													REVIS	SIONS								
					L1	TR				DESC	RIPTI	ON				D	ATE		Å	APPRO	OVED	
Prepared	l in acc	cordan	ce witl	h ASM	IF Y1	4.24												Ve	ndor it	em dra	awing	
Prepared REV	l in acc	cordan	ce witi	h ASM	IE Y14	4.24	1											Ve	ndor it	tem dra	awing	
Prepared REV PAGE	I in acc	cordan	ce wit	h ASM	IE Y14	4.24												Ve	ndor it	tem dra	awing	
REV	l in acc	cordan	ce witl	h ASM	IE Y1	4.24												Ve	ndor it	em dra	awing	
REV PAGE	l in acc	cordan	ce with	h ASM	IE Y14	4.24												Ve	ndor it	em dra	awing	
REV PAGE REV		cordan	ce with		IE Y14	4.24												Ve	ndor it	em dra	awing	
REV PAGE REV PAGE	ATUS	cordan			IE Y14	4.24	2	3	4	5	6	7	8	9	10	11	12	Ve	ndor it	tem dra	awing	17
REV PAGE REV PAGE REV STA	ATUS	cordan	REV	E	PARE	1 ED BY	,	3	4	5	6	7	8						14	15		17
REV PAGE REV PAGE REV STA OF PAGE	ATUS	cordan	REV	E	PARE	1	,	3	4	5	6	7		D COL	LA L .UME	AND BUS,	AND OHIC	13 0 MAI 0 43	14 RITIN 218-3	15 NE 3990	16	17
REV PAGE REV PAGE REV STA OF PAGI PMIC N/A	ATUS		REV PAG	E PREI RIC	PARE K OF	1 ED BY	,	3	4	5	6		ht	D COL	LA L .UME	AND BUS,	AND OHIC	13 0 MAI 0 43	14 RITIN 218-3	15 NE	16	17
REV PAGE REV PAGE REV STA OF PAGE PMIC N/A	ATUS	drawin	REV PAG	E PREI RIC	PARE K OF	1 ED BY FICEI	,	3	4	5	6	тіт	ht	D COL tp://\	LA L .UME www	AND 3US, .land	AND OHIC andr	13 0 MAI 0 43 marit	14 RITIN 218-3 ime.o	15 NE 3990 dla.m	16	17
REV PAGE REV PAGE REV STA OF PAGE PMIC N/A	ATUS ES A date of Y-MM-	drawin	REV PAG	E PREI RIC CHE	PARE K OF CKEI	1 ED BY FICEI	R ADIA	3	4	5	6	TIT	ht LE CROC	DI COL tp://v	LA L UME www	AND BUS, Iand	AND OHIC andr	13 D MAI D 43 marit	14 RITIN 218-3 ime.o	15 NE 3990 dla.m	16	17
