LTR	DESCRIPTION	DATE	APPROVED

Prepared in accordance with ASME Y14.24
Vendor item drawing

REV																							
PAGE																							
REV																							
PAGE	18	19	20	21	22	23	24	25	26	27	28	29	30		31	32	33						
REV STATUS OF PAGES			REV																				
			PAGE			1	2	3	4	5	6	7	8		9	10	11	12	13	14	15	16	17
PMIC N/A				PREPARED BY RICK OFFICER								DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990 http://www.landandmaritime.dla.mil/											
Original date of drawing$\begin{gathered} \text { YY-MM-DD } \\ 16-04-06 \end{gathered}$				APPROVED BY CHARLES F. SAFFLE								TITLE MICROCIRCUIT, LINEAR, HIGH VOLTAGE, LATCH UP PROOF, 4-/8- CHANNEL CMOS MULTIPLEXERS, MONOLITHIC SILICON											
							E IDt					DWG NO.V62/16607											
				REV								PAGE 1 OF 33											

1. SCOPE
1.1 Scope. This drawing documents the general requirements of a high performance high voltage, latch-up proof, 4-/8 channel multiplexers microcircuit, with an operating temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
1.2 Vendor Item Drawing Administrative Control Number. The manufacturer's PIN is the item of identification. The vendor item drawing establishes an administrative control number for identifying the item on the engineering documentation:

-

Case outline
(See 1.2.2)

1.2.1 Device type(s).

Device type
01
02

Generic
ADG5408-EP
ADG5409-EP

Circuit function

High voltage, latch-up proof, 4-/8 channel multiplexers High voltage, latch-up proof, 4-/8 channel multiplexers
1.2.2 Case outline(s). The case outline(s) are as specified herein.

Outline letter	Number of pins	JEDEC PUB 95	
	16	MO-220-WGGC	Quad flat pack thermal pad

1.2.3 Lead finishes. The lead finishes are as specified below or other lead finishes as provided by the device manufacturer:

Finish designator	Material
A	Hot solder dip
B	Tin-lead plate
C	Gold plate
D	Palladium
E	Gold flash palladium
Z	Other

1.3 Absolute maximum ratings. 1/

2. APPLICABLE DOCUMENTS

JEDEC Solid State Technology Association
JEDEC J STD-020 - Moisture/Reflow Sensitivity Classification for Non-Hermetic Solid State Surface Mount Devices JEDEC PUB 95 - Registered and Standard Outlines for Semiconductor Devices
(Copies of these documents are available online at http:/www.jedec.org or from JEDEC - Solid State Technology Association, 3103 North 10th Street, Suite 240-S, Arlington, VA 22201-2107).

1/ Stresses beyond those listed under "absolute maximum rating" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
2/ Over voltages at the Ax, EN, Sx, D, and Dx pins are clamped by internal diodes. Limit current to the maximum ratings given.
3/ See table I in Continuous current, Sx or D section.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/16607
		REV	PAGE 3

3. REQUIREMENTS

3.1 Marking. Parts shall be permanently and legibly marked with the manufacturer's part number as shown in 6.3 herein and as follows:
A. Manufacturer's name, CAGE code, or logo
B. Pin 1 identifier
C. ESDS identification (optional)
3.2 Unit container. The unit container shall be marked with the manufacturer's part number and with items A and C (if applicable) above.
3.3 Electrical characteristics. The maximum and recommended operating conditions and electrical performance characteristics are as specified in 1.3, 1.4, and table I herein.
3.4 Design, construction, and physical dimension. The design, construction, and physical dimensions are as specified herein.
3.5 Diagrams.
3.5.1 Case outline. The case outline shall be as shown in 1.2.2 and figure 1.
3.5.2 Terminal connections. The terminal connections shall be as shown in figure 2 .
3.5.3 Truth table. The truth table shall be as shown in figure 3.
3.5.4 Logic diagram. The logic diagram shall be as shown in figure 4.
3.5.5 On resistance. The On resistance shall be as shown in figure 5.
3.5.6 Off leakage. The Off leakage shall be as shown in figure 6.
3.5.7 On leakage. The On leakage shall be as shown in figure 7 .
3.5.8 Address to output switching times. The address to output switching times shall be as shown in figure 8.
3.5.9 Enable delay, $t_{\text {ON }}(E N)$, toff(EN). The enable delay, $\mathrm{t}_{\mathrm{ON}}(E N)$, $\mathrm{t}_{\mathrm{OFF}}(E N)$ shall be as shown in figure 9.
3.5.10 Break before make time delay, to. The Break before make time delay, t_{D} shall be as shown in figure 10.
3.5.11 Charge injection. The charge injection shall be as shown in figure 11.
3.5.12 Off isolation. The Off isolation shall be as shown in figure 12.
3.5.13 Channel to channel crosstalk. The channel crosstalk shall be as shown in figure 13.
3.5.14 THD + noise. The THD + noise shall be as shown in figure 14.
3.5.15 Bandwidth. The bandwidth shall be as shown in figure 15.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/16607
		REV	PAGE 4

