|            |         |        |         |       |        |       |       |          |          |      | REVISIONS    |                       |       |    |           |             |        |                               |                   |        |          |  |
|------------|---------|--------|---------|-------|--------|-------|-------|----------|----------|------|--------------|-----------------------|-------|----|-----------|-------------|--------|-------------------------------|-------------------|--------|----------|--|
|            |         |        |         |       | LT     | R     |       |          |          | DESC | RIPTI        | ON                    |       |    |           | D           | ATE    |                               |                   | APPR   | OVED     |  |
|            |         |        |         |       |        |       |       |          |          |      |              |                       |       |    |           |             |        |                               |                   |        |          |  |
|            |         |        |         | ŀ     |        |       |       |          |          |      |              |                       |       |    |           |             |        |                               |                   |        |          |  |
|            |         |        |         | ŀ     |        |       |       |          |          |      |              |                       |       |    |           |             |        |                               |                   |        |          |  |
|            |         |        |         | I     |        | I     |       |          |          |      |              |                       |       |    | I         |             |        | I                             |                   |        |          |  |
|            |         |        |         |       |        |       |       |          |          |      |              |                       |       |    |           |             |        |                               |                   |        |          |  |
|            |         |        |         |       |        |       |       |          |          |      |              |                       |       |    |           |             |        |                               |                   |        |          |  |
|            |         |        |         |       |        |       |       |          |          |      |              |                       |       |    |           |             |        |                               |                   |        |          |  |
|            |         |        |         |       |        |       |       |          |          |      |              |                       |       |    |           |             |        |                               |                   |        |          |  |
|            |         |        |         |       |        |       |       |          |          |      |              |                       |       |    |           |             |        |                               |                   |        |          |  |
|            |         |        |         |       |        |       |       |          |          |      |              |                       |       |    |           |             |        |                               |                   |        |          |  |
|            |         |        |         |       |        |       |       |          |          |      |              |                       |       |    |           |             |        |                               |                   |        |          |  |
|            |         |        |         |       |        |       |       |          |          |      |              |                       |       |    |           |             |        |                               |                   |        |          |  |
|            |         |        |         |       |        |       |       |          |          |      |              |                       |       |    |           |             |        |                               |                   |        |          |  |
|            |         |        |         |       |        |       |       |          |          |      |              |                       |       |    |           |             |        |                               |                   |        |          |  |
|            |         |        |         |       |        |       |       |          |          |      |              |                       |       |    |           |             |        |                               |                   |        |          |  |
|            |         |        |         |       |        |       |       |          |          |      |              |                       |       |    |           |             |        |                               |                   |        |          |  |
|            |         |        |         |       |        |       |       |          |          |      |              |                       |       |    |           |             |        |                               |                   |        |          |  |
|            |         |        |         |       |        |       |       |          |          |      |              |                       |       |    |           |             |        |                               |                   |        |          |  |
|            |         |        |         |       |        |       |       |          |          |      |              |                       |       |    |           |             |        |                               |                   |        |          |  |
| Prepared   | in acc  | ordano | ce with | n ASM | IE Y14 | 4.24  |       |          |          |      |              |                       |       |    |           |             |        | Ve                            | ndor i            | tem dr | rawing   |  |
|            |         |        |         |       |        |       |       |          |          |      |              |                       |       |    |           |             |        |                               |                   |        |          |  |
| REV        |         |        |         |       |        |       |       |          |          |      |              |                       |       |    |           |             |        |                               |                   |        |          |  |
| PAGE       |         |        |         |       |        |       |       |          |          |      |              |                       |       |    |           |             |        |                               |                   |        |          |  |
| REV        |         |        |         |       |        |       |       |          |          |      |              |                       |       |    |           |             |        |                               |                   |        |          |  |
| PAGE       |         |        | Ì       |       |        |       |       |          |          |      |              |                       |       |    |           |             |        |                               |                   |        |          |  |
| REV STA    | ATUS    |        | REV     |       |        |       |       |          |          |      |              |                       |       |    |           |             |        |                               |                   |        | †        |  |
| OF PAG     |         |        | PAG     | E     |        | 1     | 2     | 3        | 4        | 5    | 6            | 7                     | 8     | 9  |           |             |        |                               |                   |        | <u> </u> |  |
| PMIC N/    | Δ       | 1      |         | PRE   | PARE   | D BY  |       | <u> </u> | <u>]</u> |      |              | DLA LAND AND MARITIME |       |    |           |             |        |                               |                   |        |          |  |
| I mile is, | _       |        |         |       |        |       |       | Nguye    | en       |      |              |                       |       | C  | OLUN      | <b>IBUS</b> | , OHIC | ) 432 <sup>.</sup><br>naritin | 18-399            | 90     |          |  |
| Original   | data of | drowin | .~      | CHE   | CKED   | N DV  |       |          |          |      |              | TIT                   |       | шь | .// WV VV | Wilain      | uarion | larium                        | IlGiuiu           |        |          |  |
| YY MM DD   |         | CHE    | CKEL    |       | hu H.  | Nguye | en    |          |          | TIT  |              | וספיי                 |       |    |           |             | · 0T   | * D.II. I                     | · <del>-</del> \/ |        |          |  |
|            |         | APP    | ROVE    | D BY  |        |       |       |          |          |      | CROC<br>W NC |                       |       |    |           |             |        |                               | IIY,<br>W RA      | TF     |          |  |
|            |         |        |         |       | Tł     | nomas | М. Не | ess      |          |      |              | ROS                   |       |    |           |             |        |                               |                   |        | ``_      |  |
|            |         |        |         | SIZ   | ΖE     | COD   | E IDE | NT. N    | Ο.       |      |              | DW                    | G NO. |    |           |             |        |                               |                   |        |          |  |
|            |         |        |         | A     | ١.     |       |       | 162      | 236      |      |              |                       |       |    | \         | /62         | 2/14   | 61                            | 8                 |        |          |  |
|            |         |        | _       | REV   |        |       |       |          |          |      |              | DAC                   |       | ΩE | 0         |             |        |                               |                   |        |          |  |
|            |         |        | KEV     |       |        |       |       |          |          |      | PAC          | <b>SE</b> 1           | OF    | 9  |           |             |        |                               |                   |        |          |  |