REV PAGE REV PAGE REV STA OF PAGE PMIC N/A	ATUS ES A	drawin	REV PAG	E PREI RIC CHE RA	PARE K OF CKEI JESH ROVE	1 ED BY FICEI	R ADIA	I	4	5	6	TIT	ht LE CROC	Di COL tp://v	LA L JIT, L ROG	AND 3US, .land	AND OHIC andr AR, Z	13 MAI D 43 marit ERO BLE	14 RITIN 218-3 ime.o	15 /E 3990 dla.m	16	<u> </u>
REV PAGE REV PAGE REV STA OF PAGE PMIC N/A	ATUS ES A date of Y-MM-	drawin	REV PAG	E PREI RIC CHE RA	PARE K OF CKEI JESH ROVE	1 ED BY FICEI	R ADIA	I	4	5	6	TIT MIC DIG INS	ht LE CROC	D COL tp:// trp:// URCU	LA L JIT, L ROG	AND 3US, .land	AND OHIC andr AR, Z	13 MAI D 43 marit ERO BLE	14 RITIN 218-3 ime.o	15 NE 3990 dla.m	16	<u> </u>
REV PAGE REV PAGE REV STA OF PAGE PMIC N/A	ATUS ES A date of Y-MM-	drawin	REV PAG	E PREI RIC CHE RA	PARE K OF CKEI JESH ROVE ARLE	1 FICEI D BY I PITH ED BY	ADIA SAFFL	I		5	6	TIT MIC DIG INS SIL	ht LE CROC GITAL	DI COL atp:// CIRCI LY P MEN	LA L JIT, L ROG	AND 3US, .land	AND OHIC andr AR, Z	13 MAI D 43 marit ERO BLE	14 RITIN 218-3 ime.o	15 /E 3990 dla.m	16	<u> </u>
REV PAGE REV PAGE REV STA OF PAGE PMIC N/A	ATUS ES A date of Y-MM-	drawin	REV PAG	E PREI RIC CHE CHA	PARE K OF JESH ROVE ARLE	1 FICEI D BY I PITH ED BY	ADIA SAFFL	E ENT. N		5	6	TIT MIC DIG INS SIL	ht LE CROC GITAL TRU	DI COL atp:// CIRCI LY P MEN	JIT, L ROG	AND 3US, .land _INE/ iRAM ON A	AND OHIC andr AR, Z IMAB	13 MAI D 43 marit ERO BLE	14 RITIN 218-3 ime.o	15 /E 3990 dla.m	16	<u> </u>
REV PAGE REV PAGE REV STA OF PAGE PMIC N/A	ATUS ES A date of Y-MM-	drawin	REV PAG	E PREI RIC CHE RA. APPI CH/	PARE K OF JESH ROVE ARLE	1 FICEI D BY I PITH ED BY	ADIA SAFFL	E ENT. N	0.	5	6	TIT MIC DIG INS SIL DWG	ht LE CROC GITAL TRU	D COL ttp:// CIRCU LY P MEN	JIT, L ROG TATI	AND 3US, .land _INE/ iRAM ON A	AND OHIC andr AR, Z IMAB	13 0 MAI 0 43 marit ERC BLE IFIEF	14 RITIN 218-3 ime.o	15 /E 3990 dla.m	16	<u> </u>