TABLE I. Electrical performance characteristics. 1/

Test	Symbol	Conditions$\begin{gathered} V D D=+15 \mathrm{~V} \pm 10 \%, \\ \mathrm{~V} \text { SS }=-15 \mathrm{~V} \pm 10 \%, \text { GND }=0 \mathrm{~V} \\ \text { unless otherwise specified } \end{gathered}$	Temperature, T_{A}	Device type	Limits		Unit
					Min	Max	
$\pm 15 \mathrm{~V}$ dual supply							
Analog switch.							
Analog signal range			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	01, 02	$V_{D D}$ to Vss		V
On resistance	RON	$\mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{IS}_{\mathrm{S}}=-10 \mathrm{~mA},$ see figure 5	$+25^{\circ} \mathrm{C}$	01, 02	13.5 typical		Ω
		$\mathrm{V}_{\mathrm{DD}}=+13.5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-13.5 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$			15	
			$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			18	
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			22	
On resistance match between channels	$\triangle \mathrm{RON}$	$V_{S}= \pm 10 \mathrm{~V}, \mathrm{IS}=-10 \mathrm{~mA}$	$+25^{\circ} \mathrm{C}$	01, 02	0.3 typical		Ω
			$+25^{\circ} \mathrm{C}$			0.8	
			$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			1.3	
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			1.4	
On resistance flatness	$\Delta \mathrm{R}_{\text {FLAT }}(\mathrm{ON})$	$V_{S}= \pm 10 \mathrm{~V}, \mathrm{IS}=-10 \mathrm{~mA}$	$+25^{\circ} \mathrm{C}$	01, 02	1.8 typical		Ω
			$+25^{\circ} \mathrm{C}$			2.2	
			$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			2.6	
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			3	
Leakage currents.		$\mathrm{V}_{\mathrm{DD}}=+16.5 \mathrm{~V}, \mathrm{~V}_{S S}=-16.5 \mathrm{~V}$					
Source off leakage	Is (off)	$V_{S}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 10 \mathrm{~V}$ see figure 6	$+25^{\circ} \mathrm{C}$	01, 02	± 0.05 typical		nA
			$+25^{\circ} \mathrm{C}$			± 0.25	
			$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			± 1	
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			± 7	
Drain off leakage	ID (off)	$\mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 10 \mathrm{~V}$ see figure 6	$+25^{\circ} \mathrm{C}$	01, 02	± 0.1 typical		nA
			$+25^{\circ} \mathrm{C}$			± 0.4	
			$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			± 4	
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			± 30	

See footnotes at end of table.

DLA LAND AND MARITIME COLUMBUS, OHIO

SIZE
A

CODE IDENT NO.
DWG NO.
16236
V62/16607
REV

TABLE I. Electrical performance characteristics - Continued. 1/

Test	Symbol	Conditions$\begin{gathered} V_{D D}=+15 \mathrm{~V} \pm 10 \%, \\ V_{S S}=-15 \mathrm{~V} \pm 10 \%, \text { GND }=0 \mathrm{~V} \\ \text { unless otherwise specified } \end{gathered}$	Temperature, T_{A}	Device type	Limits		Unit
					Min	Max	
$\pm 15 \mathrm{~V}$ dual supply - continued.							
Leakage currents - continued. $\quad \mathrm{V}_{\mathrm{DD}}=+16.5 \mathrm{~V}, \mathrm{~V}$ SS $=-16.5 \mathrm{~V}$							
Channel on leakage	ID (on), Is(on)	$V_{S}=V_{D}= \pm 10 \mathrm{~V}$ see figure 7	$+25^{\circ} \mathrm{C}$	01, 02	± 0.1 typical		nA
			$+25^{\circ} \mathrm{C}$			± 0.4	
			$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			± 4	
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			± 30	
Digital inputs.							
Input high voltage	VINH		$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	01, 02	2.0		V
Input low voltage	VINL		$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	01, 02		0.8	V
Input current	IINL or IINH	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {GND }}$ or V_{DD}	$+25^{\circ} \mathrm{C}$	01, 02	0.002 typical		$\mu \mathrm{A}$
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			± 0.1	
Digital input capacitance	CIN		$+25^{\circ} \mathrm{C}$	01, 02			pF
Dynamic characteristics. 2/							
Transition time	tTRANSITION	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=10 \mathrm{~V}, \text { see figure } 8 \end{aligned}$	$+25^{\circ} \mathrm{C}$	01, 02	170 typical		ns
			$+25^{\circ} \mathrm{C}$			217	
			$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			258	
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			292	
Enable delay on	ton(EN)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=10 \mathrm{~V}, \text { see figure } 9 \end{aligned}$	$+25^{\circ} \mathrm{C}$	01, 02	140 typical		ns
			$+25^{\circ} \mathrm{C}$			175	
			$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			213	
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			242	

See footnotes at end of table.

TABLE I. Electrical performance characteristics - Continued. 1/

Test	Symbol	Conditions $\begin{gathered} V_{D D}=+15 \mathrm{~V} \pm 10 \%, \\ V_{S S}=-15 \mathrm{~V} \pm 10 \%, G N D=0 \mathrm{~V} \end{gathered}$ unless otherwise specified	Temperature,T_{A}	Device type	Limits		Unit
					Min	Max	
$\pm 15 \mathrm{~V}$ dual supply - continued.							
Dynamic characteristics - continued. ${ }^{\text {// }}$							
Enable delay off	toff(EN)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=10 \mathrm{~V} \text {, see figure } 9 \end{aligned}$	$+25^{\circ} \mathrm{C}$	01, 02	130 typical		ns
			$+25^{\circ} \mathrm{C}$			161	
			$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			183	
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			198	
Break before make time delay	${ }^{\text {t }}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, C_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=10 \mathrm{~V} \text {, see figure } 10 \end{aligned}$	$+25^{\circ} \mathrm{C}$	01, 02	50 typical		ns
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		13		
Charge injection	OINJ	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF},$ see figure 11	$+25^{\circ} \mathrm{C}$	01, 02	115	ical	pC
Off isolation		$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz},$ see figure 12	$+25^{\circ} \mathrm{C}$	01, 02	-60	ical	dB
Channel to channel crosstalk		$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz},$ see figure 13	$+25^{\circ} \mathrm{C}$	01, 02	-60	ical	dB
Total harmonic distortion + noise		$\begin{aligned} & R_{L}=50 \Omega, 15 \mathrm{VPP}, \text { see figure } 14, \\ & f=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} \end{aligned}$	$+25^{\circ} \mathrm{C}$	01, 02	0.01	ical	\%
-3 dB bandwidth		$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ see figure 15	$+25^{\circ} \mathrm{C}$	01	50 typical		MHz
				02	87 ty		
Insertion loss		$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz},$ see figure 15	$+25^{\circ} \mathrm{C}$	01, 02	0.9	ical	dB
Source capacitance	Cs(off)	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	$+25^{\circ} \mathrm{C}$	01, 02	15 t		pF
Drain capacitance	C_{D} (off)	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	$+25^{\circ} \mathrm{C}$	01	102 typical		pF
				02	50 ty		
Source and drain capacitance	$C_{S}(o n)$, CD(on)	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	$+25^{\circ} \mathrm{C}$	01	133 typical		pF
				02	81 typical		

See footnotes at end of table.

