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Abstract

Type-I quantum defects are considered in the context of the glN spin chain. The type-I

defects are associated to the generalized harmonic oscillator algebra, and the chosen defect

matrix is the one of the vector non-linear Schrödinger (NLS) model. The transmission

matrices relevant to this particular type of defects are computed via the Bethe ansatz

methodology.
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1 Introduction

Integrable quantum defects in spin chain systems are well understood objects, and are

adeptly described through the quantum inverse scattering formulation [1]. And although

many studies have been devoted to this issue at the quantum level [2]–[11], the computa-

tion of related physical quantities, such as the transmission amplitudes and transmission

matrices had not been attacked in this particular frame until very recently. The trans-

mission matrices physically describe the interaction between the particle-like excitations

displayed by the integrable model under study and the defect. In a series of recent pa-

pers [12, 13, 14] the Bethe ansatz formulation was exploited for the computation of exact

transmission matrices in a variety of spin chain systems, and for distinct types of defects.

It is however worth noting that investigations of transmission matrices in integrable sys-

tems using the Fateev-Zamolodchikov algebra have been known for quite some time now

[4, 5]. Similarly, at the classical level there is a wealth of relevant studies, where the

distinct types of integrable defects are treated with the use of various available techniques

[15]–[25].

It will be instructive to introduce the two distinct types of defects that have been

treated up to date at both quantum and classical level; these are known as type-I, and

type-II defects. Type-I defects are associated to the generic quantum oscillator algebras

as well as their q deformations, the type-II defects on the other hand are related to

representations of the glN , Uq(glN ) algebras. Type-I transmission matrices are the most

well studied ones dating back to the first investigations on the subject (see e.g. [5]). Type-

II transmission matrices were derived in [7] for the first time in the sine-Gordon context,

whereas analogous results were obtained in the spin chain framework in [12, 13, 14]. More

precisely, in the first paper of the series [12, 13, 14], the Bethe ansatz frame for the

study of transmission amplitudes was set. The examples worked out in [12] were the
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XXX and XXZ spin chains in the presence of type-II defects. In [13] type-II transmission

matrices were identified for both glN , and Uq(glN ) algebras, while in the most recent

article [14] type-I transmission matrices were derived for the XXX and XXZ (critical

and non-critical) spin chains. In the present investigation we basically complete our

analysis in the context of glN spin chain by introducing and studying the type-I defects.

Our main aim here is to provide explicit expressions of transmission amplitudes and the

respective type-I transitions matrices, exploiting primarily the Bethe ansatz methodology

in the thermodynamic limit. The so-called “crossing property”, which will be suitably

formulated subsequently will be also used to further confirm our results.

It is worth pointing out that an exhaustive classification of the possible representations

of the fundamental algebraic relation [1]

R12(λ1 − λ2) L1(λ1) L2(λ2) = L2(λ2) L1(λ1) R12(λ1 − λ2) , (1.1)

associated to the glN , Uq(glN ) R-matrix would provide novel transmission matrices. This

is a particularly pertinent problem, especially in the trigonometric case, however this will

be left for future investigations.

2 The glN spin chain

As described in detail in earlier works (see e.g. [12]) in order to construct an one dimen-

sional discrete integrable system in the presence of a point-like defect on the nth site one

needs to introduce a modified monodromy matrix, which reads then as [1]

T (λ) = R0N+1(λ) R0N(λ) . . . L0n(λ−Θ) . . . R01(λ) , (2.1)

where R corresponds to the “bulk” theory, L corresponds to the defect, and Θ is an arbi-

trary constant corresponding to the “rapidity” of the defect. The Lax operator satisfies

the quadratic algebra (1.1), and the R-matrix is a solution of the Yang-Baxter equation

(see e.g. [1] and references therein). The monodromy matrix of the theory T (λ), naturally

satisfies (1.1), guaranteeing the integrability of the model.

We shall focus in the present investigation in the glN spin chain. The corresponding

R-matrix is expressed in the familiar form [26]

R(λ) = λ+ iP, P =
N
∑

k,l=1

ekl ⊗ elk, (2.2)
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P is the permutation operator associated to glN : P |a〉 ⊗ |b〉 = |b〉 ⊗ |a〉, also ekl are

N ×N matrices with elements defined as: (ekl)mn = δkm δln.