1. SCOPE

1.1 <u>Scope</u>. This drawing documents the general requirements of a high performance zero drift, digitally programmable instrumentation amplifier microcircuit, with an operating temperature range of -55°C to +125°C.

1.2 <u>Vendor Item Drawing Administrative Control Number</u>. The manufacturer's PIN is the item of identification. The vendor item drawing establishes an administrative control number for identifying the item on the engineering documentation:

<u>V62/12646</u> - Drawing number 1.2.1 <u>Device type(s)</u> .	Device type (See 1.2.1)	Case outline (See 1.2.2)	Lead finish (See 1.2.3)
Device type	<u>Generic</u>	<u>Cir</u>	cuit function
01	AD8231		digitally programmable ntation amplifier

1.2.2 <u>Case outline(s)</u>. The case outline(s) are as specified herein.

Outline letter	Number of pins	JEDEC PUB 95	Package style
Х	16	MO-220-VGGC	Lead frame chip scale quad package

1.2.3 Lead finishes. The lead finishes are as specified below or other lead finishes as provided by the device manufacturer:

Finish designator	Material
A B C D E Z	Hot solder dip Tin-lead plate Gold plate Palladium Gold flash palladium Other

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12646
		REV	PAGE 2

1.3 Absolute maximum ratings. 1/

Supply voltage (V _S) Output short circuit current	
Input voltage (common mode)	$-V_{S} - 0.3 \text{ V}$ to $+V_{S} + 0.3 \text{ V}$
Differential input voltage	$-V_{S} - 0.3 \text{ V to } +V_{S} + 0.3 \text{ V}$
Storage temperature range (T _{STG})	
Package glass transition temperature	130°C
Junction temperature range (TJ)	130°C
Electrostatic discharge (ESD):	
Human body model (HBM)	1.5 kV
Charged device model (CDM)	1.5 kV
Machine model (MM)	
 1.4 <u>Recommended operating conditions</u>. <u>3</u>/ Operating free-air temperature range (T_A) 	-55°C to +125°C
1.5 <u>Thermal characteristics</u> .	
Thermal resistance, junction to case (θ_{JC})	6.3°C/W at the exposed pad
Thermal resistance, junction to ambient (θ_{JA}) :	
Thermal pad soldered to board	54°C/W
Thermal pad not soldered to board	

^{3/} Use of this product beyond the manufacturers design rules or stated parameters is done at the user's risk. The manufacturer and/or distributor maintain no responsibility or liability for product used beyond the stated limits.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.	
COLUMBUS, OHIO	A	16236	V62/12646	
		REV	PAGE 3	

<u>1</u>/ Stresses beyond those listed under "absolute maximum rating" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

^{2/} For junction temperature between 105°C and 130°C, short circuit operation beyond 1000 hours can impact part reliability.

2. APPLICABLE DOCUMENTS

JEDEC PUB 95 - Registered and Standard Outlines for Semiconductor Devices

(Applications for copies should be addressed to the Electronic Industries Alliance, 2500 Wilson Boulevard, Arlington, VA 22201-3834 or online at http://www.jedec.org)

3. REQUIREMENTS

3.1 <u>Marking</u>. Parts shall be permanently and legibly marked with the manufacturer's part number as shown in 6.3 herein and as follows:

- A. Manufacturer's name, CAGE code, or logo
- B. Pin 1 identifier
- C. ESDS identification (optional)

3.2 <u>Unit container</u>. The unit container shall be marked with the manufacturer's part number and with items A and C (if applicable) above.

3.3 <u>Electrical characteristics</u>. The maximum and recommended operating conditions and electrical performance characteristics are as specified in 1.3, 1.4, and table I herein.

3.4 <u>Design, construction, and physical dimension</u>. The design, construction, and physical dimensions are as specified herein.

3.5 Diagrams.

3.5.1 <u>Case outline</u>. The case outline shall be as shown in 1.2.2 and figure 1.

3.5.2 <u>Terminal connections</u>. The terminal connections shall be as shown in figure 2.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12646
		REV	PAGE 4

Test	Symbol	Conditions Vs = 5 V, VREF = 2.5 V,	Temperature, T _A	Device type	Lin	nits	Unit
		$G = 1, R_L = 10 k\Omega,$ unless otherwise specified			Min	Max	
Instrumentation amplifier			·				
Input offset voltage	V _{OSI}	$V_{OS} RTI = V_{OSI} + V_{OSO} / G$	+25°C	01		15	μV
Offset voltage average temperature drift	ΔV _{OS} / ΔT	V _{OS} RTI = V _{OSI} + V _{OSO} / G	-55°C to +125°C	01		0.05	μV/ °C
Output offset voltage	Voso	$V_{OS} RTI = V_{OSI} + V_{OSO} / G$	+25°C	01		30	μV
Offset voltage average temperature drift	ΔV _{OS} / ΔT	$V_{OS} RTI = V_{OSI} + V_{OSO} / G$	-55°C to +125°C	01		0.5	μV/ °C
Input bias current	I _{IB}		+25°C	01		500	pА
			-55°C to +125°C			5	nA
Input offset current	IIO		+25°C	01		100	pА
			-55°C to +125°C			0.5	nA
Gains.	•	1, 2, 4, 8, 16, 32, 64, or 128					1
Gain error	AE	G = 1	+25°C	01		0.05	%
		G = 2 to 128				0.8	
Gain drift		G = 1 to 32	-55°C to +125°C	01		10	ppm/
		G = 64				20	°C
		G = 128				30	
Linearity		0.2 V to 4.8 V, 10 kΩ load	+25°C	01	3 ty	pical	ppm
		0.2 V to 4.8 V, 2 kΩ load			5 ty	pical	
Common mode	CMRR	G = 1	+25°C	01	80		dB
rejection ratio		G = 2			86		
		G = 4			92		
		G = 8			98		
		G = 16			104		
		G = 32			110		
		G = 64			110		
		G = 128			110		