DLA LAND AND MARITIME COLUMBUS, OHIO

REV 16236

TABLE I. Electrical performance characteristics - Continued. 1/

Test	Symbol	Conditions $\begin{gathered} V_{D D}=+15 \mathrm{~V} \pm 10 \%, \\ V_{S S}=-15 \mathrm{~V} \pm 10 \%, G N D=0 \mathrm{~V} \end{gathered}$ unless otherwise specified	Temperature, T_{A}	Device type	Limits		Unit
					Min	Max	
$\pm 15 \mathrm{~V}$ dual supply - continued.							
Power requirements. $\quad \mathrm{V}_{\mathrm{DD}}=+16.5 \mathrm{~V}, \mathrm{~V}_{S S}=-16.5 \mathrm{~V}$							
Positive power supply current	IDD	Digital inputs $=0 \mathrm{~V}$ or V_{DD}	$+25^{\circ} \mathrm{C}$	01, 02	45 typical		$\mu \mathrm{A}$
			$+25^{\circ} \mathrm{C}$			55	
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			80	
Negative power supply current	Iss	Digital inputs $=0 \mathrm{~V}$ or V_{DD}	$+25^{\circ} \mathrm{C}$	01, 02	0.001 typical		$\mu \mathrm{A}$
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			1	
Positive power supply voltage	$V_{\text {DD }}$	$\mathrm{GND}=0 \mathrm{~V}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	01, 02	± 9		V
Negative power supply voltage	VSS	$\mathrm{GND}=0 \mathrm{~V}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	01, 02		± 22	V

See footnotes at end of table.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/16607
		REV	PAGE 8

TABLE I. Electrical performance characteristics - Continued. 1/

Test	Symbol	Conditions $\begin{gathered} V_{D D}=+20 \mathrm{~V} \pm 10 \%, \\ V_{S S}=-20 \mathrm{~V} \pm 10 \%, G N D=0 \mathrm{~V} \end{gathered}$ unless otherwise specified	Temperature, T_{A}	Device type	Limits		Unit
					Min	Max	
$\pm 20 \mathrm{~V}$ dual supply.							
Analog switch.							
Analog signal range			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	01, 02	$V_{D D}$ to Vss		V
On resistance	RON	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA},$ see figure 5	$+25^{\circ} \mathrm{C}$	01, 02	12.5 typical		Ω
		$\mathrm{V}_{\mathrm{DD}}=+18 \mathrm{~V}, \mathrm{~V}_{S S}=-18 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$			14	
			$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			17	
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			21	
On resistance match between channels	$\Delta \mathrm{R}_{\text {ON }}$	$V_{S}= \pm 15 \mathrm{~V}, \mathrm{I}^{\prime}=-10 \mathrm{~mA}$	$+25^{\circ} \mathrm{C}$	01, 02	0.3 typical		Ω
			$+25^{\circ} \mathrm{C}$			0.8	
			$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			1.3	
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			1.4	
On resistance flatness	$\Delta \mathrm{R}_{\mathrm{FLAT}}(\mathrm{ON})$	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{IS}=-10 \mathrm{~mA}$	$+25^{\circ} \mathrm{C}$	01, 02	2.3 typical		Ω
			$+25^{\circ} \mathrm{C}$			2.7	
			$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			3.1	
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			3.5	
Leakage currents.		$\mathrm{V}_{\mathrm{DD}}=+22 \mathrm{~V}, \mathrm{~V}_{S S}=-22 \mathrm{~V}$					
Source off leakage	IS (off)	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 15 \mathrm{~V}$ see figure 6	$+25^{\circ} \mathrm{C}$	01, 02	± 0.1 typical		nA
			$+25^{\circ} \mathrm{C}$			± 0.25	
			$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			± 1	
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			± 7	
Drain off leakage	ID (off)	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 15 \mathrm{~V}$ see figure 6	$+25^{\circ} \mathrm{C}$	01, 02	± 0.15 typical		nA
			$+25^{\circ} \mathrm{C}$			± 0.4	
			$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			± 4	
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			± 30	

See footnotes at end of table.

DLA LAND AND MARITIME COLUMBUS, OHIO

SIZE
A

CODE IDENT NO.
DWG NO.
16236
V62/16607
REV

PAGE 9

TABLE I. Electrical performance characteristics - Continued. 1/

Test	Symbol	Conditions $\begin{gathered} V_{D D}=+20 \mathrm{~V} \pm 10 \%, \\ V_{S S}=-20 \mathrm{~V} \pm 10 \%, G N D=0 \mathrm{~V} \end{gathered}$ unless otherwise specified	Temperature, T_{A}	Device type	Limits		Unit
					Min	Max	
$\pm 20 \mathrm{~V}$ dual supply - continued.							
Leakage currents - continued. $\quad \mathrm{V}_{\mathrm{DD}}=+22 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-22 \mathrm{~V}$							
Channel on leakage	ID (on), Is(on)	$V_{S}=V_{D}= \pm 15 \mathrm{~V}$ see figure 7	$+25^{\circ} \mathrm{C}$	01, 02	± 0.15 typical		nA
			$+25^{\circ} \mathrm{C}$			± 0.4	
			$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			± 4	
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			± 30	
Digital inputs							
Input high voltage	VINH		$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	01, 02	2.0		V
Input low voltage	VINL		$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	01, 02		0.8	V
Input current	IINL or IINH	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {GND }}$ or $\mathrm{V}_{\text {DD }}$	$+25^{\circ} \mathrm{C}$	01, 02	0.002 typical		$\mu \mathrm{A}$
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			± 0.1	
Digital input capacitance	CIN		$+25^{\circ} \mathrm{C}$	01, 02			pF
Dynamic characteristics. ${ }^{\text {/ }}$							
Transition time	tTRANSITION	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=10 \mathrm{~V} \text {, see figure } 8 \end{aligned}$	$+25^{\circ} \mathrm{C}$	01, 02	160 typical		ns
			$+25^{\circ} \mathrm{C}$			207	
			$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			237	
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			262	
Enable delay on	ton(EN)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=10 \mathrm{~V} \text {, see figure } 9 \end{aligned}$	$+25^{\circ} \mathrm{C}$	01, 02	140 typical		ns
			$+25^{\circ} \mathrm{C}$			165	
			$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			194	
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			218	

See footnotes at end of table.