We choose to consider in the present investigation the generic glN harmonic oscillator

defect matrix, or the so called discrete vector non-linear Schrodinger (NLS) L matrix [27]:

L(λ) = e11 ⊗ (λ+ i+ iN) + i

N
∑

j=2

ejj ⊗ I+ i

N
∑

j=2

(

e1j ⊗ a(j−1) + ej1 ⊗ a†(j−1)
)

,

N =
N−1
∑

j=1

a(j) a†(j). (2.3)

A significant piece of information in our investigation, which will further confirm the

validity of our expressions is the formulation of the “crossing property”. In order to

formulate the “crossing property” in the context of any glN integrable system we need to

introduce the conjugate L-matrix, which is defined as

L̂(λ) = V1 Lt1(−λ−
iN

2
)V1, V = antidiag(1, . . . , 1), (2.4)

and turns out to have the following explicit form

L̂(λ) = eNN ⊗(−λ−
iN

2
+i+iN)+i

N
∑

j=2

ej̄ j̄⊗I+i

N
∑

j=2

(

ej̄N ⊗a(j−1)+eN j̄⊗a†(j−1)
)

. (2.5)

We also define the conjugate index as : j̄ = N + 1 − j. Note that L̂ also satisfies the

fundamental algebraic relation (1.1). The “crossing” property (2.4) that connects the L, L̂

matrices is essential as will be transparent later in the text when deriving the transmission

matrix, and provides an extra validity check on the derived results. The chosen L-matrix

is associated to the generalized harmonic oscillator algebra, which is expressed as:
[

a(i), a†(j)
]

= δij ,
[

N, a(j)
]

= −a(j),
[

N, a†(j)
]

= a†(j),
[

a(i), a(j)
]

= 0,
[

a†(i), a†(j)
]

= 0. (2.6)

The first step into deriving the transmission matrices is to extract the respective Bethe

ansatz equations (BAE) via the algebraic Bethe ansatz methodology. To achieve this we

assume the existence of local highest weight states such that:

a†(j) |ω〉n = 0,
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N |ω〉n = 0,

ekl |ω〉j = 0, k < l

ekk |ω〉j = |ω〉j, j 6= n. (2.7)

The global reference state then is

|Ω〉 = ⊗N+1
j=1 |ω〉j. (2.8)

The BAEs’ may be extracted as analyticity conditions of the spectrum within the algebraic

Bethe ansatz formulation. If we choose the L-matrix (2.3) as the defect matrix the BAEs’

turn out to have the following form:

e+(λ
(k)
i −Θ)δk1 + 1− δk1 =

−

Mk−1
∏

j=1

e−1(λ
(k)
i − λ

(k−1)
j )

Mk
∏

j=1

e2(λ
(k)
i − λ

(k)
j )

Mk+1
∏

j=1

e−1(λ
(k)
i − λ

(k+1)
j ), (2.9)

whereas the BAEs’ associated to the L̂-matrix (2.5) are given as

e−(λ
(k)
i −Θ)δkN−1 + 1− δkN−1 =

−

Mk−1
∏

j=1

e−1(λ
(k)
i − λ

(k−1)
j )

Mk
∏

j=1

e2(λ
(k)
i − λ

(k)
j )

Mk+1
∏

j=1

e−1(λ
(k)
i − λ

(k+1)
j )

where en(λ) =
λ+ in

2

λ− in
2

, e+(λ) = λ+
i

2
, e−(λ) =

1

λ− i
2

, (2.10)

here for simplicity we consider λ
(0)
j = 0. Also, we define M0 = N , MN = 0. Having iden-

tified the associated BAEs’ we are now in the position to derive the relevant transmission

amplitudes, and the corresponding transmission matrices.

2.1 The transmission matrices

The main aim in this section is the exact derivation of type-I transmission matrices

through the study of the Bethe ansatz equations in the thermodynamic limit. Note

that in [13] type-II defects were studied using the Bethe ansatz formulation. This is the

first time to our knowledge that type-I defects are derived for any glN integrable system.

To extract the transmission amplitudes it is sufficient to consider the state with one hole

[28] –particle-like excitation– in the first Fermi sea with rapidity λ̃(1). Recall that the

ground state in this case consists of N − 1 filled Fermi seas (see e.g. [29, 30] and ref-

erences therein). As is well known a hole in the first sea corresponds to an excitation
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that carries the fundamental representation of glN (soliton), note also that the hole in the

(N − 1)th sea corresponds to an excitation that carries the anti-fundamental (conjugate)

representation. The one-hole configuration in the first Fermi sea enables the computation

of the associated transmission amplitudes. From the BAEs’ in the thermodynamic limit

one derives the corresponding density of the state. This is obtained via the BAEs’ with

the standard process [31, 32], and it reads as1

σ±(k)(λ) = σ
(k)
0 (λ) +

1

N

(

r(k)(λ− λ̃(1)) + r
±(k)
t (λ−Θ)