TABLE I. LIECTICAL PERDIMANCE CHARACTERISTICS. 1/	TABLE I.	Electrical (performance characte	eristics.	1/
---	----------	--------------	----------------------	-----------	----

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12646
		REV	PAGE 5

Test	Symbol	Conditions $V_S = 5 V, V_{REF} = 2.5 V,$	Temperature, T _A	Device type	Lin	nits	Unit
		$G = 1, R_L = 10 k\Omega,$ unless otherwise specified	'A	51	Min	Max	
Instrumentation amplifie	er – continue	d.					
Noise		$en = \sqrt{(e_{ni}^2 + (e_{no}/G)^2)}, +V_{IN}, -V_{IN}$	N = 2.5 V				
Input voltage noise	e _{ni}	f = 1 kHz	+25°C	01	32 ty	pical	nV /
		f = 1 kHz	-55°C	-	27 typical		√Hz
		f = 1 kHz	+125°C		39 ty	pical	
		f = 0.1 Hz to 10 Hz	+25°C		0.7 t <u>y</u>	/pical	μVpp
Output voltage noise	e _{no}	f = 1 kHz	+25°C	01	58 ty	pical	nV /
		f = 1 kHz	-55°C		50 typical		√Hz
		f = 1 kHz	+125°C		70 typical		
		f = 0.1 Hz to 10 Hz	+25°C		1.1 t <u>y</u>	/pical	μVpp
Current noise		f = 10 Hz	+25°C	01	20 ty	vpical	fA / √Hz
Other input characterist	ics.						
Common mode <u>2/</u> input impedance			+25°C	01	10 5	typical	GΩ∥pF
Power supply rejection ratio	PSRR		+25°C	01	100		dB
Input operating voltage range			+25°C	01	0.05	4.95	V
Reference input.			·			•	
Input impedance			+25°C	01	28 ty	pical	kΩ
Voltage range			+25°C	01	-0.2	+5.2	V

TABLE I.	Electrical performance characteristics – Continued.	1/

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO. V62/12646
COLUMBUS, OHIO	A	16236	
		REV	PAGE 6

Test	Symbol	Conditions V _S = 5 V, V _{REF} = 2.5 V,	Temperature, T _A	Device type	Lin	nits	Unit
	$G = 1, R_L = 10 k\Omega,$ unless otherwise specified		Min	Max			
Instrumentation amplifier	- continue	d.					
Dynamic performance.							
Bandwidth	BW	G = 1	+25°C	01	2.7 t	ypical	MHz
		G = 2			2.5 t	ypical	
Gain bandwidth	GBW	G = 4 to 128	+25°C	01	7 ty	pical	MHz
Slew rate	SR		+25°C	01	1.1 t <u>y</u>	ypical	V/μs
Output characteristics.	·						-
Output voltage high	V _{OH}	$R_L = 100 \text{ k}\Omega$ to ground	+25°C	01	4.9		V
		$R_L = 10 \ k\Omega$ to ground			4.8		1
Output voltage low	V _{OL}	$R_L = 100 \text{ k}\Omega \text{ to 5 V}$	+25°C	01		100	mV
		R_L = 10 kΩ to 5 V				200	
Short circuit current	I _{SC}		+25°C	01	70 ty	/pical	mA
Digital interface.	•						
Input voltage low	VIL		-55°C to +125°C	01		1.0	V
Input voltage high	VIH		-55°C to +125°C	01	4.0		V
Setup time to $\overline{\text{CS}}$ high			-55°C to +125°C	01	50		ns
Hold time after CS			-55°C to +125°C	01	20		ns
Operational amplifier.			•			•	
Input characteristics.							
Offset voltage	VOS		+25°C	01		15	μV
Offset voltage temperature drift	ΔVOS/ ΔT		-55°C to +125°C	01		0.06	μV/°C
Input bias current	I _{IB}		+25°C	01		500	pА
			-55°C to +125°C			5	nA