TABLE I. Electrical performance characteristics - Continued. 1/

Test	Symbol	Conditions $\begin{gathered} V_{D D}=+20 \mathrm{~V} \pm 10 \%, \\ V_{S S}=-20 \mathrm{~V} \pm 10 \%, G N D=0 \mathrm{~V} \end{gathered}$ unless otherwise specified	Temperature,T_{A}	Device type	Limits		Unit
					Min	Max	
$\pm 20 \mathrm{~V}$ dual supply - continued.							
Dynamic characteristics - continued. $\underline{1 /}$							
Enable delay off	toff(EN)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=10 \mathrm{~V} \text {, see figure } 9 \end{aligned}$	$+25^{\circ} \mathrm{C}$	01, 02	133 typical		ns
			$+25^{\circ} \mathrm{C}$			153	
			$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			174	
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			189	
Break before make time delay	${ }^{\text {t }}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=10 \mathrm{~V} \text {, see figure } 10 \end{aligned}$	$+25^{\circ} \mathrm{C}$	01, 02	38 typical		ns
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		8		
Charge injection	OINJ	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF},$ see figure 11	$+25^{\circ} \mathrm{C}$	01, 02	155	ical	pC
Off isolation		$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz},$ see figure 12	$+25^{\circ} \mathrm{C}$	01, 02	-60	ical	dB
Channel to channel crosstalk		$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz},$ see figure 13	$+25^{\circ} \mathrm{C}$	01, 02	-60	ical	dB
Total harmonic distortion + noise		$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega, 20 \mathrm{VPP} \text {, see figure } 14, \\ & \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} \end{aligned}$	$+25^{\circ} \mathrm{C}$	01, 02	0.012	pical	\%
-3 dB bandwidth		$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ see figure 15	$+25^{\circ} \mathrm{C}$	01	50 typical		MHz
				02	88 ty		
Insertion loss		$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz},$ see figure 15	$+25^{\circ} \mathrm{C}$	01, 02	0.8 t	ical	dB
Source capacitance	Cs(off)	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	$+25^{\circ} \mathrm{C}$	01, 02	17 ty		pF
Drain capacitance	C_{D} (off)	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	$+25^{\circ} \mathrm{C}$	01	98 typical		pF
				02	48 t		
Source and drain capacitance	$C_{S}(o n)$, CD(on)	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	$+25^{\circ} \mathrm{C}$	01	128 typical		pF
				02	80 typical		

See footnotes at end of table.

DLA LAND AND MARITIME COLUMBUS, OHIO

REV 16236

TABLE I. Electrical performance characteristics - Continued. 1/

Test	Symbol	Conditions $\begin{gathered} V_{D D}=+20 V \pm 10 \%, \\ V_{S S}=-20 \mathrm{~V} \pm 10 \%, G N D=0 V \end{gathered}$ unless otherwise specified	Temperature, T_{A}	Device type	Limits		Unit
					Min	Max	
$\pm 20 \mathrm{~V}$ dual supply - continued.							
Power requirements. $\quad \mathrm{V}_{\mathrm{DD}}=+22 \mathrm{~V}, \mathrm{~V}_{S S}=-22 \mathrm{~V}$							
Positive power supply current	IDD	Digital inputs $=0 \mathrm{~V}$ or V_{DD}	$+25^{\circ} \mathrm{C}$	01, 02	50 typical		$\mu \mathrm{A}$
			$+25^{\circ} \mathrm{C}$			70	
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			120	
Negative power supply current	Iss	Digital inputs $=0 \mathrm{~V}$ or V_{DD}	$+25^{\circ} \mathrm{C}$	01, 02	0.001 typical		$\mu \mathrm{A}$
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			1	
Positive power supply voltage	$V_{\text {DD }}$	$\mathrm{GND}=0 \mathrm{~V}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	01, 02	± 9		V
Negative power supply voltage	VSS	$\mathrm{GND}=0 \mathrm{~V}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	01, 02		± 22	V

See footnotes at end of table.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/16607
		REV	PAGE 12

TABLE I. Electrical performance characteristics - Continued. 1/

Test	Symbol	Conditions$\begin{gathered} V_{D D}=12 \mathrm{~V} \pm 10 \%, \\ V_{S S}=0 \mathrm{~V} \pm 10 \%, G N D=0 \mathrm{~V} \end{gathered}$unless otherwise specified	Temperature, T_{A}	Device type	Limits		Unit
					Min	Max	
12 V dual supply.							
Analog switch.							
Analog signal range			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	01, 02	0 V to VDD		V
On resistance	RoN	$V_{S}=0 \mathrm{~V} \text { to } 10 \mathrm{~V} \text {, } \mathrm{IS}_{\mathrm{S}}=-10 \mathrm{~mA},$ see figure 5	$+25^{\circ} \mathrm{C}$	01, 02	26 typical		Ω
		$\mathrm{V}_{\mathrm{DD}}=10.8 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$			30	
			$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			36	
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			42	
On resistance match between channels	$\Delta \mathrm{R}_{\mathrm{ON}}$	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$ to $10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}$	$+25^{\circ} \mathrm{C}$	01, 02	0.3 typical		Ω
			$+25^{\circ} \mathrm{C}$			1	
			$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			1.5	
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			1.6	
On resistance flatness	$\Delta \mathrm{R}_{\text {FLAT }}(\mathrm{ON})$	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$ to 10 V , $\mathrm{IS}=-10 \mathrm{~mA}$	$+25^{\circ} \mathrm{C}$	01, 02	5.5 typical		Ω
			$+25^{\circ} \mathrm{C}$			6.5	
			$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			8	
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			12	
Leakage currents		$\mathrm{V}_{\mathrm{DD}}=13.2 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=0 \mathrm{~V}$					
Source off leakage	IS (off)	$V_{S}=1 \mathrm{~V} / 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V} / 1 \mathrm{~V},$ see figure 6	$+25^{\circ} \mathrm{C}$	01, 02	± 0.02 typical		nA
			$+25^{\circ} \mathrm{C}$			± 0.25	
			$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			± 1	
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			± 7	
Drain off leakage	ID (off)	$\mathrm{V}_{\mathrm{S}}=1 \mathrm{~V} / 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V} / 1 \mathrm{~V},$ see figure 6	$+25^{\circ} \mathrm{C}$	01, 02	± 0.05 typical		nA
			$+25^{\circ} \mathrm{C}$			± 0.4	
			$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			± 4	
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			± 30	