)

. (2.12)

The plus in the densities above corresponds to (2.9), while the minus corresponds to

(2.10). The Fourier transforms of the quantities involved in (2.12) are given by

σ̂
(k)
0 (ω) =

sinh((N − k)ω
2
)

sinh(Nω
2
)

, k ∈
{

1, 2, . . . ,N − 1
}

r̂(k)(ω) = R̂k1(ω) â2(ω)− R̂k2(ω) â1(ω),

r̂
+(k)
t (ω) = R̂k1(ω) â

+(ω)

r̂
−(k)
t (ω) = R̂kN−l(ω) â

−(ω). (2.13)

We also introduce the following important quantities:

an(λ) =
i

2π

d

dλ
ln
(

en(λ)
)

, a±(λ) =
i

2π

d

dλ
ln
(

e±(λ)
)

(2.14)

and

R̂jj′(ω) =
e

|ω|
2 sinh

(

j<ω

2

)

sinh
(

(N − j>)
ω
2

)

sinh(ω
2
) sinh

(

Nω
2

) , ân(ω) = e−n
|ω|
2 ,

j< = min{j, j′}, j> = max{j, j′}

â+(ω) = e
ω
2 ω < 0, â+(ω) = 0 ω > 0,

â−(ω) = e−
ω
2 ω > 0, â−(ω) = 0 ω < 0. (2.15)

We are naturally interested in the densities of the first Fermi sea, which provide the

transmission amplitude that describes the interaction between the defect and the particle-

like excitation (hole in the first Fermi sea). Recall also that

σ
(k)
0 (λ) = ε(k)(λ), and ε(k)(λ) =

1

2π

dp(k)(λ)

dλ
, (2.16)

1To derive the densities in the thermodynamic limit we have used the following basic formula in the

presence of m(k) holes in the kth Fermi sea:

1

N

M(k)
∑

j=1

f(λ
(k)
j ) →

∫

∞

−∞

dλ f(λ) σ(k)(λ)−
1

N

m(k)
∑

i=1

f(λ̃
(k)
i ). (2.11)
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with ε(k) and p(k) being the energy and the momentum of the hole excitation in the kth

sea, respectively. Moreover the densities σ(k) are defined as

σ(k)(λ) =
1

N

dh(k)(λ)

dλ
(2.17)

h(k)(λ) is the so-called counting function and h(k)(λ̃
(k)
i ) = J

(k)
i , where J

(k)
i are integer

numbers.

In order to derive the hole-defect transmission amplitude, we compare the expression

providing the density of the first Fermi sea (2.12) with the so called quantization condition

for a state with one particle [31, 32]. This condition with respect to the hole with rapidity

λ̃(1) is expressed then as

(

eiNp(1)(λ̃(1)) T(λ̃(1),Θ)− 1
)

|λ̃(1)〉 = 0 , (2.18)

p(1)(λ̃(1)) is the momentum of the respective hole in the first Fermi sea. Moreover, T ∈

{T, T̄}. T and T̂ are the relevant transmission matrices, depending on the choice of

the defect matrix L or L̂ respectively. Comparison of the quantization condition with

the state’s density (2.12) immediately provides the transmission amplitudes (eigenvalues)

(see also [12, 13, 14]). The transmission amplitudes for the model with a single defect can

be then derived as

T±(λ̂) = exp
[

−

∫ ∞

−∞

dω

ω
e−iωλ̂r̂

±(1)
t (ω)

]

(2.19)

where we have set λ̂ = λ̃
(1)
1 −Θ, and the ± in T± correspond to the ± in (2.12).

Bearing also in mind the useful identity

1

2

∫ ∞

0

dx

x

e−
µx

2

cosh(x
2
)
= ln

Γ(µ+1
4
)

Γ(µ+3
4
)
, (2.20)

as well as formulas (2.13) we conclude that the transmission amplitudes are identified via

(2.19), and have the following explicit forms:

T+(λ) =
Γ(− iλ

N
+ 1

2N
)

Γ(− iλ
N

− 1
2N

+ 1)
, T−(λ) =

Γ( iλ
N

+ 1
2N

+ 1
2
)

Γ( iλ
N

− 1
2N

+ 1
2
)
. (2.21)

Keep in mind that for purely transmitting defects the following quadratic algebra is

satisfied by the transmission matrices [4]

