FEATURES

0.5Ω typical on resistance
 0.8Ω maximum on resistance at $125^{\circ} \mathrm{C}$

1.65 V to 3.6 V operation

Automotive temperature range: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Guaranteed leakage specifications up to $125^{\circ} \mathrm{C}$
High current carrying capability: $\mathbf{3 0 0} \mathbf{~ m A}$ continuous
Rail-to-rail switching operation
Fast switching times <20 ns
Typical power consumption: <0.1 $\mu \mathrm{W}$

APPLICATIONS

Cellular phones

PDAs
MP3 players
Power routing
Battery-powered systems
PCMCIA cards

Modems

Audio and video signal routing

Communication systems

GENERAL DESCRIPTION

The ADG836L is a low voltage CMOS device containing two independently selectable single-pole, double-throw (SPDT) switches. This device offers ultralow on resistance of less than 0.8Ω over the full temperature range. The ADG836L is fully specified for $3.3 \mathrm{~V}, 2.5 \mathrm{~V}$, and 1.8 V supply operation.

Each switch conducts equally well in both directions when on and has an input signal range that extends to the supplies. The ADG836L exhibits break-before-make switching action.

The ADG836L is available in a 10-lead package.

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

PRODUCT HIGHLIGHTS

1. Less than 0.8Ω over full temperature range of $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
2. Single 1.65 V to 3.6 V operation.
3. Compatible with 1.8 V CMOS logic.
4. High current handling capability (300 mA continuous current at 3.3 V).
5. Low THD $+\mathrm{N}(0.02 \%$ typ $)$.
6. Small 10-lead MSOP package.

Rev. A
Information furnished by Analog Devices is believed to be accurate and reliable.

[^0]
ADG836L

TABLE OF CONTENTS

Specifications 3
Absolute Maximum Ratings6
Truth Table 6
Pin Terminology 7
Typical Performance Characteristics 8
Test Circuits 11
Outline Dimensions 13
Ordering Guide. 14
REVISION HISTORY
5/04—Data Sheet Changed from Rev. 0 to Rev. AUpdated Ordering Guide.14
4/04—Revision 0: Initial Version

SPECIFICATIONS

Table 1. $\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 3.6 V , GND $=0 \mathrm{~V}$, unless otherwise noted. ${ }^{1}$

${ }^{1}$ Temperature range for Y version is $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design, not subject to production test.

ADG836L

Table 2. $\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted. ${ }^{1}$

${ }^{1}$ Temperature range for Y version is $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design, not subject to production test.

Table 3. $\mathrm{V}_{\mathrm{DD}}=1.65 \mathrm{~V} \pm 1.95 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted. ${ }^{1}$

[^1]
ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 4.

Parameter	Rating
V $_{\text {DD }}$ to GND	-0.3 V to +4.6 V
Analog Inputs 1	-0.3 V to VDD +0.3 V
Digital Inputs 1	-0.3 V to 4.6 V or 10 mA,
whichever occurs first	
Peak Current, S or D	
3.3 V Operation	500 mA
2.5 V Operation	460 mA
1.8 V Operation	420 mA (pulsed at $1 \mathrm{~ms}, 10 \%$
Continuous Current, S or D	Duty Cycle Max)
3.3 V Operation	300 mA
2.5 V Operation	275 mA
1.8 V Operation	250 mA
Operating Temperature Range	
Automotive (Y Version)	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
MSOP Package	
θ_{JA} Thermal Impedance	$206^{\circ} \mathrm{C} / \mathrm{W}$
θ_{JC} Thermal Impedance	$44^{\circ} \mathrm{C} / \mathrm{W}$
IR Reflow, Peak Temperature	$235^{\circ} \mathrm{C}$
<20 sec	

${ }^{1}$ Overvoltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance

PIN TERMINOLOGY

Figure 2. 10-Lead MSOP (RM-10)
Table 6.