TABLE I. Electrical performance characteristics - Continued. 1/

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12646
		REV	PAGE 7

Test	Symbol	Conditions V _S = 5 V, V _{REF} = 2.5 V,	Temperature, T _A	Device type	Lir	nits	Unit
		$G = 1, R_L = 10 k\Omega,$ unless otherwise specified			Min	Max	
Operational amplifier -	continued.						•
Input characteristics - c	continued.						
Input offset current	lio		+25°C	01		100	рА
			-55°C to +125°C			0.5	nA
Input voltage range	VINR		+25°C	01	0.05	4.95	V
Open loop gain	AOL		+25°C	01	100		V/mV
Common mode rejection ratio	CMRR		+25°C	01	100		dB
Power supply rejection ratio	PSRR		+25°C	01	100		dB
Voltage noise density			+25°C	01	20 t <u>y</u>	/pical	nV/ √Hz
Voltage noise		f = 0.1 Hz to 10 Hz	+25°C	01	0.4 typical		μVp-p
Dynamic performance.		1					
Gain bandwidth product	GBWP		+25°C	01	1 ty	pical	MHz
Slew rate	SR		+25°C	01	0.5 t	ypical	V/μs
Output characteristics.							
Output voltage high	V _{OH}	$R_L = 100 \text{ k}\Omega$ to ground	+25°C	01	4.9		V
		$R_L = 10 \ k\Omega$ to ground			4.8		
Output voltage low	VOL	$R_L = 100 \text{ k}\Omega \text{ to 5 V}$	+25°C	01		100	mV
		$R_L = 10 \text{ k}\Omega \text{ to } 5 \text{ V}$				200	1
Short circuit current	I _{SC}		+25°C	01	70 t <u>y</u>	/pical	mA
Both amplifiers.		1					
Power supply.							
Quiescent current	IQ		+25°C	01		5	mA
Quiescent current (shutdown)			+25°C	01		1	μA

TABLE I. Electrical performance characteristics - Continued. 1/

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12646
		REV	PAGE 8

Test	Symbol	Conditions V _S = 3 V, V _{REF} = 1.5 V,	Temperature, T _A	Device type	Lin	nits	Unit
		$G = 1, R_L = 10 k\Omega,$ unless otherwise specified			Min	Max	-
Instrumentation amplifier	r.						
Input offset voltage	Vosi	V _{OS} RTI = V _{OSI} + V _{OSO} / G	+25°C	01		15	μV
Offset voltage average temperature drift	ΔV _{OS} / ΔT	$V_{OS} RTI = V_{OSI} + V_{OSO} / G$	-55°C to +125°C	01		0.05	μV/ °C
Output offset voltage	Voso	V _{OS} RTI = V _{OSI} + V _{OSO} / G	+25°C	01		30	μV
Offset voltage average temperature drift	ΔV _{OS} / ΔT	$V_{OS} RTI = V_{OSI} + V_{OSO} / G$	-55°C to +125°C	01		0.5	μV/ °C
Input bias current	I _{IB}		+25°C	01		500	pА
			-55°C to +125°C	-		5	nA
Input offset current	IIO		+25°C	01		100	pА
			-55°C to +125°C			0.5	nA
Gains.	•	1, 2, 4, 8, 16, 32, 64, or 128					
Gain error	AE	G = 1	+25°C	01		0.05	%
		G = 2 to 128				0.8	
Gain drift		G = 1 to 32	-55°C to +125°C	01		10	ppm/
		G = 64				20	°C
		G = 128				30	
Common mode	CMRR	G = 1	+25°C	01	80		dB
rejection ratio		G = 2			86		
		G = 4			92		
		G = 8			98		
		G = 16			104		
		G = 32			110		
		G = 64			110		
		G = 128			110		