S12(λ1 − λ2) T1(λ1) T2(λ2) = T2(λ2) T1(λ1) S12(λ1 − λ2) . (2.22)
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In fact, the latter relation encodes the mathematical content associated to the transmission

matrices; they are apparently representations of the quadratic algebra (2.22). In our case

the S-matrix is the typical glN scattering matrix [26]:

S(λ) =
S(λ)

iλ+ 1

(

iλ + P
)

, (2.23)

where the hole-hole scattering amplitude S is given as (see e.g. [30, 33]):

S(λ) =
Γ( iλ

N
+ 1) Γ(− iλ

N
+ 1− 1

N
)

Γ(− iλ
N

+ 1) Γ( iλ
N

+ 1− 1
N
)
. (2.24)

Taking the latter information into account, together with the crossing property, we con-

clude that the transmission matrix may be cast as

T(λ) =
T−(λ)

iλ + N
2
− 1

2

(

e11 ⊗ (iλ + 1 + N̄) +

N
∑

j=2

ejj ⊗ I+

N
∑

j=2

(e1j ⊗ a(j) + ej1 ⊗ a†(j−1))
)

,

N̄ =
N−1
∑

j=1

a(j)a†(j) +
N

2
−

3

2
, (2.25)

whereas the“conjugate” transmission matrix is of the expected form:

T̄(λ) = T+(λ)
(

eNN ⊗ (−iλ−
N

2
+ 1 + N̄) +

N
∑

j=2

ej̄ j̄ ⊗ I+

N
∑

j=2

(ej̄N ⊗ a(j−1) + eN j̄ ⊗ a†(j−1))
)

.

(2.26)

Note that as in the sl2 case investigated in [14] the “physical” quantity N̄ is shifted

compared to the “bare” quantity N by the constant N
2
− 3

2
, which is also confirmed by a

direct computation via the BAEs’.

Some comments are in order here; it is clear that in general (2.25), (2.26) satisfy the

quadratic relation (2.22) for any overall factor in front of the matrices. With the use of

BAEs’ we fix exactly this overall physical factor by computing explicitly the eigenvalues

of the matrix. The validity of the physical overall factor may be further checked via the

crossing property that should be satisfied by the transmission matrices. More precisely,

the overall factors in front of the transmission matrices above are compatible with the

BAEs’, and they also satisfy the crossing property as will be clear immediately below.

Indeed it is easy to verify that

T̄12(λ) = C V1 T
t1
12(−λ +

iN

2
) V1 (2.27)

7



as expected from the crossing property, C is λ-independent arbitrary constant. Confirma-

tion of the crossing property provides an extra validity check on our results. As already

discussed in the sl2 case, studied in [14], the T and T̄ matrices are equivalent algebraic

objects due to the crossing property (2.4), as well as the fact that they satisfy the same

quadratic algebra (2.22). This concludes our derivation of type-I transmission matrices

within the glN spin chain.

3 Conclusions

In summary, we have been able to explicitly identify the type-I transmission matrices

within the glN spin chain frame exploiting mainly the algebraic Bethe ansatz framework

as well as the crossing property for the generalized oscillator algebra incorporated in the

defect matrices L, L̂. We have restricted our attention here in the isotropic case, however

similar results can be extracted for the trigonometric case, provided that a q-deformation

of the vector non-linear Schrödinger model is first derived. This information is still missing

to our knowledge, hence this remains an open problem.

In general, in a series of recent papers [12, 13, 14] both known types of defects I

and II have been treated with the use of the Bethe ansatz framework, and the relevant

physical transmission amplitudes were derived in both isotropic and trigonometric cases,

with the exception of the study of type-I defects in the higher rank trigonometric case,

as already pointed out. The situation therefore within the spin chain frame is more or

less well understood and controlled. Clearly the findings of the present investigation may

be mapped in a straightforward manner to integrable quantum field theories, such as

the Gross-Neveu model or the Principal Chiral model (PCM) (see e.g. [29, 33]), given

that both discrete integrable models and integrable field theories share the same algebraic

content. A particularly interesting direction to pursue would be the study of integrable

defects in connection with dynamical algebras. The first step towards this direction would

be the identification of the associated defect matrices that is classification of generic rep-

resentations of the dynamical algebras [34]. A direct connection with 2D statistical modes

such as the SOS/RSOS models would be then possible via the face-vertex transformation

providing results of great physical as well as algebraic meaning. We hope to address these

significant issues in the near future.
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