

256K X 36, 512K X 18 3.3V Synchronous SRAMs 3.3V I/O, Burst Counter Flow-Through Outputs, Single Cycle Deselect

Features

- 256K x 36, 512K x 18 memory configuration
- Supports fast access times:
 <u>-</u>7.5ns up to 117MHz clock frequency
- LBO input selects interleaved or linear burst mode
- Self-timed write cycle with global write control (GW), byte write enable (BWE), and byte writes (BWx)
- 3.3V core power supply
- Power down controlled by ZZ input
- 3.3V I/O supply (VDDQ)
- Packaged in a JEDEC Standard 100-pin thin plastic quad flatpack (TQFP)

Description

The 803625/801825 are high-speed SRAMs organized as 256K x 36/512K x 18. The 803625/801825 SRAMs contain write, data, address and control registers. There are no registers in the data output path (flowthrough architecture). Internal logic allows the SRAM to generate a self-timed write based upon a decision which can be left until the end of the write cycle.

The burst mode feature offers the highest level of performance to the system designer, as the 803625/801825 can provide four cycles of data for a single address presented to the SRAM. An internal burst address counter accepts the first cycle address from the processor, initiating the access sequence. The first cycle of output data will flow-through from the array after a clock-to-data access time delay from the rising clock edge of the same cycle. If burst mode operation is selected (\overline{ADV} =LOW), the subsequent three cycles of output data will be available to the user on the next three rising clock edges. The orders of these three addresses are defined by the internal burst counter and the \overline{LBO} input pin.

The 803625/801825 SRAMs utilize Alliance's latest high-performance CMOS process and are packaged in a JEDEC standard 14mm x 20mm 100-pin thin plastic quad flatpack (TQFP).

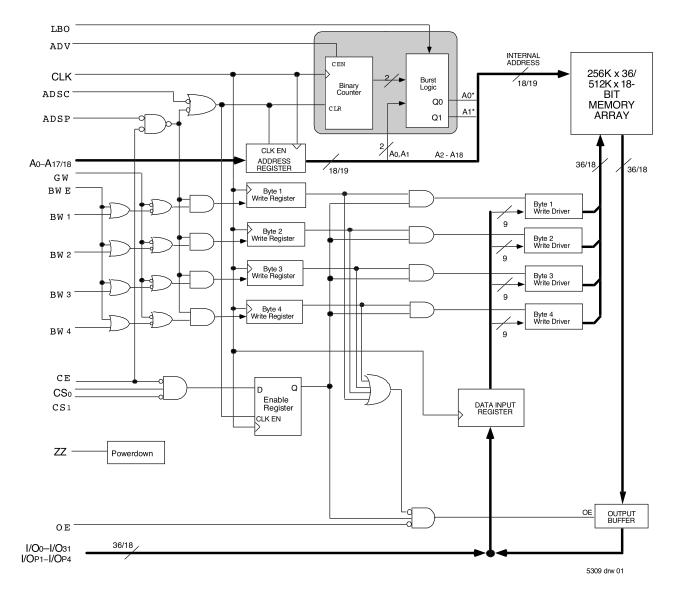
· ···			
A0 - A18	Address Inputs	Input	Synchronous
CE	Chip Enable	Input	Synchronous
CS0, CS1	Chip Selects	Input	Synchronous
ŌE	Output Enable	Input	Asynchronous
GW	Global Write Enable	Input	Synchronous
BWE	Byte Write Enable	Input	Synchronous
$\overline{BW}_{1}, \overline{BW}_{2}, \overline{BW}_{3}, \overline{BW}_{4}^{(1)}$	Individual Byte Write Selects	Input	Synchronous
CLK	Clock	Input	N/A
ADV	Burst Address Advance	Input	Synchronous
ADSC	Address Status (Cache Controller)	Input	Synchronous
ADSP	Address Status (Processor)	Input	Synchronous
LBO	Linear / Interleaved Burst Order	Input	DC
ZZ	Sleep Mode	Input	Asynchronous
I/O0 – I/O31, I/OP1 – I/OP4	Data Input / Output	I/O	Synchronous
VDD, VDDQ	Core Power, I/O Power	Supply	N/A
Vss	Ground	Supply	N/A

Pin Description Summary

NOTE:

1. BW3 and BW4 are not applicable for 803625/801825.

NOVEMBER 2010


Pin Definitions⁽¹⁾

Symbol	Pin Function	١Ю	Active	Description
A0-A18	Address Inputs	00 00	N⁄A	Synchronous Address inputs. The address register is triggered by a combi-nation of the rising edge of CLK and ADSC Low or ADSP Low and CE Low.
ADSC	Address Status (Cache Controller)	I	LOW	Synchronous Address Status from Cache Controller. ADSC is an active LOW input that is used to load the address registers with new addresses.
ADSP	Address Status (Processor)	I	LOW	Synchronous Address Status from Processor. $\overline{\text{ADSP}}$ is an active LOW input that is used to load the address registers with new addresses. $\overline{\text{ADSP}}$ is gated by $\overline{\text{CE}}$.
ADV	Burst Address Advance	T.	LOW	Synchronous Address Advance. $\overline{\text{ADV}}$ is an active LOW input that is used to advance the internal burst counter, controlling burst access after the initial address is loaded. When the input is HIGH the burst counter is not incremented; that is, there is no address advance.
BWE	Byte Write Enable	Ĩ	LOW	Synchronous byte write enable gates the byte write inputs $\overline{BW_1}$ - $\overline{BW_4}$. If \overline{BWE} is LOW at the rising edge of CLK then \overline{BWx} inputs are passed to the next stage in the circuit. If \overline{BWE} is HIGH then the byte write inputs are blocked and only \overline{GW} can initiate a write cycle.
BW1-BW4	Individual Byte Write Enables	I	LOW	Synchronous byte write enables. \overline{BW}_1 controls I/Oo-7, I/Op1, \overline{BW}_2 controls I/Oe-15, I/Op2, etc Any active byte write causes all outputs to be disabled.
CE	Chip Enable	T	LOW	Synchronous chip enable. \overline{CE} is used with CSs and \overline{CS} 1 to enable AS8C803625/801825. CE also gates ADSP.
CLK	Clock	T	NVA	This is the clock input. All timing references for the device are made with respect to this input.
CS0	Chip Select 0	T	HIGH	Synchronous active HIGH chip select. CSo is used with \overline{CE} and \overline{CS}_1 to enable the chip.
<u>CS</u> 1	Chip Select 1	Ĩ	LOW	Synchronous active LOW chip select. \overline{CS}_1 is used with \overline{CE} and CS_0 to enable the chip.
GW	Global Write Enable	Î	LOW	Synchronous global write enable. This input will write all four 9-bit data bytes when LOW on the rising edge of CLK. GW supersedes individual byte write enables.
VO0-VO31 VOp1-VOp4	Data Input/Output	VO	N/A	Synchronous data input/output (I/O) pins. The data input path is registered, triggered by the rising edge of CLK. The data output path is flow-through (no output register).
LBO	Linear Burst Order	I	LOW	Asynchronous burst order selection input. When \overline{LBO} is HIGH, the inter-leaved burst sequence is selected. When \overline{LBO} is LOW the Linear burst sequence is selected. \overline{LBO} is static input and must not change state while the device is operating.
ŌĒ	Output Enable	1	LOW	Asynchronous output enable. When $\overline{\text{OE}}$ is LOW the data output drivers are enabled on the I/O pins if the chip is also selected. When $\overline{\text{OE}}$ is HIGH the I/O pins are in a high-impedance state.
VDD	Power Supply	N/A	N/A	3.3V core power supply.
VDDQ	Power Supply	N/A	NVA	3.3V I/O Supply.
Vss	Ground	N/A	N/A	Ground.
NC	No Connect	N/A	NVA	NC pins are not electrically connected to the device.
72	Sleep Mode	1	HIGH	Asynchronous sleep mode input. ZZ HIGH will gate the CLK internally and power down the AS8C803625/801825 to its lowest power consumption level. Data retention is guaranteed in Sleep Mode.