TABLE I.	Electrical	performance	characteristics	- Continued.	1/

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12646
		REV	PAGE 9

Test	Symbol	Conditions $V_S = 3 V, V_{REF} = 1.5 V,$	Temperature, T _A	Device type	Lin	nits	Unit
		$G = 1, R_L = 10 k\Omega,$ unless otherwise specified			Min	Max	
Instrumentation amplifie	er – continue	d.					
Noise		$en = \sqrt{(e_{ni}^2 + (e_{n0}/G)^2)}, +V_{IN}, -V_{IN}$	I = 2.5 V				
Input voltage noise	e _{ni}	f = 1 kHz	+25°C	01	40 ty	pical	nV /
		f = 1 kHz	-55°C		35 ty	pical	√Hz
		f = 1 kHz	+125°C		48 ty	pical	
		f = 0.1 Hz to 10 Hz	+25°C	0.8 typ		/pical	μVpp
Output voltage noise	e _{no}	f = 1 kHz	+25°C	01	72 typical		nV / √Hz
		f = 1 kHz	-55°C		62 typical		
		f = 1 kHz	+125°C		83 typical		
		f = 0.1 Hz to 10 Hz	+25°C		1.4 typical		μVp-p
Current noise		f = 10 Hz	+25°C	01	20 ty	vpical	fA / √Hz
Other input characterist	ics.						
Common mode <u>2/</u> input impedance			+25°C	01	10 5	typical	GΩ∥pF
Power supply rejection ratio	PSRR		+25°C	01	100		dB
Input operating voltage range			+25°C	01	0.05	2.95	V
Reference input.						•	•
Input impedance			+25°C	01	28 ty	pical	kΩ
Voltage range			+25°C	01	-0.2	+3.2	V

TABLE I.	Electrical performance characteristics – Continued.	1/

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12646
		REV	PAGE 10

Test	Symbol	Conditions V _S = 3 V, V _{REF} = 1.5 V,	Temperature, T _A	Device type	Lir	nits	Unit
		$G = 1, R_L = 10 k\Omega,$ unless otherwise specified			Min	Max]
Instrumentation amplifier	r – continued	d.					
Dynamic performance							
Bandwidth	BW	G = 1	+25°C	01	2.7 t	ypical	MHz
		G = 2			2.5 t	ypical	
Gain bandwidth	GBW	G = 4 to 128	+25°C	01	7 ty	pical	MHz
Slew rate	SR		+25°C	01	1.1ty	/pical	V/µs
Output characteristics.							
Output voltage high	V _{OH}	$R_L = 100 \text{ k}\Omega$ to ground	+25°C	01	2.9		V
		$R_L = 10 \ k\Omega$ to ground			2.8		
Output voltage low	V _{OL}	R_L = 100 kΩ to 3 V	+25°C	01		100	mV
		$R_L = 10 \text{ k}\Omega \text{ to } 3 \text{ V}$				200	
Short circuit current	ISC		+25°C	01	40 ty	/pical	mA
Digital interface.	·			· · · · ·			
Input voltage low	VIL		-55°C to +125°C	01		0.7	V
Input voltage high	VIH		-55°C to +125°C	01	2.3		V
Setup time to $\overline{\text{CS}}$ high			-55°C to +125°C	01	60		ns
Hold time after CS			-55°C to +125°C	01	20		ns
Operational amplifier.	·			· · · · · ·			
Input characteristics.							
Offset voltage	VOS		+25°C	01		15	μV
Offset voltage temperature drift	ΔVOS/ ΔT		-55°C to +125°C	01		0.06	μV/ °C
Input bias current	IIB		+25°C	01		500	pА
			-55°C to +125°C			5	nA