Mnemonic	Description
VDD	Most positive power supply potential.
IDD	Positive supply current.
GND	Ground (0 V) reference.
S	Source terminal. May be an input or output.
D	Drain terminal. May be an input or output.
IN	Logic control input.
$\mathrm{V}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{S}}\right)$	Analog voltage on terminals D and S .
Ron	Ohmic resistance between terminals D and S.
R $\mathrm{flat} \mathrm{(on)}^{\text {(}}$	Flatness is defined as the difference between the maximum and minimum value of on resistance as measured
$\Delta \mathrm{R}_{\text {ON }}$	On resistance match between any two channels.
I_{s} (OFF)	Source leakage current with the switch off.
ld (OFF)	Drain leakage current with the switch off.
$\mathrm{l}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{ON})$	Channel leakage current with the switch on.
Vinl	Maximum input voltage for Logic 0.
Vinh	Minimum input voltage for Logic 1.
$\mathrm{l}_{\text {INL }}\left(\mathrm{l}_{\text {INH }}\right)$	Input current of the digital input.
C_{5} (OFF)	Off switch source capacitance. Measured with reference to ground.
C_{D} (OFF)	Off switch drain capacitance. Measured with reference to ground.
$\mathrm{C}_{\mathrm{d}}, \mathrm{C}_{s}(\mathrm{ON})$	On switch capacitance. Measured with reference to ground.
$\mathrm{CIN}_{\text {IN }}$	Digital input capacitance.
ton	Delay time between the 50% and the 90% points of the digital input and switch on condition.
toff	Delay time between the 50% and the 90% points of the digital input and switch off condition.
$\mathrm{t}_{\text {BBM }}$	On or off time measured between the 80% points of both switches when switching from one to another.
Charge Injection	A measure of the glitch impulse transferred from the digital input to the analog output during on-off switching.
Off Isolation	A measure of unwanted signal coupling through an off switch.
Crosstalk	A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.
-3 dB Bandwidth	The frequency at which the output is attenuated by 3 dB .
On Response	The frequency response of the on switch.
Insertion Loss	The loss due to the on resistance of the switch.
THD + N	The ratio of the harmonic amplitudes plus noise of a signal, to the fundamental.

ADG836L

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3. On Resistance vs. $V_{D}\left(V_{S}\right), V_{D D}=2.7 \mathrm{~V}$ to 3.6 V

Figure 4. On Resistance vs. $V_{D}\left(V_{s}\right), V_{D D}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$

Figure 5. On Resistance vs. $V_{D}\left(V_{s}\right), V_{D D}=1.8 \mathrm{~V} \pm$ to 0.15 V

Figure 6. On Resistance vs. $V_{D}\left(V_{S}\right)$ for Different Temperature, $V_{D D}=3.3 \mathrm{~V}$

Figure 7. On Resistance vs. $V_{D}\left(V_{S}\right)$ for Different Temperature, $V_{D D}=2.5 \mathrm{~V}$

Figure 8. On Resistance vs. $V_{D}\left(V_{s}\right)$ for Different Temperature, $V_{D D}=1.8 \mathrm{~V}$

Figure 9. Leakage Current vs. Temperature, VDD $=3.3 \mathrm{~V}$

Figure 10. Leakage Current vs. Temperature, $V_{D D}=2.5 \mathrm{~V}$

Figure 11. Leakage Current vs. Temperature, $V_{D D}=1.8 \mathrm{~V}$

Figure 12. Charge Injection vs. Source Voltage

Figure 13. ton/toff Times vs. Temperature

Figure 14. Bandwidth

ADG836L

Figure 15. Off Isolation vs. Frequency

Figure 17. Total Harmonic Distortion + Noise

Figure 16. Crosstalk vs. Frequency

TEST CIRCUITS

Figure 18. On Resistance

Figure 19. Off Leakage

Figure 20. On Leakage

Figure 21. Switching Times, ton, toff

Figure 22. Break-before-Make Time Delay, $t_{B B M}$

Figure 23. Charge Injection

ADG836L

OFF ISOLATION $=20$ LOG $\frac{\mathrm{V}_{\text {OUT }}}{\mathrm{VS}}$

Figure 24. Off Isolation

INSERTION LOSS $=20$ LOG $\frac{\mathrm{V}_{\text {OUT }} \text { WITH SWITCH }}{\mathrm{V}_{\text {OUT }} \text { WITHOUT SWITCH }}$
Figure 26. Bandwidth

CHANNEL-TO-CHANNEL CROSSTALK $=20$ LOG $\frac{\mathrm{v}_{\text {OUT }}}{\mathrm{VS}}$

Figure 25. Channel-to-Channel Crosstalk (S1A-S1B)

CHANNEL-TO-CHANNEL CROSSTALK $=20$ LOG $\frac{\mathrm{V}_{\text {OUT }}}{\mathrm{VS}}$

Figure 27. Channel-to-Channel Crosstalk (S1A-S2A)

OUTLINE DIMENSIONS

Figure 28. 10-Lead Mini Small Outline Package [MSOP]
(RM-10)
Dimensions shown in millimeters

ADG836L

ORDERING GUIDE
Model
:---
ADG836LYRM
ADG836LYRM-REEL
ADG836LYRM-REEL7

NOTES

ADG836L

NOTES

[^0]: One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.326.8703 © 2004 Analog Devices, Inc. All rights reserved.

[^1]: ${ }^{1}$ Temperature range for Y version is $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
 ${ }^{2}$ Guaranteed by design, not subject to production test.