NOTE:

1. All synchronous inputs must meet specified setup and hold times with respect to CLK.

Functional Block Diagram

Symbol	Rating	Commercial	Unit
Vterm ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +4.6	V
Vterm ^(3,6)	Terminal Voltage with Respect to GND	-0.5 to VDD	V
Vterm ^(4,6)	Terminal Voltage with Respect to GND	-0.5 to Vdd +0.5	V
Vterm ^(5,6)	Terminal Voltage with Respect to GND	-0.5 to VDDQ +0.5	V
TA ⁽⁷⁾	Operating Temperature	-0 to +70	٥C
Tbias	Temperature Under Bias	-55 to +125	٥C
Tstg	Storage Temperature	-55 to +125	٥C
Рт	Power Dissipation	2.0	W
ЮЛТ	DC Output Current	50	mA
NOTES.	-	•	5309 tbl 03

Absolute Maximum Ratings⁽¹⁾

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. VDD terminals only.

3. VDDQ terminals only.

- 4. Input terminals only.
- 5. I/O terminals only.
- 6. This is a steady-state DC parameter that applies after the power supplies have ramped up. Power supply sequencing is not necessary; however, the voltage on any input or I/O pin cannot exceed VDDQ during power supply ramp up.
- 7. TA is the "instant on" case temperature.

100-Pin TQFP Capacitance $(T_A = +25^{\circ} C, f = 1.0 MHz)$

Symbol	Parameter ⁽¹⁾	Conditions	Max.	Unit
Cin	Input Capacitance	Vin = 3dV	5	рF
Cvo	I/O Capacitance	Vout = 3dV	7	рF

119 BGA Capacitance $(T_A = +25^{\circ} C, f = 1.0 MHz)$

Symbol	Parameter ⁽¹⁾	Conditions	Max.	Unit				
Cin	Input Capacitance	Vin = 3dV	7	рF				
Ci/o	I/O Capacitance	Vout = 3dV	7	pF				
5309 tbl 07								

NOTE:

1. This parameter is guaranteed by device characterization, but not production tested.

Recommended Operating Temperature Supply Voltage

Grade Temperature ⁽¹⁾		Vss	Vdd	VDDQ
Commercial 0°C to +70°C		0V	3.3V±5%	3.3V±5%
Industrial	-40°C to +85°C	0V	3.3V±5%	3.3V±5%

NOTE:

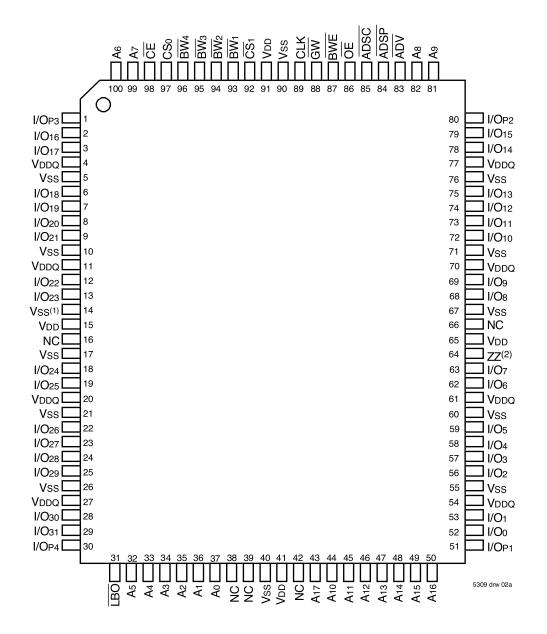
1. TA is the "instant on" case temperature.

Recommended DC Operating Conditions

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vdd	Core Supply Voltage	3.135	3.3	3.465	۷
VDDQ	I/O Supply Voltage	3.135	3.3	3.465	۷
Vss	Supply Voltage	0	0	0	۷
Vн	Input High Voltage - Inputs	2.0		Vdd +0.3	۷
Vн	Input High Voltage - I/O	2.0		VDDQ +0.3	۷
VIL	Input Low Voltage	-0.3 ⁽¹⁾		0.8	۷
NOTE				53	309 tbl 05

NOTE:

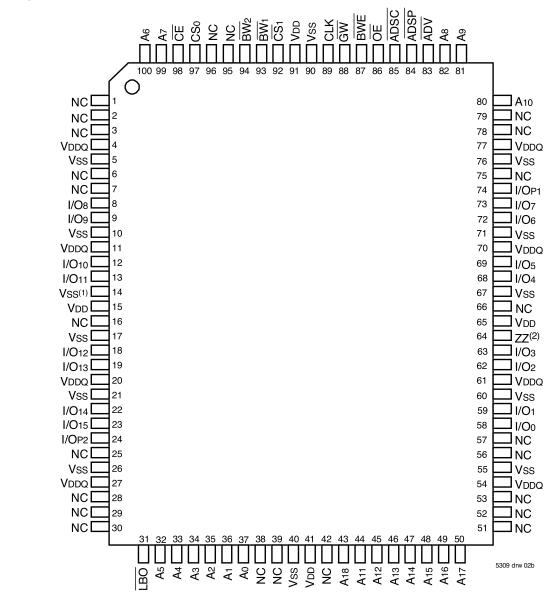
1. VIL (min) = -1.0V for pulse width less than tcyc/2, once per cycle.


165 fBGA Capacitance (TA = +25° C, f = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Max.	Unit
Cin	Input Capacitance	Vin = 3dV	7	pF
Сио	I/O Capacitance	Vout = 3dV	7	pF

5309 tbl 07b

5309 tbl 04



Top View

NOTES:

- 1. Pin 14 does not have to be directly connected to Vss as long as the input voltage is \leq VIL.
- 2. Pin 64 can be left unconnected and the device will always remain in active mode.