TABLE I. Electrical performance characteristics - Continued. 1/

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12646
		REV	PAGE 11

Test	Symbol	Conditions V _S = 3 V, V _{REF} = 1.5 V,	Temperature, T _A	Device type	Lir	nits	Unit
		$G = 1, R_L = 10 k\Omega,$ unless otherwise specified	'A	51.5	Min	Max	
Operational amplifier – o	continued.	·	•				
Input characteristics - c	ontinued.						
Input offset current	IIO		+25°C	01		100	pА
			-55°C to +125°C			0.5	nA
Input voltage range	VINR		+25°C	01	0.05	2.95	V
Open loop gain	AOL		+25°C	01	100		V/mV
Common mode rejection ratio	CMRR		+25°C	01	100		dB
Power supply rejection ratio	PSRR		+25°C	01	100		dB
Voltage noise density			+25°C	01	27 ty	/pical	nV/ √Hz
Voltage noise		f = 0.1 Hz to 10 Hz	+25°C	01	0.6 t	ypical	μVpp
Dynamic performance.				•			
Gain bandwidth product	GBWP		+25°C	01	1 ty	pical	MHz
Slew rate	SR		+25°C	01	0.5 t	ypical	V/μs
Output characteristics.		·	•				
Output voltage high	V _{OH}	$R_L = 100 \text{ k}\Omega$ to ground	+25°C	01	2.9		V
		$R_L = 10 \ k\Omega$ to ground			2.8		1
Output voltage low	VOL	$R_L = 100 \text{ k}\Omega$ to 3 V	+25°C	01		100	mV
		$R_L = 10 \text{ k}\Omega \text{ to } 3 \text{ V}$				200	1
Short circuit current	I _{SC}		+25°C	01	40 ty	/pical	mA

TABLE I. Electrical performance characteristics – Continued. 1/

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12646
		REV	PAGE 12

TABLE I. Electrical performance characteristics - Continued. 1/

Test	Symbol	mbol Conditions Temperature, $V_S = 3 V, V_{REF} = 1.5 V, T_A$		Device type	Limits		Unit
		$G = 1, R_L = 10 k\Omega,$ unless otherwise specified			Min	Max	
Both amplifiers.							
Power supply							
Quiescent current	IQ		+25°C	01		4.5	mA
Quiescent current (shutdown)			+25°C	01		1	μΑ

1/ Testing and other quality control techniques are used to the extent deemed necessary to assure product performance over the specified temperature range. Product may not necessarily be tested across the full temperature range and all parameters may not necessarily be tested. In the absence of specific parametric testing, product performance is assured by characterization and/or design.

2/ The || symbolizes that the input impedance is being represented as the resistance value is in parallel with the capacitance.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12646
		REV	PAGE 13

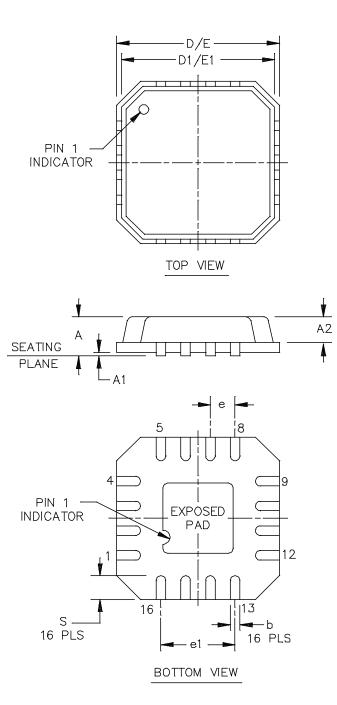


FIGURE 1. Case outline.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12646
		REV	PAGE 14

Case X – Continued.