See footnotes at end of table.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/16607
		REV	PAGE

TABLE I. Electrical performance characteristics - Continued. 1/

Test	Symbol	Conditions$\begin{gathered} V_{D D}=12 \mathrm{~V} \pm 10 \%, \\ V_{S S}=0 \mathrm{~V} \pm 10 \%, G N D=0 \mathrm{~V} \end{gathered}$unless otherwise specified	Temperature, T_{A}	Device type	Limits		Unit
					Min	Max	
12 V dual supply - continued.							
Leakage currents - continued. $\quad \mathrm{V}_{\mathrm{DD}}=13.2 \mathrm{~V}, \mathrm{~V}$ SS $=0 \mathrm{~V}$							
Channel on leakage	ID (on), Is(on)	$V_{S}=V_{D}=1 \mathrm{~V} / 10 \mathrm{~V},$ see figure 7	$+25^{\circ} \mathrm{C}$	01, 02	± 0.05 typical		nA
			$+25^{\circ} \mathrm{C}$			± 0.4	
			$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			± 4	
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			± 30	
Digital inputs							
Input high voltage	VINH		$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	01, 02	2.0		V
Input low voltage	VINL		$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	01, 02		0.8	V
Input current	$\mathrm{I}_{\mathrm{INL}}$ or IINH	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{GND}}$ or V_{DD}	$+25^{\circ} \mathrm{C}$	01, 02	0.002 typical		$\mu \mathrm{A}$
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			± 0.1	
Digital input capacitance	$\mathrm{ClN}_{\text {IN }}$		$+25^{\circ} \mathrm{C}$	01, 02			pF
Dynamic characteristics. 2/							
Transition time	tTRANSITION	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{S}}=8 \mathrm{~V}, \text { see figure } 8 \end{aligned}$	$+25^{\circ} \mathrm{C}$	01, 02	230 typical		ns
			$+25^{\circ} \mathrm{C}$			321	
			$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			388	
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			430	
Enable delay on	$\operatorname{ton}(\mathrm{EN})$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{S}}=8 \mathrm{~V} \text {, see figure } 9 \end{aligned}$	$+25^{\circ} \mathrm{C}$	01, 02	215 typical		ns
			$+25^{\circ} \mathrm{C}$			276	
			$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			345	
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			397	

See footnotes at end of table.

TABLE I. Electrical performance characteristics - Continued. 1/

Test	Symbol	Conditions$\begin{gathered} V_{D D}=12 \mathrm{~V} \pm 10 \%, \\ V_{S S}=0 \mathrm{~V} \pm 10 \%, G N D=0 \mathrm{~V} \end{gathered}$unless otherwise specified	Temperature, T_{A}	Device type	Limits		Unit
					Min	Max	
12 V dual supply - continued.							
Dynamic characteristics - continued. ${ }^{\text {// }}$							
Enable delay off	toff(EN)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{S}}=8 \mathrm{~V} \text {, see figure } 9 \end{aligned}$	$+25^{\circ} \mathrm{C}$	01, 02	134 typical		ns
			$+25^{\circ} \mathrm{C}$			161	
			$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			187	
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			209	
Break before make time delay	t_{D}	$\begin{aligned} & R_{L}=300 \Omega, C_{L}=35 \mathrm{pF} \\ & V_{S 1}=V_{S 2}=8 \mathrm{~V}, \text { see figure } 10 \end{aligned}$	$+25^{\circ} \mathrm{C}$	01, 02	118 typical		ns
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		44		
Charge injection	Oinj	$\mathrm{V}_{\mathrm{S}}=6 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF},$ see figure 11	$+25^{\circ} \mathrm{C}$	01, 02	45 ty		pC
Off isolation		$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz},$ see figure 12	$+25^{\circ} \mathrm{C}$	01, 02	-60	cal	dB
Channel to channel crosstalk		$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz},$ see figure 13	$+25^{\circ} \mathrm{C}$	01, 02	-60 t	cal	dB
Total harmonic distortion + noise		$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega, 6 V_{P P} \text {, see figure } 14, \\ & f=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} \end{aligned}$	$+25^{\circ} \mathrm{C}$	01, 02	0.1 t	cal	\%
-3 dB bandwidth		$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ see figure 15	$+25^{\circ} \mathrm{C}$	01	35 typical		MHz
				02	74 ty		
Insertion loss		$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz},$ see figure 15	$+25^{\circ} \mathrm{C}$	01, 02	-1.8	ical	dB
Source capacitance	C_{S} (off)	$\mathrm{V}_{\mathrm{S}}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	$+25^{\circ} \mathrm{C}$	01, 02	22 ty		pF
Drain capacitance	C_{D} (off)	$\mathrm{V}_{\mathrm{S}}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	$+25^{\circ} \mathrm{C}$	01	119 typical		pF
				02	59 ty		
Source and drain capacitance	Cs(on), C_{D} (on)	$\mathrm{VS}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	$+25^{\circ} \mathrm{C}$	01	146	ical	pF
				02	86 typical		

See footnotes at end of table.