Pin Configuration – 512K x 18, 100-Pin TQFP

NOTES:

1. Pin 14 does not have to be directly connected to Vss as long as the input voltage is \leq VIL.

2. Pin 64 can be left unconnected and the device will always remain in active mode.

Top View

AS8C803625, AS8C801825, 256K x 36, 512K x 18, 3.3V Synchronous SRAMS with 3.3V I/O, Flow-Through Outputs, Single Cycle Deselect

Pin Configuration – 256K x 36, 119 BGA

_	1	2	3	4	5	6	7
Α		O A6	O A4	ADSP	O A8	O A16	O VDDQ
в	O NC O	O CS ₀ ⁽⁴⁾	O A3		0 A9 0	O A17	O NC O
с	NC	A7	0 A2 0		0 A12 O	O A15	NC
D	O I/O16	O I/OP3		NC	Vss	O I/OP2	O I/O15
Е	0 I/O17 0	0 I/O18		<u>D</u> E	O VSS	0 I/O13	0 I/O14 O
F		I/O19 O		<u>S</u>		I/O12	
G	I/O20	I/O21 O	BW3	NO G G O B O B O B O C O NO	BW2	I/O13 I/O12 O I/O11 I/O9 VDD I/O6	
н	I/O22	I/O23	BW3 O VSS O	GW	BW2 VSS O NC VSS	1/09	1/08
J		VDD		VDD	NC	VDD	VDDQ
к	I/O24	I/O26	Vss	CLK	0	1/O6	0 I/O7 O
L	I/O25	I/O27	BW4 O VSS O	NC O	BW1 O VSS O	0 I/O4 I/O3 0	I/O5
м		I/O28	Všs	BWE	Všs	1/Õ3 O	
Ν	I/O29 O	I/O30 O	Vss O	A1 O	Vss O	1/O2 O	I/O1
Ρ	I/O31 O	I/OP4	Vss O	A0 O	Vee	I/OP1 O	1/O0 O
R	NC O	A5 O	LBO			A13	NC
т	NC O	NC O	A10 O	A11 O	A14 O		
U	VDDQ	DNU ⁽³⁾	DNU ⁽³⁾	DNU ⁽³⁾	DNU ⁽³⁾	DNU ⁽³⁾	VDDQ

5309 drw 02c

Top View

Pin Configuration – 512K x 18, 119 BGA

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	_	1	2	3	4	5	6	7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	А	O VDDQ	O A6	-	O ADSP			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	в		0	0		0		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	_	0	0	0	0	0	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	С	NC	A7	A ²				NC
E NC I/O9 VSS CE VSS NC I/O7 F VDDQ NC VSS OE VSS I/O6 VDDQ G O O O O O O O O O G NC I/O10 BW2 ADV VSS NC I/O5 H I/O111 NC VSS GW VSS I/O4 NC J VDDQ VDD NC VDD NC VDD VDD VDD J VDDQ VDD NC VDD NC VDD VDDQ J VDDQ VDD NC VDD NC VDD VDDQ K NC I/O12 VSS CLK VSS NC I/O3 L I/O13 NC VSS NC BW1 I/O2 NC M VDDQ I/O14 VSS BWE VSS <th< th=""><th>D</th><th>I/Õ8</th><th>NC</th><th>Vss</th><th>NC</th><th>Vss</th><th>I/OP1</th><th>NC</th></th<>	D	I/Õ8	NC	Vss	NC	Vss	I/OP1	NC
F VDDQ NC VSS OE VSS I/O6 VDDQ G O	Е		0 I/O9	VSS	O CE	Vss	NC NC	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	0	O	O		O	0	O
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	F		0		ÔE	0	0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	G		I/O10		ADV	Vss		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	н	I/O11	NC	vss	GW	Vss	I/O4	NC
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	J							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	0	0	0	0	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	к							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	L	I/O13	NC	Vss			I/O2	NC
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	м			Vss	BWE	Vss	NČ	VDDQ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	N					0		ONC
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	0	0	0	0	0	0
R NC A5 LBO VDD VSS ⁽¹⁾ A12 NC O	Р	NC		Vss		VSS	NC	1/00
0 0 0 0 0 0 0	R	NC	A5	LBO	VDD	VSS ⁽¹⁾	A12	NC
0 0 0 0 0 0 0	т	O NC			O NC			O ZZ ⁽²⁾
	-	0	0	0	0	0	0	0
5309 drw 02d	U	VUDQ	DNU ⁽³⁾	DNU ⁽³⁾	DNU ⁽³⁾	DNU ⁽³⁾		,

Top View

NOTES:

- 1. R5 does not have to be directly connected to Vss as long as the input voltage is \leq VIL.
- 2. T7 can be left unconnected and the device will always remain in active mode.
- 3. DNU= Do not use; these signals can either be left unconnected or tied to Vss.
- 4. On future 18M devices CS_0 will be removed, B2 will be used for address expansion.

	1	2	3	4	5	6	7	8	9	10	11
А	NC ⁽³⁾	A7	Ē	B ₩₃	\overline{BW}_2	\overline{CS}_1	BWE	ADSC	ĀDV	A8	NC
В	NC	A6	CS0	BW4	BW1	CLK	GW	ŌĒ	ADSP	A9	NC ⁽³⁾
С	I/Op3	NC	Vddq	Vss	Vss	Vss	Vss	Vss	Vddq	NC	I/Op2
D	I/O17	I/O16	Vddq	Vdd	Vss	Vss	Vss	Vdd	Vddq	I/O15	I/O14
Е	I/O19	I/O18	Vddq	Vdd	Vss	Vss	Vss	Vdd	Vddq	I/O13	I/O12
F	I/O21	I/O20	Vddq	Vdd	Vss	Vss	Vss	Vdd	Vddq	I/O11	I/O10
G	I/O23	I/O22	Vddq	Vdd	Vss	Vss	Vss	Vdd	Vddq	I/O9	I/O8
Н	Vss ⁽¹⁾	NC	NC	Vdd	Vss	Vss	Vss	Vdd	NC	NC	ZZ ⁽²⁾
J	I/O25	I/O24	Vddq	Vdd	Vss	Vss	Vss	Vdd	Vddq	I/O7	I/O6
K	I/O27	I/O26	Vddq	Vdd	Vss	Vss	Vss	Vdd	Vddq	I/O5	I/O4
L	I/O29	I/O28	Vddq	Vdd	Vss	Vss	Vss	Vdd	Vddq	I/O3	I/O2
М	I/O31	I/O30	Vddq	Vdd	Vss	Vss	Vss	Vdd	Vddq	I /O1	I/Oo
Ν	I/Op4	NC	Vddq	Vss	NC	NC ⁽³⁾	NC	Vss	Vddq	NC	I/Op1
Ρ	NC	NC ⁽³⁾	A5	A2	DNU ⁽⁴⁾	A1	DNU ⁽⁴⁾	A10	A13	A14	A17
R	LBO	NC ⁽³⁾	A4	A3	DNU ⁽⁴⁾	A0	DNU ⁽⁴⁾	A11	A12	A15	A16

