p-p, 70 MHz, R _{L, dm} = 800 Ω		-60		
		$V_{OUT} = 0.5 \text{ V p-p}, 5 \text{ MHz}, R_{L, dm} = 800 \Omega$		-100		
Third Harmonic		$V_{OUT} = 0.5 \text{ V p-p}, 20 \text{ MHz}, R_{L, dm} = 800 \Omega$		-82		
		V _{OUT} = 0.5 V p-p, 70 MHz, R _{L, dm} = 800 Ω		-53		
IMD		20 MHz		-74		
IP3		20 MHz		35		dBm
Voltage noise (RTI)		f = 100 kHz to 40 MHz		5		nv/√Hz
Input current noise		f = 100 kHz to 40 MHz		2		pA/√Hz
Input characteristics						••
Offset voltage		$V_{OS, dm} = V_{OUT, dm}/2; V_{DIN+} = V_{DIN-} = V_{OCM} = 0 V$	-2.5	±1	+2.5	mV
Chief Voltage		T _{MIN} to T _{MAX} <u>3</u> /	-5.1		+5.1	
Input bias current				3.5	7	μA
input blas current		T _{MIN} to T _{MAX} variation		-0.01		µA/°C
Input resistance		Differential		6		MΩ
Input resistance		Common mode		3		
Input capacitance				1		pF
Input common mode voltage				-0.3 to +3.2		V
CMPP		$\Delta V_{OUT, dm} / \Delta V_{IN, cm}; \Delta V_{IN, cm} = 1 V,$		-77	-70	dB
CIVILLY		T _{MIN} to T _{MAX} <u>3</u> /			-69.5	
Output characteristics						
Output voltage swing $\frac{4}{}$		Maximum ΔV_{OUT} ; single ended output		2.9		V р-р
Output balance error		$\Delta V_{OUT, cm} / \Delta V_{OUT, dm}$; $\Delta V_{OUT, dm} = 1 V$,		-65		dB

TABLE I. Electrical performance characteristics - Continued. 1/

See footnote at end of table.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12629
		REV	PAGE 7

Test	Symbol	Test conditions		Limits		Unit
			Min	Тур	Max	
		V _{OCM} TO ±OUT SPECIFICATIONS 5/				
Dynamic performance						
-3dB bandwidth				220		MHz
Slew rate				250		V/µs
Noise						
Input voltage noise (RTI)		f = 0.1 MHz to 100 MHz		17		nv/√Hz
DC performance						
Input voltage range				1.0 to 3.8		V
Input resistance				100		kΩ
Input offset voltage		$V_{OS, cm} = V_{OUT, cm}; V_{DIN+} = V_{DIN-} = V_{OCM} = 0 V$	-5	±1	+5	mV
		T _{MIN} to T _{MAX} <u>3</u> /	-9.7		+9.7	
Input bias current				0.5		μA
V _{OCM} CMRR		$\Delta V_{OUT, dm} / \Delta V_{OCM}$; $\Delta V_{OCM} = 2.5 \pm 1 V$,		-70		dB
Gain		$\Delta V_{OUT, cm} / \Delta V_{OCM}$; $\Delta V_{OCM} = 2.5 \pm 1 V$;	0.9968	1	1.0032	V/V
		T _{MIN} to T _{MAX} <u>3</u> /				
Power supply	-		T		T	
Operating range			2.7		11	V
Quiescent current			15	20	21	mA
		T _{MIN} to T _{MAX} <u>3</u> /	10.6			mA
Power supply rejection ratio		$\Delta V_{OUT, dm} / \Delta V_S, \Delta V_S = \pm 1 V;$		-90	-70	dB
		T _{MIN} to T _{MAX} <u>3</u> /			-57	
			•			
Operating temperature range			-55		+105	°C

TABLE I. Electrical performance characteristics - Continued. 1/

<u>1</u>/ Testing and other quality control techniques are used to the extent deemed necessary to assure product performance over the specified temperature range. Product may not necessarily be tested across the full temperature range and all parameters may not necessarily be tested. In the absence of specific parametric testing, product performance is assured by characterization and/or design.