AMSC N/A 5962-V076-14

## 1. SCOPE

- 1.1 <u>Scope</u>. This drawing documents the general requirements of a high performance high stability, low noise vibration rejecting Yaw rate gyroscope microcircuit, with an operating temperature range of -55°C to +105°C.
- 1.2 <u>Vendor Item Drawing Administrative Control Number</u>. The manufacturer's PIN is the item of identification. The vendor item drawing establishes an administrative control number for identifying the item on the engineering documentation:

 V62/14618
 01
 X
 B

 Drawing number
 Device type (See 1.2.1)
 Case outline (See 1.2.2)
 Lead finish (See 1.2.3)

1.2.1 Device type(s).

 Device type
 Generic
 Circuit function

 01
 ADXRS646-EP
 High stability, low noise vibration rejecting yaw rate gyroscope

1.2.2 Case outline(s). The case outlines are as specified herein.

 Outline letter
 Number of pins
 Package style

 X
 32
 Lead Ceramic Ball Grid Array (CBGA)

1.2.3 <u>Lead finishes</u>. The lead finishes are as specified below or other lead finishes as provided by the device manufacturer:

Finish designator

A Hot solder dip
B Tin-lead plate
C Gold plate
D Palladium
E Gold flash palladium
Z Other

| DLA LAND AND MARITIME | SIZE | CODE IDENT NO. | DWG NO.          |
|-----------------------|------|----------------|------------------|
| COLUMBUS, OHIO        | A    | <b>16236</b>   | <b>V62/14618</b> |
|                       |      | REV            | PAGE 2           |

## 1.3 Absolute maximum ratings. 1/

Acceleration (Any Axis, 0.5 ms):

| Unpowered                                         | 10,000 <i>g</i>  |
|---------------------------------------------------|------------------|
| Powered                                           |                  |
| V <sub>DD</sub> , AV <sub>CC</sub>                | -0.3 V to +6.6 V |
| V <sub>RATIO</sub>                                | AVcc             |
| ST1, ST2                                          | AV <sub>CC</sub> |
| Output short circuit duration (Any pin to common) | Indefinite       |
| Operating temperature range                       | -65°C to +125°C  |
| Storage temperature range                         | -65°C to 150°C   |

## 2. APPLICABLE DOCUMENTS

There are no applicable documents.