DLA LAND AND MARITIME COLUMBUS, OHIO

TABLE I. Electrical performance characteristics - Continued. 1/

Test	Symbol	Conditions$\begin{gathered} V_{D D}=12 \mathrm{~V} \pm 10 \%, \\ V_{S S}=0 \mathrm{~V} \pm 10 \%, G N D=0 \mathrm{~V} \end{gathered}$unless otherwise specified	Temperature, T_{A}	Device type	Limits		Unit
					Min	Max	
12 V dual supply - continued.							
Power requirements.		$V_{D D}=13.2 \mathrm{~V}$					
Positive power supply current	IDD	Digital inputs $=0 \mathrm{~V}$ or V_{DD}	$+25^{\circ} \mathrm{C}$	01, 02	40 typical		$\mu \mathrm{A}$
			$+25^{\circ} \mathrm{C}$			50	
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			75	
Positive power supply voltage	VDD	$\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}$ SS $=0 \mathrm{~V}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	01, 02	9	40	V

See footnotes at end of table.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/16607
		REV	PAGE 16

TABLE I. Electrical performance characteristics - Continued. 1/

Test	Symbol	Conditions$\begin{gathered} V_{D D}=36 \mathrm{~V} \pm 10 \%, \\ \mathrm{~V} \text { SS }=0 \mathrm{~V} \pm 10 \% \text {, GND }=0 \mathrm{~V} \\ \text { unless otherwise specified } \end{gathered}$	Temperature, T_{A}	Device type	Limits		Unit
					Min	Max	
36 V single supply.							
Analog switch.							
Analog signal range			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	01, 02	$\begin{aligned} & 0 \mathrm{~V} \text { to } \\ & \mathrm{V}_{\mathrm{DD}} \end{aligned}$		V
On resistance	RoN	$V_{S}=0 \mathrm{~V} \text { to } 30 \mathrm{~V} \text {, } \mathrm{IS}=-10 \mathrm{~mA} \text {, }$ see figure 5	$+25^{\circ} \mathrm{C}$	01, 02	14.5 typical		Ω
		$\mathrm{V}_{\mathrm{DD}}=32.4 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$			16	
			$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			19	
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			23	
On resistance match between channels	$\Delta \mathrm{R}_{\mathrm{ON}}$	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$ to $30 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}$	$+25^{\circ} \mathrm{C}$	01, 02	0.3 typical		Ω
			$+25^{\circ} \mathrm{C}$			0.8	
			$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			1.3	
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			1.4	
On resistance flatness	$\Delta \mathrm{R}_{\text {FLAT }}(\mathrm{ON})$	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$ to 30 V , $\mathrm{IS}=-10 \mathrm{~mA}$	$+25^{\circ} \mathrm{C}$	01, 02	3.5 typical		Ω
			$+25^{\circ} \mathrm{C}$			4.3	
			$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			5.5	
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			6.5	
Leakage currents.		$\mathrm{V}_{\mathrm{DD}}=39.6 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=0 \mathrm{~V}$					
Source off leakage	IS (off)	$\mathrm{V}_{\mathrm{S}}=1 \mathrm{~V} / 30 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=30 \mathrm{~V} / 1 \mathrm{~V},$ see figure 6	$+25^{\circ} \mathrm{C}$	01, 02	± 0.01 typical		nA
			$+25^{\circ} \mathrm{C}$			± 0.25	
			$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			± 1	
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			± 7	
Drain off leakage	ID (off)	$\mathrm{V}_{\mathrm{S}}=1 \mathrm{~V} / 30 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=30 \mathrm{~V} / 1 \mathrm{~V},$ see figure 6	$+25^{\circ} \mathrm{C}$	01, 02	± 0.15 typical		nA
			$+25^{\circ} \mathrm{C}$			± 0.4	
			$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			± 4	
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			± 30	

See footnotes at end of table.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/16607
		REV	PAGE

TABLE I. Electrical performance characteristics - Continued. 1/

Test	Symbol	Conditions$\begin{gathered} \mathrm{V}_{\mathrm{DD}}=36 \mathrm{~V} \pm 10 \%, \\ \mathrm{~V} \text { SS }=0 \mathrm{~V} \pm 10 \% \text {, GND }=0 \mathrm{~V} \\ \text { unless otherwise specified } \end{gathered}$	Temperature, T_{A}	Device type	Limits		Unit
					Min	Max	
36 V singe supply - continued.							
Leakage currents - continued. $\quad \mathrm{V}_{\mathrm{DD}}=39.6 \mathrm{~V}, \mathrm{~V}$ SS $=0 \mathrm{~V}$							
Channel on leakage	ID (on), Is(on)	$V_{S}=V_{D}=1 \mathrm{~V} / 30 \mathrm{~V},$ see figure 7	$+25^{\circ} \mathrm{C}$	01, 02	± 0.15 typical		nA
			$+25^{\circ} \mathrm{C}$			± 0.4	
			$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			± 4	
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			± 30	
Digital inputs.							
Input high voltage	VINH		$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	01, 02	2.0		V
Input low voltage	VINL		$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	01, 02		0.8	V
Input current	$\mathrm{I}_{\mathrm{INL}}$ or IINH	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{GND}}$ or V_{DD}	$+25^{\circ} \mathrm{C}$	01, 02	0.002 typical		$\mu \mathrm{A}$
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			± 0.1	
Digital input capacitance	$\mathrm{CIN}_{\text {IN }}$		$+25^{\circ} \mathrm{C}$	01, 02			pF
Dynamic characteristics. 2 /							
Transition time	tTRANSITION	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=18 \mathrm{~V}, \text { see figure } 8 \end{aligned}$	$+25^{\circ} \mathrm{C}$	01, 02	187 typical		ns
			$+25^{\circ} \mathrm{C}$			242	
			$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			257	
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			281	
Enable delay on	ton(EN)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=18 \mathrm{~V}, \text { see figure } 9 \end{aligned}$	$+25^{\circ} \mathrm{C}$	01, 02	160 typical		ns
			$+25^{\circ} \mathrm{C}$			195	
			$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			219	
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			237	

See footnotes at end of table.