Pin Configuration – 256K x 36, 165 fBGA

5309tbl 17a

Pin Configuration – 512K x 18, 165 fBGA

	1	2	3	4	5	6	7	8	9	10	11
А	NC ⁽³⁾	A7	CE	BW2	NC	\overline{CS}_1	BWE	ADSC	ĀDV	A8	A10
В	NC	A6	CS0	NC	\overline{BW}_1	CLK	GW	ŌĒ	ADSP	A9	NC ⁽³⁾
С	NC	NC	Vddq	Vss	Vss	Vss	Vss	Vss	Vddq	NC	I/Op1
D	NC	I/O8	Vddq	Vdd	Vss	Vss	Vss	Vdd	Vddq	NC	I/O7
Е	NC	I/O9	Vddq	Vdd	Vss	Vss	Vss	Vdd	Vddq	NC	I/O6
F	NC	I/O10	Vddq	Vdd	Vss	Vss	Vss	Vdd	Vddq	NC	I/O5
G	NC	I/O11	Vddq	Vdd	Vss	Vss	Vss	Vdd	Vddq	NC	I/O4
Н	Vss ⁽¹⁾	NC	NC	Vdd	Vss	Vss	Vss	Vdd	NC	NC	ZZ ⁽²⁾
J	I/O12	NC	Vddq	Vdd	Vss	Vss	Vss	Vdd	Vddq	I/O3	NC
К	I/O13	NC	VDDQ	Vdd	Vss	Vss	Vss	Vdd	Vddq	I/O2	NC
L	I/O14	NC	VDDQ	Vdd	Vss	Vss	Vss	Vdd	Vddq	I/O1	NC
М	I/O15	NC	Vddq	Vdd	Vss	Vss	Vss	Vdd	Vddq	I/Oo	NC
Ν	I/Op2	NC	Vddq	Vss	NC	NC ⁽³⁾	NC	Vss	Vddq	NC	NC
Ρ	NC	NC ⁽³⁾	A5	A2	DNU ⁽⁴⁾	A1	DNU ⁽⁴⁾	A11	A14	A15	A18
R	LBO	NC ⁽³⁾	A4	A3	DNU ⁽⁴⁾	A0	DNU ⁽⁴⁾	A12	A13	A16	A17
					-		•		-		5309 tbl 17b

NOTES:

1. H1 does not have to be directly connected to Vss, as long as the input voltage is \leq VIL.

2. H11 can be left unconnected and the device will always remain in active mode.

3. Pin N6, B11, A1, R2 and P2 are reserved for 18M, 36M, 72M, and 144M and 288M respectively.

4. DNU= Do not use; these signals can either be left unconnected or tied to Vss.

DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range (VDD = 3.3V ± 5%)

Symbol	Parameter	Test Conditions	Min.	Max.	Unit
11	Input Leakage Current	$V_{DD} = Max., V_{IN} = 0V to V_{DD}$	_	5	μA
111	IBO Input Leakage Current ⁽¹⁾	Vdd = Max., Vin = 0V to Vdd		30	μA
llo	Output Leakage Current	$V_{OUT} = 0V$ to V_{CC}	_	5	μA
Vol	Output Low Voltage	$I_{OL} = +8mA$, $V_{DD} = Min$.	_	0.4	V
Vон	Output High Voltage	$I_{OH} = -8mA$, $V_{DD} = Min$.	2.4	_	V

NOTE:

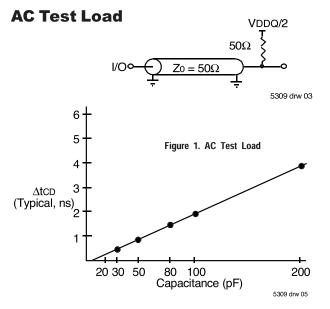
5309 tbl 08

1. The LBO pin will be internally pulled to Vob if it is not actively driven in the application and the ZZ in will be internally pulled to Vss if not actively driven.

DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range ⁽¹⁾

			7.5ns		8ns		8.5ns		Unit
Symbol	Parameter	Test Conditions	Com'l	Ind	Com'l	Ind	Com'l	Ind	Unit
DD	Operating Power Supply Current	$\begin{array}{l} \mbox{Device Selected, Outputs Open, Vdd} = Max., \\ \mbox{Vdd} = Max., V \ensuremath{\mathbb{N}} \geq V \ensuremath{\mathbb{H}} \mbox{ or } \leq V \ensuremath{\mathbb{I}}, \ensuremath{f} = f \ensuremath{M} a x^{(2)} \end{array}$	265	285	210	230	190	210	mA
ISB1	CMOS Standby Power Supply Current	Device Deselected, Outputs Open, VDD = Max., VDDQ = Max., $V \mathbb{D} \mathbb{Q}$ = Max., $V \mathbb{N} \ge V \mathbb{H} \mathbb{D}$ or $\le V \mathbb{L} \mathbb{D}$, $f = 0^{(2,3)}$	50	70	50	70	50	70	mA
ISB2	Clock Running Power Supply Current	Device Deselected, Outputs Open, VDD = Max., VDDQ = Max., V DDQ = Max., V N \geq VHD or \leq VLD, f = fMax ^(2,3)	145	165	140	160	135	155	mA
zz	Full Sleep Mode Supply Current	$ZZ \ge VHD$, $VDD = Max$.	50	70	50	70	50	70	mA
								5	309 tbl 09

NOTES:


1. All values are maximum guaranteed values.

2. At f = fmax, inputs are cycling at the maximum frequency of read cycles of 1/tcyc while ADSC = LOW; f=0 means no input lines are changing.

3. For I/Os VHD = VDDQ - 0.2V, VLD = 0.2V. For other inputs VHD = VDD - 0.2V, VLD = 0.2V.

AC Test Conditions (VDDQ = 3.3V/2.5V)

Input Pulse Levels	0 to 3v
Input Rise/Fall Times	2ns
Input Timing Reference Levels	1.5V
Output Timing Reference Levels	1.5V
AC Test Load	See Figure 1
	5309 tbl 10

Figure 2. Lumped Capacitive Load, Typical Derating

Synchronous Truth Table (1,3)