### 3. REQUIREMENTS

- 3.1 <u>Marking</u>. Parts shall be permanently and legibly marked with the manufacturer's part number as shown in 6.3 herein and as follows:
  - A. Manufacturer's name, CAGE code, or logo
  - B. Pin 1 identifier
  - C. ESDS identification (optional)
- 3.2 <u>Unit container</u>. The unit container shall be marked with the manufacturer's part number and with items A and C (if applicable) above.
- 3.3 <u>Electrical characteristics</u>. The maximum and recommended operating conditions and electrical performance characteristics are as specified in 1.3, 1.4, and table I herein.
  - 3.4 Design, construction, and physical dimension. The design, construction, and physical dimensions are as specified herein.
  - 3.5 Diagrams.
  - 3.5.1 <u>Case outline</u>. The case outline shall be as shown in 1.2.2 and figure 1.
  - 3.5.2 <u>Pin function description</u>. The pin function description shall be as shown in figure 2.
  - 3.5.3 Functional block diagram. The functional block diagram shall be as shown in figure 3.

| DLA LAND AND MARITIME | SIZE | CODE IDENT NO. | DWG NO.          |
|-----------------------|------|----------------|------------------|
| COLUMBUS, OHIO        | A    | <b>16236</b>   | <b>V62/14618</b> |
|                       |      | REV            | PAGE 3           |

Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.

TABLE I. Electrical performance characteristics. 1/

| Test                         | Test conditions                                  | Limits |        |      | Unit               |  |
|------------------------------|--------------------------------------------------|--------|--------|------|--------------------|--|
|                              | <u>2</u> /                                       | Min    | Тур    | Max  |                    |  |
| SENSITIVITY 3/               |                                                  |        |        |      |                    |  |
|                              | Clockwise rotation is positive output            |        |        |      |                    |  |
| Measurement Range <u>4</u> / | Full-scale range over specifications range       | ±250   | ±300   |      | °/sec              |  |
| Initial                      |                                                  | 8.5    | 9      | 9.5  | mV/°/sec           |  |
| Temperature Drift <u>5</u> / |                                                  |        | ±3     |      | %                  |  |
| Nonlinearity                 | Best fit straight line                           |        | 0.01   |      | % of FS            |  |
| NULL <u>3</u> /              |                                                  |        |        |      | •                  |  |
| Null                         | -40°C to +105°C                                  | 2.7    | 3.0    | 3.3  | V                  |  |
| Temperature Drift <u>5</u> / |                                                  |        | ±3     |      | °/sec              |  |
| Linear Acceleration Effect   | Any axis                                         |        | 0.015  |      | °/sec/g            |  |
| Vibration Rectification      | 25 g rms, 50 Hz to 5 kHz                         |        | 0.0001 |      | °/sec/g <u>4</u> / |  |
| NOISE PERFORMANCE            |                                                  |        |        |      |                    |  |
| Rate Noise Density           | T <sub>A</sub> ≤ 25°C                            |        | 0.01   |      | °/sec/√Hz          |  |
| Rate Noise Density           | T <sub>A</sub> ≤ 105°C                           |        | 0.015  |      | °/sec/√Hz          |  |
| Resolution Floor             | T <sub>A</sub> = 25°C, 1 minute to 1 hour in-run |        | 12     |      | °/hr               |  |
| FREQUENCY RESPONSE           |                                                  | •      |        |      |                    |  |
| Bandwidth <u>6</u> /         | ±3 dB user adjustable up to specification        |        | 1000   |      | Hz                 |  |
| Sensor Resonant Frequency    |                                                  | 15.5   | 17.5   | 20   | kHz                |  |
| SELF-TEST <u>3</u> /         |                                                  |        |        |      |                    |  |
| ST1 RATEOUT Response         | ST1 pin from Logic 0 to Logic 1                  |        | -50    |      | °/sec              |  |
| ST2 RATEOUT Response         | ST2 pin from Logic 0 to Logic 1                  |        | 50     |      | °/sec              |  |
| ST1 to ST2 Mismatch 7/       |                                                  | -5     | ±0.5   | +5   | %                  |  |
| Logic 1 Input Voltage        | ST1 pin or ST2 pin                               | 4      |        |      | V                  |  |
| Logic 0 Input Voltage        |                                                  |        |        | 2    | V                  |  |
| Input Impedance              | ST1 pin or ST2 pin to common                     | 40     | 50     | 100  | kΩ                 |  |
| TEMPERATURE SENSOR 3/        |                                                  |        |        |      | •                  |  |
| Vout at 25°C                 | Load = $10 \text{ M}\Omega$                      | 2.8    | 2.9    | 3.0  | ٧                  |  |
| Scale Factor 8/              | 25°C, Vratio = 6 V                               |        | 10     |      | mV/°C              |  |
| Load to V <sub>S</sub>       |                                                  |        | 25     |      | kΩ                 |  |
| Load to Common               |                                                  |        | 25     |      | kΩ                 |  |
| TURN-ON TIME <u>8</u> /      | Power on to ±0.5°/sec of final with CP5 = 100 nF |        |        | 50   | ms                 |  |
| OUTPUT DRIVE CAPABILITY      |                                                  |        |        |      |                    |  |
| Current Drive                | For rated specifications                         |        |        | 200  | μa                 |  |
| Capacitive Load Drive        |                                                  |        |        | 1000 | pF                 |  |
| POWER SUPPLY                 |                                                  |        |        |      |                    |  |
| Operating Voltage (VS)       |                                                  | 5.75   | 6.00   | 6.25 | V                  |  |
| Quiescent Supply Current     |                                                  |        | 4      |      | mA                 |  |