TABLE I. Electrical performance characteristics - Continued. 1/

Test	Symbol	Conditions$\begin{gathered} V_{D D}=36 \mathrm{~V} \pm 10 \%, \\ V_{S S}=0 \mathrm{~V} \pm 10 \%, G N D=0 \mathrm{~V} \end{gathered}$unless otherwise specified	Temperature, T_{A}	Device type	Limits		Unit
					Min	Max	
36 V single supply - continued.							
Dynamic characteristics - continued. $\underline{\text { / }}$							
Enable delay off	toff(EN)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=18 \mathrm{~V} \text {, see figure } 9 \end{aligned}$	$+25^{\circ} \mathrm{C}$	01, 02	147 typical		ns
			$+25^{\circ} \mathrm{C}$			184	
			$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			184	
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			190	
Break before make time delay	t_{D}	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=18 \mathrm{~V} \text {, see figure } 10 \end{aligned}$	$+25^{\circ} \mathrm{C}$	01, 02	53 typical		ns
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		14		
Charge injection	Oinj	$\mathrm{V}_{\mathrm{S}}=18 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$ see figure 11	$+25^{\circ} \mathrm{C}$	01, 02	150		pC
Off isolation		$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz},$ see figure 12	$+25^{\circ} \mathrm{C}$	01, 02	-60		dB
Channel to channel crosstalk		$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz},$ see figure 13	$+25^{\circ} \mathrm{C}$	01, 02	-60 t		dB
Total harmonic distortion + noise		$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega, 18 \mathrm{VPP} \text {, see figure } 14, \\ & f=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} \end{aligned}$	$+25^{\circ} \mathrm{C}$	01, 02	0.4 t		\%
-3 dB bandwidth		$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ see figure 15	$+25^{\circ} \mathrm{C}$	01	45 typical		MHz
				02	76 ty		
Insertion loss		$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz},$ see figure 15	$+25^{\circ} \mathrm{C}$	01, 02	-1 ty		dB
Source capacitance	C_{S} (off)	$\mathrm{V}_{\mathrm{S}}=18 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	$+25^{\circ} \mathrm{C}$	01, 02	18 typ		pF
Drain capacitance	C_{D} (off)	$\mathrm{V}_{\mathrm{S}}=18 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	$+25^{\circ} \mathrm{C}$	01	120 typical		pF
				02	60 ty		
Source and drain capacitance	Cs(on), C_{D} (on)	$\mathrm{VS}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	$+25^{\circ} \mathrm{C}$	01	137		pF
				02	80 typical		

See footnotes at end of table.

DLA LAND AND MARITIME COLUMBUS, OHIO

TABLE I. Electrical performance characteristics - Continued. 1/

Test	Symbol	Conditions$\begin{gathered} V_{D D}=36 \mathrm{~V} \pm 10 \%, \\ V_{S S}=0 \mathrm{~V} \pm 10 \%, G N D=0 \mathrm{~V} \end{gathered}$unless otherwise specified	Temperature, T_{A}	Device type	Limits		Unit
					Min	Max	
36 V single supply - continued.							
Power requirements.		$\mathrm{V}_{\mathrm{DD}}=39.6 \mathrm{~V}$					
Positive power supply current	IDD	Digital inputs $=0 \mathrm{~V}$ or V_{DD}	$+25^{\circ} \mathrm{C}$	01, 02	80 typical		$\mu \mathrm{A}$
			$+25^{\circ} \mathrm{C}$			100	
			$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			155	
Positive power supply voltage	VDD	$\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}$ SS $=0 \mathrm{~V}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	01, 02	9	40	V

See footnotes at end of table.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/16607
		REV	PAGE 20

TABLE I. Electrical performance characteristics - Continued. 1/

Test	Symbol	Conditions	Temperature, T_{A}	Device type	Limits		Unit
					Min	Max	
Continuous current, Sx or D with $\theta_{\mathrm{JA}}=30.4^{\circ} \mathrm{C} / \mathrm{W}$		$V_{\text {DD }}=+15 \mathrm{~V}, \mathrm{~V}_{S S}=-15 \mathrm{~V}$	$25^{\circ} \mathrm{C}$	01		207	mA
			$85^{\circ} \mathrm{C}$			113	
			$125^{\circ} \mathrm{C}$			60	
		$\mathrm{V}_{\mathrm{DD}}=+20 \mathrm{~V}, \mathrm{~V}_{S S}=-20 \mathrm{~V}$	$25^{\circ} \mathrm{C}$			218	
			$85^{\circ} \mathrm{C}$			117	
			$125^{\circ} \mathrm{C}$			61	
		$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$	$25^{\circ} \mathrm{C}$			168	
			$85^{\circ} \mathrm{C}$			99	
			$125^{\circ} \mathrm{C}$			57	
		$\mathrm{V}_{\mathrm{DD}}=36 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=0 \mathrm{~V}$	$25^{\circ} \mathrm{C}$			214	
			$85^{\circ} \mathrm{C}$			116	
			$125^{\circ} \mathrm{C}$			61	
		$\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-15 \mathrm{~V}$	$25^{\circ} \mathrm{C}$	02		156	
			$85^{\circ} \mathrm{C}$			95	
			$125^{\circ} \mathrm{C}$			55	
		$V_{D D}=+20 \mathrm{~V}, \mathrm{~V}_{S S}=-20 \mathrm{~V}$	$25^{\circ} \mathrm{C}$			165	
			$85^{\circ} \mathrm{C}$			98	
			$125^{\circ} \mathrm{C}$			56	
		$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$	$25^{\circ} \mathrm{C}$			126	
			$85^{\circ} \mathrm{C}$			81	
			$125^{\circ} \mathrm{C}$			50	
		$V_{D D}=36 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$	$25^{\circ} \mathrm{C}$			161	
			$85^{\circ} \mathrm{C}$			97	
			$125^{\circ} \mathrm{C}$			56	

1/ Testing and other quality control techniques are used to the extent deemed necessary to assure product performance over the specified temperature range. Product may not necessarily be tested across the full temperature range and all parameters may not necessarily be tested. In the absence of specific parametric testing, product performance is assured by characterization and/or design.
2/ Guaranteed by design, not subject to production test.

Case X

FIGURE 1. Case outline.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/16607
		REV	PAGE 22

Case X - continued.

Symbol	Dimensions					
	Inches			Millimeters		
	Minimum	Medium	Maximum	Minimum	Medium	Maximum
A	. 027	. 029	. 031	0.70	0.75	0.80
A1	. 0007 NOM	---	. 001	0.02 NOM	---	0.05
A2	. 007 REF			0.20 REF		
b	. 009	. 011	. 013	0.25	0.30	0.35
D/E	. 153	. 157	. 161	3.90	4.00	4.10
D1/E1	. 098	. 102	. 106	2.50	2.60	2.70
e	. 025 BSC			0.65 BSC		
L	. 013	. 015	. 017	0.35	0.40	0.45
L1	. 007	---	---	0.20	---	---

NOTES:

1. Controlling dimensions are millimeter, inch dimensions are given for reference only.
2. For proper connection of the exposed pad, refer to the pin configuration and function descriptions section of the manufacturer's datasheet.
3. Falls within reference to JEDEC MO-220-WGGC.