Operation	Address Used	ĈĒ	CS0	CS1	ADSP	ADSC	ĀDV	GW	BWE	BWx	<u>OE</u> ¢)	CLK	I/O
Deselected Cycle, Power Down	None	Н	Х	Х	Х	L	Х	Х	Х	Х	Х	Ŷ	HI-Z
Deselected Cycle, Power Down	None	L	Х	Н	L	Х	Х	Х	Х	Х	Х	Ŷ	HI-Z
Deselected Cycle, Power Down	None	L	L	Х	L	Х	Х	Х	Х	Х	Х	↑	HI-Z
Deselected Cycle, Power Down	None	L	Х	Н	Х	L	Х	Х	Х	Х	Х	↑	HI-Z
Deselected Cycle, Power Down	None	L	L	Х	Х	L	Х	Х	Х	Х	Х	↑	HI-Z
Read Cycle, Begin Burst	External	L	Н	L	L	Х	Х	Х	Х	Х	L	Ŷ	Dout
Read Cycle, Begin Burst	External	L	Н	L	L	Х	Х	Х	Х	Х	Н	Ŷ	HI-Z
Read Cycle, Begin Burst	External	L	Н	L	Н	L	Х	Н	Н	Х	L	Ŷ	Dout
Read Cycle, Begin Burst	External	L	Н	L	Н	L	Х	Н	L	Н	L	Ŷ	Dout
Read Cycle, Begin Burst	External	L	Н	L	Н	L	Х	Н	L	Н	Н	Ŷ	HI-Z
Write Cycle, Begin Burst	External	L	Н	L	Н	L	Х	Н	L	L	Х	↑	DIN
Write Cycle, Begin Burst	External	L	Н	L	Н	L	Х	L	Х	Х	Х	Ŷ	Din
Read Cycle, Continue Burst	Next	Х	Х	Х	Н	Н	L	Н	Н	Х	L	Ŷ	Dout
Read Cycle, Continue Burst	Next	Х	Х	Х	Н	Н	L	Н	Н	Х	Н	Ŷ	HI-Z
Read Cycle, Continue Burst	Next	Х	Х	Х	Н	Н	L	Н	Х	Н	L	↑	Dout
Read Cycle, Continue Burst	Next	Х	Х	Х	Н	Н	L	Н	Х	Н	Н	↑	HI-Z
Read Cycle, Continue Burst	Next	Н	Х	Х	Х	Н	L	Н	Н	Х	L	Ŷ	Dout
Read Cycle, Continue Burst	Next	Н	Х	Х	Х	Н	L	Н	Н	Х	Н	Ŷ	HI-Z
Read Cycle, Continue Burst	Next	Н	Х	Х	Х	Н	L	Н	Х	Н	L	Ŷ	Dout
Read Cycle, Continue Burst	Next	Н	Х	Х	Х	Н	L	Н	Х	Н	Н	Ŷ	HI-Z
Write Cycle, Continue Burst	Next	Х	Х	Х	Н	Н	L	Н	L	L	Х	Ŷ	Din
Write Cycle, Continue Burst	Next	Х	Х	Х	Н	Н	L	L	Х	Х	Х	Ŷ	Din
Write Cycle, Continue Burst	Next	Н	Х	Х	Х	Н	L	Н	L	L	Х	Ŷ	DIN
Write Cycle, Continue Burst	Next	Н	Х	Х	Х	Н	L	L	Х	Х	Х	↑	DIN
Read Cycle, Suspend Burst	Current	Х	Х	Х	Н	Н	Н	Н	Н	Х	L	↑	Dout
Read Cycle, Suspend Burst	Current	Х	Х	Х	Н	Н	Н	Н	Н	Х	Н	Ŷ	HI-Z
Read Cycle, Suspend Burst	Current	Х	Х	Х	Н	Н	Н	Н	Х	Н	L	↑	Dout
Read Cycle, Suspend Burst	Current	Х	Х	Х	Н	Н	Н	Н	Х	Н	Н	↑	HI-Z
Read Cycle, Suspend Burst	Current	Н	Х	Х	Х	Н	Н	Н	Н	Х	L	↑	Dout
Read Cycle, Suspend Burst	Current	Н	Х	Х	Х	Н	Н	Н	Н	Х	Н	↑	HI-Z
Read Cycle, Suspend Burst	Current	Н	Х	Х	Х	Н	Н	Н	Х	Н	L	Ŷ	Dout
Read Cycle, Suspend Burst	Current	Н	Х	Х	Х	Н	Н	Н	Х	Н	Н	Ŷ	HI-Z
Write Cycle, Suspend Burst	Current	Х	Х	х	Н	Н	Н	Н	L	L	х	Ŷ	Din
Write Cycle, Suspend Burst	Current	Х	Х	х	Н	Н	Н	L	Х	х	х	Ŷ	Din
Write Cycle, Suspend Burst	Current	Н	Х	х	Х	Н	Н	Н	L	L	Х	Ŷ	Din
Write Cycle, Suspend Burst	Current	Н	Х	Х	Х	Н	Н	L	Х	Х	Х	↑	Din

NOTES:

1. $L = V_{IL}$, $H = V_{IH}$, X = Don't Care. 2. \overline{OE} is an asynchronous input.

3. ZZ - low for the table.

Synchronous Write Function Truth Table ^(1, 2)

Operation	Ğ₩	BWE	B₩ı	₿₩₂	<u>₿</u> ₩3	₿₩ 4
Read	Н	н	х	х	х	Х
Read	Н	L	Н	Н	Н	Н
Write all Bytes	L	х	х	х	х	Х
Write all Bytes	Н	L	L	L	L	L
Write Byte 1 ⁽³⁾	Н	L	L	н	н	Н
Write Byte 2 ⁽³⁾	Н	L	Н	L	Н	Н
Write Byte 3 ⁽³⁾	Н	L	Н	Н	L	Н
Write Byte 4 ⁽³⁾	Н	L	Н	Н	н	L

NOTES:

1. L = VIL, H = VIH, X = Don't Care.

2. \overline{BW}_3 and \overline{BW}_4 are not applicable for the IDT71V67903.

3. Multiple bytes may be selected during the same cycle.

Asynchronous Truth Table ⁽¹⁾

Operation ⁽²⁾	ŌĒ	72	I/O Status	Power	
Read	L	L	Data Out	Active	
Read	Н	L	High-Z	Active	
Write	Х	L	High-Z – Data In	Active	
Deselected	Х	L	High-Z	Standby	
Sleep Mode	Х	Н	High-Z	Sleep	

5309 tbl 13

NOTES: 1. L = VIL, H = VIH, X = Don't Care.

2. Synchronous function pins must be biased appropriately to satisfy operation requirements.

Interleaved Burst Sequence Table (**LBO**=VDD)

	Sequence 1		Sequ	ence 2	Sequ	ence 3	Sequence 4	
	A1	A0	A1	A0	A1	A0	A1	A0
First Address	0	0	0	1	1	0	1	1
Second Address	0	1	0	0	1	1	1	0
Third Address	1	0	1	1	0	0	0	1
Fourth Address ⁽¹⁾	1	1	1	0	0	1	0	0
								5309 tbl 14

NOTE:

1. Upon completion of the Burst sequence the counter wraps around to its initial state.

Linear Burst Sequence Table (LBO=Vss)

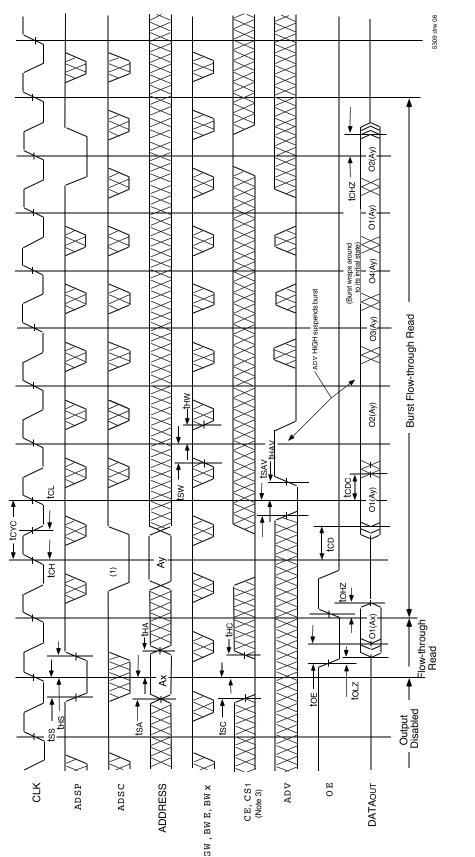
	Sequ	Sequence 1		ence 2	Sequ	ence 3	Sequence 4	
	A1	A0	A1	A0	A1	A0	A1	A0
First Address	0	0	0	1	1	0	1	1
Second Address	0	1	1	0	1	1	0	0
Third Address	1	0	1	1	0	0	0	1
Fourth Address ⁽¹⁾	1	1	0	0	0	1	1	0

NOTE:

1. Upon completion of the Burst sequence the counter wraps around to its initial state.

AC Electrical Characteristics (VDD = 3.3V ±5%, Commercial and Industrial Temperature Ranges)