See footnote at end of table.

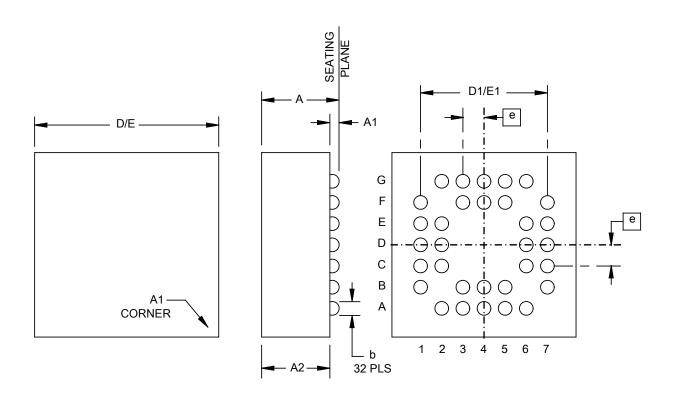

| DLA LAND AND MARITIME | SIZE | CODE IDENT NO. | DWG NO.          |
|-----------------------|------|----------------|------------------|
| COLUMBUS, OHIO        | A    | <b>16236</b>   | <b>V62/14618</b> |
|                       |      | REV            | PAGE 4           |

TABLE I. Electrical performance characteristics - Continued. 1/

| Test                  | Test conditions |     | Limits |      | Unit |
|-----------------------|-----------------|-----|--------|------|------|
|                       | <u>2</u> /      | Min | Тур    | Max  |      |
| TEMPERATURE RANGE     |                 |     |        |      |      |
| Specified Performance |                 | -55 |        | +105 | °C   |