		Dime	ensions		
Symbol	Inches		Millimeters		
	Min	Max	Min	Max	
А	.031	.039	0.80	1.00	
A1	.0007	.001	0.02	0.05	
A2	.025	.031	0.65	0.80	
b	.009	.013	0.25	0.35	
D/E	.157	BSC	4.00 BSC		
D1/E1	.147	BSC	3.75 BSC		
е	.025 BSC		0.65	5 BSC	
e1	.076	.088	1.95	2.25	
S	.019	.029	0.50	0.75	

NOTES:

- Controlling dimensions are millimeter, inch dimensions are given for reference only.
 For proper connection of the exposed pad, refer to the pin configuration and function descriptions section of the manufacturers datasheet.
- 3. Falls within reference to JEDEC MO-220-VGGC.

FIGURE 1. <u>Case outline</u> - Continued.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12646
		REV	PAGE 15

Device type		01
Case outline		Х
Terminal number	Terminal symbol	Descriptive
1	NC	No connect. Do not connect to this pin.
2	-IN A (IN-AMP –IN)	Instrumentation amplifier negative input.
3	+IN A (IN-AMP +IN)	Instrumentation amplifier positive input.
4	NC	No connect. Do not connect to this pin.
5	SDN	Shutdown.
6	+IN B	Operational amplifier positive input.
7	-IN B	Operational amplifier negative input.
8	OUT B (OP AMP OUT)	Operational amplifier output.
9	REF	Instrumentation amplifier reference pin. It should be driven with a low impedance. Output is referred to this pin.
10	OUT A (IN-AMP OUT)	Instrumentation amplifier output.
11	-V _S	Negative power supply. Connect to ground in single supply applications.
12	+Vs	Positive power supply.
13	CS	Chip select. Enables digital logic interface.
14	A0	Gain settling bit (LSB).
15	A1	Gain settling bit.
16	A2	Gain setting bit (MSB).
	EPAD	Exposed pad. Can be connected to the negative supply (-V _S) or left floating.

FIGURE 2. Terminal connections.

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12646
		REV	PAGE 16

4. VERIFICATION

4.1 <u>Product assurance requirements</u>. The manufacturer is responsible for performing all inspection and test requirements as indicated in their internal documentation. Such procedures should include proper handling of electrostatic sensitive devices, classification, packaging, and labeling of moisture sensitive devices, as applicable.

5. PREPARATION FOR DELIVERY

5.1 <u>Packaging</u>. Preservation, packaging, labeling, and marking shall be in accordance with the manufacturer's standard commercial practices for electrostatic discharge sensitive devices.

6. NOTES

6.1 <u>ESDS</u>. Devices are electrostatic discharge sensitive and are classified as ESDS class 1 minimum.

6.2 <u>Configuration control</u>. The data contained herein is based on the salient characteristics of the device manufacturer's data book. The device manufacturer reserves the right to make changes without notice. This drawing will be modified as changes are provided.

6.3 <u>Suggested source(s) of supply</u>. Identification of the suggested source(s) of supply herein is not to be construed as a guarantee of present or continued availability as a source of supply for the item. DLA Land and Maritime maintains an online database of all current sources of supply at <u>http://www.landandmaritime.dla.mil/Programs/Smcr/</u>.

Vendor item drawing administrative control number <u>1</u> /	Device manufacturer CAGE code	Transport media, quantity	Vendor part number
V62/12646-01XE	24355	Reel, 1500	AD8231TCPZ-EP-R7

1/ The vendor item drawing establishes an administrative control number for identifying the item on the engineering documentation.

CAGE code

24355

Source of supply

Analog Devices Route 1 Industrial Park P.O. Box 9106 Norwood, MA 02062 Point of contact: Raheen Business Park Limerick, Ireland

DLA LAND AND MARITIME	SIZE	CODE IDENT NO.	DWG NO.
COLUMBUS, OHIO	A	16236	V62/12646
		REV	PAGE 17