		7.	5ns	8ns		8.5ns		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Clock Pa	rameter			-	-	-		
tcyc	Clock Cycle Time	8.5		10		11.5		ns
tсн ⁽¹⁾	Clock High Pulse Width	3		4		4.5		ns
tcl ⁽¹⁾	Clock Low Pulse Width	3		4		4.5		ns
Output Pa	arameters	Į						8
tCD	Clock High to Valid Data		7.5		8		8.5	ns
todc	Clock High to Data Change	2		2		2		ns
ta_z ⁽²⁾	Clock High to Output Active	0		0		0		ns
tchz ⁽²⁾	Clock High to Data High-Z	2	3.5	2	3.5	2	3.5	ns
toe	Output Enable Access Time		3.5		3.5		3.5	ns
tolz ⁽²⁾	Output Enable Low to Output Active	0		0		0		ns
tонz ⁽²⁾	Output Enable High to Output High-Z		3.5		3.5		3.5	ns
Set Up Ti	mes		1					
tsa	Address Setup Time	1.5		2		2		ns
tss	Address Status Setup Time	1.5		2		2		ns
tsp	Data In Setup Time	1.5		2		2		ns
tsw	Write Setup Time	1.5		2		2		ns
tsav	Address Advance Setup Time	1.5		2		2		ns
tsc	Chip Enable/Select Setup Time	1.5		2		2		ns
Hold Tim	es						•	•
tha	Address Hold Time	0.5		0.5		0.5		ns
tHS	Address Status Hold Time	0.5		0.5		0.5		ns
thd	Data In Hold Time	0.5		0.5		0.5		ns
tHW	Write Hold Time	0.5		0.5		0.5		ns
thav	Address Advance Hold Time	0.5		0.5		0.5		ns
thc	Chip Enable/Select Hold Time	0.5		0.5		0.5		ns
Sleep Mo	de and Configuration Parameters	1						
tzzpw	ZZ Pulse Width	100		100		100		ns
tzzr ⁽³⁾	ZZ Recovery Time	100		100		100		ns
tcfg ⁽⁴⁾	Configuration Set-up Time	34		40		50		ns


NOTES:

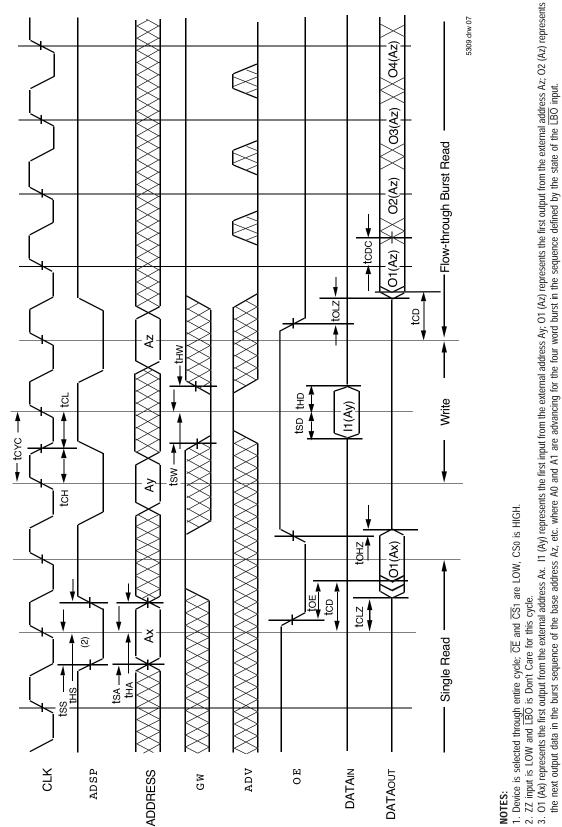
1. Measured as HIGH above VIH and LOW below VIL.

2. Transition is measured ±200mV from steady-state.

3. Device must be deselected when powered-up from sleep mode.

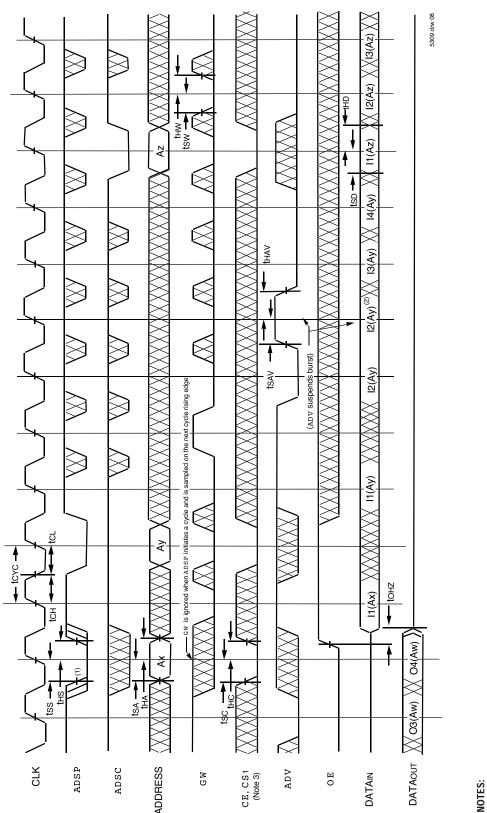
4. tcFG is the minimum time required to configure the device based on the LBO input. LBO is a static input and must not change during normal operation.

NOTES:


1. O1 (Ax) represents the first output from the external address Ax. O1 (Ay) represents the first output from the external address Ay: O2 (Ay) represents the next output data in the burst sequence of the base address Ay, etc. where A0 and A1 are advancing for the four word burst in the sequence defined by the state of the LBO input. 2. ZZ input is LOW and LBO is Don't Care for this cycle. 3. CS0 timing transitions are identical but inverted to the \overline{CE} and $\overline{CS}1$ signals. For example, when \overline{CE} and $\overline{CS}1$ are LOW on this waveform, CS0 is HIGH.

3. 2.

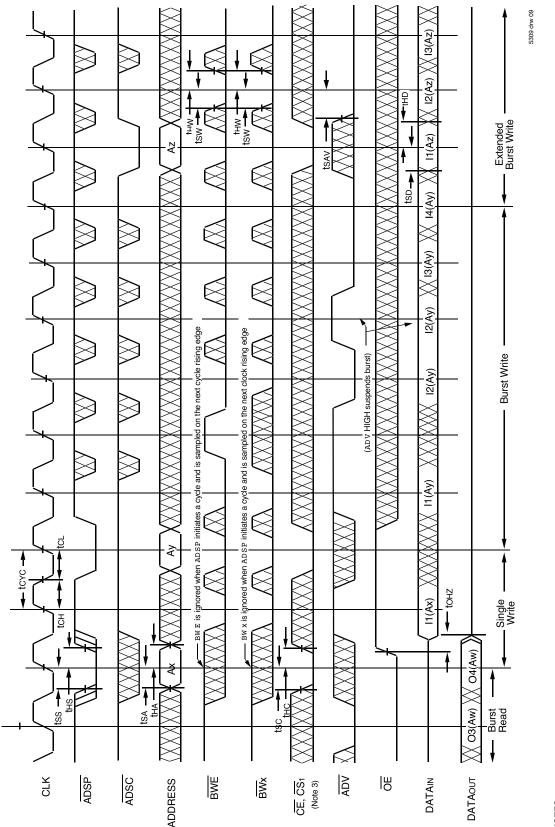
Timing Waveform of Flow-Through Read Cycle ^(1,2)


AS8C803625, AS8C801825, 256K x 36, 512K x 18, 3.3V Synchronous SRAMS with 3.3V I/O, Flow-Through Outputs, Single Cycle Deselect