- 1/ Testing and other quality control techniques are used to the extent deemed necessary to assure product performance over the specified temperature range. Product may not necessarily be tested across the full temperature range and all parameters may not necessarily be tested. In the absence of specific parametric testing, product performance is assured by characterization and/or
- All minimum and maximum specifications are guaranteed. Typical specifications are not guaranteed. T<sub>A</sub> = 25°C, V<sub>S</sub> = AV<sub>CC</sub> =  $V_{DD} = 6 \text{ V}$ ,  $V_{RATIO} = AV_{CC}$ , angular rate = °/sec, bandwidth = 80 Hz ( $C_{OUT} = 0.01 \, \mu\text{F}$ ),  $I_{OUT} = 100 \, \mu\text{A}$ ,  $\pm 1 \, g$ , unless otherwise
- Parameter is linearly ratio metric with V<sub>RATIO</sub>.
- <u>3/</u> Measurement range is the maximum range possible, including output swing range, initial offset, sensitivity, offset drift, and sensitivity drift at 5 V supplies.
- <u>5/</u> <u>6/</u> <u>7/</u> 8/ From +25°C to -40°C or +25°C to +105°C.
- Adjusted by external capacitor, Cout. Reducing bandwidth below 0.01 Hz does not result in further noise improvement.
- Self-test mismatch is described as (ST2 + ST1)/((ST2 ST1)/2).
- Based on characterization.

| DLA LAND AND MARITIME | SIZE | CODE IDENT NO. | DWG NO.          |
|-----------------------|------|----------------|------------------|
| COLUMBUS, OHIO        | A    | <b>16236</b>   | <b>V62/14618</b> |
|                       |      | REV            | PAGE 5           |



| Dimensions |        |        |        |          |        |  |  |  |  |
|------------|--------|--------|--------|----------|--------|--|--|--|--|
| Symbol     | Millim | neters | Symbol | Milli    | meters |  |  |  |  |
|            | Min    | Max    |        | Min      | Max    |  |  |  |  |
| Α          |        | 3.80   | D/E    | 6.70     | 7.05   |  |  |  |  |
| A1         | 0.25   | 0.60   | D1/E1  | 4.80 BSC |        |  |  |  |  |
| A2         | 2.50   | 3.20   | е      | 0.80     | ) BSC  |  |  |  |  |
| b          | 0.50   | 0.60   |        |          |        |  |  |  |  |

# NOTES:

- All linear dimensions are in millimeters.
   Ball A1 identifier is gold plated and connected to the D/A PAD internally via holes.

FIGURE 1. Case outline.

| DLA LAND AND MARITIME | SIZE     | CODE IDENT NO. | DWG NO.          |
|-----------------------|----------|----------------|------------------|
| COLUMBUS, OHIO        | <b>A</b> | <b>16236</b>   | <b>V62/14618</b> |
|                       |          | REV            | PAGE 6           |

| Pin No. | Mnemonic           | Description                              |
|---------|--------------------|------------------------------------------|
| 6D, 7D  | CP5                | HV Filter Capacitor, 100nF (±5%).        |
| 6A, 7B  | CP4                | Charge Pump Capacitor, 22 nF (±5%).      |
| 6C, 7C  | CP3                | Charge Pump Capacitor, 22 nF (±5%).      |
| 5A, 5B  | CP1                | Charge Pump Capacitor, 22 nF (±5%).      |
| 4A, 4B  | CP2                | Charge Pump Capacitor, 22 nF (±5%).      |
| 3A, 3B  | AV <sub>CC</sub>   | Positive Analog Supply.                  |
| 1B, 2A  | RATEOUT            | Rate Signal Output.                      |
| 1C, 2C  | SUMJ               | Output Amp Summing Junction.             |
| 1D, 2D  | DNC                | Do Not Connect to this Pin.              |
| 1E, 2E  | V <sub>RATIO</sub> | Reference Supply for Ratiometric Output. |
| 1F, 2G  | AGND               | Analog Supply Return.                    |
| 3F, 3G  | TEMP               | Temperature Voltage Output.              |
| 4F, 4G  | ST2                | Self-Test for Sensor 2.                  |
| 5F, 5G  | ST1                | Self-Test for Sensor 1.                  |
| 6G, 7F  | PGND               | Charge Pump Supply Return.               |
| 6E, 7E  | $V_{DD}$           | Positive Charge Pump Supply.             |

FIGURE 2. Pin function descriptions.

| DLA LAND AND MARITIME | SIZE | CODE IDENT NO. | DWG NO.          |  |
|-----------------------|------|----------------|------------------|--|
| COLUMBUS, OHIO        | A    | <b>16236</b>   | <b>V62/14618</b> |  |
|                       |      | REV            | PAGE 7           |  |