2/ At 25° C, V_S = ± 5 V, V_{OCM} = 0 V, G = +1, R_{L, dm} = 500 Ω , unless otherwise noted. All specifications refer to single ended input and differential outputs, unless otherwise noted.

3/ Specified to ±6 sigma over the -40°C to +105°C operating temperature range.

4/ Output swing capabilities vary over operating temperature. See FIGURE 5 for more information.

5/ At 25°C, V_S = 5 V, V_{OCM} = 2.5 V, G = +1, R_{L, dm} = 500 Ω, unless otherwise noted. All specifications refer to single ended input and differential outputs, unless otherwise noted.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/12629
COLUMBUS, OHIO	A	16236	
		REV	PAGE 8

Dimensions							
Symbol	Millimeters		Millimeters		Symbol	Milli	meters
	Min	Max		Min	Max		
А		1.10	D/E	2.80	3.20		
A1	0.75	0.95	E1	4.65	5.15		
A2	0.05	0.15	е	0.65	5 BSC		
b	0.25	0.40	L	0.40	0.80		
С	0.09	0.23					

NOTES:

- All linear dimensions are in millimeters.
 Falls within JEDEC MO-187-AA.

FIGURE 1. Case outline.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12629
		REV	PAGE 9

	Case outline X						
Terminal number	Terminal symbol	Terminal number	Terminal symbol				
1	-IN	8	+IN				
2	V _{OCM}	7	NC				
3	V+	6	V-				
4	+OUT	5	-OUT				

FIGURE 2. Terminal connections.

Te	rminal	Description
Number	Mnemonic	Description
1	-IN	Negative input summing node.
2	V _{OCM}	Voltage applied to this pin sets the common mode output voltage with a ratio of 1:1. For example, 1 Vdc on V_{OCM} sets the dc bias level on +OUT and –OUT to 1 V.
3	V+	Positive supply voltage.
4	+OUT	Positive output. Note that the voltage at -D _{IN} is inverted at +OUT.
5	-OUT	Negative output. Note that the voltage at +D _{IN} is inverted at -OUT.
6	V-	Negative supply voltage.
7	NC	No connect.
8	+IN	Positive input summing node.

FIGURE 3. Terminal function.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12629
		REV	PAGE 10

FIGURE 5. <u>Differential output voltage swing vs ambient temperature</u>, $V_{S} = \pm 5 V$.

FIGURE 6. Differential output voltage swing vs ambient temperature, $V_{S} = 5 V$.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/12629
COLUMBUS, OHIO	A	16236	
		REV	PAGE 11

4. VERIFICATION

4.1 <u>Product assurance requirements</u>. The manufacturer is responsible for performing all inspection and test requirements as indicated in their internal documentation. Such procedures should include proper handling of electrostatic sensitive devices, classification, packaging, and labeling of moisture sensitive devices, as applicable.

5. PREPARATION FOR DELIVERY

5.1 <u>Packaging</u>. Preservation, packaging, labeling, and marking shall be in accordance with the manufacturer's standard commercial practices for electrostatic discharge sensitive devices.

6. NOTES

6.1 ESDS. Devices are electrostatic discharge sensitive and are classified as ESDS class 1 minimum.

6.2 <u>Configuration control</u>. The data contained herein is based on the salient characteristics of the device manufacturer's data book. The device manufacturer reserves the right to make changes without notice. This drawing will be modified as changes are provided.

6.3 <u>Suggested source(s) of supply</u>. Identification of the suggested source(s) of supply herein is not to be construed as a guarantee of present or continued availability as a source of supply for the item. DLA Land and Maritime maintains an online database of all current sources of supply at <u>http://www.landandmaritime.dla.mil/Programs/Smcr/</u>.

Vendor item drawing administrative control number <u>1</u> /	Device manufacturer CAGE code	Vendor part number
V62/12629-01XE	24355	AD8138SRMZ-EP-R7

1/ The vendor item drawing establishes an administrative control number for identifying the item on the engineering documentation.

CAGE code

24355

Source of supply

Analog Devices 1 Technology Way P.O. Box 9106 Norwood, MA 02062-9106

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/12629
COLUMBUS, OHIO	A	16236	
		REV	PAGE 12