13

Timing Waveform of Combined Flow-Through Read and Write Cycles ^(1,2,3)

14



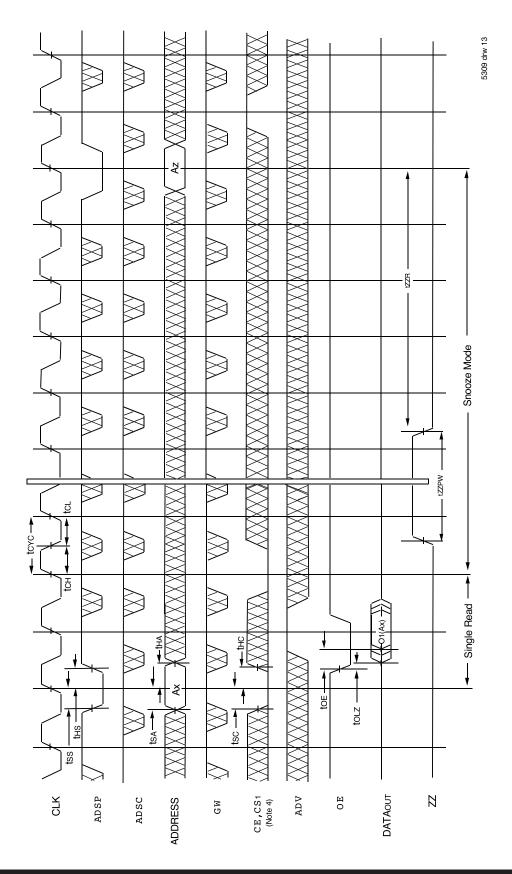
Timing Waveform of Write Cycle No. 1 - GW Controlled ^(1,2,3)

NOTES:

1. ZZ input is LOW, BWE is HIGH and LBO is Don't Care for this cycle. 2. O4 (Aw) represents the final output data in the burst sequence of the base address Aw. 11 (Ax) represents the first input from the external address Ay; I2 (Ay) represents the next input data in the burst sequence of the base address Ay, etc. where A0 and A1 are advancing for the four word burst in the sequence defined by the state of the <u>LBO</u> input. In the case of input I2 (Ay) this data is valid for two cycles because <u>ADV</u> is high and has suspended the burst. CSO timing transitions are identical but inverted to the <u>CE</u> and <u>CS1</u> signals. For example, when <u>CE</u> and <u>CS1</u> are LOW on this waveform, CS0 is HIGH.

З.

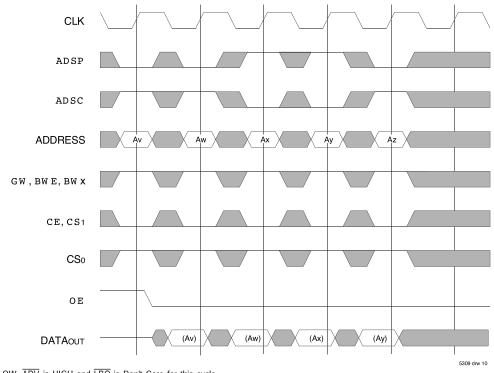
16


Timing Waveform of Write Cycle No. 2 - Byte Controlled ^(1,2,3)

NOTES:

ZZ input is LOW, <u>GW</u> is HIGH and <u>LBO</u> is Don't Care for this cycle.
 O4 (Aw) represents the final output data in the burst sequence of the base address Aw. I1 (Ax) represents the first input from the external address Ax. I1 (Ay) represents the first input from the external address Ay. I2 (Ay) represents the next input data in the burst sequence of the base address Ay, etc. where A0 and A1 are advancing for the four word burst in the sequence defined by the state of the <u>LBO</u> input.

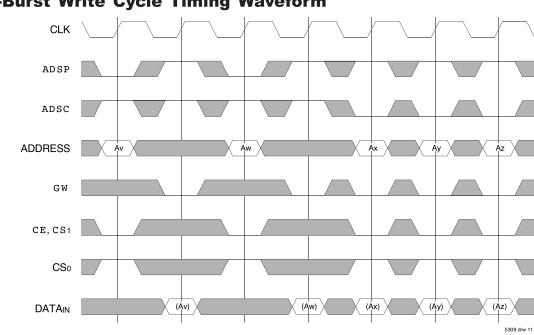
In the case of input 12 (Ay) this data is valid for two cycles because $\overline{\text{ADV}}$ is high and has suspended the burst. CS0 timing transitions are identical but inverted to the $\overline{\text{CE}}$ and $\overline{\text{CS}}$ 1 signals. For example, when $\overline{\text{CE}}$ and $\overline{\text{CS}}$ 1 are LOW on this waveform, CS0 is HIGH. 3.



NOTES:

. . . . 4

on this waveform, CS0 is HIGH. Device must power up in deselected Mode. LBO is Don't Care for this cycle. It is not necessary to retain the state of the input registers throughout the Power-down cycle. CSO timing transitions are identical but inverted to the \overline{CE} and $\overline{CS}1$ signaals. For example, when CE and CS1 are LOW

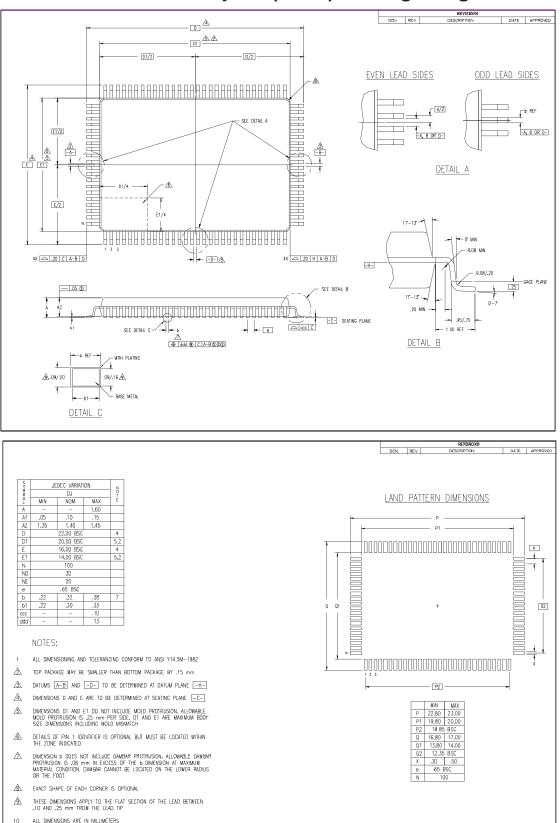

Non-Burst Read Cycle Timing Waveform

NOTES:

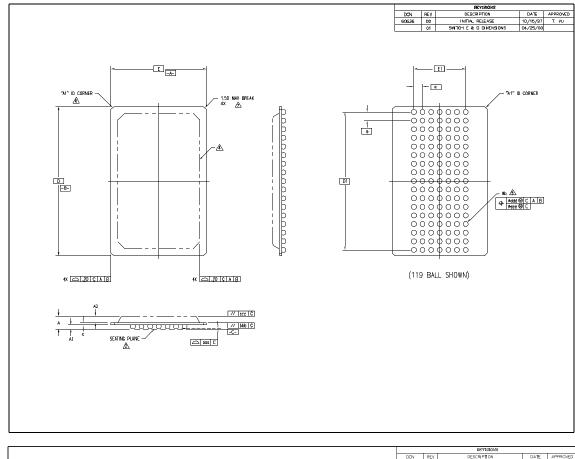
1. ZZ input is LOW, $\overline{\text{ADV}}$ is HIGH and $\overline{\text{LBO}}$ is Don't Care for this cycle.