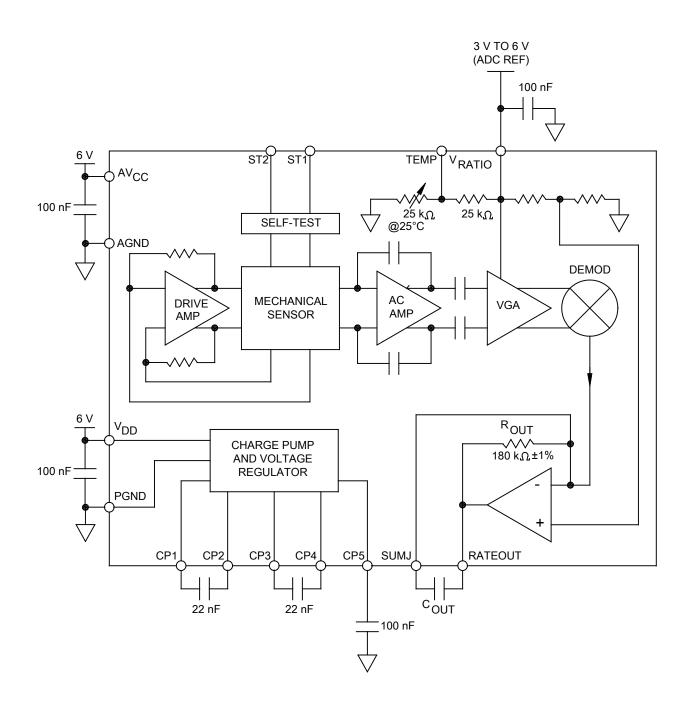



FIGURE 3. Functional block diagram.

| DLA LAND AND MARITIME | SIZE     | CODE IDENT NO. | DWG NO.          |
|-----------------------|----------|----------------|------------------|
| COLUMBUS, OHIO        | <b>A</b> | <b>16236</b>   | <b>V62/14618</b> |
|                       |          | REV            | PAGE 8           |

### 4. VERIFICATION

4.1 <u>Product assurance requirements</u>. The manufacturer is responsible for performing all inspection and test requirements as indicated in their internal documentation. Such procedures should include proper handling of electrostatic sensitive devices, classification, packaging, and labeling of moisture sensitive devices, as applicable.

# 5. PREPARATION FOR DELIVERY

5.1 <u>Packaging</u>. Preservation, packaging, labeling, and marking shall be in accordance with the manufacturer's standard commercial practices for electrostatic discharge sensitive devices.

### 6. NOTES

- 6.1 ESDS. Devices are electrostatic discharge sensitive and are classified as ESDS class 1 minimum.
- 6.2 <u>Configuration control</u>. The data contained herein is based on the salient characteristics of the device manufacturer's data book. The device manufacturer reserves the right to make changes without notice. This drawing will be modified as changes are provided.
- 6.3 <u>Suggested source(s) of supply</u>. Identification of the suggested source(s) of supply herein is not to be construed as a guarantee of present or continued availability as a source of supply for the item. DLA Land and Maritime maintains an online database of all current sources of supply at <a href="http://www.landandmaritime.dla.mil/Programs/Smcr/">http://www.landandmaritime.dla.mil/Programs/Smcr/</a>.

| Vendor item drawing administrative control number 1/ | Device<br>manufacturer<br>CAGE code | Vendor part number |
|------------------------------------------------------|-------------------------------------|--------------------|
|                                                      |                                     | ADXRS646TBGZ-EP    |
| V62/14618-01XB                                       | 24355                               | ADXRS646TBGZ-EP-RL |

1/ The vendor item drawing establishes an administrative control number for identifying the item on the engineering documentation.

<u>CAGE code</u> <u>Source of supply</u>

24355 Analog Devices 1 Technology Way P.O. Box 9106

Norwood, MA 02062-9106

| DLA LAND AND MARITIME | SIZE | CODE IDENT NO. | DWG NO.          |
|-----------------------|------|----------------|------------------|
| COLUMBUS, OHIO        | A    | <b>16236</b>   | <b>V62/14618</b> |
|                       |      | REV            | PAGE 9           |