FIGURE 1. Case outlines - Continued.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/16607
		REV	PAGE 23

Device type	01	
Case outline	X	
Terminal number	Terminal symbol	Description
1	VSS	Most negative power supply potential. In single supply applications, this pin can be connected to ground.
2	S1	Source terminal 1. This pin can be an input or an output.
3	S2	Source terminal 2. This pin can be an input or an output.
4	S3	Source terminal 3. This pin can be an input or an output.
5	S4	Source terminal 4. This pin can be an input or an output.
6	D	Drain terminal. This pin can be an input or an output.
7	S8	Source terminal 8. This pin can be an input or an output.
8	S7	Source terminal 7. This pin can be an input or an output.
9	S6	Source terminal 6. This pin can be an input or an output.
10	S5	Source terminal 5. This pin can be an input or an output.
11	VDD	Most positive power supply potential.
12	GND	Ground (0 V) reference.
13	A2	Logic control input.
14	A1	Logic control input.
15	A0	Logic control input.
16	EN	Active high digital input. When low, the device is disabled and all switches are off. When high, Ax logic inputs determine on switches.
	$\begin{aligned} & \text { EXPOSED } \\ & \text { PAD } \end{aligned}$	The exposed pad is connected internally, for increased reliability of the solder joints and maximum thermal capability, it is recommended that the pad be soldered to the substrate, V_{SS}.

FIGURE 2. Terminal connections.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/16607
		REV	PAGE 24

Device type	02	
Case outline	X	
Terminal number	Terminal symbol	Description
1	VSS	Most negative power supply potential. In single supply applications, this pin can be connected to ground.
2	S1A	Source terminal 1A. This pin can be an input or an output.
3	S2A	Source terminal 2A. This pin can be an input or an output.
4	S3A	Source terminal 3A. This pin can be an input or an output.
5	S4A	Source terminal 4A. This pin can be an input or an output.
6	DA	Drain terminal A. This pin can be an input or an output.
7	DB	Drain terminal A. This pin can be an input or an output.
8	S4B	Source terminal 4B. This pin can be an input or an output.
9	S3B	Source terminal 3B. This pin can be an input or an output.
10	S3B	Source terminal 2B. This pin can be an input or an output.
11	S1B	Source terminal 1B. This pin can be an input or an output.
12	VDD	Most positive power supply potential.
13	GND	Ground (0 V) reference.
14	A1	Logic control input.
15	A0	Logic control input.
16	EN	Active high digital input. When low, the device is disabled and all switches are off. When high, Ax logic inputs determine on switches.
	$\begin{gathered} \text { EXPOSED } \\ \text { PAD } \end{gathered}$	The exposed pad is connected internally, for increased reliability of the solder joints and maximum thermal capability, it is recommended that the pad be soldered to the substrate, VSS.

FIGURE 2. Terminal connections - continued.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/16607
		REV	PAGE 25

Device type 01

A2	A1	A0	EN	On switch
X	X	X	0	None
0	0	0	1	1
0	0	1	1	2
0	1	0	1	3
0	1	1	1	4
1	0	0	1	5
1	0	1	1	6
1	1	0	1	7
1	1	1	1	8

Device type 02

A1	A0	EN	On switch pair
X	X	0	None
0	0	1	1
0	1	1	2
1	0	1	3
1	1	1	4

FIGURE 3. Truth tables.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/16607
		REV	PAGE 26

FIGURE 4. Logic diagram.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/16607
		REV	PAGE 27

FIGURE 5. On resistance.

FIGURE 6. Off leakage.

FIGURE 7. On leakage.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/16607
		REV	PAGE 28

FIGURE 8. Address to output switching times, ttransaction.

FIGURE 9. Enable delay, $\mathrm{t}_{\mathrm{ON}}(\mathrm{EN}), \mathrm{t}_{\mathrm{OFF}}(\mathrm{EN})$.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/16607
		REV	PAGE 29

FIGURE 10. Break before make time delay, $t_{\underline{p}}$.

FIGURE 11. Charge injection.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/16607
		REV	PAGE 30

FIGURE 12. Off isolation.

CHANNEL-TO-CHANNEL CROSSTALK $=20 \log \frac{V_{\text {OUT }}}{V_{S}}$
FIGURE 13. Channel to channel crosstalk.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/16607
		REV	PAGE 31

FIGURE 14. THD + noise figure.

FIGURE 15. Bandwidth.

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. 16236	DWG NO. V62/16607
		REV	PAGE 32

4. VERIFICATION

4.1 Product assurance requirements. The manufacturer is responsible for performing all inspection and test requirements as indicated in their internal documentation. Such procedures should include proper handling of electrostatic sensitive devices, classification, packaging, and labeling of moisture sensitive devices, as applicable.

5. PREPARATION FOR DELIVERY

5.1 Packaging. Preservation, packaging, labeling, and marking shall be in accordance with the manufacturer's standard commercial practices for electrostatic discharge sensitive devices.

6. NOTES

6.1 ESDS. Devices are electrostatic discharge sensitive and are classified as ESDS class 1 minimum.
6.2 Configuration control. The data contained herein is based on the salient characteristics of the device manufacturer's data book. The device manufacturer reserves the right to make changes without notice. This drawing will be modified as changes are provided.
6.3 Suggested source(s) of supply. Identification of the suggested source(s) of supply herein is not to be construed as a guarantee of present or continued availability as a source of supply for the item. DLA Land and Maritime maintains an online database of all current sources of supply at http://www.landandmaritime.dla.mil/Programs/Smcr/.

Vendor item drawing administrative control number 1/	Device manufacturer CAGE code	Vendor part number
V62/16607-01XE	24355	ADG5408TCPZ-EP
V62/16607-02XE	24355	ADG5409TCPZ-EP

1/ The vendor item drawing establishes an administrative control number for identifying the item on the engineering documentation.

CAGE code

24355

Source of supply
Analog Devices
1 Technology Way
P.O. Box 9106

Norwood, MA 02062-9106

DLA LAND AND MARITIME COLUMBUS, OHIO	SIZE A	CODE IDENT NO. $\mathbf{1 6 2 3 6}$	DWG NO. V62/16607
		REV	PAGE 33