2. (Ax) represents the data for address Ax, etc.

3. For read cycles, ADSP and ADSC function identically and are therefore interchangable.

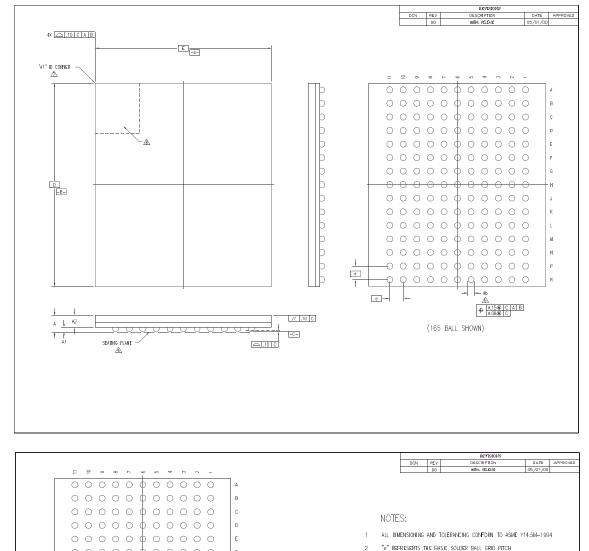


Non-Burst Write Cycle Timing Waveform


NOTES:

- 1. ZZ input is LOW, $\overline{\text{ADV}}$ and $\overline{\text{OE}}$ are HIGH, and $\overline{\text{LBO}}$ is Don't Care for this cycle.
- 2. (Ax) represents the data for address Ax, etc.
- 3. Although only \overline{GW} writes are shown, the functionality of \overline{BWE} and \overline{BWx} together is the same as \overline{GW} .
- 4. For write cycles, ADSP and ADSC have different limitations.

100-Pin Thin Plastic Quad Flatpack (TQFP) Package Diagram Outline



11 THIS DUTUNE CONFORMS TO JEDEC PUBLICATION 95 REGISTRATION M0-136, VARIATION DJ AND BX

119 Ball Grid Array (BGA) Package Diagram Outline


				REVISIONS		
		DCN	REV	DESCRIPTION	DATE	APPROVE
- "A1" ID CORNER		60626	00	INITIAL RELEASE	10/15/97	
7 6 5 4 3 2 1			01	SWITCH E & 0 DIVENSIONS CHANGE PACKAGE THICKNESS	04/25/00	
		L	02	CHANGE PACKAGE THICKNESS	08/05/00	
000000						
000000 1		NOTES:				
000000						
000000 F	1	ALL DIMENSIONING	AND TO	LERANCING CONFORM TO ANSI '	′14.5M-1982	2
0000000	A				N DV THE	
0000000	12	SPHERICAL CROWN	S OF TH	ARY DATUM -C- ARE DEFINE	D BL THE	
		SITTERIORE CROWN	3 01 11	IE SOLDER UNLES		
	3			SIZE IN THE D. DIRECTION		
				SIZE IN THE "E" DIRECTION		
ŐŐŐŐŐŐŐ M		"N" IS THE MAXIM	JM ALLC	WABLE NUMBER OF SOLDER BA	LS	
0000000	1	PACKAGE NAV EXT	END TO	EDGE PERIPHERY AND MAY COL	ISIST DE	
000000				XY, METAL, CERAMIC OR OTHER		
	^			-		
	A.	PARALLEL TO PRIM	MEASUR	ED AT THE MAXIMUM SOLDER B	ALL DIAMETER	र,
		PARALLEL TO PRIV	ekt DA			
	A	"A1" ID CORNER N	AUST BE	IDENTIFIED IDENTIFICATION MAY	BE BY MEAK	NS
(112 5111)				OR INK MARK, INDENTATION OR		URE
(119 BALL)		OF THE PACKAGE	BODY. N	IARK MUST BE VISIBLE FROM TO	IP SURFACE	
	A	ACTUAL SHAPE OF	this fi	EATURE IS OPTIONAL		
	8	ALL DIMENSIONS A	REININ	ILLIMETERS		
	9		FORMS	TO JEDEC PUBLICATION 95 REG	ISTRATION MS	S-028,
B AA T		VARIATION AA				
L BUIN INC/0 MENA						
A - 2.15 2.36						
A1 .50 .60 .70						
A2 – – 1.20						
D 22.00 ESC						
D1 20.32 BSC						
E 14.00 BSC						
E1 7.62 85C						
MD 17 3						
ME 7 3						
N 119 3						
e 1.27 B5C						
b .60 .75 90 5						
c .51 .56 .61						
aaa15 bbb 25						
120						
100						
100						
dag						

165 Fine Pitch Ball Grid Array (fBGA) Package Diagram Outline

- 4 "N" REPRESENTS THE BALLCOUNT NUMBER
- DIMENSION "b" IS MEASURED AT THE MAXIMUM SOLDER BALL DIAMETER, PARALLEL TO PRIMARY DATUM [-C-]
- SEATING PLANE AND PRIMARY DATION ____ ARE DEFINED BY THE SPHERICAL CROWINS OF THE SOLDER BALLS A
- "A1" ID CORNER MUST BE IDENTIFIED BY CHANFER, INK MARK, METALLIZED NARKING, INDENTATION OR DTHER FEATURE ON PACKAGE BODY \triangle
- /8 IF "A1" ID CORNER IS ON PACKAGE BODY, IT MUST BE LOCATED WITHIN THE ZONE INDICATED
- ALL DIMENSIONS ARE IN MILLIMETERS g

000000000000

00000000000

00000000000

00000000000

00000000000

00000000000

0000

000000

F

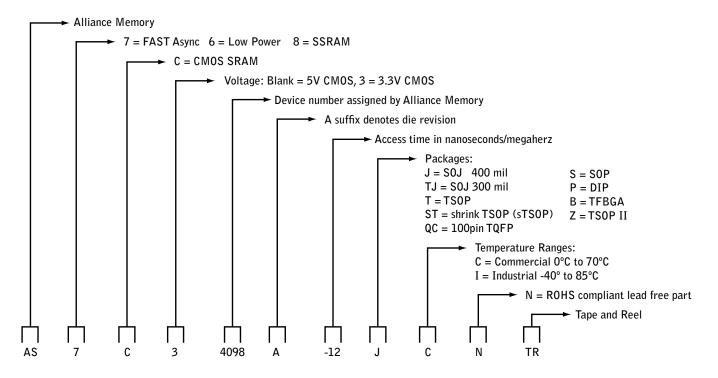
G

н

J

L

М


Ν

Р

P

Alliance Part numbering system

Ordering Information

Alliance	Organization	VCC Range	Operating Temp	Speed
AS8C803625	256K x 36	3.1 - 3.4V	Comercial 0 - 70C	7.5 ns
AS8C801825	512K x 18	3.1 - 3.4V	Comercial 0 - 70C	7.5 ns

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Alliance Memory: AS8C801825-QC75N AS8C803625-QC75N